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Abstract—Breadth First Search (BFS) and other graph traver-
sal techniques are widely used for measuring large unknown
graphs, such as online social networks. It has been empirically
observed that incomplete BFS is biased toward high degree nodes.
In contrast to more studied sampling techniques, such as random
walks, the bias of BFS has not been characterized to date.

In this paper, we quantify the degree bias of BFS sampling. In
particular, we calculate the node degree distribution expected to
be observed by BFS as a function of the fraction of covered nodes,
in a random graph RG(pk) with a given (and arbitrary) degree
distribution pk. Furthermore, we also show that, forRG(pk), all
commonly used graph traversal techniques (BFS, DFS, Forest
Fire, and Snowball Sampling) lead to the same bias, and we
show how to correct for this bias. To give a broader perspective,
we compare this class of exploration techniques to random walks
that are well-studied and easier to analyze. Next, we study by
simulation the effect of graph properties not captured directly by
our model. We find that the bias gets amplified in graphs with
strong positive assortativity. Finally, we demonstrate the above
results by sampling the Facebook social network, and we provide
some practical guidelines for graph sampling in practice.

Index Terms—BFS, Breadth First Search, graph sampling,
bias, OSN, Online Social Networks, Facebook.

I. I NTRODUCTION

A large body of work in the networking community focuses
on topology measurements at various levels, including the
Internet, the Web (WWW), peer-to-peer (P2P) and online
social networks (OSN). The size of these networks and other
practical restrictions make measuring the entire graph impos-
sible. Instead, researchers typically collect and study a small
but “representative” sample. In this paper, we are particularly
interested in sampling networks that naturally allow to explore
the neighbors of a given node (which is the case in WWW, P2P
and OSN). A number of graph exploration techniques use this
basic operation for sampling. They can be roughly classified
in two categories: (a) with replacement (random walks), and
(b) without replacement (graph traversal techniques).

In the first category, random walks, nodes can be revisited.
This category includes the classic Random Walk (RW) as well
as the Metropolis-Hastings Random Walk (MHRW). They are
used for sampling of nodes on the Web [1], P2P networks [2]–
[4], OSNs [5,6] and large graphs in general [7]. Random walks
are well studied [8] and result in samples that have either no
bias (MHRW) or a known bias (RW) that can be corrected
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Fig. 1. Overview of results. We calculate the average node degree〈k∗〉
(and the full degree distribution, not shown) expected to beobserved by BFS
in a random graphRG(pk) with a given degree distributionpk, as a function
of the fraction of sampled nodesf . We show RW and MHRW as a reference.
〈k〉 is the real average node degree, and〈k2〉 is the real average squared node
degree. Observations: (1) For a small sample size, BFS has the same
bias as RW; with increasingf , the bias decreases; a complete BFS (f= 1)
is unbiased, as is MHRW (or uniform sampling). (2) All commongraph
traversal techniques (that do not revisit the same node) lead to the same
bias. (3) The shape of the BFS curve depends on the real node degree
distribution pk, but it is always monotonically decreasing.

for. Random walks are not the focus of this paper, but are
discussed as baseline for comparison.

In the second category, graph traversal techniques, each
node is visited exactly once (if we let the process run until
completion and if the graph is connected). These methods
vary in the order in which they visit the nodes; examples
include BFS, Depth-First Search (DFS), Forest Fire (FF)
and Snowball Sampling (SBS). Graph traversals, especially
BFS, are very popular and widely used for sampling large
networks, e.g. WWW [9] or OSNs [10]–[12]. One reason
is that BFS is well-known (a textbook technique) and easy
to understand. Another and probably more important reason
is that (incomplete) BFS collects a full view (all nodes and
edges) of some particular region in the graph. Consequently,
we can study the topological characteristics (e.g., shortest path
lengths, clustering coefficients, community structure) ofthe
resulting sample, which is a big advantage of BFS over random
walks. Of course, this study is correct only if the BFS sample
is representative of the entire graph. At first sight it seems
true, e.g., a BFS sample of a lattice is a (smaller) lattice.

Unfortunately, this intuition often fails. It was observed
empirically that BFS introduces a bias towards high-degree
nodes [9] [13]–[15]. We also confirmed this fact in a recent
measurement of Facebook [5], where our BFS crawler found
the average node degree〈kBF S〉 ≃ 324, while the real value
is only 〈k〉 ≃ 94, i.e., about 3.5 times smaller. To make
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things worse, many important properties are usually strongly
correlated with the node degree (e.g., privacy settings in
Facebook [5]), which makes the BFS sample far from being
representative with respect to many metrics.

Despite the popularity of BFS on the one hand, and its
bias on the other hand, we still know relatively little about
the statistical properties of node sequences returned by BFS.
The formal analysis is challenging because BFS, similarly
to every sampling without replacement, introduces complex
dependencies difficult to deal with mathematically.

