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Abstract—Breadth First Search (BFS) and other graph traver-
sal techniques are widely used for measuring large unknown
graphs, such as online social networks. It has been empiritdg
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Graph traversal techniques:

observed that incomplete BFS is biased toward high degree des. - _D,Egest Fire
In contrast to more studied sampling techniques, such as ratom - Snowball

walks, the bias of BFS has not been characterized to date.

In this paper, we quantify the degree bias of BFS sampling. In
particular, we calculate the node degree distribution expeted to ‘
be observed by BFS as a function of the fraction of covered nas, = ! .
in a random graph RG(py) with a given (and arbitrary) degree 0 [ fraction of sampled nodes 1
distribution py. Furthermore, we also show that, for RG(py), all

; Fig. 1. Overview of results. We calculate the average node deg(éé)
Ic;?rrgm;r:]éy Surls(?v?/bg[ﬁ %harggl\i/ﬁgs)‘all efdcﬁglqtﬁgss(aﬂ:es ’bPaES‘arllzg rsvset (and the full degree distribution, not shown) expected t@hbserved by BFS

L - . in a random graplRG with a given degree distributiopy,, as a function
show how to C‘?”eCt for this b'as'_TO give a broader perspecte, of the fractior? ofpsamgl)éé nodes g\]/\le shOV\glJ RW and MHog\I;V as a reference.
we compare this class of exploration techniques to random viles (1) is the real average node degree, hd) is the real average squared node
that are well-studied and easier to analyze. Next, we studyyo degree. Observations: (1) For a small sample size, BFS has the same
simulation the effect of graph properties not captured directly by bias as RW; with increasing, the bias decreases; a complete BFS=(1)
our model. We find that the bias gets amplified in graphs with is unbiased, as is MHRW (or uniform sampling).  (2) All commgraph
strong positive assortativity. Finally, we demonstrate tle above traversal techniques (that do not revisit the same node) teathe same
results by sampling the Facebook social network, and we prage ~ Pias.  (3) The shape of the BFS curve depends on the real nateede
some practical guidelines for graph sampling in practice. distribution p,, but it is always monotonically decreasing.

Index Terms—BFS, Breadth First Search, graph sampling,
bias, OSN, Online Social Networks, Facebook. for. Random walks are not the focus of this paper, but are

discussed as baseline for comparison.

In the second category, graph traversal techniques, each

A large body of work in the networking community focusesiode is visited exactly once (if we let the process run until
on topology measurements at various levels, including t@empletion and if the graph is connected). These methods
Internet, the Web (WWW), peer-to-peer (P2P) and onlingiry in the order in which they visit the nodes; examples
social networks (OSN). The size of these networks and othgtlude BFS, Depth-First Search (DFS), Forest Fire (FF)
practical restrictions make measuring the entire graptosnp and Snowball Sampling (SBS). Graph traversals, especially
sible. Instead, researchers typically collect and studynalls BFS, are very popular and widely used for sampling large
but “representative” sample. In this paper, we are pawdityll networks, e.g. WWW [9] or OSNs [10]-[12]. One reason
interested in sampling networks that naturally allow tolex® is that BFS is well-known (a textbook technique) and easy
the neighbors of a given node (which is the case in WWW, P2® understand. Another and probably more important reason
and OSN). A number of graph exploration techniques use thésthat (incomplete) BFS collects a full view (all nodes and
basic operation for sampling. They can be roughly classifiediges) of some particular region in the graph. Consequently
in two categories: (a) with replacement (random walks), ange can study the topological characteristics (e.g., shbptath
(b) without replacement (graph traversal techniques). lengths, clustering coefficients, community structure)thod

In the first category, random walks, nodes can be revisitadsulting sample, which is a big advantage of BFS over random
This category includes the classic Random Walk (RW) as welllks. Of course, this study is correct only if the BFS sample
as the Metropolis-Hastings Random Walk (MHRW). They arig representative of the entire graph. At first sight it seems
used for sampling of nodes on the Web [1], P2P networks [2{rue, e.g., a BFS sample of a lattice is a (smaller) lattice.
[4], OSNs [5,6] and large graphs in general [7]. Random walks ynfortunately, this intuition often fails. It was observed
are well studied [8] and result in samples that have either gepirically that BFS introduces a bias towards high-degree
bias (MHRW) or a known bias (RW) that can be correctegydes [9] [13]-[15]. We also confirmed this fact in a recent

