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Abstract 
 
Edges of an image are considered a type of crucial information that can be extracted 
by applying detectors with different methodology. This research paper presents a 
brief study of the fundamental concepts of the edge detection operation, theories 
behind different edge detectors, and some simple self-written Matlab edge detection 
functions with the simulation results. Previous works on edge detection models are 
reviewed and simulated. The Matlab results coincide with the first and second order 
derivative edge detection models. 
 

1. Introduction 
 
Edge detection is a type of image segmentation techniques which determines the 
presence of an edge or line in an image and outlines them in an appropriate way [1]. 
The main purpose of edge detection is to simplify the image data in order to minimize 
the amount of data to be processed [2]. Generally, an edge is defined as the boundary 
pixels that connect two separate regions with changing image amplitude attributes 
such as different constant luminance and tristimulus values in an image [1], [3], [4]. 
The detection operation begins with the examination of the local discontinuity at each 
pixel element in an image. Amplitude, orientation, and location of a particular subarea 
in the image that is of interest are essentially important characteristics of possible 
edges [1]. Based on these characteristics, the detector has to decide whether each of 
the examined pixels is an edge or not. Frei and Chen [1] suggest that edge detection is 
best carried out by simple edge detector, followed by a morphological thinning and 
linking process to optimize the boundaries. This paper gives an overview of first and 
second order derivative edge detections, edge fitting detection model as well as the 
detector performance evaluation. Also, several Matlab functions that underlie the 



 
 

2 
 

principle of first and second order derivative edge detection techniques are written. 
The result of the simulations were analyzed and compared to the theoretical result of 
the edge detectors introduced in [4]. By writing simple edge detection Matlab 
functions, one can have a better understanding of the various edge detection 
algorithms developed in the past. 
 

2. First Order Derivative Edge Detection 
 

There are two methods for first order derivative edge detection. 1) One of the 
methods is evaluating the gradients generated along two orthogonal directions. 
An edge is judged present if the gradient of the image exceeds our defined threshold 
value, t = T. The gradient can be computed as the derivatives along both orthogonal 
axes 
 

( , ) ( , )( , ) cos sinF x y F x yG x y
x y

θ θ∂ ∂
= +

∂ ∂
    (1) 

 
The gradient is estimated in a direction normal to the edge gradient. The spatial 
average gradient can be written as 
 

[ ] [ ]2 2( , ) ( , ) ( , )R CG j k G j k G j k= +      (2) 

 
A simplest discrete row and column gradient is given by 
 

( , ) ( , ) ( , 1)RG j k F j k F j k= − −      (3) 
( , ) ( , ) ( 1, )CG j k F j k F j k= − +      (4) 

 
Running the difference of the contiguous pixels in horizontal and vertical directions 
is found inefficient since the edges cannot be delineated and the detector is quite 
sensitive to small fluctuations. Diagonal edge gradients proposed by Roberts is 
shown as  
 

1( , ) ( , ) ( 1, 1)G j k F j k F j k= − + +      (5) 

2 ( , ) ( , 1) ( 1, )G j k F j k F j k= + − +      (6) 
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Fig. 1  The convention for 3 by 3 edge detection operator 
 
Robert’s model is still susceptible to fluctuations in the image even though the edges 
can be properly positioned. Prewitt has developed another edge gradient detector 
which uses a different approach to approximate row and column edge gradients. The 
proposed gradients are defined as 
 

3 6 9 1 4 7
1( , ) [( ) ( )]

2RG j k z K z z z K z z
K

= + ⋅ + − + ⋅ +
+

   (7) 

1 2 3 7 8 9
1( , ) [( ) ( )]

2CG j k z K z z z K z z
K

= + ⋅ + − + ⋅ +
+

   (8) 

