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Prerequisites:

Graduate student or advanced undergraduate status, physical chemistry, organic chemistry, and an
understanding of basic mathematics, or by arrangement with the instructor. 

Course Description:

This course is an introduction to modern NMR experiments and their application to biological problems.
The first half of the class will focus on an understanding of multidimensional (2D, 3D, 4D) and
multinuclear (1H, 15N, 13C, ...) NMR experiments. In this half, the students should gain a working
knowledge of the basics of NMR spectroscopy. We will make some use of computer software for "hands
on" work. The second half will cover applications to proteins and nucleic acids. Much of this will be
literature-based and can be adjusted to meet the interests of the class. 
  



Class Notes for BCH 6747

Structural Biology: Theory and Applications of NMR Spectroscopy

 

Week 1: Introduction to the basics: Bloch equations

References: Most NMR books. These notes were constructed from combinations of:

 

"Protein NMR spectroscopy: Principles and Practice" Cavanagh, Fairbrother, Palmer, and Skelton,
Academic Press, (1996).

 

"Biomolecular NMR Spectroscopy" Evans, Oxford University Press, (1995).

 

"Principles of Nuclear Magnetic Resonance in One and Two Dimensions" Ernst, Bodenhausen, and
Wokaun, Oxford (1987).

 

Nuclear spin and angular momentum

Some atomic nuclei have an intrinsic property called "spin". This was first demonstrated in 1922 by the
Stern-Gerlach experiment, in which a beam of silver atoms were passed through a magnet field and split
into two beams. These two beams represent the two states, α and β, of the silver (spin 1/2) nuclei.

The nuclear spin has an intrinsic angular momentum, a vector that is represented by the symbol I (vectors
will be in bold). Vectors have 3 orientations (x, y, and z) and a length. However, the Heisenberg
Uncertainty Principle tells that we can only know one orientation and the length simultaneously. By
convention in NMR, we say that we know the z-orientation of the angular momentum of a nucleus in a
magnetic field. The square of the magnitude of I is given by

 (1-1)

where I is the spin quantum number (e.g. 1/2) and  is Planck’s constant divided by 2π. The
z-component of I is given by

 (1-2)

where m is the quantum number with values m = (-I, -I+1, ..., I-1, I). In the case of spin 1/2 nuclei, I =
1/2 and m can be -1/2 and 1/2. 

 



 

A diagram illustrating these principles is:

 

 

In this diagram, the coordinate system has been placed in the center of two cones. The angular
momentum vector I is shown on the edge of the upper cone. The projection of I onto the z-axis is Iz

, but

I is completely undetermined in the x,y plane.

 

Nuclei that have spin angular momentum also have a magnetic moment given by

 (1-3)



where γ is the gyromagnetic ratio (sometimes called the magnetogyric ratio). γ is a physical property of
each nucleus. For a given abundance, nuclei with higher values of γ produce higher sensitivity NMR
spectra.

 

Click here for values of γ and natural abundance for some important spin 1/2 biological nuclei.

 

The z-component of the magnetic moment is thus given by

 (1-4)

 

Nuclear energies in a magnetic field

The energy of the magnetic moment of a nuclear spin in a magnetic field is given by 

 (1-5)

where B is the magnetic field (in general B is a vector quantity). To conduct an NMR experiment, a
sample is first placed into a static magnetic field. By convention, the direction of the static magnetic field
is along the z-axis, and the magnitude of the magnetic field is given by B0 (no longer a vector since it

points only along the z-axis). In this case, the energy of a nuclear spin in an NMR magnet becomes

 (1-6)

and the energy associated with a particular quantum number m is

 (1-7)

 

NMR transition energies are very small. These small energies translate into low sensitivity. In the absence
of a magnetic field, the α and β states are equally populated, leading to no net magnetization (that is why
we need large static magnets to do NMR). When samples are placed into a magnetic field, a small excess
of nuclei fall into the α state. This excess of spins in the α over the β states accounts for the entire net
magnetization which is used in the NMR experiment. The ratio of the number of spins in the α state to
those in the β state is given by a Boltzman distribution

 (1-8)

where ∆E is the difference of energies of the α and β states, kB
 is Boltzman’s constant, and T is the



absolute temperature. Typical values of magnetic field strengths produce as little as 1 in 10,000 excess α
spins over β. Higher magnetic fields produce correspondingly larger differences in spin states, leading to
greater sensitivity.