, measurement of Facebook [5], where our BFS crawler found
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things worse, many important properties are usually stsgongcomponentin classic Erdds-Rényi random graph by essbnti
correlated with the node degree (e.g., privacy settings applying the configuration model with node degrees chosen
Facebook [5]), which makes the BFS sample far from beirfgom a Poisson distribution. To match the stubs (or ‘clones’
representative with respect to many metrics. in [17]) uniformly at random in a tractable way, Kim proposes

Despite the popularity of BFS on the one hand, and its“cut-off line” algorithm: he first assigns each stub a rando
bias on the other hand, we still know relatively little aboundex from [0, np|, and next progressively scans this interval.
the statistical properties of node sequences returned t8: BRchlioptas et al. used this powerful idea in [18] to study the
The formal analysis is challenging because BFS, similarbias of traceroute sampling in random graphs with a given
to every sampling without replacement, introduces complebegree distribution. The basic operation in [18] is tracézo
dependencies difficult to deal with mathematically. (i.e., “discover a path”) and is performed from a single node

Our work is a step toward understanding the statisticld all other nodes in the graph. The union of the observed
characteristics of incomplete BFS sampling. In particulse paths forms a “BFS-tree”, which includes all nodes but nisse
focus on a random grapRG(py) with a given (and arbitrary) some edgese(g.,those between nodes at the same depth in the
degree distributiomp;,, which we introduce in Section IV. In tree). In contrast, the basic operation in the traversahoukt
Section V, we calculate precisely the node degree distobut presented in our paper is to discover all neighbors of a node,
expected to be observed by BFS as a function of the fractiand it is applied to all nodes in increasing distance from
of sampled nodes IRG (px). the origin. Another important difference is that [18] steslia

We accompany this central result with additional relatecbmpleted BFS-tree, whereas we study the sampling process
contributions. First, we show that iRG(py), BFS is equiv- when it has visited only a fractiofi < 1 of nodes; a completed
alent to other graph traversal techniques, such as De®RS (f=1) is trivial in our case (it has no bias).
First Search (DFS), Snowball Sampling, and Forest Fire (weAnother recent paper related to BFS bias is [19]. The
overview these methods in Section Ill). Second, we compasaper is about Snowball Sampling [20], which is similar to
the bias of BFS to that of random walks. As shown in Fig. 1, &FS, and proposes a heuristic approach to correct the degree
the beginning of the exploration process, BFS exhibits tixacbiases inith generation of Snowball based on the values
the same bias as RW, with increasing fraction of samplédeasured in generatior-1. The authors show by simulation
nodes f, this bias monotonically decreases; when BFS tbat this technique performs moderately well, especiathemw
complete { = 1), there is no bias, as in the case of MHRWa significant fraction of nodes have been covered.
Third, given a biased sample, we derive in Section VI an

unbiased estimator of the original node degree distributio L B b d h with th f .
In addition, in Section VII, we use simulation to confirm etG = (V, E) be a connected graph with the set of vertices

our analysis and investigate the effect of graph propertiéé’ and a set of undirected .ed.gEs Initially, G is unknown,
such as assortativity, not captured directly By¥(pi). We except for one (or some limited numbgr of) seed_node(s).
complement it with real-world measurements of the Facebo}é\ﬂqen sampling through graph exploration, we begin at the

social network in Section VIIl. Section IX concludes an&eed node, and we recursively visit (one, some or all) of its
outlines future work neighbors. We distinguish two main categories of explorati

techniques: with and without replacement.

IIl. GRAPH EXPLORATION TECHNIQUES

Il. RELATED WORK A. Exploration with replacement (random walks)

BFS used in practiceBFS is widely used today for explor- Exploration with replacementor simply awalk allows

ing large networks, such as OSNs. The following list prosidgeyisiting the same node many times. Consider the following
some examples but is by no means exhaustive. In [10], Ahn@4ssic examples:

al. used BFS to sample Orkut and MySpace. In [11] and [16],
Mislove et al. used BFS to crawl the social graph in four PoR;;
ular OSNs: Flickr, LiveJournal, Orkut, and YouTube. In [12]
Wilson et al. measured the social graph and the user intenac ighbors of the current node It is easy to see that RW