 
The equations above follow the convention shown in Fig. 1. The K in the equations 
is equal to one, so that row and column gradient are normalized to provide unit gain 
positive weighted and unit gain negative weighted averages about a separated edge 
position. Sobel edge detector doubles the north, south, west, and east pixels of the 
Prewitt operator (i.e. K=2). This makes the Sobel edge detector more sensitive to 
diagonal edge than horizontal and vertical edges [4]. Frei and Chen [1] have adapted 
the Sobel’s model and proposed a pair of isotropic operator which makes K equal 
to 2 . This makes the gradient for horizontal, vertical, and diagonal edges the same 
at the edge center. The isotropic smoothed weighting operator proposed by Frei and 
Chen can easily pick up subtle edge detail and produce thinner edge lines, but it also 
increase the possibility of erroneously detect noise as real edge points. In [5], Ding 
analyzed the one-dimensional outputs of a general edge detector using 
differentiation method. The 1-D outputs reveal that differentiation method is quite 
susceptible to noise and unable to accurately detect step edges interfered by noise 
and ramp edges. Pratt [4] mentioned that properly extending the size of the 
neighborhoods over which the differential gradients are computed can alleviate the 
inability to detect the edges precisely in a high noise environment. The first order 
derivative edge detectors do provide solutions to edge detection process but none of 
the detectors can localize the edge to a single pixel.  
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2) The second approach of first order derivative edge detection is utilizing 
a set of discrete edge templates [1] with different orientations. This method is to 
convolute an image, F(j, k) with a set of template gradient impulse response arrays, 
Hm(j, k). The general form of the edge template gradient is 

1( , ) ( , ) ,........., ( , ) ,...... ( , )m MG j k MAX G j k G j k G j k⎡ ⎤= ⎣ ⎦    (9) 

 
where  
 

( , ) ( , ) ( , )m mG j k F j k H j k= ⊗      (10) 
 
The edge angle is determined by the direction of the largest gradient. The direction 
in that particular template is not the exact orientation of the edge. In fact, the 
direction is only an approximation. The exact orientation is ±π/4 of the orientation 
that gives the maximum gradient. The following equation shows a directional 
gradient proposed by Kirsch: 
 

7

0
( , ) 5 3i ii

G j k Max S T
=

⎡ ⎤= −⎣ ⎦       (11) 

 
where  
 

1 2

3 4 5 6 7

i i i i

i i i i i i

S A A A
S A A A A A

+ +

+ + + + +

= + +
= + + + +

    (12) 

 
Please note that the subscripts Ai are the parameters in the compass gradient matrix. 
3-level and 5-level impulse response arrays are the other two 3 by 3 templates 
proposed by Robinson. Nevatia and Babu have developed the gain-normalized 5 by 
5 masks that can be used to detect edges in various degree increments. The larger 
template size will result in finer quantization of the edge orientation angle, and less 
noise. The tradeoff is that more computational power will be required [4]. 
 
2.1 Threshold Selection 
 
The edge is detected by comparing the edge gradient to a defined threshold value. 
This threshold represents the sensitivity of the edge detector. When dealing with 
noisy edges, one could miss valid edges while creating noise-induced false edges. 
Edge detection can be represented by the following conditional probability densities  
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Fig. 2  Conditional probability densities of edge gradients [6]. 
 

of G(j, k): 
 

( | ) ( | )

( | ) ( | )

D t

F t

P p G t edge p G edge dG

P p G t no edge p G no edge dG

∞

∞

= ≥ =

= ≥ − = −

∫
∫

   (13) 

 
where PD and PF represent the probability of correct detection and the probability of 
false edge detection respectively. Also, the t is denoted as the detection threshold. 
Fig. 2 exhibits the conditional probability densities of edge gradient that vary in 
edge and non-edge regions. The probability of misclassification can be represented 
as  
 

[1 ] ( ) [ ] ( )E D FP P P edge P P no edge= − + −     (14) 
 

According to Heyman-Pearson test, a threshold t is chosen to minimize PF for a fixed 
PD.  An ideal threshold must produce minimum error PE. This condition can be 
achieved if the following maximum likelihood ratio test associated with the Bayes 
minimum error decision rule of classical decision theory is satisfied [6]: 
 