Our work is a step toward understanding the statistical
characteristics of incomplete BFS sampling. In particular, we
focus on a random graphRG(pk) with a given (and arbitrary)
degree distributionpk, which we introduce in Section IV. In
Section V, we calculate precisely the node degree distribution
expected to be observed by BFS as a function of the fraction
of sampled nodes inRG(pk).

We accompany this central result with additional related
contributions. First, we show that inRG(pk), BFS is equiv-
alent to other graph traversal techniques, such as Depth
First Search (DFS), Snowball Sampling, and Forest Fire (we
overview these methods in Section III). Second, we compare
the bias of BFS to that of random walks. As shown in Fig. 1, at
the beginning of the exploration process, BFS exhibits exactly
the same bias as RW; with increasing fraction of sampled
nodesf , this bias monotonically decreases; when BFS is
complete (f = 1), there is no bias, as in the case of MHRW.
Third, given a biased sample, we derive in Section VI an
unbiased estimator of the original node degree distribution.

In addition, in Section VII, we use simulation to confirm
our analysis and investigate the effect of graph properties,
such as assortativity, not captured directly byRG(pk). We
complement it with real-world measurements of the Facebook
social network in Section VIII. Section IX concludes and
outlines future work.

II. RELATED WORK

BFS used in practice.BFS is widely used today for explor-
ing large networks, such as OSNs. The following list provides
some examples but is by no means exhaustive. In [10], Ahn et
al. used BFS to sample Orkut and MySpace. In [11] and [16],
Mislove et al. used BFS to crawl the social graph in four pop-
ular OSNs: Flickr, LiveJournal, Orkut, and YouTube. In [12],
Wilson et al. measured the social graph and the user interaction
graph of Facebook using several BFSs, each BFS constrained
in one of the largest 22 regional Facebook networks. In our
recent work [5], we have also crawled Facebook using various
sampling techniques, including BFS, RW and MHRW. It has
been empirically observed that incomplete BFS and its variants
introduce bias towards high-degree nodes [9] [13]–[15]. We
also confirmed this in Facebook [5], an observation that in
fact inspired this paper.

Analyzing BFS.To the best of our knowledge, the sampling
bias of BFS has not been analyzed so far. [17] and [18] are
the closest related papers to our methodology. The original
paper by Kim [17] analyzes the size of the largest connected

component in classic Erdös-Rényi random graph by essentially
applying the configuration model with node degrees chosen
from a Poisson distribution. To match the stubs (or ‘clones’
in [17]) uniformly at random in a tractable way, Kim proposes
a “cut-off line” algorithm: he first assigns each stub a random
index from [0, np], and next progressively scans this interval.
Achlioptas et al. used this powerful idea in [18] to study the
bias of traceroute sampling in random graphs with a given
degree distribution. The basic operation in [18] is traceroute
(i.e., “discover a path”) and is performed from a single node
to all other nodes in the graph. The union of the observed
paths forms a “BFS-tree”, which includes all nodes but misses
some edges (e.g.,those between nodes at the same depth in the
tree). In contrast, the basic operation in the traversal methods
presented in our paper is to discover all neighbors of a node,
and it is applied to all nodes in increasing distance from
the origin. Another important difference is that [18] studies a
completed BFS-tree, whereas we study the sampling process
when it has visited only a fractionf < 1 of nodes; a completed
BFS (f=1) is trivial in our case (it has no bias).

Another recent paper related to BFS bias is [19]. The
paper is about Snowball Sampling [20], which is similar to
BFS, and proposes a heuristic approach to correct the degree
biases in ith generation of Snowball based on the values
measured in generationi−1. The authors show by simulation
that this technique performs moderately well, especially when
a significant fraction of nodes have been covered.

III. G RAPH EXPLORATION TECHNIQUES

Let G = (V, E) be a connected graph with the set of vertices
V , and a set of undirected edgesE. Initially, G is unknown,
except for one (or some limited number of) seed node(s).
When sampling through graph exploration, we begin at the
seed node, and we recursively visit (one, some or all) of its
neighbors. We distinguish two main categories of exploration
techniques: with and without replacement.

A. Exploration with replacement (random walks)

Exploration with replacement, or simply a walk, allows
revisiting the same node many times. Consider the following
classic examples:

1) Random Walk (RW):In this classic sampling tech-
nique [8], we start at some seed node. At every iteration, the
next-hop nodev is chosen uniformly at random among the
neighbors of the current nodeu. It is easy to see that RW
introduces a linear bias towards nodes of high degree [8].