. ne
graph of Facebook using several BFSs, each BFS constrauﬂﬁ bduces a linear bias towards nodes of high degree [8].

in one of the largest 22 regional Facebook networks. In our _ . :
recent work [5], we have also crawled Facebook using variousz) Metropolis Hastings Random Walk (MHRWn this

sampling techniques, including BFS, RW and MHRW. It hatgchnlque, as in RW, the r_1ext—hop nodés chosen uniformly

been empirically observed that incomplete BFS and its mésia at rand_om among _the neighbors of the current nodelow-

introduce bias towards high-degree nodes [9] [13][15]. vﬁver, with a probability that depends on the de_grees ahdu,

also confirmed this in Facebook [5], an observation that HRW performs a self-_loop instead .Of moving to. More

fact inspired this paper. specifically, the probability?, ., of moving fromu to w is as
Analyzing BFSTo the best of our knowledge, the samplingEOIIOWS [21]:

bias of BFS has not been analyzed so far. [17] and [18] are 7 -min(1, =) if w is a neighbor ofu,

the closest related papers to our methodology. The originaP,,., = ¢ 1— Zyiu P,, ifw=u, (1)

paper by Kim [17] analyzes the size of the largest connected 0 otherwise

1) Random Walk (RW):In this classic sampling tech-
que [8], we start at some seed node. At every iteration, the
next-hop nodev is chosen uniformly at random among the



wherek, is the degree of node. Essentially, MHRW reduces & ~ v, B) gre%‘?gec o"f‘";gé‘;desv and edgests
the transitions to high degree nodes and thus eliminates th}gf - ﬁzuev 1p,— | degree distribution ic:
degree bias of RW. This property of MHRW was recently ¢, expected observed degree distribution
exploited in various network sampling contexts [2,3,5,6]. e observed degree distribution
. . Dk estimated original degree distribution @

3) Respondent-Driven Sampling (RD®DS was proposed ) =, kp, average node degree (@
and studied in the field of social sciences to penetrate hidde(k*) =), kaqx expected observed average node degree
populations, such as that of drug addicts [22,23]. In thel fraction of nodes covered by the sample
network sampling terminology, at each iteration RDS sslect TABLE |
randomly exactlyr neighbors (typically» ~ 3) of the current NOTATION SUMMARY.

nodeu and schedules them to visit later. RDS visits the nodes

in the order they were scheduled. Thus, RDS is a modificatig#tribution can vary, ranging from constant-degree (guter

of Snowball Sampling (described below) that allows nod@aphs), a distribution concentrated around the averalye va
revisiting. RDS introduces a degree bias that is known and ¢&-9-, in Erdos-Rényi random graphs or in well-balanced
be corrected for. It was demonstrated in [23] on the examf&P networks), to heavily right-skewed distributions with
with n= 1, which reduces RDS precisely to Random Walkovering several decades (in WWW, unstructured P2P, latern
(RW). This approach was recently tested in [3] on vario the Autonomous System level, OSNs). We handle all these

graph models and unstructured P2P networks. cases by assuming that we are gimy fixed node degree
distribution p;. Other than that, the grap& is completely

B. Exploration without replacement (graph traversals) random. That is(G is drawn uniformly at random from the

In contrast, exploration without replacement, graph set of all multigraphs with degree distributign. We denote
traversa| never revisits the same node. At the end of th@is model byRG (py).
process, and assuming that the graph is connected, all nodege yse a classic technique to generAt8(p;), called the
are visited. configuration mode[25]: each nodev is given &, “stubs”

1) Breadth First Search (BFS)BFS is a classic graph (or “edges-to-be”). Next, all thesg’, ., k, = 2|E| stubs are
traversal algorithm that starts from the seed and progrelgsi randomly matched in pairs, until all stubs are exhausted (an
explores all neighbors. At each new iteration the earliegt| edges are created). In Fig. 2 (ignore the rectangular iaterv
explored but not-yet-visited node is selected next. ThisS B [0,1] for now), we present four nodes with their stubs (left)
discovers all nodes within some distance from the seed. and an example of their random matching (right).