 

Quantum mechanical selection rules dictate that NMR signals can only arise when m changes ± 1. From
Planck’s law (E = h ν) the frequency (ν0) of an NMR transition in a magnet field B0 is

. (1-9)

The units of ν0 are radians/second. More commonly, NMR frequencies are expressed in Hertz (Hz) from

ν0 = ω0/2π, yielding the well-known expression

. (1-10)

 

Behavior of bulk magnetization in a magnetic field

We will now consider "bulk" magnetization M that arises from all of the magnetic moments in a sample.
M experiences a torque when placed in a magnetic field according to

. (1-11)

where J(t) is the bulk spin angular momentum. Note that all three vector quantities in Equation 11 are
time dependent. The time-dependence of the magnetic field comes about when we apply radio frequency
(rf) pulses along the x- or y-axis (described below). Equation 11 is essentially identical to an equation that
describes the motion of a gyroscope (see, for example, Goldstein "Classical Mechanics" Addison-Wesley,
1980):

. (1-12)

where L(t) is the gyroscope’s angular momentum, r the radius from the fixed point of rotation, m the
mass, and g gravity. Thus, a nuclear spin in a magnetic field will behave much like a gyroscope in a
gravitational field. To make Equation 11 more useful, we use the relationship given in Equation 4 and
multiply each side by γ to yield

. (1-13)

Equation 13 is the basis of the Bloch equations.

 



Bloch equations

In 1946 Felix Bloch formulated a set of equations that describe the behavior of a nuclear spin in a
magnetic field under the influence of rf pulses. He modified Equation 13 to account for the observation
that nuclear spins "relax" to equilibrium values following the application of rf pulses. Bloch assumed they
relax along the z-axis and in the x-y plane at different rates but following first-order kinetics. These rates
are designated 1/T1 and 1/T2 for the z-axis and x-y plane, respectively. T1 is called spin-latice relaxation

and T2 is called spin-spin relaxation. Both of these will be described in more detail later in the class. With

the addition of relaxation, Equation 13 becomes

. (1-14)

where R is the "relaxation matrix". Equation 14 is best understood by considering each of its
components:

. (1-15)

The terms in Equation 15 that do not involve either T1 or T2 are the result of the cross product in

Equation 14. Equation 15 describes the motion of magnetization in the "laboratory frame", an ordinary
coordinate system that is stationary. Mathematically (and conceptually) the laboratory frame is not the
simplest coordinate system, because the magnetization is moving at a frequency ω0 = γ B0 in the x-y

(transverse) plane. A simpler coordinate system is the "rotating frame", in which the x-y plane rotates
around the z-axis at a frequency Ω = - γ B0. In the rotating frame, magnetization "on resonance" does not

precess in the transverse plane. The transformation of Equation 15 to the rotating frame is achieved by
replacing each Bz (defined as B0) by Ω/γ:

 (1-16)

In Equation 15, the components of B have been written with r superscripts to denote that it is a rotating
frame. From this point onward, the rotating frame will be assumed without the superscript.

 



Physical interpretation of Bloch Equations: Single pulse experiment

We will now examine the behavior of Equation 16 under two different limiting conditions, the effect of a
short rf pulse and free precession. The rf pulse will be assumed to be very short compared to either
relaxation times T1 and T2 as well as the angular frequency Ω. This assumption is valid for many typical

pulsed NMR experiments in which the pulse lengths can be as short as 5 µs. We will apply the rf pulse
along the x-axis. These conditions allow us to neglect terms in Equation 16 that contain T1, T2, Ω, and

By.

. (1-17)



Homework 1 

1. Calculate Nα/Nβ for the following 4 cases: 

  
  

1H at 500 MHz (11.7 T) 

1H at 750 MHz (17.6 T) 

13C at 500 MHz 

13C at 750 MHz 
  
  

A 500 MHz spectrometer costs ~ $700,000. 

A 750 MHz spectrometer costs ~ $2,000,000. Why spend the extra money? 
  