2) Metropolis Hastings Random Walk (MHRW):In this
technique, as in RW, the next-hop nodew is chosen uniformly
at random among the neighbors of the current nodeu. How-
ever, with a probability that depends on the degrees ofw andu,
MHRW performs a self-loop instead of moving tow. More
specifically, the probabilityPu,w of moving fromu to w is as
follows [21]:

Pu,w =






1

ku
·min(1, ku

kw
) if w is a neighbor ofu,

1−
∑

y 6=u Pu,y if w = u,
0 otherwise,

(1)
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wherekv is the degree of nodev. Essentially, MHRW reduces
the transitions to high degree nodes and thus eliminates the
degree bias of RW. This property of MHRW was recently
exploited in various network sampling contexts [2,3,5,6].

3) Respondent-Driven Sampling (RDS):RDS was proposed
and studied in the field of social sciences to penetrate hidden
populations, such as that of drug addicts [22,23]. In the
network sampling terminology, at each iteration RDS selects
randomly exactlyn neighbors (typicallyn ≃ 3) of the current
nodeu and schedules them to visit later. RDS visits the nodes
in the order they were scheduled. Thus, RDS is a modification
of Snowball Sampling (described below) that allows node
revisiting. RDS introduces a degree bias that is known and can
be corrected for. It was demonstrated in [23] on the example
with n= 1, which reduces RDS precisely to Random Walk
(RW). This approach was recently tested in [3] on various
graph models and unstructured P2P networks.

B. Exploration without replacement (graph traversals)

In contrast, exploration without replacement, orgraph
traversal, never revisits the same node. At the end of the
process, and assuming that the graph is connected, all nodes
are visited.

1) Breadth First Search (BFS):BFS is a classic graph
traversal algorithm that starts from the seed and progressively
explores all neighbors. At each new iteration the earliest
explored but not-yet-visited node is selected next. Thus, BFS
discovers all nodes within some distance from the seed.

2) Depth First Search (DFS):This technique is similar to
BFS, except that at each iteration we select the latest explored
but not-yet-visited node. As a result, DFS explores first the
nodes that are faraway (in the number of hops) from the seed.

3) Forest Fire (FF): FF is a randomized version of BFS,
where for every neighborv of the current node, we flip a coin,
with probability of successp, to decide if we explorev. FF
reduces to BFS forp=1. It is possible that this process dies
out before it covers all nodes. In this case, in order to make FF
comparable with other techniques, we revive the process from
a random node already in the sample. Forest Fire is inspired by
the graph growing model of the same name proposed in [24]
and is used as a graph sampling technique in [7].

4) Snowball Sampling (SBS):Snowball Sampling is a pre-
cursor of RDS and a term loosely used for BFS-like traversal
techniques. According to a classic definition by Goodman [20],
an n-name Snowball Sampling is similar to BFS, but at
every nodev, not all kv, but exactlyn neighbors are chosen
randomly out of allkv neighbors ofv. Thesen neighbors
are scheduled to visit, but only if they have not been visited
before.

IV. GRAPH MODEL RG(pk)

A basic important graph property is the node degree dis-
tribution pk, i.e., the fraction of nodes with degree equal
to k, for all k ≥ 0.1 Depending on the network, the degree

1As we definepk as a ‘fraction’, not the ‘probability’,pk determines the
degree sequence in the graph, and vice versa.

G = (V, E) graphG with nodesV and edgesE
kv degree of nodev
pk = 1

|V |

∑
v∈V 1kv=k degree distribution inG

qk expected observed degree distribution
q̂k observed degree distribution
p̂k estimated original degree distribution inG
〈k〉 =

∑
k k pk average node degree inG

〈k∗〉 =
∑

k k qk expected observed average node degree
f fraction of nodes covered by the sample

TABLE I
NOTATION SUMMARY.

distribution can vary, ranging from constant-degree (in regular
graphs), a distribution concentrated around the average value
(e.g., in Erdös-Rényi random graphs or in well-balanced
P2P networks), to heavily right-skewed distributions withk
covering several decades (in WWW, unstructured P2P, Internet
at the Autonomous System level, OSNs). We handle all these
cases by assuming that we are givenany fixed node degree
distribution pk. Other than that, the graphG is completely
random. That is,G is drawn uniformly at random from the
set of all multigraphs with degree distributionpk. We denote
this model byRG(pk).

We use a classic technique to generateRG(pk), called the
configuration model[25]: each nodev is given kv “stubs”
(or “edges-to-be”). Next, all these

∑
v∈V kv = 2|E| stubs are

randomly matched in pairs, until all stubs are exhausted (and
|E| edges are created). In Fig. 2 (ignore the rectangular interval
[0,1] for now), we present four nodes with their stubs (left)
and an example of their random matching (right).