2) Depth First Search (DFS)This technique is similar to
BFS, except that at each iteration we select the latest exgblo
but not-yet-visited node. As a result, DFS explores first the In this section, we study the node degree bias observed
nodes that are faraway (in the number of hops) from the se&den the graph exploration techniques of Section Il are run

3) Forest Fire (FF): FF is a randomized version of BFS,0n the random grapRG (py.) of Section IV. In particular, we
where for every neighbar of the current node, we flip a coin, derive the node degree distributign and the average node
with probability of success, to decide if we explorer. FF degree(k™) expected to be observed, as a function of the
reduces to BFS fop=1. It is possible that this process diegriginal degree distributiop,, and, in the case of BFS, of the
out before it covers all nodes. In this case, in order to make fraction of sampled nodes.
comparable with other techniques, we revive the process fr(%\
a random node already in the sample. Forest Fire is inspired b

a reference point for our main analysis of graph traversals i

V. ANALYZING THE NODE DEGREEBIAS

Exploration with replacement (walks)

4) Snowball Sampling (SBSBnowball Sampling is a pre- X
cursor of RDS and a term loosely used for BFS-like traversd)€ Next section.

techniques. According to a classic definition by Goodmai,[20 1) Random Walk (RW)Random walks have been widely
an n-name Snowball Sampling is similar to BFS, but gptudied; see [8] for an excellent survey. In any given con-

every nodev, not all k,, but exactlyn neighbors are chosen"€ctéd and aperiodic graph, the probability of being at a
randomly out of allk, neighbors ofv. Thesen neighbors particular nodev converges at equilibrium to the stationary

. B . o kv
are scheduled to visit, but only if they have not been visitddfStributionm,= 7. Therefore, the expected observed degree

before. distribution gy, is

IV. GRAPH MODEL RG(pk) QG = Zm Ay = 2ipk V| = kﬂ, 2)
A basic important graph property is the node degree dis- v |E] (k)
tribution py, i.e, the fraction of nodes with degree equalyhere (k) is the average node degreeéh Eq. (2) is essen-
to k, for all k > 0.' Depending on the network, the degregially similar to calculation for RDS in [23,26]. As this s

1As we definep;, as a ‘fraction’, not the ‘probability’p;, determines the for any fixed (and connected and ape”Od'C) graph, I.t IS al_so
degree sequence in the graph, and vice versa. true for all connected graphs generated by the configuration



model. Consequently, the expected observed average nb¢gorithm 1 Stub-Level Graph Traversal

degree is 1: S« [v1] and @ < [all stubs ofw]
9 9 2: while @ is nonemptydo
(k™) = Zka = % = %, (3) 3 Dequeuer from Q
k 4.  Discovera’s partnerb
where(k?) is the average squared node degre€iwe show 5 If v(b) ¢ S then
. ) o 6: Appenduv(b) to S
this value-g* in Fig. 1. 7: Enqueue orQ all stubs ofv(b) exceptb
2) Metropolis Hastings Random Walk (MHRWJ:is easy 8: else q P
to show that the transition matri®’, ., shown in Eq.(1) 9: Removeb from Q
leads to a uniform stationary distributiaon, = ‘71‘ [21], and 10- end if
consequently: 11; end while
Qe Pk (4)
(k) = Zk% - kak = (k). ) random. Next, we can sample this fixed graph and average
k k

) ) the result over the space of all the random grapiis(py)
In Fig. 1, we show that MHRW estimates the true mean. hat have just been constructed. Unfortunately, this space
B. Exploration without replacement (Main Result) ?hrows iﬁponenttlallyt v[\;/,||th EP; nl;mber of ngdBfL maII:mg ;
- e problem untractable. Therefore, we adopt an altemativ
In both RW and MHRW the npdes can be revisited. S(9onstruction of G - by iteratively selectingb ‘on the fly’
the state of the system at iteratignt 1 depends only on \éi.e, every time line 4 is executed), uniformly at random

itera_tionz‘, W.hiCh makes it possible to analyze with Marko rom all still unmatched stubs. By the principle of deferred
Chain techniques. In contrast, graph traversals do nowvdtio decisions [27], these two approaches are equivalent.
node revisits, which introduces crucial dependencies &etw With the he:Ip of the ‘on the fly’ approach, we are able

all the iterations and significantly complicates the an'alystO write down the equations we need. Indeed, let us denote
To handle these dependencies, we adopt an elegant technj &, c V the ith selected node, and I8 X, = u) be the
recently introduced in [17] (to study the size of the large
connected component) and extended in [18] (to study the b
of traceroute sampling). However, our work differs in many

obability that node: € V' is chosen as a starting node. It is
y to show that with=2|E| we have

aspects from both [17] and [18], which we comment in detail P(X.=v) = Z Z: P(X1=u) (6)
in the related work Section II. wpo L