  

2. Copy and begin to read Edison et al., Methods in Enzymology, V. 239, 3-79 (1994). 
  
  



Week 2: Introduction to Product operators: Pulses and Chemical shift

References: These notes were constructed from:

 

Edison, A. S., Abildgaard, F., Westler, W. M., Mooberry, E. S., and Markley, J. L., "Practical
introduction to the theory and implementation of multinuclear, multidimensional NMR
experiments", Methods Enzymol., N. J. Oppenheimer and T. L. James, eds., Vol. 239, pp. 1-79
(1994).

 

Other references include:

 

O. W. Sørensen, G. Eich, M. H. Levitt, G. Bodenhausen, and R. R. Ernst, Prog. NMR Spectrosc.
16, 163 (1983).

 

"Protein NMR spectroscopy: Principles and Practice" Cavanagh, Fairbrother, Palmer, and
Skelton, Academic Press, (1996).

 

"Biomolecular NMR Spectroscopy" Evans, Oxford University Press, (1995).

 

"Principles of Nuclear Magnetic Resonance in One and Two Dimensions" Ernst, Bodenhausen,
and Wokaun, Oxford (1987).

 

"Density matrix theory and its applications in NMR spectroscopy" Farrar and Harriman,
Farragut Press, Madison, WI (1991).

 

The Bloch equations provide a good physical interpretation to an NMR experiment when there is
no spin-spin (scalar or J) coupling. However, the simple picture completely breaks down in the
absence of coupling. The solution to the problem is a full density matrix calculation based on the
quantum mechanics of the system. Fortunately, Ernst and coworkers devised an easier way to
describe NMR experiments, product operator calculations.

 



A simple case: one spin 1/2 nucleus

As we saw above in the Bloch equations, magnetization can be oriented along the x-, y-, or z-axes.
Call these orientations Ix, Iy, and Iz. As described above, we can apply rotations to these

components of magnetization. In fact, almost every thing we do with product operators will be
applying rotations to magnetization. The notations we will use with product operators is

.

(2-1)

 

In general, we can do two things in an NMR experiment, pulse and wait. The operator for a pulse
applied to an I spin is given by 

 

(2-2)

where φ is the pulse angle and α is the phase of the pulse. Operators are distinguished from
the magnetization upon which they act by a "hat" (ˆ). As we saw in the solutions to the
Bloch equations, a pulse applied along the x-axis will rotate the magnetization from the
z-axis to the y-axis (remember, pulses produce torque). The product operator calculation
for a pulse on equilibrium magnetization applied along the x-axis is

 

(2-3)

 

As seen in the Bloch equations, when φ = 0°, there is no pulse (the magnetization is still Iz)

and when φ = 90°, the result is -Iy. The first "rule" to remember concerning product

operator calculations is

 



For every operation, the first term stays the same as it was but is multiplied by a
cosine.

 

The directions of rotations can be determined using the "right hand rule" with a "right
handed" coordinate system:

To figure out the direction of rotation, use your right hand and point your thumb in the
positive direction of the axis around which the rotation is to occur. The direction of
rotation is the same way that you close your fingers. The same rule allows us to remember
the proper orientation of the coordinate system as well; in this case, with you thumb
pointing in the positive direction of a given axis, the other order of the other two axes is
the proper order in the alphabet (x to y to z).

 

The second rule to remember is

 

For every operation, the second term is the right handed rotation from the first term
and multiplied by a sine.

 

The third rule to remember is

 



A rotation has no effect on magnetization along its axis

 

With these rules in mind, some other examples of rf pulses on I spins are:

 

(2-4)

 

The chemical shift behaves exactly like a pulse but with the rotation along the z-axis. The
chemical shift operator is given by

(2-5)

where ΩI is the chemical shift of nucleus I, t is the time, and Iz is the axis around which the magnetization rotates. Following

the rules outlined above we get



(2-6)

 

 



Homework 2 
  
  
  

1. Draw a right-handed coordinate system and, using vectors to represent magnetization, show the effects
of a) 90 degree x-pulse and b) 90 degree y-pulse on z-magnetization. Next, with transverse magnetization
(in the x-y plane) show the direction of a positive chemical shift (one that follows the right-hand rule). 
  
