
EPIREFLECTIONS AND SUPERCOMPACT CARDINALS

JOAN BAGARIA, CARLES CASACUBERTA, AND ADRIAN R. D. MATHIAS

Abstract. We prove that the existence of arbitrarily large supercom-
pact cardinals implies that every absolute epireflective class of objects
in a balanced accessible category is a small-orthogonality class. In other
words, if L is a localization functor on a balanced accessible category
such that the unit morphism X → LX is an epimorphism for all X and
the class of L-local objects is defined by an absolute formula, then the
existence of a sufficiently large supercompact cardinal implies that L is
a localization with respect to some set of morphisms.

1. Introduction

The answers to many questions in infinite abelian group theory are known
to depend on set theory. For example, the question whether torsion theories
are necessarily singly generated or singly cogenerated was discussed in [6],
where the existence or nonexistence of measurable cardinals played an im-
portant role.

In homotopy theory, it was asked around 1990 if every functor on simpli-
cial sets which is idempotent up to homotopy is equivalent to f -localization
for some map f (see [4] and [5] for terminology and details). Although this
may not seem a set-theoretical question, the following counterexample was
given in [3]: Under the assumption that measurable cardinals do not exist,
the functor L defined as LX = NPA(πX), where π denotes the fundamen-
tal groupoid, N denotes the nerve, and PA denotes reduction with respect
to the proper class A of groups of the form Zκ/Z<κ for all cardinals κ, is
not equivalent to localization with respect to any set of maps. (Reduction
with respect to a class A assigns to each groupoid G, in a universal way, a
morphism G→ PAG with Hom(A,PAG) = 0 for all A ∈ A.)

The statement that measurable cardinals do not exist is consistent with
the Zermelo–Fraenkel axioms with the axiom of choice (ZFC), provided of
course that ZFC is itself consistent. However, many large-cardinal assump-
tions, such as the existence of measurable cardinals, or bigger cardinals, are
used in mathematical practice, leading to useful developments. Specifically,
Vopěnka’s principle (one of whose forms is the statement that between the
members of every proper class of graphs there is at least one nonidentity
map; cf. [2], [9]) implies that every homotopy idempotent functor on sim-
plicial sets is an f -localization for some map f , as proved in [3]. Vopěnka’s
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principle has many other similar consequences, such as the fact that all
reflective classes in locally presentable categories are small-orthogonality
classes [2].

In this article, we show that the existence of arbitrarily large supercom-
pact cardinals (which is a much weaker assumption than Vopěnka’s princi-
ple) implies that every epireflective class L is a small-orthogonality class,
under mild conditions on the category and the given class. These conditions
are fulfilled if the category is balanced and accessible [2] and L is defined by
an absolute formula.

In order to explain the role played by absoluteness, we note that, if one
assumes that measurable cardinals exist, then the reduction PA mentioned
above becomes the zero functor in the category of groups, since if λ is mea-
surable then Hom(Zλ/Z<λ,Z) 6= 0 by [6], so in fact PAZ = 0 and therefore
PA kills all groups. Remarkably, this example shows that one may define a
functor PA, namely reduction with respect to a certain class of groups, and
it happens that the conclusion of whether PA is trivial or not depends on
the set-theoretical model in which one is working. Thus, such a definition
is not absolute in the sense of model theory, that is, there is no absolute
formula in the usual language of set theory whose satisfaction determines
precisely PA or its image. A formula ϕ (with a free variable and possibly
with parameters) is called absolute if, for any inner model M of set theory
containing the parameters, a given set X in M satisfies ϕ in M if and only if
X satisfies ϕ in the universe V of all sets. For instance, the statement “X is
a module over a ring R” can be formalized by means of an absolute formula
with R as a parameter. On the other hand, statements involving cardinals,
unbounded quantifiers, or choices may fail to be absolute. An example of
a definition which cannot be made absolute is that of a topological space,
since a topology T on a set X in a set-theoretical model may fail to be closed
under unions in a larger model.

We thank J. Rosický for his interest in this article and for showing us an
example, described in Section 5, of an epireflective class of graphs which is
not a small-orthogonality class under the negation of Vopěnka’s principle,
even if supercompact cardinals are assumed to exist. This is another instance
of a class that cannot be defined by an absolute formula.

Analogous situations occur in other areas of mathematics. For example,
if there exists a supercompact cardinal, then all sets of real numbers that
are definable by formulas whose quantifiers range only over real numbers
and ordinals, and have only real numbers and ordinals as parameters, are
Lebesgue measurable [13]. In fact, in order to prove the existence of non-
measurable sets of real numbers, one needs to use the axiom of choice, a
device that produces nondefinable objects [14].

