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Abstract

The present paper represents an analytical solution of fingering phonomenon arising in double phase flow through homo-

geneous media under certain initial & boundary condition using techniques of calculus of variation and similarity theory.

The numerical and graphical representation of solution has been given the graph of saturatin F(η) of injected liquid, is

increasing after η = 0.5 for t > 0, which indicates that when injected liquid entries into native liquid at common-interface,

then suddenly the native liquid enters into injected liquid due to difference in wettability. Hence initial saturation will

decrease and then after η > 0.5 the saturation uniformly increases parabolically which is physically consistent with the

available theory.

Keywords: Fingering phenomenon, Double phase flow, Similarity theory, Capillary force, Calculus of Variation, Rayleigh-
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Nomenclature
VW Seepage velocity of Water

V0 Seepage velocity of Oil

ρW Density of Water

ρ0 Density of Oil

α The inclinati of the bed,

g Acceleratin due to gravity,

Pc Capillary pressure

P0 Pressure of Oil

PW Pressure of Water

P Mean Pressure

S W Saturation of Water

S 0 Saturation of Oil

η(x, t) The interface curve

K Intrinsic permeability

1. Introduction

It is a very well-known physical fact that when a fluid, contained in a porous media, is displaced by another of lesser

viscosity, instead of regular displacement of whole front, perturbations (fingers) occur which shoot through the porous

medium at relatively great speed. This phenomenon of occurrence of instabilities is called fingering.

Immiscible flow of heavy oil in a porous formation by high temperature pressurized water has been numerically studied.

The physical region is a square domain in the horizontal plane with low and high pressure points at the opposite corners

along one of the diagonals. Water, the invading fluid, when introduced at high pressure displaces the in situ oil towards the

low-pressure production zone. The extent of displacement of oil by water through the porous medium in a given amount

of time and the appearance of preferential flow paths (fingers) is the subject of the present investigation.
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The resistance to water-oil movement arises from the viscous forces in the fluid phases and the capillary force at their

interface. Based on their relative magnitudes, various forms of displacement mechanisms can be realized. As the viscosity

ratio of heavy oil to water is large, viscous forces in the oil phase become dominant and constitute the major factor for

controlling the flow distortions in the porous formation. A mathematical model that can treat the individual fluid pressures,

capillary effects and heat transfer has been employed in the present work. A fully implicit, two-dimensional numerical

model has been used to compute the pressure and temperature fields. The domain decomposition technique has been

adopted in the numerical solution since the problem is computationally intensive. Naturally occurring oil-rich reservoirs

to which the present study is applicable are inhomogeneous and layered. A qualitative study has been carried out to

explore the effect of permeability variations on the flow patterns. Numerical calculations show that non-isothermal effects

as well as layering, promote the formation of viscous fingers and consequently the sweep efficiency of the high-pressure

waterfront.

In the statistical treatment of fingering (Scheidegger, A.E., 1961) only average cross sectional area occupied by the

fingers, is taken into account, the size and shape of the individual fingers are disregarded. Scheideger and Johnson (1961)

introduce the idea of discussing the statistical behaviour of instabilities in homogeneous porous media and considered the

phenomenon without the effecct of capillary pressure. Verma (1964) has examined the behaviour of fingering phenomenon

in a displacement process through heterogeneous porous medium from statistical point of view. It has been shown that

fingers may be stabilized in homogeneous media statistical view point by (Scheidegger, A.E., 1960) many authors, for

example, Chouke (1959), Jecquard (1940), Verma (1924), have investigated this phenomenon with different aspects.

1.1 Formulation of Problem

Let water be injected with constant velocity into a dipping oil saturated porous medium of homogeneous physical charac-

teristic. The displacement of oil by water gives rise to a well-developed finger flow as shown in Figure 1(a), 1(b).