( | ) ( )
( | ) ( )
P G edge P no edge

P G no edge P edge
−

≥
−

     (15) 

 
The conditional densities for 2 by 2 and 3 by 3 edge detection operators were 
derived by Abdou. The densities apply when the width of a ramp edge is one (w=1) 
and additive Gaussian noise is present. However, Reliability of the stochastic edge  
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Table 1. The relation of G(x, y) with F(x, y) [4] 

 
F(x, y) is 
constant 

F(x, y) is 
changing 
linearly 

Rate of change of  
F(x, y) is increasing 

Behavior of 
G(x, y) 

Zero Zero 
Sign changes at the point of reflection 
of F(x, y). (Indicates the presence of 
an edge.) 

 
model and analytic difficulties in deriving the edge gradient conditional densities are 
two difficulties when we are determining the optimal threshold for our edge detector. 
Abdou and Pratt have developed an approach based on pattern recognition 
techniques. Their design produced a table which lists the optimal threshold value for 
several 2 by 2 and 3 by 3 edge detectors and the probability of correct and false edge 
detection. When edges and non-edges are equally probable, PF equals 1 - PD. The 
edge detection threshold should be inversely proportional to SNR (Signal-to-Noise 
Ratio) [4].  
 

3 Second Order Derivative Edge Detection 
 

If there is a significant spatial change in the second derivative, an edge is 
detected [4]. The following sub-sections introduce different approaches using 
second order derivative on edge detection: 
 
A. Laplacian Generation in Continuous and Discrete Domain 
Since the Laplacian is  
 

2 2
2

2 2x y
∂ ∂

∇ = +
∂ ∂

       (16) 

 
the edge Laplacian of an image F(x, y) in the continuous domain can be written as 
 

{ }2( , ) ( , )G x y F x y= −∇       (17) 

 
The negative sign gives the zero crossing of G(x, y) a positive slope for an edge 
detected. Table 1 shows the behavior of G(x, y) relative to F(x, y). Computing the 
difference of slopes along each axis, as shown in the equation below, is the simplest 
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way to approximate the continuous Laplacian in discrete domain. 
 

[ ] [ ]
[ ] [ ]

( , ) ( , ) ( , 1) ( , 1) ( , )

( , ) ( 1, ) ( 1, ) ( , )

G j k F j k F j k F j k F j k

F j k F j k F j k F j k

= − − − + −

+ − + − − −
  (18) 

 
The convolution operation  
 

( , ) ( , ) ( , )G j k F j k H j k= ⊗       (19) 
 
with the two arrays 

0 0 0 0 1 0
1 2 1 0 2 0

0 0 0 0 1 0
H

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − − +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

     (20) 

or  

0 1 0
1 4 1

0 1 0
H

−⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

      (21) 

can generate this four–neighbor Laplacian. The gain normalized version of the 
previous impulse response is  
 

 
0 1 0

1 1 4 1
4

0 1 0
H

−⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

      (22) 

 
The gain normalized eight-neighbor Laplacian impulse response array proposed by 
Prewitt is 
 

1 1 1
1 1 8 1
8

1 1 1
H

− − −⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥− − −⎣ ⎦

      (23) 

 
In a separable eight-neighbor Laplacian, the difference of slopes is averaged over 
three rows and three columns. This is given by 
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1 2 1 1 1 1
1 2 1 2 2 2
1 2 1 1 1 1

H
− − − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − − +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − − − −⎣ ⎦ ⎣ ⎦

    (24) 

 
The gain-normalized version is 
 

2 1 2
1 1 4 1
8

2 1 2
H

− −⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− −⎣ ⎦

      (25) 