2. Preliminaries from category theory

Most of the material that we need from category theory can be found in
the books [1], [2], and [11]. In this section we recall a number of notions
and facts that are used in the article, and prove a new result (Theorem 2.6)
which is a key ingredient of our main theorem in Section 4.
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A category is called balanced if every morphism that is both a monomor-
phism and an epimorphism is an isomorphism. The category of rings and
the category of graphs are important examples of nonbalanced categories.
In this article, as in [2], a graph will be a set X equipped with a binary rela-
tion, where the elements of X are called vertices and there is a directed edge
from x to y if and only if the pair (x, y) is in the binary relation. Each map
of graphs is determined by the images of the vertices. Hence, the monomor-
phisms of graphs are the injective maps, and epimorphisms of graphs are
maps that are surjective on vertices (but not necessarily surjective on edges).

A monomorphism m : X → Y in a category is strong if, given any com-
mutative square

P

u

��

e // Q

v

��
X

m // Y

in which e is an epimorphism, there is a unique morphism f : Q → X such
that f ◦ e = u and m ◦ f = v. A monomorphism m is extremal if, whenever
it factors as m = v ◦ e where e is an epimorphism, it follows that e is an
isomorphism. Split monomorphisms are strong, and strong monomorphisms
are extremal. If a morphism is both an extremal monomorphism and an
epimorphism, then it is necessarily an isomorphism, and, if C is balanced,
then all monomorphisms are extremal. The dual definitions and similar
comments apply to epimorphisms.

A subobject of an object X in a category C is an equivalence class of
monomorphisms A → X, where m : A → X and m′ : A′ → X are declared
equivalent if there are morphisms u : A → A′ and v : A′ → A such that
m = m′ ◦ u and m′ = m ◦ v. For simplicity, when we refer to a subobject
A of X, we view A as an object equipped with a monomorphism A → X.
A subobject is called strong (or extremal) if the corresponding monomor-
phism is strong (or extremal). The notion of a quotient of an object X is
defined dually. A category is well-powered if the subobjects of every object
form a set, and co-well-powered if the quotients of every object form a set.

A reflection (also called a localization) on a category C is a pair (L, η)
where L : C → C is a functor and η : Id → L is a natural transformation,
called unit, such that ηLX : LX → LLX is an isomorphism and ηLX = LηX
for all X in C. By abuse of terminology, we often say that the functor L is
itself a reflection if the natural transformation η is clear from the context.

If L is a reflection, the objects X such that ηX : X → LX is an isomor-
phism are called L-local objects, and the morphisms f such that Lf is an
isomorphism are called L-equivalences. By definition, ηX is an L-equivalence
for all X. In fact, ηX is terminal among L-equivalences with domain X, and
it is initial among morphisms from X to L-local objects.

A reflection L is called an epireflection if, for every X in C, the unit
morphism ηX : X → LX is an epimorphism. We say that L is a strong
(or extremal) epireflection if ηX is a strong (or extremal) epimorphism for
all X. A typical example of an epireflection is the abelianization functor on
the category of groups. More generally, there is a bijective correspondence
in the category of groups between epireflections and radicals; cf. [12, §2].
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Since a full subcategory is determined by the class of its objects, the
terms reflective class and reflective full subcategory are used indistinctly to
denote the class of L-local objects for a reflection L or the full subcategory
with these objects. If L is an epireflection, then the class of its local ob-
jects is called epireflective. It is called strongly epireflective or extremally
epireflective if L is a strong or extremal epireflection.

The proof of the following facts is omitted. Similar statements can be
found in [1, Theorem 16.8] and [12, Theorem 6].

Proposition 2.1. Let (L, η) be a reflection on a category C.
(a) If L is an epireflection, then the class of L-local objects is closed

under strong subobjects, and it is closed under arbitrary subobjects if
C is balanced.

(b) Suppose that ηX : X → LX can be factored as an epimorphism fol-
lowed by a monomorphism for all X. If the class of L-local objects
is closed under subobjects, then L is an epireflection.

(c) If ηX factors as an epimorphism followed by a strong monomorphism
for all X and the class of L-local objects is closed under strong sub-
objects, then L is an epireflection.

(d) If ηX factors as a strong epimorphism followed by a monomorphism
for all X and the class of L-local objects is closed under subobjects,
then L is a strong epireflection.

The claims in (c) and (d) also hold if strong is replaced by extremal.
A category C is called complete if all limits exist in C, and cocomplete if

all colimits exist in C.

Proposition 2.2. If a category C is complete, well-powered, and co-well-
powered, then every class of objects L closed under products and extremal
subobjects in C is epireflective, and if L is closed under products and subob-
jects then it is extremally epireflective.