  

2. Using both vectors and product operators, evaluate the following sequence on a single spin I: 
  
  

  
  



Week 3: Introduction to Product operators: Scalar Coupling

References: These notes were constructed from:

 

Edison, A. S., Abildgaard, F., Westler, W. M., Mooberry, E. S., and Markley, J. L., "Practical
introduction to the theory and implementation of multinuclear, multidimensional NMR
experiments", Methods Enzymol., N. J. Oppenheimer and T. L. James, eds., Vol. 239, pp. 1-79
(1994).

 

Other references include:

 

O. W. Sørensen, G. Eich, M. H. Levitt, G. Bodenhausen, and R. R. Ernst, Prog. NMR Spectrosc.
16, 163 (1983).

 

"Protein NMR spectroscopy: Principles and Practice" Cavanagh, Fairbrother, Palmer, and
Skelton, Academic Press, (1996).

 

"Principles of Nuclear Magnetic Resonance in One and Two Dimensions" Ernst, Bodenhausen,
and Wokaun, Oxford (1987).

 

"Density matrix theory and its applications in NMR spectroscopy" Farrar and Harriman,
Farragut Press, Madison, WI (1991).

 

 

Until now, we have worked with a single nuclear spin, I. We have also seen that the vector model
represented by the Bloch equations is equivalent to the product operator description with a single
spin. The power of NMR lies in its ability to correlate spins through different mechanisms (more
on this later). With 2 or more coupled spins, the Bloch equations and the vector picture falls apart,
in part from the number of combinations (dimension of the space for rotations) is very large. We
introduce a second spin, S. Although I and S originally referred to "insensitive" and "sensitive"
nuclei, they commonly are used to denote protons (I) and others (S). Two spins can exist in the
following states:



Iz, Sz Longitudinal

Ix, Sy, Sx, Sy Transverse

2IzSz J-ordered

2IxSz, 2IySz, 2IzSx, 2IzSy Antiphase

2IxSx, 2IySx, 2IxSy, 2IySy Multiple Quantum

 

These 15 combinations of I and S, with one additional identity matrix, make up the
16-dimensional space of a pair of coupled spins. Fortunately, the rules of pulses and
chemical shifts can often be applied to each of these 15 combinations in exactly the same
way as they were applied to single spins. For example, 

 

Coupling

In addition to chemical shift and rf pulses, there is another important operator. Scalar coupling (or
J-coupling) is a purely quantum mechanical phenomenon. As such, it defies most attempts at "rational
understanding". All of the equations that are shown (without proof) below "fall out" of a complete
quantum mechanical treatment. For the purposes of a practical understanding of NMR experiments, we
present the coupling operator as a simple set of rules:



 

 

In the above equations, JIS is the coupling constant (usually in Hz) between nuclei I and S.

The factors of 2 multiplying the antiphase terms are normalization (and can be ignored for
most practical applications). Note that the coupling operator does not act on longitudinal or
J-ordered magnetization. Also note that the coupling operator is a rotation (in 16
dimensions!) and behaves exactly like all the other rotations we have discussed in that the
cosine term is unchanged from the starting point. One of these rotations can be represented
as:

 



Homework 3 
  
  

Using product operators and two coupled (e.g. JIS≠0) spins I and S, evaluate the following sequences: 

  
  

1) 

  
  

2) 





Week 4: Introduction to two-dimensional NMR

References: These notes were constructed from scratch with help from:

 

"Principles of Nuclear Magnetic Resonance in One and Two Dimensions" Ernst, Bodenhausen,
and Wokaun, Oxford (1987).