V. A NALYZING THE NODE DEGREEBIAS

In this section, we study the node degree bias observed
when the graph exploration techniques of Section III are run
on the random graphRG(pk) of Section IV. In particular, we
derive the node degree distributionqk and the average node
degree〈k∗〉 expected to be observed, as a function of the
original degree distributionpk and, in the case of BFS, of the
fraction of sampled nodesf .

A. Exploration with replacement (walks)

We begin by summarizing the relevant results known for
walks, in particular for RW and MHRW. They will serve as
a reference point for our main analysis of graph traversals in
the next section.

1) Random Walk (RW):Random walks have been widely
studied; see [8] for an excellent survey. In any given con-
nected and aperiodic graph, the probability of being at a
particular nodev converges at equilibrium to the stationary
distributionπv=

kv

2|E| . Therefore, the expected observed degree
distributionqk is

qk =
∑

v

πv · 1{kv=k} =
k

2|E|
pk |V | =

k pk

〈k〉
, (2)

where〈k〉 is the average node degree inG. Eq. (2) is essen-
tially similar to calculation for RDS in [23,26]. As this holds
for any fixed (and connected and aperiodic) graph, it is also
true for all connected graphs generated by the configuration
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model. Consequently, the expected observed average node
degree is

〈k∗〉 =
∑

k

k qk =

∑
k k2 pk

〈k〉
=
〈k2〉

〈k〉
, (3)

where〈k2〉 is the average squared node degree inG. We show
this value 〈k2〉

〈k〉 in Fig. 1.
2) Metropolis Hastings Random Walk (MHRW):It is easy

to show that the transition matrixPu,w shown in Eq.(1)
leads to a uniform stationary distributionπv = 1

|V | [21], and
consequently:

qk = pk (4)

〈k∗〉 =
∑

k

k qk =
∑

k

k pk = 〈k〉. (5)

In Fig. 1, we show that MHRW estimates the true mean.

B. Exploration without replacement (Main Result)

In both RW and MHRW the nodes can be revisited. So
the state of the system at iterationi + 1 depends only on
iteration i, which makes it possible to analyze with Markov
Chain techniques. In contrast, graph traversals do not allow for
node revisits, which introduces crucial dependencies between
all the iterations and significantly complicates the analysis.
To handle these dependencies, we adopt an elegant technique
recently introduced in [17] (to study the size of the largest
connected component) and extended in [18] (to study the bias
of traceroute sampling). However, our work differs in many
aspects from both [17] and [18], which we comment in detail
in the related work Section II.

1) Exploration without replacement at the stub level:We
begin by defining Algorithm 1 (below) - a general graph
traversal technique that collects a sequence of nodesS, without
replacements. To be compatible with the configuration model
(see Section IV), we are interested in the processat the stub
level, where we consider one stub at a time, rather than one
node at a time. An integral part of the algorithm is a queueQ
that keeps the discovered, but still not-yet-followed stubs.
First, we enqueue onQ all the stubs of some initial nodev1,
and by settingS← [v1]. Next, at every iteration, we dequeue
one stub fromQ, call it a, and follow it to discover its partner-
stubb, andb’s ownerv(b). If nodev(b) is not yet discovered,
i.e., if v(b) /∈ S, then we appendv(b) to S and we enqueue
on Q all other stubs ofv(b).

Depending on the scheduling discipline for the elements
in Q (line 3), Algorithm 1 implements BFS (for a first-in first
out scheduling), DFS (last-in first-out) or Forest Fire (first-
in first-out with randomized stub losses). Line 9 guarantees
that the algorithm never tracebacks the edges,i.e., that stuba
dequeued fromQ in line 3 never belongs to an edge that has
already been traversed in the opposite direction.

2) Discovery on the fly:In line 4 of Algorithm 1, we follow
stuba to discover its partnerb. In a fixed graphG, this step
is deterministic. In the configuration modelRG(pk), a fixed
graphG is obtained by matching all the stubs uniformly at

Algorithm 1 Stub-Level Graph Traversal

1: S ← [v1] and Q← [all stubs ofv1]
2: while Q is nonemptydo
3: Dequeuea from Q
4: Discovera’s partnerb
5: if v(b) /∈ S then
6: Appendv(b) to S
7: Enqueue onQ all stubs ofv(b) exceptb
8: else
9: Removeb from Q

10: end if
11: end while

random. Next, we can sample this fixed graph and average
the result over the space of all the random graphsRG(pk)
that have just been constructed. Unfortunately, this space
grows exponentially with the number of nodes|V |, making
the problem untractable. Therefore, we adopt an alternative
construction ofG - by iteratively selectingb ‘on the fly’
(i.e, every time line 4 is executed), uniformly at random
from all still unmatched stubs. By the principle of deferred
decisions [27], these two approaches are equivalent.