1) Exploration without replacement at the stub levéle  P(Xz=w) = > > % : k—”}(j P(Xi=u), (7)
begin by defining Algorithm 1 (below) - a general graph v g o 0T e T

traversal technique that collects a sequence of nSgesdthout  and so on. Theoretically, these equations allow us to catieul
replacements. To be compatible with the configuration modgk expected node degree at any iteration, and thus theedegre
(see Section 1V), we are interested in the procasthe stub hias of BFS.

level Wherg we consider one stub at a tim.e, rther than ones) Breaking the dependencieShere is still one problem
node at a time. An integral part of the algorithm is a queue \yith the equations above. Due to the increasing number of
that keeps the discovered, but still not-yet-followed stubnested sums, the results can be calculated in practice fista fi
First, we enqueue o@ all the stubs of some initial node, fey jterations only. This is because we select stumiformly
and by settingS —[v:]. Next, at every iteration, we dequeue,nq jndependently at random from all taematchedstubs. So
one stub fron@, call it a, and follow it to discover its partner- \he stub selected at iteratiandepends on the stubs selected
stubb, andb’s owneru(b). If nodev(b) is not yet discovered, 4t jterationsl ...i—1, which results in the nested sums. We
e, if v(b) ¢ S, then we append(b) to S and we enqueue remedy this by implementing the ‘on the fly’ approach as
onQ all other stubs ob(b). follows. First, we assign each stub a real-valued indesawn
Depending on the scheduling discipline for the elemenﬁﬁlifomﬂy at random from the interva, 1]. Then, every time
in @ (line 3), Algorithm 1 implements BFS (for a first-in first,o process line 4, we pick as the unmatched stub with
out scheduling), DFS (last-in first-out) or Forest Fire {firsihe smallest index. We can interpret this as a continuous-
in first-out WIFh randomized stub losses). !_lne 9 guarantegse process, where we determine progressively the partner
that the algorithm never tracebacks the edges,that stuba ¢ styps dequeued fron), by scanning the interval from
dequeued fron@) in line 3 never belongs to an edge that hagime’ 1= to t=1 in a search of unmatched stubs. Because
already been traversed in the opposite direction. the indices chosen by the stubs are independent from each
2) Discovery on the flyln line 4 of Algorithm 1, we follow other, the above trick breaks the dependence between tig stu
stuba to discover its partneb. In a fixed graph’, this step which is crucial for making this approach tractable.
is deterministic. In the configuration mod&G(py), a fixed In Fig. 2, we present an example execution of Algorithm 1,
graph G is obtained by matching all the stubs uniformly atvhere line 4 is implemented as described above.
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Fig. 2. An illustration of the stub-level, on-the-fly grapkpéoration without replacements. In this particular exéengve show an execution of BFS starting

at nodev;. Left: Initially, each nodev hask, stubs, wherek, is a given target degree af Each of these stubs is assigned a real-valued number drawn
uniformly at random from the intervgD, 1] shown below the graph. Next, we follow Algorithm 1 with a $tag nodewv;. The numbers next to the stubs

of every nodev indicate the order in which these stubs are enqueued)on Center: The state of the system at tinie All stubs in [0, ¢] have already
been matched (the indices of matched stubs are set in pteh Il unmatched stubs are distributed uniformly at randmn (¢, 1]. This interval can contain
also some (here two) already matched stub&ight: The final result is a realization of a random graphwith a given node degree sequence (i.e., of the
configuration model)G may contain self-loops and multiedges.