 
B. Laplacian of Gaussian (LoG) Edge Detection in Continuous and Discrete 

Domain 
According to the Laplacian of Gaussian edge detector operator proposed by Marr 
and Hildrith, Gaussian-shaped smoothing is applied prior to the application of the 
Laplacian. The LoG gradient in continuous domain can be written as  
 

{ }2( , ) ( , ) ( , )sG x y F x y H x y= −∇ ⊗     (26) 

where  
 

( , ) ( , ) ( , )sH x y g x s g y s=       (27) 
 
is the impulse response of the Gaussian smoothing function: 
 

21
2 2 1( , ) 2 exp

2
xg x s s
s

π
− ⎧ ⎫⎪ ⎪⎛ ⎞⎡ ⎤= −⎨ ⎬⎜ ⎟⎣ ⎦ ⎝ ⎠⎪ ⎪⎩ ⎭

     (28) 

 
Due to the linearity of the second derivative operation and of the linearity of 
convolution, we can express the gradient as 
 

( , ) ( , ) ( , )G x y F x y H x y= ⊗       (29) 
 
and the impulse response is  

{ }
2 2 2 2

2
4 2 2

1( , ) ( , ) ( , ) 1 exp
2 2

x y x yH x y g x s g y s
s s sπ
⎡ ⎤ ⎧ ⎫+ +

= −∇ = − −⎨ ⎬⎢ ⎥
⎣ ⎦ ⎩ ⎭

  (30) 
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To obtain LoG operator in discrete domain, one can simply sample the impulse 
response H(x, y) in the continuous domain over a W x W window. To avoid any 
negative truncation effects, W should be greater or equal to 3c, where c is 2 2s , the 
centre positive part of the LoG function [4].  
 
C. Directed Second Order Derivative Generation 
There are two approaches that involve second order derivative generation to detect 
edges. The ability to precisely detect the edge direction is the major advantage of the 
directed second order derivative. Equation (31) displays the directed second order 
derivative in continuous domain with an edge angle θ: 
 

2 2 2
2 2

2 2

( , ) ( , ) ( , )''( , ) cos sin cos sinF x y F x y F x yF x y
x x y y

θ θ θ θ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂
      (31) 

 
An easier approach to detect edge is to determine the edge direction using first 
order derivative method before taking the approximation to the equation (31) in 
discrete domain [4].  
 
Haralick proposed an approach called facet modeling which approximates 
continuous F(x, y) in discrete domain using a 2-D polynomial shown in equation 
(32): 
 

2 2 2 2 2 2
1 2 3 4 5 6 7 8 9

ˆ ( , )F r c k k r k c k r k rc k c k rc k r c k r c= + + + + + + + +    (32) 

 
The estimated edge angle can be represented as 
 

1 2

3

tan k
k

θ − ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
        (33) 

 
Through this approach, the directed second order derivative can be computed 
analytically. In [4], Pratt suggested that “in principle any polynomial expansion can 
be used in the approximation”; therefore, the quadratic expansion form of equation 
(32) is presented as  
 

1

ˆ ( , ) ( , )
N

n n
n

F r c a P r c
=

=∑       (34) 
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Fig. 3  Nine 3 by 3 impulse response arrays based on Chebyshev polynomial [4].   
 
As a result of the linear property of the approximated weighting coefficient an, the 
weighting coefficient An (j, k) at each point of the image F(j, k) can be found by 
convolution 
 

( , ) ( , ) ( , )n nA j k F j k H j k= ⊗       (35) 
 
The following figure shows the nine Chebyshev polynomial 3 by 3 impulse response 
arrays. 
 
 

4. Edge Detection Using Edge Fitting Method 
 
The image data of a real edge could be similar to the ideal edge model in either 
one-dimensional or two-dimensional aspects. Edge fitting detection, however, 
requires more computation in comparison with derivative edge detection techniques. 
In the one-dimensional edge fitting model as shown in Fig. 4, the actual image f(x) is 
fitted to an ideal step function. The 1-D ideal step function is defined as 
 

( ) o

o

a x x
s x

a h x x
<⎧

= ⎨ + ≥⎩
      (36) 
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Fig. 4  One-dimensional edge fitting model [4]. 