< Figure 1(a) & Figure 1(b) >

From Darcy’s law the seepage velocity of water Vw and oil V0 can be written as

Vw =
Kw

δw
K
(
∂Pw

∂X
+ ρwg sinα

)
(1)

V0 = −K0

δ0
K
(
∂P0

∂X
+ ρ0g sinα

)
(2)

where ρw and ρ0 are constant densities of water and oil respectively, α is the inclination of the bed, g is acceleration due

to gravity.

The equation of continuity of the phases is given by

P
δS w

∂t
+
∂Vw

∂X
= 0 (3)

P
δS 0

∂t
+
∂V0

∂X
= 0 (4)

From the definition of phase saturation we have

S w + S 0 = 1 (5)

The capillary pressure, which is defined as the pressure discontinuity of the following phases across the common interface

is written as

Pc = P0 − Pw (6)

Or
∂Pw

∂X
=
∂P0

∂X
− ∂Pc

∂X
(7)

The equation of motion for saturation can be obtained by substitution of the values of Vw and V0 from equations (1) and

(2) in equation (3) and (4) respectively. Thus we have

P
∂S w

∂t
=
∂

∂X

[(
Kw

δw
k
) (
∂Pw

∂X
+ ρwg sinα

)]
(8)

P
∂S 0

∂t
=
∂

∂X

[(
K0

δ0
k
) (
∂P0

∂X
+ ρ0g sinα

)]
(9)

Substituting the value of ∂Pw
∂X from Eq. (7), Eq. (8) reduces to

P
∂S w

∂t
=
∂

∂X

[(
Kw

δ0
k
) (
∂P0

∂X
− ∂Pc

∂X
+ ρwg sinα

)]
(10)
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Now considering Eq. (9) and (10)

P
∂

∂t
(S w + S 0) =

∂

∂X

[
∂P0

∂X
k
(

K0

δ0
+

Kw

δw

)
− Kw

δw
K
∂P0

∂X
+ g sinαK

(
K0ρ0

δ0
+

Kwρw

δw

)]
Using (5) we have

∂

∂X

[
∂P0

∂X
K
(

K0

δ0
+

Kw

δw

)
− K

Kw

δw
K
δP0

δX
+ Kg sinα

(
K0ρ0

δ0
+

Kwρw

δw

)]
= 0 (11)

Integrating both sides w.r.t. ”x” we have

K
∂P0

∂X

(
K0

δ0
+

Kw

δw

)
− K

Kw

δw

∂P0

∂X
+ Kg sinα

(
K0ρ0

δ0
+

Kwρw

δw

)
= cons tan t

or, (
Kw

δw
+

K0

δ0

)
∂P0

∂X
K − Kw

δw
K + gK sinα

(
K0ρ0

δ0
+

Kwρw

δw

)
= −q (12)

where q is the constant of integration

or,

∂P0

∂X
=

[
−q + Kw

δw

∂P0

∂X − gK sinα
(

K0ρ0

δ0
+

KWρW
δW

)](
KW K
δW
+

K0K
δ0

) (13)

Substituting the value of ∂P0

∂X from equation (13), equation (10) becomes (Appendix A).

P
∂S W

∂t
+
∂

∂X

⎡⎢⎢⎢⎢⎢⎢⎣ K0K
δ0

{
∂P0

∂X + g sinα(ρ0 − ρw)
}(

1 + K0δW
Kwδ0

) +
q(

1 + K0δW
Kwδ0

) ⎤⎥⎥⎥⎥⎥⎥⎦ = 0 (14)

The value of the pressure of oil (P0) can be written as

P0 = (P0 + PW + P0 − PW )/2 =
P0 + PW

2
+

P0 − PW

2
= P +

1

2
(P0 − PW ) = P +

1

2
Pc (15)

Where P is the mean pressure. Since P, the mean pressure is constant hence we have

∂P0

∂X
=

1

2

∂Pc

∂X
(16)

Substituting the value of ∂P0

∂X in equation (12) we get (Appendix B)

q =
∂Pc

∂X

(
1

2

KW K
δW

− 1

2

K0K
δ0

)
− g sinα

(
K0Kρ0

δ0
+

KW KρW

δW

)
(17)

using the above value of ”q” equation (14) reduces to (Appendix C)

P
∂S W

∂t
+
∂

∂X

[
KwK
δw

{
1

2

∂P0

∂X
− ρwg sinα

}]
= 0 (18)

1.2 A Special case study

For definitions of the mathematical analysis, we assume a standard form for the relationship between capillary pressure,

permeability of water & permeability of oil with phase saturation as

Kw = S w

K0 = 1 − S w (19)

P0 = B
(
S − 1

2
w − C

)
where B and C are constant.