With the help of the ‘on the fly’ approach, we are able
to write down the equations we need. Indeed, let us denote
by Xi ∈ V the ith selected node, and letP(X1= u) be the
probability that nodeu ∈ V is chosen as a starting node. It is
easy to show that withz=2|E| we have

P(X2=v) =
∑

u 6=v

kv

z−ku

· P(X1=u) (6)

P(X3=w) =
∑

v 6=w

∑

u 6=w,v

kw

z−kv−ku

·

kv

z−ku

· P(X1=u), (7)

and so on. Theoretically, these equations allow us to calculate
the expected node degree at any iteration, and thus the degree
bias of BFS.

3) Breaking the dependencies:There is still one problem
with the equations above. Due to the increasing number of
nested sums, the results can be calculated in practice for a first
few iterations only. This is because we select stubb uniformly
and independently at random from all theunmatchedstubs. So
the stub selected at iterationi depends on the stubs selected
at iterations1 . . . i−1, which results in the nested sums. We
remedy this by implementing the ‘on the fly’ approach as
follows. First, we assign each stub a real-valued indext drawn
uniformly at random from the interval[0, 1]. Then, every time
we process line 4, we pickb as the unmatched stub with
the smallest index. We can interpret this as a continuous-
time process, where we determine progressively the partners
of stubs dequeued fromQ, by scanning the interval from
‘time’ t=0 to t=1 in a search of unmatched stubs. Because
the indices chosen by the stubs are independent from each
other, the above trick breaks the dependence between the stubs,
which is crucial for making this approach tractable.

In Fig. 2, we present an example execution of Algorithm 1,
where line 4 is implemented as described above.
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Fig. 2. An illustration of the stub-level, on-the-fly graph exploration without replacements. In this particular example, we show an execution of BFS starting
at nodev1. Left: Initially, each nodev haskv stubs, wherekv is a given target degree ofv. Each of these stubs is assigned a real-valued number drawn
uniformly at random from the interval[0, 1] shown below the graph. Next, we follow Algorithm 1 with a starting nodev1. The numbers next to the stubs
of every nodev indicate the order in which these stubs are enqueued onQ. Center: The state of the system at timet. All stubs in [0, t] have already
been matched (the indices of matched stubs are set in plain line). All unmatched stubs are distributed uniformly at random on (t, 1]. This interval can contain
also some (here two) already matched stubs.Right: The final result is a realization of a random graphG with a given node degree sequence (i.e., of the
configuration model).G may contain self-loops and multiedges.

4) Expected sampled degree distributionqk: Now we are
ready to derive the expected observed degree distributionqk.
Recall that all the stub indices are chosen independently and
uniformly from [0, 1]. A vertexv with degreek is not sampled
yet at timet if the indices of all itsk stubs are larger thant,
which happens with probability(1− t)k. So the probability
that v is sampled before timet is 1−(1−t)k. Therefore, the
expected fraction of vertices of degreek sampled beforet is

fk(t) = pk(1−(1−t)k). (8)

By normalizing Eq. (8), we obtain the expected observed
(sampled) degree distribution at timet:

qk(t) =
fk(t)∑
l fl(t)

=
pk(1− (1−t)k)∑

l pl(1− (1−t)l)
. (9)

Unfortunately, it is difficult to interpretqk(t) directly, be-
causet is proportional neither to the number of matched edges
nor to the number of discovered nodes. Recall that our primary
goal is to expressqk as a function of fractionf of covered
nodes. We achieve this by calculatingf(t) - the expected
fraction of nodes, of any degree, visited before timet

f(t) =
∑

k

fk(t) = 1−
∑

k

pk(1−t)k . (10)

Becausepk ≥ 0, andpk > 0 for at least onek > 0, the term∑
k pk(1−t)k is continuous and strictly decreasing from 1 to 0

with t growing from 0 to 1. Thus, forf ∈ [0, 1] there exists a
well definedt= t(f) that satisfies Eq.(10). Although we cannot
computet(f) analytically (except in some special cases such
as fork ≤ 4), it is straightforward to find it numerically. Now,
we can rewrite Eq. (9) as

qk(f) =
pk(1− (1−t(f))k)∑

l pl(1− (1−t(f))l)
, (11)

which is the expected observed degree distribution after cov-
ering fractionf of nodes of graphG.

5) Equivalence of traversal techniques underRW (pk): An
interesting observation is that, under the random graph model
RW (pk), all common traversal techniques (BFS, DFS, FF,
SBS, . . . ) are subject to exactly the same bias. The explanation
is that the sampled node sequenceS is fully determined by

the choice of stub indices on[0, 1], independently of the way
we manage the elements inQ.