 

 

Fig. 5  Two-dimensional edge fitting model [4]. 
 
The two-dimensional ideal step function is  
 

( cos sin )
( , )

( cos sin )
a x y

S x y
a h x y

θ θ ρ
θ θ ρ
+ <⎧

= ⎨ + + ≥⎩
    (37) 

 
Fig. 5 demonstrates the two-dimensional edge fitting model [4]. 

 

5. Edge Detector Performance Evaluation 
 
It is quite difficult to develop standard performance criteria and methods to evaluate 
the effectiveness of each edge detector. Locating a real edge pixel becomes 
extremely crucial. Edge slope angle and its spatial orientation are also important 
criteria in the evaluation. A good edge detector must have a good edge decision 
which the closeness of fit between the actual and the detected image is optimized 
[4].  
 
5. 1 Edge Detection Probability 
 
When we determine the performance of an edge detector, the probability of correct 



 
 

12 
 

detection PD and the probability of false edge detection PF play a key role. Both 
probabilities are displayed in equation (38) and (39). 
 

( | )D t
P p G edge dG

∞
= ∫        (38) 

( | )F t
P p G no edge dG

∞
= −∫          (39) 

 
Pratt [4] plotted the probability of correct edge detection against probability of false 
detection and made a comprehensive comparison of several edge detectors. Based 
on his plots, he found that Sobel and Prewitt 3-by-3 operators are superior to the 
Roberts 2-by-2 operator and the performances of Sobel and Prewitt differential 
operators are slightly better than the Robinson 3-level and 5-level operators. 
 
5. 2 Edge Detection Orientation and Localization 
 

The sensitivity to edge orientation and the ability to localize an edge are both 
important properties of an edge detector. Pratt [4] plotted the edge gradient as a 
function of actual edge orientation and concluded that square root combination of 
orthogonal gradients is superior to the magnitude combination of the orthogonal 
gradients. He also sampled continuous ramp edge and examined the edge 
displacement from the center of the first order derivative operator. Fig. 6 contains 
the analysis performed to determine the edge detector’s ability of edge localization. 
Pratt’s analysis also reveals that all the edge detectors except Kirsch operator have 
the same edge displacement property which the edge displacement increases as the 
edge gradient amplitude decreases. Similar properties are possessed by variable size 
boxcar operators and several orthogonal gradient operators. By setting the threshold 
to half or higher of the edge height, edge location can be properly localized. Setting 
a high threshold could cause the detector to miss the real edge with low amplitude 
[4].  

 
 

5. 3 Edge Detector Performance Characterization 
 
Failure to detect real edges, misclassification of noise-induced points as edge points, 
and inability to localize edge points are the three major errors that could be made by 
edge detectors. The probability of the true edge detection can be found by 
comparing the detected image with the edge maps resulted from an ideal edge  
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Fig. 6  Edge localization analysis for (a) 2-by-2 model and (b) 3-by-3 model [4]. 
 
detector. A figure of merit introduced by Pratt [6] is written as 
 

2
1

1 1
1

AI

iN

R
I ad=

=
+∑        (40) 

 
In equation (40), ( , )N I AI MAX I I=  and II and IA represent the number of ideal and 
actual edge map points. “a” is a scaling constant and d is the separation distance of 
an actual edge point normal to a line of ideal edge points. A rating factor, R that 
equals to one means the edge is precisely detected. The value of scaling factor, a, 
reflects the performance on edge localization. A smeared edge is easier to be fixed 
than an offset edge since a smeared edge can be thinned by morphological post 
processing operation. 
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Fig. 7  The 3 by 3 Line Detector Impulse Response [4]. 