Proof. It follows from [1, Proposition 12.5 and Corollary 14.21] that, if C
is complete and well-powered, then every morphism in C can be factored
as an extremal epimorphism followed by a monomorphism, and also as an
epimorphism followed by an extremal monomorphism. Thus, we may define
a reflection by factoring, for each object X, the canonical morphism from X
into the product of its quotients that are in L as an epimorphism ηX followed
by an extremal monomorphism, or alternatively as an extremal epimorphism
followed by a monomorphism if L is closed under subobjects. �

A morphism f : A→ B and an object X are called orthogonal in a cate-
gory C if for each g : A→ X there is a unique g′ : B → X with g′ ◦ f = g:

A

∀g
��

f // B

∃! g′~~
X.

If L is any reflection, then an object is L-local if and only if it is orthogonal
to all L-equivalences, and a morphism is an L-equivalence if and only if it
is orthogonal to all L-local objects.
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A small-orthogonality class in a category C is the class of objects that
are orthogonal to some set of morphisms F = {fi : Pi → Qi | i ∈ I}. Such
objects will be called F-local. If a reflection L exists such that the class of
L-local objects coincides with the class of F-local objects for some set of
morphisms F , then L will be called an F-localization (or an f -localization
if F consists of one morphism f only).

Note that, if a coproduct f =
∐
i∈I fi exists and all hom-sets C(X,Y )

of C are nonempty, then an object is orthogonal to f if and only if it is
orthogonal to fi for all i ∈ I. More precisely, if X is orthogonal to all fi then
it is orthogonal to their coproduct, and the converse holds if C(Pi, X) 6= ∅
for all i ∈ I, where Pi is the domain of fi.

Proposition 2.3. Let (L, η) be an F-localization on a category C, where F
is a nonempty set of morphisms.

(a) Suppose that every morphism of C can be factored as an epimor-
phism followed by a strong monomorphism. If every f ∈ F is an
epimorphism, then L is an epireflection.

(b) If L is an epireflection, then there is a set E of epimorphisms such
that L is also an E-localization.

Proof. By part (c) of Proposition 2.1, in order to prove (a) it suffices to check
that the class of L-local objects is closed under strong subobjects. Thus, let
X be L-local and let s : A → X be a strong monomorphism. We need to
show that A is orthogonal to every morphism f : P → Q in F . For this, let
g : P → A be any morphism. Since X is orthogonal to f , there is a unique
morphism g′ : Q → X such that g′ ◦ f = s ◦ g. Since f is an epimorphism
and s is strong, there is a morphism g′′ : Q → A such that g′′ ◦ f = g and
s ◦ g′′ = g′. Moreover, if g′′′ : Q→ A also satisfies g′′′ ◦ f = g, then g′′′ = g′′

since f is an epimorphism. Hence, A is orthogonal to f .
Our argument for part (b) is based on a similar result in [12, Theorem 1].

Write F = {fi : Pi → Qi | i ∈ I}, and let

E = {ηPi : Pi → LPi | i ∈ I} ∪ {ηQi : Qi → LQi | i ∈ I}.
Then every morphism in E is an epimorphism, and the class of E-local objects
coincides precisely with the class of F-local objects. �

Example 2.4. In the category of graphs, let L be the functor assigning to
every graphX the complete graph (i.e., containing all possible edges between
its vertices) with the same set of vertices as X, and let ηX : X → LX be
the inclusion. Then L is an epireflection. The class of L-local objects is the
class of complete graphs, which is closed under strong subobjects, but not
under arbitrary subobjects. In fact L is an f -localization, where f is the
inclusion of the two-point graph {0, 1} into 0→ 1, which is an epimorphism.

The following notion and the subsequent result are essential for our pur-
poses in Section 4.

Definition 2.5. Let A be a class of objects in a category C. A set H of
objects of C will be called transverse to A if for every object A ∈ A there is
an object H ∈ H ∩A and a monomorphism H → A.

That is, H is transverse to A if every object of A has a subobject in H∩A.
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Theorem 2.6. Suppose that (L, η) is an epireflection on a category C.
(a) If C is balanced and there exists a set H of objects in C transverse

to the class of objects that are not L-local, then there is a set of
morphisms F such that L is an F-localization.

(b) If C is co-well-powered and every morphism can be factored as an
epimorphism followed by a monomorphism, then the converse holds,
that is, if L is an F-localization for some set of morphisms F , then
there is a set H transverse to the class of objects that are not L-local.

Proof. To prove (a), let F = {ηA : A → LA | A ∈ H}. We claim that L is
an F-localization. To prove this, pick any object X of C. If X is L-local,
then X is F-local, since all the morphisms in F are L-equivalences. Next,
suppose that X is F-local and suppose further, towards a contradiction,
that X is not L-local. By assumption, in the set H there is a subobject A
of X that is not L-local. Let s : A → X be a monomorphism. Since X is
orthogonal to ηA, there is a morphism t : LA → X such that s = t ◦ ηA.
This implies that ηA is a monomorphism and hence an isomorphism, since
C is balanced. However, this contradicts the fact that A is not isomorphic
to LA. Hence, X is L-local, as needed.