Using the above values equation (18) reduces as follow :

P
∂S w

∂t
+
∂

∂X

[
S wK
δW

{−B
4

S − 3
2

w
∂S w

∂X
+ ρwg sinα

}]
= 0 (20)
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This is the equation of motion for saturation, with the boundary condition

when x = 0 then S w(0, t) = S w0, (21)

Since an exact solution of equation (20) is difficult to obtain due to non-linear forms there in hence we have obtain the

approximate solution of the above problem by Rayleigh-Ritz method :

1.3 Solution procedure

Since capillary pressure is very small in porous media, hence assuming that the capillary pressure Pc as zero or B as zero,

equation (20) reduces to

P
∂S w

∂t
+

[
ρwg sinα

δw

∂S w

∂X
K
]
= 0

or,
∂S w

∂t
+ δ
∂S w

∂X
= 0 (22)

where

δ = ρwg sinα

(
K

Pδw

)
(23)

Using Birkhof’s technique of one parameter group transformation, defined as

T1 : X = aqx

T = aut (24)

S w = avS w

where parameter a � 0, and q, u, v are real numbers to be determined.

Hence we have
∂S w

∂t
= a−v ∂S w

∂T
∂T
∂t
= au−v ∂S w

∂T

∂S w

∂X
= a−v ∂S w

∂X
∂X
∂x
= aq−v ∂S w

∂X
Equation (21) using above value becomes

au−v ∂S w

∂T
+ δaq−v ∂S w

∂X
= 0 (25)

equation (24) is absolute conformed invaraint under T1 provided

q − v = u − v

or,
q
u

− v
u
= 1 − v

u
or,

q
u
= 1 (26)

and choosing an arbitrary constant “A” as follows
v
u
= A (27)

Thus the invariants of group T1 is given by

η =
x
l

(28)

and

F(η) =
S w(x, t)

tA (29)

or,

S w(x, t) = tAF(η)

S w = tAF

∂S w

∂t
= AtA−1F + tAF′

(
− x

t2

)
,
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where dash represent differentiations w.r.t. ‘η’

∂S w

∂t
= tA−1(AF − ηF′)

and
∂S w

∂x
= tA−1F′(η)

Substituting the above values in equation (21) we have

tA−1[AF(η) − ηF′(η) + δF′(η)]0

Since tA−1 � 0, therefore

AF(η) − ηF′(η) + δF′(η) = 0 (30)

This is an ordinary differential equation of first order.

Case 1.

Let trial solutionis :

F(η) = a1a2η

since

η→ 0, F → F0

F(0.1) = a1 = Fa

or,

F = F0 + a2η

hence or,

F′ = a2

substituting the value of F, F′ we have

A(F0 + a2η) − ηa2 + δa2 = 0

or,

(AFa + δa2) + η(Aa2 − a2) = 0

equating the coefficient of η both sides

A = 1

a2 =
−AF0

δ
=

−F0

δ

F =
(
F0 − F0

δ
η
)
= F0

(
1 − η
δ

)
= F0

(
1 − x
δ.t

)
Hence from equation (29) that is S w = t2F(η) we have

S w = t2F(η) = F0

(
1 − x
δ.t

)
t2 =

S w0

tA

(
1 − x
δt

)
t2 =

S w0

tA−1

(
t − x
δ

)
Case 2.