 
 

6. Color Edge Detection 
 
Three tristimulus values T1, T2, and T3 can be used to quantify the amount of RGB 
colors at each pixel of a color image. Several different definitions of color edge 
detection have been proposed. A definition states that the detection depends on the 
vector sum gradient of the three tristimulus values: 
 

[ ] [ ] [ ]{ }
1

2 2 2 2
1 2 3( , ) ( , ) ( , ) ( , )G j k G j k G j k G j k= + +    (41) 

 
Each gradient in (41) represent the three tristimulus component values. A color edge 
is detected if the gradient exceeds the defined threshold.  
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7. Line and Spot Detection 
 
The approach introduced by Pratt [4] for the unit width line and spot detection can 
be achieved by finding a line gradient 
 

{ }
4

1
( , ) ( , ) ( , )mm

G j k MAX F j k H j k
=

= ⊗     (42) 

 
The Hm(j,k) could be one of the weighted or unweighted 3 by 3 line detector impulse 
response shown in Fig. 7. For spot detection, a spot gradient displayed in equation  
(43) is used to detect unit width step spots. 
 

( , ) ( , ) ( , )G j k F j k H j k= ⊗       (43) 
 

There several ways to implement the impulse response operator in the above 
equation. One of the approaches is using the Laplacian operators that are display in 
the equation (22), (23), and (25). These operators are thresholded for spot detection, 
but they could end up with detecting the false spots in a noisy image. Prewitt has 
developed another operator  
 

1 2 1
1 2 4 2
8

1 2 1

−⎡ ⎤
⎢ ⎥Η = − −⎢ ⎥
⎢ ⎥−⎣ ⎦

       (44) 

 
which only detects diagonally oriented edges. By using the operator proposed by 
Prewitt, the noise-induced false spot detections 
 

8. Improved Algorithms on Edge Detection 

 
There are several algorithms proposed to resolve the noise problem and enhance the 
detector ability to detect ramp edges: 
 
A. Split Gaussian Function 
An edge detection algorithm that uses a split Gaussian function suggested by Argyle 
[7] involves a convolution of the image to be processed and a split Gaussian 



 
 

16 
 

 

Fig. 8 Split Gaussian Function[7]. 
 
 

( ) ( ) ( )k k kd i a f x G x= ⊗       (45) 
 
where ak is a normalizing factor. The split Gaussian function Gk(x) is defined by 
 

2

2

1 1 1sgn( ) ( )
2 2 2( ) exp( )

2k

x i x i
G x

kkπ

− − − − −
=     (46) 

 
An example of a split Gaussian function in Fig. 8 displays that only one 
discontinuity exists in the function and according to Argyle, the function would 
minimize the generation of noise since the function is an odd decaying function that 
would not produce any unnecessary noise at both decaying ends of the function. The 
only concern about this method is that the gradual decaying part of the function 
would still produce some noise after convolution. 
 

B. Hilbert Transform Method 
In [5], Hilbert Transform (HLT) is mentioned as a way to detect edges while 
reducing the effect of noise. The HLT is defined as  
 

( ) ( ) ( ) ( ) ( ) ( )
FT

H Hg h x g x G f H f G fτ = ⊗ =→    (47) 

 
where h(x) is 1/(πx). The Fourier transform of h(x) turns out to be a sign function  
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Fig. 9  Differential Detection Process [4]. 

 
 

( ) sgn( )H f j f= −        (48) 
 
The long impulse response of HLT greatly improved its ability to detect ramp edges 
and reduce the undesired noise. 
 
C. Short Response Hilbert Transform Method 
Ding and his colleagues [5] proposed a compromised edge detector between the 
differential and the HLT edge detection techniques and it is called SRHLT. This 
paper will not discuss this approach in detail. The detailed derivation and algorithm 
of the SRHLT and the resulting plots are analyzed in [5]. 