For the converse, suppose that L is an F-localization for some nonempty
set of morphisms F = {fi : Pi → Qi | i ∈ I}. Since L is an epireflection, we
may assume, by part (b) of Proposition 2.3, that each fi is an epimorphism.
Since we suppose that C is co-well-powered, we may consider the set H of
all quotients of Pi for all i ∈ I (that is, we choose a representative object
of each isomorphism class). Let X be an object which is not L-local. Note
that, if a morphism Pi → X can be factored through Qi, then it can be
factored in a unique way, since fi is an epimorphism. Hence, if X is not
L-local, then there is a morphism g : Pi → X for some i ∈ I for which there
is no morphism h : Qi → X with h ◦ fi = g. Factor g as g′′ ◦ g′, where
g′ : Pi → X ′ is an epimorphism and g′′ : X ′ → X is a monomorphism, in
such a way that X ′ is in H. Note finally that X ′ is not L-local, for if it were
then there would exist a morphism h′ : Qi → X ′ such that g′′ ◦ h′ ◦ fi = g,
which, as we know, cannot happen. �

Remark 2.7. For the validity of part (a) of Theorem 2.6, the assumption
that C is balanced can be weakened by assuming only that the epimorphisms
ηA are extremal for A ∈ H, so that they are isomorphisms whenever they
are monomorphisms. This ensures the validity of the theorem in important
categories that are not balanced, such as the category of graphs (see Section 5
below), provided that L is an extremal epireflection.

By Proposition 2.1, the condition that L is an extremal epireflection is
satisfied if the class of L-local objects is closed under subobjects, and mor-
phisms in C can be factored as an extremal epimorphism followed by a
monomorphism. By [1, Corollary 14.21], the latter holds in complete well-
powered categories.

We end this section by recalling the definition of locally presentable and
accessible categories. For a regular cardinal λ, a partially ordered set is
called λ-directed if every subset of cardinality smaller than λ has an upper
bound. An object X of a category C is called λ-presentable, where λ is a
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regular cardinal, if the functor C(X,−) preserves λ-directed colimits, that
is, colimits of diagrams indexed by λ-directed partially ordered sets. A
category C is locally presentable if it is cocomplete and there is a regular
cardinal λ and a set X of λ-presentable objects such that every object of C
is a λ-directed colimit of objects from X . Locally presentable categories
are complete, well-powered and co-well-powered. The categories of groups,
rings, modules over a ring, and many others are locally presentable; see [2,
1.B] for further details and more examples.

If the assumption of cocompleteness is weakened by requiring instead that
λ-directed colimits exist in C, then C is called λ-accessible. A category C is
called accessible if it is λ-accessible for some regular cardinal λ. As shown
in [2, Theorem 5.35], the accessible categories are precisely the categories
equivalent to categories of models of basic theories. The definition of the
latter is recalled at the end of the next section.

3. Preliminaries from set theory

The universe V of all sets is a proper class defined recursively on the
class Ord of ordinals as follows: V0 = ∅, Vα+1 = P(Vα) for all α, where P is
the power-set operation, and Vλ =

⋃
α<λ Vα if λ is a limit ordinal. Finally,

V = ∪α∈OrdVα. Transfinite induction shows that, if α is any ordinal, then
α ⊆ Vα. The axiom of regularity, stating that every nonempty set has
a minimal element with respect to the membership relation, implies that
every set is an element of some Vα; see [8, Lemma 9.3]. The rank of a set X,
denoted rank(X), is the least ordinal α such that X ∈ Vα+1.

A set or a proper class X is called transitive if every element of an element
of X is also an element of X. The universe V is transitive, and so is Vα for
every ordinal α. The transitive closure of a set X, written TC(X), is the
smallest transitive set containing X, that is, the intersection of all transitive
sets that contain X. The elements of TC(X) are the elements of X, the
elements of the elements of X, etc.

The language of set theory is the first-order language whose only nonlogi-
cal symbols are equality = and the binary relation symbol ∈. The language
consists of formulas built up in finitely many steps from the atomic formulas
x = y and x ∈ y, where x and y are members of a set of variables, using the
logical connectives ¬, ∧, ∨, →, ↔, and the quantifiers ∀v and ∃v, where v
is a variable. We use Greek letters to denote formulas. The variables that
appear in a formula ϕ outside the scope of a quantifier are called free. The
notation ϕ(x1, . . . , xn) means that x1, . . . , xn are the free variables in ϕ. A
formula without free variables is called a sentence.