4) Expected sampled degree distributign Now we are the choice of stub indices d, 1], independently of the way
ready to derive the expected observed degree distribytion we manage the elements G
Recall that all the stub indices are chosen independendy an
uniformly from [0, 1]. A vertexv with degreek is not sampled
yet at timet if the indices of all itsk stubs are larger thah
which happens with probabilityl —#)*. So the probability
that v is sampled before timeis 1—(1—t)%. Therefore, the
expected fraction of vertices of degréesampled before is

6) Equivalence to weighted sampling without replacement:
Consider a node with a degreék,. The probability that is
discovered before timg given that it has not been discovered
beforetg < t, is

ko
P(v before timet | v not beforety) =1 — <11;t> (12)

Fut) = pe(1=(1=0)"). 8) o
By normalizing Eq. (8), we obtain the expected observédye now take the derivative of the above equation with respect
(sampled) degree distribution at time to ¢, which results in the conditional probability density
. function k,({=5)"". Settingt — o (but keepingt > to),
a(t) = fi(®) — pe(1 = (1-1)7) ) (9) reduces it tok,, which is the probability density that is
> fi(t) dup(l—(1-1)) sampled at, given that it has not been sampled before. This

Unfortunately, it is difficult to interpretg;(t) directly, be- Means that at every pointin time, out of all nodes that have no
cause is proportional neither to the number of matched edg¥§t been selected, the probability of selectinig proportional
nor to the number of discovered nodes. Recall that our psimdP tS degreek,. Therefore, this scheme is equivalent to node
goal is to express; as a function of fractionf of covered Sampling weighted by degree, without replacements.

nodes. We achieve this by calculatinfft) - the expected 7) Equivalence to RW fof — 0: Finally, for f— 0 (and

fraction of nodes, of any degree, visited before titne thust— 0), we havel—(1—t)* ~ kt, and Eq. (9) simplifies to
_ _ Eq. (2). This means that in the beginning of the sampling
t) = t)y=1- 1-t)k . 10
1® zk:fk( ) zk:pk( ) (10) process, every traversal technique is equivalent to RW, as

shown in Fig. 1 forf—0.
Becausep;, > 0, andp; > 0 for at least one: > 0, the term

S, pr(1-t)* is continuous and strictly decreasing from 1to 0 8) (k™) is decreasing inf: As in Section V-B2, letX; € V/
with ¢ growing from 0 to 1. Thus, fof € [0, 1] there exists a be theith selected node, and let= 2|E|. We have shown
well definedt=t( f) that satisfies Eq.(10). Although we canno@bove that our procedure is equivalent to weighted sampling
computet(f) analytically (except in some special cases sudMithout replacements, thus we can wrik¢X; = u) = .
as fork < 4), it is straightforward to find it numerically. Now, Now, it follows from Eq. (6) thatP(X; = w) = ’“7“’ Qs
we can rewrite Eq. (9) as where o, = 32, zf—%u Because for any two nodes
pe(1 = (1—t(f))%) and b, ‘we have «y, — = 2(kq - ko) /(2 — ko) (2 — k),
a(f) = S o — (-t (11) @, strictly decreases with growing,,. As a result,P(Xy)

b is more concentrated around nodes with smaller degrees than
which is the expected observed degree distribution after cGs P(X,), implying that E[kx,] < E[kx,]. We can use an
ering fractionf of nodes of graplt:. analogous argument at every iteratiorc |V|, which allows

5) Equivalence of traversal techniques und&i’ (p;): An Us to say that[kx,] < E[kx, ,]. In other words(k*)(f) is
interesting observation is that, under the random graphemo@ decreasing function of.
RW (pg), all common traversal techniques (BFS, DFS, FF, A practical consequence is that many short traversats,(
SBS, ...) are subject to exactly the same bias. The exptanatBFS-es) are more biased than a long one, with the same total
is that the sampled node sequerttas fully determined by number of samples.




C. Comments on the graph connectivity In summary, for graph traversal techniques, Eq.(18) shows
Note that the configuration mod&G (p;,) might result in a how to estimate the original degree distributipn given the

graphG that is not connected. In this case, every exploratidfdl graph coveragg”*’. Of course, based ofi, we can

technique covers only the compone@t in which it was Calculate the average node degreg(fds=>_,. k pi-

initiated; consequently, the process described in Sest&3

. VII. SIMULATION RESULTS
stops once”' is covered.

In this section, we implement and simulate the considered
VI. CORRECTING FOR NODE DEGREE BIAS sampling techniques, namely BFS, DFS, FF (with= 0.5),

In the previous section we derived the expected observB#®/ and MHRW. The simulations confirm our analytical
degree distributiony;, as a function of the original degreeresults derived for the random graph modefi(p;). More
distributionpy, for three general graph exploration techniquegnportantly, in simulations we can study the effect of topo-
The distribution ¢, is usually biased towards high-degreéogical properties, such as of assortativity [28], that ace
nodes. In this section, we derive unbiased estimaiprand  directly captured byRG/(px).