 

Two-dimensional NMR is not an intuitive subject, BUT it is also not difficult to understand. We
will start with the simplest example, a single spin I and a single 90 degree pulse, and build from
that. We have learned that a 90 degree pulse along the x-axis will rotate z-magnetization to the
minus y-axis:

 

 

In product operator notation, the above picture is represented as

 

What would happen if we put an extra 180 degree x-pulse (or 2 sequential 90 degree x-pulses))
after the 90 degree x-pulse? This would give the same answer but with a different sign:



 

 

When we include the effects of relaxation (not included in the product operator calculations), a
single pulse produces the well-known NMR signal

Which, with Iy = 1, I = 10 Hz, and T2=10 s, looks like

 

Time Domain ←← Fourier Transform→→ Frequency Domain

 

Now, we will a delay, called "t1" between the first 90 degree pulse and the next two 90



degree pulses:

 

The product operator description for this sequence is:

 

This describes a signal whose frequency is modulated during two times, t1 and t2. All
components lead to an NMR signal, but the detection schemes (postponed for a later
lecture) detect the cosine (called "real") and sine (called "imaginary") terms separately.
The real part of the NMR signal from our simple 2D sequence is (including relaxation):



 

 

Using the same parameters as above, this signal looks like:

 

 

 

 

 

 

 

 

In practice, 2D NMR data is collected by recording a series of 1D spectra along t2 for
different lengths of t1. Fourier Transformation along t2 gives:

 



 

 

 

 

 

 

 

 

 

Fourier Transformation along t1 gives (same orientation in all three cases):

 

 

 



 

 

 

 

 

Finally, FT in both dimensions yields the 2D frequency domain spectrum.

 

 

 

 

 

 

 

 

 

 

 



This is a simulation of a 2D NMR spectrum. You may be thinking that it is not very
interesting or informative yet. However, now consider a slightly more complicated (and
slightly idealized) case. Consider two chemically exchanging spins in a sample, I and S.
These can interconvert by some chemical isomerization or motion (e.g. protons on an
aromatic ring which is flipping back and forth). Now, we will modify the same pulse
sequence used above by inserting a fixed (not variable like t1 or t2) delay 

 

For simplicity in this example, we will assume that the magnetization all begins on spin I
and is converted to S during the period , which is assumed to be a long enough time for
the conversion to take place. Under these assumptions, the product operator analysis of
this chemical exchange sequence is:

 



 

Note that since in this case, both I and S are the same nucleus (e.g. protons), the pulses
will apply to both (thus the convenient switch in the middle). This simple chemical
example is essentially the same as our previous 2D example with a single nucleus. The
only difference is that the frequency (and nucleus) being detected during t2 is S rather than
I. That is, we have correlated the two nuclei through a 2D spectrum. The Fourier
transformed spectrum of this simple chemical exchange experiment using I=5 Hz, S
=15 Hz, T2I=20s, and T2S=20s is:

 



 

 

 

 

 

 

 

Finally, the complete simulated spectrum of a chemical exchanging pair of nuclei with
parameters as described above is

 

 

 

 

 

 

 

 

 



What we have seen in this simple chemical exchange simulation of 2D NMR can be
generalized by realizing that all 2D experiments can be described in terms of four periods
(see Ernst et al.):

 

The preparation period can be as simple as a delay and a pulse or a very complicated
series of pulses. In the case above, it is the first 90 degree pulse. The evolution period is
the variable time, t1, in which the first chemical shifts are allowed to evolve. The mixing
period is the "heart" of a 2D experiment. The type of correlation observed is a result of the
type of mixing. For example, NOESY mixing allows for cross relaxation between nuclei
close in space and can measure internuclear distances. TOCSY or COSY mixing periods
allows for magnetization to be transferred between scalar coupled nuclei, giving rise to
correlations between nuclei with couplings. In the example shown above, the mixing
period allows for chemical exchange. The same sequence is used for NOESY. The
detection period is the recording of the FID in t2.

 



Homework 4 
  
  
  
  

Using product operators and two coupled (e.g. JIS≠0) spins I and S, evaluate the following sequence: 

  
  



Week 5: Heteronuclear correlations and introduction to Phase cycling

References: These notes were constructed from:

 

Edison, A. S., Abildgaard, F., Westler, W. M., Mooberry, E. S., and Markley, J. L., "Practical
introduction to the theory and implementation of multinuclear, multidimensional NMR
experiments", Methods Enzymol., N. J. Oppenheimer and T. L. James, eds., Vol. 239, pp. 1-79
(1994).

 

Other references include:

 

"Protein NMR spectroscopy: Principles and Practice" Cavanagh, Fairbrother, Palmer, and
Skelton, Academic Press, (1996).