6) Equivalence to weighted sampling without replacement:
Consider a nodev with a degreekv. The probability thatv is
discovered before timet, given that it has not been discovered
beforet0 ≤ t, is

P(v before timet | v not beforet0) = 1−

(
1−t

1−t0

)kv

(12)

We now take the derivative of the above equation with respect
to t, which results in the conditional probability density
function kv( 1−t

1−t0
)kv−1. Setting t→ t0 (but keepingt > t0),

reduces it tokv, which is the probability density thatv is
sampled att0, given that it has not been sampled before. This
means that at every point in time, out of all nodes that have not
yet been selected, the probability of selectingv is proportional
to its degreekv. Therefore, this scheme is equivalent to node
sampling weighted by degree, without replacements.

7) Equivalence to RW forf→ 0: Finally, for f→ 0 (and
thust→0), we have1−(1−t)k ≃ kt, and Eq. (9) simplifies to
Eq. (2). This means that in the beginning of the sampling
process, every traversal technique is equivalent to RW, as
shown in Fig. 1 forf→0.

8) 〈k∗〉 is decreasing inf : As in Section V-B2, letXi ∈ V
be the ith selected node, and letz = 2|E|. We have shown
above that our procedure is equivalent to weighted sampling
without replacements, thus we can writeP(X1 = u) = ku

z
.

Now, it follows from Eq. (6) thatP(X2 = w) = kw

z
· αw,

where αw =
∑

u6=w
ku

z−ku
. Because for any two nodesa

and b, we haveαb−αa = z(ka− kb)/((z − ka)(z − kb)),
αw strictly decreases with growingkw. As a result,P(X2)
is more concentrated around nodes with smaller degrees than
is P(X1), implying that E[kX2

] < E[kX1
]. We can use an

analogous argument at every iterationi ≤ |V |, which allows
us to say thatE[kXi

] < E[kXi−1
]. In other words,〈k∗〉(f) is

a decreasing function off .
A practical consequence is that many short traversals (e.g.,

BFS-es) are more biased than a long one, with the same total
number of samples.
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C. Comments on the graph connectivity

Note that the configuration modelRG(pk) might result in a
graphG that is not connected. In this case, every exploration
technique covers only the componentC in which it was
initiated; consequently, the process described in SectionV-B3
stops onceC is covered.

VI. CORRECTING FOR NODE DEGREE BIAS

In the previous section we derived the expected observed
degree distributionqk as a function of the original degree
distributionpk, for three general graph exploration techniques.
The distribution qk is usually biased towards high-degree
nodes. In this section, we derive unbiased estimatorsp̂k and
〈k̂〉 of the original degree distributionpk and its mean〈k〉,
respectively.

Let S ⊂ V be a sequence of vertices that we sampled.
Based onS, we can estimateqk as

q̂k =
number of nodes inS with degreek

|S|
(13)

A. Random Walk (RW)

In order to estimatepk based on̂qk, consider again Eq.(2),
which says thatqk is proportional tok pk. Therefore,pk is
proportional toqk/k, and p̂k is proportional toq̂k/k which
allows us to write (similarly to [3,23]):

p̂k =
q̂k

k
·

(
∑

l

q̂l

l

)−1

(14)

where
∑

l
q̂l

l
is a normalizing constant. From Eq.(14), we can

estimate the average node degree as

〈k̂〉 =
∑

k

k p̂k = 1 ·

(
∑

l

q̂l

l

)−1

=
|S|∑

v∈S
1

kv

(15)

B. Metropolis Hastings Random Walk (MHRW)

In this case, equations (4) and (5) trivially yield

p̂k = q̂k, and (16)

〈k̂〉 =
∑

k

k p̂k =
∑

k

k q̂k. (17)

C. Graph traversal

From Eq. (11) we know thatpk(f) is proportional to
qk/(1− (1−t(f))k). Consequently,

p̂k =
q̂k

1− (1−t(f))k
·

(
∑

l

q̂l

1− (1−t(f))l

)−1

(18)

However, in order to evaluate this expression, we need to
evaluatet(f), that, in turn, requirespk. We can solve this
chicken-and-egg problem iteratively, if we know the real
fractionf real of covered nodes, or equivalently the graph size
|V |. First, we evaluate Eq.(18) for some values oft and feed
the resultingp̂k ’s into Eq. (10) to obtain the corresponding
f ’s. By repeating this process, we can drive the values off
arbitrarily close tof real, and thus find the desired̂pk.

In summary, for graph traversal techniques, Eq.(18) shows
how to estimate the original degree distributionpk, given the
real graph coveragef real. Of course, based on̂pk, we can
calculate the average node degree as〈k̂〉 =

∑
k k p̂k.

VII. S IMULATION RESULTS

In this section, we implement and simulate the considered
sampling techniques, namely BFS, DFS, FF (withp = 0.5),
RW and MHRW. The simulations confirm our analytical
results derived for the random graph modelRG(pk). More
importantly, in simulations we can study the effect of topo-
logical properties, such as of assortativity [28], that arenot
directly captured byRG(pk).