All axioms of ZFC can be formalized in the language of set theory. A
model of ZFC is a set or a proper class M in which the formalized axioms of
ZFC are true when the binary relation symbol ∈ is interpreted as the mem-
bership relation. A model M is called inner if it is transitive and contains
all the ordinals. Thus, inner models are not sets, but proper classes. Given
a model M and a formula ϕ(x1, . . . , xn), and given an n-tuple a1, . . . , an of
elements of M , we say that ϕ(a1, . . . , an) is satisfied in M if the formula is
true in M when xi is replaced by ai for each 1 ≤ i ≤ n and all the quantifiers
range over M .
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For a model M , we say that a set or a proper class C is definable in M
if there is a formula ϕ(x, x1, . . . , xn) of the language of set theory and ele-
ments a1, . . . , an in M such that C is the class of elements c ∈M such that
ϕ(c, a1, . . . , an) is satisfied in M . We then say that C is defined by ϕ in M
with parameters a1, . . . , an. Every set a ∈ M is definable in M with a as a
parameter, namely by the formula x ∈ a.

A formula ϕ(x, x1, . . . , xn) is absolute between two models N ⊆ M with
respect to a collection of parameters a1, . . . , an in N if, for each c ∈ N ,
ϕ(c, a1, . . . , an) is satisfied in N if and only if it is satisfied in M . For
example, formulas in which all quantifiers are bounded (that is, of the form
∃x ∈ a or ∀x ∈ a) are absolute between any two transitive models. A
formula is called absolute with respect to a1, . . . , an if it is absolute between
any inner model M that contains a1, . . . , an and the universe V . We call a
set or a proper class X absolute if membership of X is defined by an absolute
formula with respect to some parameters.

A submodel N of a model M is elementary if all formulas are absolute
between N and M with respect to every set of parameters in N . An em-
bedding of V into a model M is an elementary embedding if its image is an
elementary submodel of M . If j : V → M is a nontrivial elementary em-
bedding with M transitive, then M is inner, and induction on rank shows
that there is a least ordinal κ moved by j, that is, j(α) = α for all α < κ,
and j(κ) > κ. Such a κ is called the critical point of j, and is necessarily a
measurable cardinal; see [8, Lemma 28.5].

For a set X and a cardinal κ, let Pκ(X) be the set of subsets of X of
cardinality less than κ. A cardinal κ is called λ-supercompact, where λ is
an ordinal, if the set Pκ(λ) admits a normal measure [8]. A cardinal κ is
supercompact if it is λ-supercompact for every ordinal λ. Instead of recalling
the definition of a normal measure, we recall from [8, Lemma 33.9] that a
cardinal κ is λ-supercompact if and only if there is an elementary embedding
j : V → M such that j(α) = α for all α < κ and j(κ) > λ, where M is an
inner model such that {f | f : λ → M} ⊆ M , i.e., every λ-sequence of
elements of M is an element of M . For more information on supercompact
cardinals, see [9] or [10].

If j : V → M is an elementary embedding, then for every set X the
restriction j � X : X → j(X) is the function that sends each element x ∈ X
to j(x). The statement that j � X : X → j(X) is in M means that the set
{(x, j(x)) | x ∈ X} is an element of M .

Proposition 3.1. A cardinal κ is supercompact if and only if for every
set X there is an elementary embedding j of the universe V into an inner
model M with critical point κ, such that X ∈ M , j(κ) > rank(X), and
j � X : X → j(X) is in M .

Proof. Given any set X, let λ be the cardinality of the transitive closure of
the set {X}, and consider the binary relation R on λ that corresponds to the
membership relation on this transitive closure, that is, (TC({X}),∈) and
(λ,R) are isomorphic. By [9, (3.12)], the binary relation R embeds into λ.
Therefore, the set X is encoded by a λ-sequence of ordinals. Now choose an
elementary embedding j : V → M with M transitive and critical point κ,
such that j(κ) > λ and M contains all the λ-sequences of its elements.
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From the latter it follows that X ∈ M . Finally, we use the fact that the
restriction j � λ is in M if and only if {f | f : λ → M} ⊆ M ; see [10,
Proposition 22.4]. �

Infinitary languages allow infinite formulas. We recall the definitions that
we need for this article, following [2, Chapter 5]. For a set S and a regular
cardinal λ, a λ-ary S-sorted signature Σ consists of a set of operation sym-
bols, each of which has a certain arity

∏
i∈I si → s, where s and all si are

in S and |I| < λ, and another set of relation symbols, each of which has also
a certain arity of the form

∏
j∈J sj , where all sj are in S and |J | < λ. Given

a signature Σ, a Σ-structure is a set X = {Xs | s ∈ S} of nonempty sets
together with a function

σX :
∏
i∈I

Xsi −→ Xs

for each operation symbol σ :
∏
i∈I si → s, and a subset ρX ⊆

∏
j∈J Xsj for

each relation symbol ρ of arity
∏
j∈J sj . A homomorphism of Σ-structures is

a set f = {fs | s ∈ S} of functions preserving operations and relations. The
category of Σ-structures and their homomorphisms is denoted by Str Σ.