Now we solve the above equation (30) or AF(η) − ηF′(η) + δF′(η) = 0 with the boundary condition (23) that is when

x = 0 then S w(0.t) = S w0 or in other words, when η = 0, then F(0, t) = S w0

tA = F0 by Rayleigh-Ritz method as follows :

(1) Writing the given differential equation as the Euler’s equation of some variational problem.

(2)Reducing this variational problem to a minimizing problem by assuming an approximate solution in the form

y(x) = y0(x) +
∑

c, φi(x) (31)

Where the trial functions φi(x) satisfy the boundary conditions and φi(x) = 0 on the C of its region R.

Let the integral to be extremised be

I =
∫ b

a
f (y, y′, x)dx (32)
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Such that y(a) = A, and y(b) = B.

Substituting (31) in (32) by replacing y by y in I, giving I as a function of the unknown’s ci. Then c’s become parameters,

which are so determiend as to extremise I. This requires

∂I
∂ci
= 0, i = 1, 2, 3, 4 . . . (33)

Solving these equations, we get the values of ci, which when substituted in (31) give the desired solution. It’s solution is

equivalent to extremising the following integral :

I =
∫ δ

0

φ(η, F, F′)dη (34)

The functional of the above problem is as follows :

φ(η, F, F′) = F2

(
A + 1

2

)
+ (δ − η)FF′ (35)

Since the Euler’s equation
∂φ

∂F
− d

dx

(
∂φ

∂F′

)
= 0

gives Eq. (35).

Now assuming the trail function as

F = F0

(
1 − η
δ

)a
(36)

Differentiating with respect to η we have

F
′
F0α

(
1 − η
δ

)α−1
(−1

δ

)
(37)

Now replacing F by F, and substituting the values of F and F
′

in equation (34) we have∫ δ

0

φdη =
∫ δ

0

{
(A + 1)F2

0

(
1 − η
δ

)2α
+δ
(
1 − η
δ

)
F0

(
1 − η
δ

)α
F0α

(
1 − η
δ

)α−1
(−1

δ

)}
dη

=

∫ δ

0

F2
0

(
1 − η
δ

)2α
[(A + 1) − α] dη

= F2
0 [(A + 1) − α] (−δ)

⎡⎢⎢⎢⎢⎢⎢⎣
(
1 − η

δ

)
α + 1

⎤⎥⎥⎥⎥⎥⎥⎦
δ

I =
F2

0δ

α + 1
(A + 1 − α)

or,

F2
0δ(A + 1 − α) = I(α + 1)

or,

−F2
0δ =

dl
dα

(α + 1) + I

I =
F2

0δ

β + 1
(A + 1 − β) (38)

It’s stationary value is given by dI
dβ = 0.

Differentiating equation (38) with respect to β we have

F2
0δ =

dI
dβ

(β + 1) + I

or
dI
dβ
=

F2δ − I
β + 1

= 0
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F2
0δ

β + 1
(A + 1 − β) = F2

0δ

or,

A + 1 − β = β + 1

or,

A = β (39)

Since the trail solutin of the second order functional equation will be of degree at most two hence β = 2. So the approxi-

mate solution is

F = F0

(
1 − η
δ

)2
(40)

Hence from equation (29) that is S w = t2F(η) we have

S w(x, t) = F0

(
t − x
δ

)2
(41)

2. Conclusion

The equation

S w(x, t) = F0

(
t − x
δ

)2
(42)

represents analytical solution of fingering phenomenon arising double phase flow through homogeneous media under

initial & boundary condition.

The graphical presentation has been given by figure - 3 that is the graph of F(η) verses η. The graph of saturation F(η) of

injeted liquid is increasing after η = 0.5 for t > 0, which indicates that when injected liquid entries into native liquid at

common-interface, then suddenly the native liquid enters into injected liquid due to difference in wettability.

Hence initial saturation will decrease and then after η > 0.5 the saturation uniformly increases parabolically which is

physically consistent with the available theory.