 

9. Matlab Simulations for Edge Detection 
 
General differential edge detection process contains 2 fundamental elements: spatial 
differentiator and differential detector. A spatial differentiator take the original image 
F(j, k) as an input and produce an output differential image G(j, k). The differential 
image G(j, k) is the spatial amplitude changes between the pixels in a defined 
direction. After the spatial differentiation process, a differential detection operation 
is performed to determine the pixel locations of the significant differentials [4]. A 
block diagram in Fig. 9 illustrates the process of differential edge detection. 

 
9.1 Simple Edge Detectors 
 
Edge1, a Matlab function for simple edge detection, was written based on the 
differential edge detection process. The edge1 function allows two inputs, f and t. 
The input f is the image to be processed which is shown in Fig. 10 and t is a defined 
edge detection threshold. The function first computes the row and column gradients 
as shown in equation (49) and (50): 
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( , ) ( 1, ) ( , )CG j k F j k F j k= + −       (49) 
( , ) ( , 1) ( , )RG j k F j k F j k= + −       (50) 

 
Then the spatial gradient amplitude is calculated using the equation (2). Instead of 
using differential detector, edge1 function directly compare the spatial gradient to 
the defined threshold input by the function user. Through the comparison, a binary 
indicator map is generated indicating the position of edges detected within the 
original image. Fig. 11 displays an example binary map produced by this function 
and the binary image obtained is quite satisfactory considering the edge1 algorithm 
is only a simple approximation of row and column gradients. A similar function, 
edge2, calculates the spatial differential in both orthogonal directions. The Gradient 
equations in both orthogonal directions are defined as 
 

1( , ) ( 1, 1) ( , )G j k F j k F j k= + + −       (51) 

2 ( , ) ( , 1) ( 1, )G j k F j k F j k= + − +       (52) 
 
Again, the spatial gradient amplitude is computed as the following square root form: 
 

[ ] [ ]2 2
1 2( , ) ( , ) ( , )G j k G j k G j k= +      (53) 

 
An example binary map was generated in Fig. 12. This figure demonstrates the 
strength of orthogonal edge detector because by comparing Fig. 12 to Fig. 11, the 
resolution of the orthogonal edges in Fig. 12 is improved. In both Fig. 11 and Fig. 12, 
the undesired edge thickness reveals that neither of the outcomes of edge1 and 
edge2 functions can precisely position the edge within only a few pixels.  

 
According to the Laplacian Generation in discrete domain, the simplest way to 

approximate the continuous Laplacian in discrete domain is displayed in equation 
(54): 
 

[ ] [ ]
[ ] [ ]

( , ) ( , ) ( , 1) ( , 1) ( , )

( , ) ( 1, ) ( 1, ) ( , )

G j k F j k F j k F j k F j k

F j k F j k F j k F j k

= − − − + −

+ − + − − −
   (54) 

 
A Matlab program edge3 was written to simulate the Laplacian approximation. Fig. 
13 shows an example binary map generated by edge3 function. The figure 
demonstrates the advantageous edge locating ability of second order derivative edge  
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Fig. 10  The original input image. 
 

 
 

Fig. 11  The binary indicator map generated by the approximation to row and 
column gradients with t = 0.05. 
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Fig. 12  The binary indicator map generated by the approximation to orthogonal 

gradients with t = 0.05. 
 

 
 

Fig. 13  The binary image generated by the Laplacian approximation with t = 0.03. 
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detector; the strong edges are detected as thinner lines. However, the image also 
shows the common drawbacks of the second order derivative edge detectors such as 
the high sensitivity to noise and the inability to detect edge directions. 
 