Given a λ-ary S-sorted signature Σ and a set W = {Ws | s ∈ S} of sets
of cardinality λ, where the elements of Ws are called variables of sort s, one
defines the infinitary language Lλ corresponding to Σ as follows. Terms are
defined by declaring that each variable is a term and, for each operation
symbol σ :

∏
i∈I si → s and each collection of terms τi of sort si, the expres-

sion σ(τi)i∈I is a term of sort s. Formulas are built up by means of logical
connectives (allowing conjunctions and disjunctions of formulas indexed by
sets of cardinality less than λ) and quantifiers (allowing quantification over
arbitrary sets of less than λ variables) from the atomic formulas τ1 = τ2 and
ρ(τj)j∈J , where ρ is a relation symbol and each τj is a term.

As in the finitary case, variables which appear unquantified in a formula
are said to appear free, and a formula without free variables is called a
sentence. A set of sentences is called a theory (with signature Σ). A model of
a theory T is a Σ-structure satisfying each sentence of T . For each theory T ,
we denote by ModT the full subcategory of all models of T in Str Σ.

A formula in Lλ is called basic if it has the form ∀x(ϕ(x)→ ψ(x)), where
ϕ and ψ are disjunctions of (less than λ) formulas of type ∃y ζ(x, y) in
which ζ is a conjunction of (less than λ) atomic formulas. A basic theory is
a theory of basic sentences.

4. Main results

In this section, categories will be equipped with an embedding into the
category of sets. Hence, we will consider pairs (C, E) where C is a category
and E : C → Set is a faithful functor (so C becomes concrete in the sense
of [1]), and we assume in addition that E is injective on objects. Under
these assumptions, every morphism f ∈ C(X,Y ) has an underlying function
Ef : EX → EY , preserving composition and identities, and each function in
the image of E underlies a unique morphism. From now on, the embedding
E will be omitted from the notation.
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Not every category can be embedded into the category of sets. For exam-
ple, the homotopy category of topological spaces cannot be made concrete,
as shown in [7].

If Σ is any signature, then the category of Σ-structures embeds canonically
into sets. In what follows, we will implicitly assume that each subcategory
of Str Σ is equipped with its canonical embedding.

As explained in [2], every accessible category C can be embedded into
a category of relational structures (hence into sets) as follows. If C is
λ-accessible for a regular cardinal λ, then there are full embeddings

(4.1) C −→ SetA −→ Str Σ,

where A is the opposite of the full subcategory of C having as objects a
set of representatives of all isomorphism classes of λ-presentable objects in
C, and SetA denotes the category of functors A → Set. The embedding
of C into SetA is of Yoneda type; the fact that it is full is proved in [2,
Proposition 2.8]. The signature Σ is chosen by picking the objects of A as
sorts and the morphisms of A as relation symbols. The full embedding of
SetA into Str Σ is described in [2, Example 1.41].

Definition 4.1. A category C equipped with an embedding into sets is called
absolute if there is a formula ϕ(x, x1, . . . , xn) in the first-order language of set
theory which is absolute with respect to some set of parameters a1, . . . , an
and such that, for any two sets A, B and any function f : A → B, the
sentence ϕ(f, a1, . . . , an) is satisfied if and only if the function f underlies a
morphism of C.

We will say, for shortness, that a formula ϕ defines C if membership of
a function in the class of morphisms of C is defined by ϕ. Hence, absolute
categories are those defined by absolute formulas.

Note that a set X is in the class of objects of C if and only if the identity
function X → X is in the class of morphisms. Hence, if C is defined by
an absolute formula, then the class of objects of C also admits an absolute
definition.

For example, the category of groups is absolute (without parameters) if
we view it as the subcategory of sets whose objects are quadruples (G,µ, ι, e)
where G is a set, µ : G × G → G is an associative operation, e is a neutral
element, and ι : G → G picks an inverse of each element, and whose mor-
phisms are functions G→ G preserving µ. The category of modules over a
ring R is absolute in a similar way, with R as a parameter.