:I;ép(:c:it:/;;”gmal degree distributiop;, and its mean(k), A. Random graptRG(pr)

Let S C V be a sequence of vertices that we sampled. Fig. 3 verifies all the formulae derived in this paper, for the
Based onS, we can estimate;, as random graphRG(py) with a given degree distribution. The

. . analytical expectations are plotted in thick plain linestlie
. = number of nodes irh with degreek (13) background and the averaged simulation results are plotted
1] in thinner lines lying on top of them. We observe almost a
A. Random Walk (RW) perfect match between theory and simulation in estimating
In order to estimate;, based orfj,, consider again Eq.(2), the sampled degree distributign (Fig. 3, right) and its mean
which says thaty, is proportional tok p,. Thereforep, is (k") (Fig. 3, left). Indeed, all traversal techniques follow the
proportional tog; /k, andpj, is proportional tog, /k which Same curve (as predicted in V-BS), that initially coincides

allows us to write (similarly to [3,23]): with that of RW (see V-B7) and is monotonically decreasing
. in f (see V-B8). We also show that degree weighted node
P qQ sampling without replacements exhibits exactly the saras bi
P =77 <Zl: 7) (14) (see V-B6). Finally, applying the estimatofs derived in

Section VI corrects for the bias af,.
where} ", 4 is a normalizing constant. From Eq.(14), we ca

estimate the average node degree as B The effect of degree-degree correlations (assortgtivit

1 Depending on the type of network, nodes may tend to
~ o aQ S connect to similar or different nodes. For example, in most
(k) = Xk:kpk =1 <Xl: 7) S (19 social networks high degree nodes tend to connect to other

. ] oS high degree nodes [28]. Such networks are caksdorta-
B. Metropolis Hastings Random Walk (MHRW) tive. In contrast, biological and technological networks are
In this case, equations (4) and (5) trivially yield typically disassortativei.e., they exhibit significantly more
R N high-degree-to-low-degree connections. This obsematin
Pr =k and (18) pe quantified by calculating trassortativity coefficient [28].
k) = > kpp = Y k. (17) Valuesr <0, >0 andr =0 indicate disassortative, assorta-
k k tive, and purely random graphs suchia&(py), respectively.
C. Graph traversal For the same initial parameters as in Fig. 3.,(|V]),

we simulated different levels of assortativity. The restiot
presented here due to space constraints) show that o0,
the degree bias is even stronger thanfer 0. This is because
R i a ! the high-degree nodes are now interconnected more densely
br = w : (Z W) (18) thanina purely random graph, and are thus easier to discover
! by sampling techniques that are inherently biased towards
However, in order to evaluate this expression, we need h@h degree nodes. Not surprisingly, a negative assaiativ
evaluatet(f), that, in turn, requirep,. We can solve this r < 0 has the opposite effect: every high-degree node tends to
chicken-and-egg problem iteratively, if we know the reatonnect to low-degree nodes, which significantly slows down
fraction fm¢* of covered nodes, or equivalently the graph sizéhe discovery of the former.
|V|. First, we evaluate Eq.(18) for some valuest @nd feed In contrast, random walks RW and MHRW are not affected
the resultingpy’s into Eq. (10) to obtain the correspondingyy the changes in assortativity. This is expected, because
f’s. By repeating this process, we can drive the valueg oftheir stationary distributions hold f@anyfixed (connected and
arbitrarily close tof"*%, and thus find the desireg),. aperiodic) graph regardless of its topological properties

From Eq. (11) we know thapy(f) is proportional to
qx/(1 — (1—t(f))*). Consequently,

~
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Fig. 3. Comparison of sampling techniques in theory and in simulan. Left: Observed (sampled) average node dedt€® as a function of the fraction
f of sampled nodes, for various sampling techniques. Thétseste averaged over 1000 graphs with 10000 nodes eachatemhéy the configuration model
with a fixed heavy-tailed degree distributign, (shown on the right). Right: Real, expected, and estimated (corrected) degree distrilsufor selected
techniques and values ¢f (other techniques behave analogously). We obtained amadogesults for other degree distributions and graph dizeésThe
term (k) is the real average node degree, dhd) is the real average squared node degree.