A. Random graphRG(pk)

Fig. 3 verifies all the formulae derived in this paper, for the
random graphRG(pk) with a given degree distribution. The
analytical expectations are plotted in thick plain lines inthe
background and the averaged simulation results are plotted
in thinner lines lying on top of them. We observe almost a
perfect match between theory and simulation in estimating
the sampled degree distributionqk (Fig. 3, right) and its mean
〈k∗〉 (Fig. 3, left). Indeed, all traversal techniques follow the
same curve (as predicted in V-B5), that initially coincides
with that of RW (see V-B7) and is monotonically decreasing
in f (see V-B8). We also show that degree weighted node
sampling without replacements exhibits exactly the same bias
(see V-B6). Finally, applying the estimatorŝpk derived in
Section VI corrects for the bias ofqk.

B. The effect of degree-degree correlations (assortativity r)

Depending on the type of network, nodes may tend to
connect to similar or different nodes. For example, in most
social networks high degree nodes tend to connect to other
high degree nodes [28]. Such networks are calledassorta-
tive. In contrast, biological and technological networks are
typically disassortative, i.e., they exhibit significantly more
high-degree-to-low-degree connections. This observation can
be quantified by calculating theassortativity coefficientr [28].
Valuesr < 0, r > 0 and r = 0 indicate disassortative, assorta-
tive, and purely random graphs such asRG(pk), respectively.

For the same initial parameters as in Fig. 3 (pk, |V |),
we simulated different levels of assortativity. The results (not
presented here due to space constraints) show that forr > 0,
the degree bias is even stronger than forr = 0. This is because
the high-degree nodes are now interconnected more densely
than in a purely random graph, and are thus easier to discover
by sampling techniques that are inherently biased towards
high degree nodes. Not surprisingly, a negative assortativity
r < 0 has the opposite effect: every high-degree node tends to
connect to low-degree nodes, which significantly slows down
the discovery of the former.

In contrast, random walks RW and MHRW are not affected
by the changes in assortativity. This is expected, because
their stationary distributions hold foranyfixed (connected and
aperiodic) graph regardless of its topological properties.
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RW, sampled,̂qk

RW, estimate,̂pk

BFS, f=0.1, sampled,̂qk(f)
BFS, f=0.1, estimate,̂pk(f)
BFS, f=0.3, sampled,̂qk(f)
BFS, f=0.3, estimate,̂pk(f)

Fig. 3. Comparison of sampling techniques in theory and in simulation. Left: Observed (sampled) average node degree〈k∗〉 as a function of the fraction
f of sampled nodes, for various sampling techniques. The results are averaged over 1000 graphs with 10000 nodes each, generated by the configuration model
with a fixed heavy-tailed degree distributionpk (shown on the right). Right: Real, expected, and estimated (corrected) degree distributions for selected
techniques and values off (other techniques behave analogously). We obtained analogous results for other degree distributions and graph sizes|V |. The
term 〈k〉 is the real average node degree, and〈k2〉 is the real average squared node degree.

UNI RW BFS28 BFS1 MHRW
|S| 982K 2.26M 28×81K = 2.26M 1.19M 2.26M
f 0.44% 1.03% 28×0.04% 0.54% 1.03%

TABLE II
FACEBOOK MEASUREMENTS- DATA SET OVERVIEW.

VIII. R EAL LIFE EXAMPLE : SAMPLING OF FACEBOOK

In this section we apply and test the previous ideas in
a real-life large-scale system - the Facebook social graph.
With 250+ millions of active users, Facebook is currently the
largest online social network. Crawling the entire topology of
Facebook would require downloading about50TB of HTML
data [5], which makes sampling a very practical alternative.

A. Data collection

We have implemented a set of crawlers to collect the
samples of Facebook (FB) according to the UNI, BFS, RW,
MHRW techniques. The details of our implementation are
described in [5]. The data sets are summarized in Table II.

UNI is a true uniform sample of FB users (see [5] for
details). Thanks to a large number of samples|S|, UNI gives a
high quality estimation ofpk and〈k〉. Therefore, we use UNI
as ground truth for comparison of various techniques.

We ran two types of BFS crawling. BFS28 consists of 28
small BFS-es initiated at 28 randomly chosen nodes from UNI,
which allowed us to easily parallelize the process. Moreover,
at the time of data collection, we (naively) thought that this
would reduce the BFS bias. After gaining more insight (which,
nota bene, motivated this paper), we collected a single large
BFS1, initiated at a randomly chosen node from UNI.