More generally, every category ModT of models over a theory T is ab-
solute. This can be seen as follows. For a given λ-ary S-sorted signature Σ,
an object of ModT is a Σ-structure in which all sentences of T are satis-
fied. The class of Σ-structures is defined by an absolute formula with Σ as
a parameter, while the satisfaction of a sentence ψ ∈ T by a Σ-structure X
is defined recursively and depends solely on the transitive closure of {X}.
Thus, if M ⊆ N are transitive models of ZFC that contain X, then X sat-
isfies ψ in M if and only if X satisfies ψ in N . Hence, objects of ModT
are defined by an absolute formula with Σ and T as parameters. Similarly,
f : X → Y being a homomorphism depends solely on the transitive closure
of {f,X, Y }, so we may argue in the same way with homomorphisms.
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By [2, Theorem 5.35], if a category C is accessible, then the image of the
full embedding (4.1) is precisely the category of models of a suitable basic
theory. This proves that all accessible categories are absolute, assuming, as
we do, that they embed into the category of sets by means of (4.1).

Definition 4.2. We say that a category C equipped with an embedding
into sets supports elementary embeddings if, for every elementary embedding
j : V →M and all objects X of C, the restriction j � X : X → j(X) underlies
a morphism of C.

Note that j � X : X → j(X) is always injective, since j(x) = j(y) implies
that x = y. Hence, if C supports elementary embeddings, then j � X is
a monomorphism in C for all X. (In a concrete category, every morphism
whose underlying function is injective is a monomorphism; see [1, Proposi-
tion 7.37]. However, the converse need not be true.)

Proposition 4.3. If C is an absolute full subcategory of Str Σ for some
signature Σ, then C supports elementary embeddings.

Proof. We first prove that Str Σ itself supports elementary embeddings. If
X is a Σ-structure, then the set j(X) admits operations and relations defined
as σj(X) = j(σX) for every operation symbol σ of Σ, and ρj(X) = j(ρX) for
every relation symbol ρ. Thus, j(X) becomes a Σ-structure in such a way
that j � X : X → j(X) is a homomorphism of Σ-structures.

Now let C be an absolute full subcategory of Str Σ. If X is an object in C
then j(X), viewed as a Σ-structure as in the previous paragraph, is also an
object of C since C is assumed to be absolute, and the function j � X is
automatically a homomorphism of Σ-structures. Since C is assumed to be
full, j � X is a morphism in C. �

Therefore, by [2, Theorem 5.35], accessible categories support elementary
embeddings. It is however not true that every absolute category supports
elementary embeddings. For example, let C be the category whose class
of objects is the class V of all sets and whose morphisms are defined by
C(X,Y ) = ∅ if X 6= Y and C(X,X) = {idX} for all X. Then C does not
support elementary embeddings.

Theorem 4.4. Let C be a category equipped with an embedding into sets,
and let A be a class of objects in C. Suppose that C supports elementary
embeddings and both C and A can be defined by absolute formulas whose
parameters have rank smaller than a supercompact cardinal κ. If X ∈ A,
then there is a subobject of X in Vκ ∩ A.

Proof. Let ϕ be an absolute formula defining C with parameters a1, . . . , an
of rank less than κ, and let ψ be an absolute formula defining A with param-
eters b1, . . . , bm of rank less than κ. Fix an object X ∈ A and let j : V →M ,
with M transitive, be an elementary embedding with critical point κ such
that X and the restriction j � X are in M , and j(κ) > rank(X). Notice that
a1, . . . , an and b1, . . . , bm are also in M , since in fact j(ar) = ar for all r and
j(bs) = bs for all s. Let us write ~a for a1, . . . , an and ~b for b1, . . . , bm.

Since the category C supports elementary embeddings, the restriction
j � X : X → j(X) underlies a monomorphism F in C. The assumption that
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ϕ and ψ are absolute formulas guarantees that ϕ(F,~a) and ψ(X,~b) hold
in M . Hence, in M , j(X) has a subobject (namely X) which satisfies ψ and
has rank less than j(κ). Therefore the following sentence with the parame-
ters X, ~a, ~b, κ is true in M :

∃y ∃f (f : y → j(X) ∧ (f is injective) ∧ ϕ(f,~a) ∧ ψ(y,~b) ∧ rank(y) < j(κ)).

As j is an elementary embedding, the following holds in V :

∃y ∃f (f : y → X ∧ (f is injective) ∧ ϕ(f,~a) ∧ ψ(y,~b) ∧ rank(y) < κ).

Since morphisms whose underlying function is injective are monomorphisms,
this says that X has a subobject in Vκ ∩ A, which proves the theorem. �

Corollary 4.5. Let (L, η) be an extremal epireflection on a subcategory C
of sets which supports elementary embeddings. Suppose that both C and the
class of L-local objects can be defined by absolute formulas with parame-
ters whose rank is smaller than a supercompact cardinal κ. Then L is an
F-localization for some set F of morphisms.