UNI RW BFSxs BFS, MHRW | UNI RW BFSxs BFS MHRW
[ST | 982K 2.26M 2881K = 2.26M 1.19M  2.26M (k*) sampled | 94.1 338.0 3239 285.9 95.2
f 0.44%  1.03% 280.04% 0.54%  1.03% (k*) expected| - 329.8 (3) 329.1(11) 328.7(11) 94.1(5)
TABLE Il (k) estimated | - 93.9 (15) 85.4 (18) 727 (18) 95.2 (17)
FACEBOOK MEASUREMENTS- DATA SET OVERVIEW. TABLE Il
FACEBOOK MEASUREMENTS- AVERAGE NODE DEGREE IN PARENTHESIS
VIIl. REAL LIFE EXAMPLE: SAMPLING OF FACEBOOK WE GIVE THE RELEVANT EQUATIONS

In this section we apply and test the previous ideas inth | It d liahtl der th lati
a real-life large-scale system - the Facebook social graﬁ?ﬂf © glr:ges. lroinﬁry S'fg y-un ?rd.e (r?alve\?rl)s/7
With 250+ millions of active users, Facebook is currently th;FOSlrt) a sﬁ%;:ZV\/l;sv':lin:(;s (I:é)r?glg:ltshgﬁrBjIgSIirs]gsSig;ci}gan_tly '
largest online social network. Crawling the entire topglad less biased, which is in agreement with \-B8.

Facebook would require downloading abé6f" B of HTML T q h texpecteds led q
data [5], which makes sampling a very practical alternative € second row shows pectecsampled average node
degreesi(e., our predictions of the values in the first row),

A. Data collection assuming that the underlying Facebook topology is a random

We have implemented a set of crawlers to collect tH#aph RG(px) with degree distributionp, equal to that
samples of Facebook (FB) according to the UNI, BFS, R§ampled by UNI. As expected, this works very well for RW.
MHRW techniques. The details of our implementation arfdowever, the values predicted for BFS overshoot the reality
described in [5]. The data sets are summarized in Table 11.This is because Faceboiknota pure random grapRG (py,)-

UNI is a true uniform sample of FB users (see [5] foFor example, Facebook, as most social networks, is characte
details). Thanks to a large number of sampleis UNI gives a 1z€d by a high clustering coefficiert We believe that it is
high quality estimation of;, and (k). Therefore, we use UNI POssible to incorporate this fact in our analytical moeeg.,
as ground truth for comparison of various techniques. Py appropriately stretching the functigfit) in Eq. (10). This

We ran two types of BFS crawling. BES consists of 28 1S & main goal in our future work.
small BFS-es initiated at 28 randomly chosen nodes from UNI, Finally, in the last row of Table Ill we apply the estimators
which allowed us to easily parallelize the process. Moreovéleveloped in Section VI to correct the degree biases of RW and
at the time of data collection, we (naively) thought thasthiBFS. In the case of RW, the correction works very well. For
would reduce the BFS bias. After gaining more insight (whickhe BFS estimator, the results are significantly worse,rjlea
nota bene, motivated this paper), we collected a singleelarp" the reasons discussed in the previous paragraph.

BFS,, initiated at a randomly chosen node from UNI. All the above observations hold also for tkatire degree
distribution, which is shown in Fig. 4.
B. Results

We present the Facebook sampling results in Table Il afd Practical recommendations
in Fig. 4. The first row of Table Il shows the average node BFS is strongly biased toward high degree nodes. It is
degree(k*) observed (sampled) by several techniques. Tip@ssible to correct for this bias precisely when the undegly
value sampled by UNI igk*)=94.1, which we interpret as graph is aRG(px) (which is not the case in practice). Also,
the real value(k). MHRW, as expected, recovers a similam more realistic graphs, this bias can be corrected re&dpna
value. In contrast RW and BFS are both biased towards higkell for a very small sample size (as is the case for BFS
degrees by a factor larger than three! The degree bias of RVlere BFS is similar to RW (see Fig. 1). On the other



Degree distributions sampled in Facebook

for RG(pi). This is the effect of topological properties other
than the degree distribution, in which Facebook and the
random graph vary. For example, we found in simulations that
the degree bias gets amplified in graphs with strong positive
assortativity. In future work, we plan to extend our theiagt
framework to capture such topological properties as well.

Prob¢)

real

expected (analytic)
10° || == RW-sampled

= = - RW - corrected
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