9.2 Two-Dimensional Edge Fitting Model Simulation 
 
Another self-written Matlab function, edgefit, based on the two-dimensional step 
function described in (37) is written to generate a 2-D step edge fitting matrix, s(x, 
y). By convolution of the image and the edge fitting matrix, one can obtain a binary 
edge image and examine the notable characteristics of this model. The function 
algorithm starts with the generation of two 5-by-5 simple step function matrix which 
are defined as 

 
2 2 2 2 2
1 1 1 1 1

0 0 0 0 0
1 1 1 1 1
2 2 2 2 2

x

− − − − −⎡ ⎤
⎢ ⎥− − − − −⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

      (55) 

 
and 
 

2 1 0 1 2
2 1 0 1 2
2 1 0 1 2
2 1 0 1 2
2 1 0 1 2

y

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥= − −
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −⎣ ⎦

       (56) 

 
The boundary definition of the 2-D model  
 

cos sin 0x yθ θ+ <        (57) 
 
then utilizes the two matrix to generate a 5-by-5 2-D edge fitting matrix. The θ 
defined in (57) determines the edge direction that is the same with the orientation of 
the polar distance ρ shown in Fig. 5. An example edge fitting matrix with θ=π/4 is  
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(a)

 
(b)

 
(c) 

Fig. 14 The edge map produced with (a) θ = π/4 (b) θ = -π/4 (c) a 
combination of (a) and (b). 

 

 
1 1 1 1 1
1 1 1 1 1

( , ) 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

s x y

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥= − − −
⎢ ⎥− − − −⎢ ⎥
⎢ ⎥− − − − −⎣ ⎦

      (58) 

 
Fig. 14 illustrates the edge map by using various values of θ. Fig. 14a shows 

that the edge fitting model with θ = π/4 is only sensitive to the edges with the same  
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 (a)  (b) 
 

Fig. 15 (a) The edge map before morphological post processing. (b) The edge 
map image after morphological post processing. The single isolated 
edge pixels are deleted as indicated. 

 
orientation. The same case works in Fig. 14b with θ = -π/4. The edge fitting model 
with θ = -π/4 missed a quite large amount of edge details in the opposite orientation. 
A combined edge map from Fig. 14a and Fig. 14b are displayed in Fig. 14c. The 
missing edge details in Fig. 14a and Fig. 14b can be clearly identified by a 
comparison of the edge maps in Fig. 14. 
 
9.3 Morphological Image Processing Function 
 
In [4], Pratt mentioned that by using the morphological majority black operation, 
one can remove the noise-induced image. A simple Matlab program was written to 
remove the single isolated edge pixels in an edge map.  
 

Fig. 15b shown below is produced by performing Matlab function “morph1”.  
Fig. 15b shows that the morphological processing applied significantly reduced the 
noise-induced dots. The “morph1” function employs a 3 by 3 mask filter as shown in 
Fig. 16. The purpose of applying this mask is that the isolated noise dots (i.e. edge 
detected pixels which the values of 8 surrounding pixels are 0) can be eliminated. 
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Fig. 16  The 3 by 3 mask filter deployed in “morph1” function. 
 

10. Conclusions 
 
Various edge detection algorithms and detector design methods have been described 
and discussed in this paper. The binary edge maps produced by the Matlab programs 
that simulate the approximated version of first order derivative edge detectors 
revealed the detectors’ inability to localize the edges within only a few pixels. 
Expanding the size of impulse response operators can mitigate but cannot eliminate 
the noise effects. The resulting edge maps produced by the approximation to the 
second order derivative edge detection indicate that this model does accurately 
position the real edges. However, the problem of this approach is the high sensitivity 
to the image noise. Although in section 9.3, a morphological post processing 
program is written to delete the isolated noise pixels, more post-processing 
improvements could be done. Further research on morphological processing is 
beyond the scope of this research paper. 

 
The edge detector performance criterion and methods of evaluation provides us 

a good understanding on possible ways of finding out the effectiveness of each 
developed detection model. Meanwhile, the improved algorithms pointed out in 
section 8 are proved to be partially effective in precise ramp edge detection and 
reduction of noise-induced edges. The major research directions that can be 
followed and improvements to be made in the future edge detection techniques are 
categorized in the following categories: 

1) Image noise reduction. 
2) Precise edge detections with a minimum error detection possibility. 
3) Accurate edge localization that can detect edges within a single pixel. 
4) More sophisticated algorithms and models on morphological image 

process 
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