Proof. Let the class of objects of C that are not L-local play the role of the
class A in Theorem 4.4. Then the conclusion of the theorem is precisely
that the set Vκ is transverse to the class of objects of C that are not L-local.
Hence, part (a) of Theorem 2.6 and Remark 2.7 yield the desired result. �

Recall that, if C is balanced, then every epireflection is extremal. Re-
call also that every accessible category is absolute and supports elementary
embeddings. Hence, the statement of Corollary 4.5 holds for arbitrary epire-
flections in balanced accessible categories. Moreover, if we assume that C
has coproducts and C(X,Y ) is nonempty for all X and Y , then we may in-
fer, in addition to the conclusion of Corollary 4.5, that L is an f -localization
for a single morphism f , which can be chosen to be an epimorphism by
Proposition 2.3.

As an application, we give the following result. For any class of groups A,
the reduction PA is an epireflection on the category of groups whose local
objects are groups G that are A-reduced, i.e., for which every homomorphism
A → G is trivial if A ∈ A. Such an epireflection exists by Proposition 2.2,
since the class of A-reduced groups is closed under products and subgroups.

Corollary 4.6. Let A be any absolute class of groups. If there is a su-
percompact cardinal greater than the ranks of the parameters in an absolute
formula defining A, then there is a group G such that the class of G-reduced
groups coincides with the class of A-reduced groups.

Proof. The category of groups is balanced and locally presentable. Hence,
Corollary 4.5 implies that the reduction functor PA is an f -localization for
some group homomorphism f . As in [12, §3], let G be a universal f -acyclic
group, i.e., a group G such that PG and PA annihilate the same groups.
Then PG and PA also have the same class of local objects; that is, the class
of G-reduced groups coincides with the class of A-reduced groups. �

For the (non-absolute) class A of groups of the form Zκ/Z<κ for all cardi-
nals κ, which was mentioned in the Introduction, the existence of a group G
such that the class of G-reduced groups coincides with the class of A-reduced
groups is equivalent to the existence of a measurable cardinal; see [3] or [6].



EPIREFLECTIONS AND SUPERCOMPACT CARDINALS 13

5. A counterexample

We will display an example, indicated to us by Rosický, of an extremal
epireflection L on the category Gra of graphs which is not an F-localization
for any set of maps F . This example is based on [2, Example 6.12] and re-
quires to assume the negation of Vopěnka’s principle. As already pointed out
in the Introduction, Vopěnka’s principle is a stronger set-theoretical assump-
tion than the existence of a supercompact cardinal. Indeed, if Vopěnka’s
principle holds, then there exists a proper class of supercompact cardinals;
see [9, Theorem 20.24 and Lemma 20.25]. Hence, if κ is the least supercom-
pact cardinal and λ is the least inaccessible cardinal greater than κ, then Vλ
is a model of ZFC in which κ is supercompact and Vopěnka’s principle fails.

Thus, let us assume that Vopěnka’s principle does not hold and therefore
we may choose a proper class of graphs A which is rigid, that is, such that
Gra(A,B) = ∅ for all A 6= B in A, and Gra(A,A) has the identity as
its only element for every A ∈ A. Consider the class L of graphs that are
A-reduced, i.e.,

L = {X ∈ Gra | Gra(A,X) = ∅ for all A ∈ A},

and note that A ∩ L = ∅, while every proper subgraph of a graph in A
is in L. By Proposition 2.2, there is an epireflection L whose class of local
objects is precisely L, since L is closed under products and subobjects in the
category of graphs. Moreover, the unit map ηX : X → LX is an extremal
epimorphism (indeed, surjective on vertices and edges) for all X.

Now suppose that there is a set F = {fi : Pi → Qi | i ∈ I} of maps of
graphs such that L is an F-localization. Then, if we choose any regular
cardinal λ that is bigger than the cardinalities of Pi and Qi for all i ∈ I, it
follows that L is closed under λ-directed colimits. As in [2, Example 6.12],
a contradiction is obtained by choosing a graph A ∈ A whose cardinality is
bigger than λ, and observing that A is a λ-directed colimit of the diagram
of all its proper subgraphs, each of which is in L, while A itself is not in L.
This contradicts the fact that L is closed under λ-directed colimits.

The class L considered in this example cannot be absolute, since oth-
erwise we would contradict Corollary 4.5 by assuming the existence of a
supercompact cardinal above the ranks of the parameters in an absolute
formula defining L.

In fact, Theorem 4.4 implies that, if a supercompact cardinal κ exists,
then there is no rigid proper class of graphs defined by an absolute formula
with parameters of rank smaller than κ. To prove this claim, suppose that
such a class A exists. Then it follows from Theorem 4.4 that each graph in
A has a subgraph in A of rank less than κ. This contradicts rigidity.
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