<Table 1>

<Figure 2>

APPENDIX (A)

∂S w

∂t
∂

∂X

[
KwK
δw

(
∂P0

∂X
− ∂P0

∂X
+ ρg sinα

)]
(A.1)

∂P0

∂X
=

−q + KwK
δw

∂P0

∂X − gK sinα
(

K0ρ0

δ0
+

Kwρw
δW

)(
KW K
δW
+

K0K
δ0

) (A.2)

Substituting the value of (A.2), (A.1) becomes

∂S w

∂t
=
∂

∂X

⎡⎢⎢⎢⎢⎢⎢⎢⎣KwK
δw

⎧⎪⎪⎪⎨⎪⎪⎪⎩−q + Kw
δw

∂Pc
∂X K − gK sinα

(
K0ρ0

δ0
+

Kwρw
δW

)
K Kw
δw

(
1 + K0

Kw

δw
δ0

) − ∂Pc

∂X
+ ρwg sinα

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎥⎥⎦

∂

∂X

⎡⎢⎢⎢⎢⎢⎢⎢⎣KwK
δw

⎧⎪⎪⎪⎨⎪⎪⎪⎩−q + Kw
δw

∂Pc
∂X K − gK sinα

(
K0ρ0

δ0
+

KWρW
δW

)
+
(

KW K
δW
+

K0K
δ0

) (−∂Pc
∂X + ρwg sinα

)
K Kw
δw

(
1 + K0

Kw

δw
δ0

)
⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎥⎥⎦

∂

∂X

⎡⎢⎢⎢⎢⎢⎢⎢⎣KwK
δw

⎧⎪⎪⎪⎨⎪⎪⎪⎩−q + Kw
δw

∂Pc
∂X K − gK sinα

(
K0ρ0

δ0
+

KWρW
δW

)
+
(

KW K
δW
+

K0K
δ0

) (−∂Pc
∂X + ρwg sinα

)
K Kw
δw

(
1 + K0

Kw

δw
δ0

)
⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎥⎥⎦

=
∂

∂X

⎡⎢⎢⎢⎢⎢⎢⎣ KW K
δW

{
−q − K0

δ0

∂Pc
∂X K + gK K0

δ0
(ρW − ρ0)

}
K KW
δW

(
1 + K0

KW

δW
δ0

) ⎤⎥⎥⎥⎥⎥⎥⎦
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APPENDIX (B)

(
KW K
δW
+

K0K
δ0

)
∂P0

δw

∂Pc

∂X
+ gK sinα

(
K0ρ0

δ0
+

KWρW

δW

)
= −q (B.1)

∂P0

∂X
=

1

2

∂Pc

∂X
(B.2)

Substituting value of (B.2) in Eq. (B.1) we have(
Kw

δw
+

K0

δ0

)
1

2

∂Pc

∂X
K − Kw

δw

∂Pc

∂X
K + gK sinα

(
K0ρ0

δ0
+

Kwρw

δw

)
+ q = 0

1

2
K
(

K0

δ0
− Kw

δw

)
∂Pc

∂X
+ gK sinα

(
Kwρ0

δ0
+

Kwρw

δw

)
+ q = 0

APPENDIX (C)

P
∂S W

∂t
+
∂

∂X

⎡⎢⎢⎢⎢⎢⎢⎣ K0K
δ0

{
∂Pc
∂X + g sinα(ρ0 − ρw)

}(
1 + K0δW

Kwδ0

) +
q(

1 + K0δW
Kwδ0

) ⎤⎥⎥⎥⎥⎥⎥⎦ = 0 (C.1)

Substituting the value of “q” from Appendix (B).
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Table 1.

η 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

F(η) 0.01 0.0064 0.0036 0.0016 0.0004 0.0 0.0004 0.0016 0.0036

η 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

F(η) 0.0064 0.01 0.0144 0.0196 0.0256 0.0324 0.04 0.0484 0.0576

η 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

F(η) 0.0676 0.0784 0.09 0.1024 0.1156 0.1296 0.1444 0.16
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Figure 1.

Figure 2.
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