B. Results

We present the Facebook sampling results in Table III and
in Fig. 4. The first row of Table III shows the average node
degree〈k∗〉 observed (sampled) by several techniques. The
value sampled by UNI is〈k∗〉= 94.1, which we interpret as
the real value〈k〉. MHRW, as expected, recovers a similar
value. In contrast RW and BFS are both biased towards high
degrees by a factor larger than three! The degree bias of RW

UNI RW BFS28 BFS1 MHRW
〈k∗〉 sampled 94.1 338.0 323.9 285.9 95.2
〈k∗〉 expected - 329.8 (3) 329.1 (11) 328.7 (11) 94.1 (5)
〈k̂〉 estimated - 93.9 (15) 85.4 (18) 72.7 (18) 95.2 (17)

TABLE III
FACEBOOK MEASUREMENTS- AVERAGE NODE DEGREE. IN PARENTHESIS

WE GIVE THE RELEVANT EQUATIONS.

is the largest. It drops very slightly under the (relativelyvery
short) BFS28 crawl, which confirms our findings from V-B7.
BFS1, a sample 15 times longer than BFS28, is significantly
less biased, which is in agreement with V-B8.

The second row shows theexpectedsampled average node
degrees (i.e., our predictions of the values in the first row),
assuming that the underlying Facebook topology is a random
graph RG(pk) with degree distributionpk equal to that
sampled by UNI. As expected, this works very well for RW.
However, the values predicted for BFS overshoot the reality.
This is because Facebookis nota pure random graphRG(pk).
For example, Facebook, as most social networks, is character-
ized by a high clustering coefficientc. We believe that it is
possible to incorporate this fact in our analytical model,e.g.,
by appropriately stretching the functionf(t) in Eq. (10). This
is a main goal in our future work.

Finally, in the last row of Table III we apply the estimators
developed in Section VI to correct the degree biases of RW and
BFS. In the case of RW, the correction works very well. For
the BFS estimator, the results are significantly worse, clearly
for the reasons discussed in the previous paragraph.

All the above observations hold also for theentire degree
distribution, which is shown in Fig. 4.

C. Practical recommendations

BFS is strongly biased toward high degree nodes. It is
possible to correct for this bias precisely when the underlying
graph is aRG(pk) (which is not the case in practice). Also,
in more realistic graphs, this bias can be corrected reasonably
well for a very small sample size (as is the case for BFS28),
where BFS is similar to RW (see Fig. 1). On the other
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Fig. 4. Facebook measurements - degree distribution.Crawlers used:
UNI, RW and BFS. All plots are in log-log scale with logarithmic binning
of data (we take the average of all points that fall in the samebin). We also
correct these distributions, as described in Section VI.

extreme, for very large sampling coverage, the bias of BFS
becomes relatively small and could be sometimes neglected
(even without additional correction). However, in all other
cases, the results become difficult to interpret. In contrast, both
RW (equipped with a correction procedure) and MHRW are
unbiased, regardless of the actual graph topology. Therefore,
we recommend using RW and MHRW (with a slight advantage
of RW [3]) as general methods to sample the node properties.

In contrast, RW and MHRW are not useful when sampling
non-local graph properties, such as the graph diameter or the
average shortest path length. In this case, BFS seems very
attractive, because it produces a full view of a particular region
in the graph, which is usually a densely connected graph itself,
and for which the non-local properties can be easily calculated.
However, all such results should be interpreted very carefully,
as they may be also strongly affected by the bias of BFS. For
example, the graph diameter (usually) drops significantly with
growing average node degree of a network.

IX. CONCLUSION AND FUTURE DIRECTIONS

When crawling large, undirected networks, BFS tends to
discover high-degree nodes first. As a result, the nodes sam-
pled by an incomplete BFS are biased with respect to their
degrees, and also to many other properties that correlate with
the degree (see [5] for examples).

To the best of our knowledge, this is the first paper to
quantify this bias. In particular, we calculated the node degree
distribution expected to be observed by BFS as a function of
the fractionf of covered nodes, in a random graphRG(pk)
with a given degree distributionpk. Furthermore, we also
showed that, forRG(pk), all commonly used graph traversal
techniques that sample nodes without replacement lead to the
same bias, and we showed how to correct for this bias.

We compared our analytical results (obtained for random
graphs) with experimental results obtained via BFS sampling
of the Facebook social graph (which is not expected to be
a random graph). Qualitatively, the same trends hold: For a
small sample size,f→0, BFS has the same bias as the classic
Random Walk, and with increasingf , the bias monotonically
decreases. Quantitatively, however, the bias of our Facebook
samples does not match precisely the one we calculated

for RG(pk). This is the effect of topological properties other
than the degree distribution, in which Facebook and the
random graph vary. For example, we found in simulations that
the degree bias gets amplified in graphs with strong positive
assortativity. In future work, we plan to extend our theoretical
framework to capture such topological properties as well.
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