 

"Principles of Nuclear Magnetic Resonance in One and Two Dimensions" Ernst, Bodenhausen,
and Wokaun, Oxford (1987).

 

 

Heteronuclear correlations

Much of protein NMR spectroscopy relies on spectral editing techniques using 13C or 15N nuclei
(heteronuclei). Spectral editing allows a subset of an entire spectrum to be observed. Normally, we
observe a subset of 1H spectra that has been selected based upon which nucleus the protons are
attached to. The same techniques involved in spectral editing allow the measurement of
heteronuclear correlations (which, for example, allows you to know which 1H are attached to
which 13C). The most basic sequence to achieve this is the Heteronuclear Multiple Quantum
Correlation (HMQC) experiment:



Before starting the product operator analysis of the HMQC sequence, we can take note of an
already common feature that will simplify the problem: The 180 degree pulse on the I spin is
placed symmetrically in the sequence. From our previous work on spin echo sequences, we found
that such a pulse will refocus (eliminate) chemical shift. Therefore, we won’t worry about chemical
shift on I until the acquisition time (g to h). In addition, similar examples using spin echo
sequences showed that a single 180 degree pulse will decouple I from S during the t1 period
(students are encouraged to verify this). The simplified product operator analysis is:

 



are several points of the above product operator analysis worth noting. First, by knowing that the
I 180 degree pulse refocuses chemical shift and decouples I from S during t1, the number of terms
to worry about is greatly reduced. Second, the multiple quantum part of HMQC is from the



multiple quantum term during the t1 period. In the pulse sequence shown, there are multiple
quantum terms that do not get converted back to antiphase (e.g. IxSz) magnetization. These terms
are carried through to the end and are not observable (remember that only Ix, Iy, Sx, and Sy are
observable). Finally, many of the "extra" terms can be eliminated by gradients and/or phase
cycling. This topic will be covered in next week’s notes.



Week 6: Heteronuclear correlations and introduction to Phase cycling

References: These notes were constructed from:

 

Edison, A. S., Abildgaard, F., Westler, W. M., Mooberry, E. S., and Markley, J. L., "Practical
introduction to the theory and implementation of multinuclear, multidimensional NMR
experiments", Methods Enzymol., N. J. Oppenheimer and T. L. James, eds., Vol. 239, pp. 1-79
(1994).

 

Phase Cycling basics

Spectral Editing 

One of the simplest examples of a phase cycle is the following modification of the HMQC
sequence:

 

The first 90 degree pulse on the S channel is now 90  rather than 90x. This is a phase

cycle, in which the phase of the pulse will be systematically varied. For this example, =
x, -x. This means that at least two FIDs need to be collected for each t1 time point. The

first will be =x, the second will be =-x. If there are more FIDs collected,  will
continue in this pattern. Therefore, we will need an even number of FIDs collected per t1

point. In the notes from the previous week, we analyzed the result when =x. The product

operator analysis for =-x is shown next:



The effect of the change from 90x to 90(-x) is to change the sign of the magnetization that

went through the antiphase (e.g. IxSz) state. If we subtract the =-x signal from the =x



went through the antiphase (e.g. IxSz) state. If we subtract the =-x signal from the =x
signal, we will add the observable magnetization. This is done by also cycling the phase of
the receiver from x to –x (with the net result of subtracting signals). To see the point of this
phase cycle, we must consider an I spin that is not coupled to an S (JIS=0). Using the same

assumptions about the effect of the 180 degree I pulse on I chemical shift, we get (for

=x):

 

 

It should be fairly clear that the phase of the S pulses will have no effect on the results

with just an I spin. Therefore, the sign of the signal will not change with . The net result
is that the I spins not coupled to S are eliminated with the phase cycle described above.

 

Exorcycle 

Another frequently used phase cycle in NMR is called exorcycle, which is designed to



remove pulse imperfections. The pulse imperfections arise from at least two main
problems. First, they might be poorly calibrated. Second, and more important, a 90 (or
180) degree pulse delivered "on resonance" (that is, sitting at the frequency of a particular
nucleus) is not going to be a 90 (or 180) degree pulse far off-resonance. This is a result of
the power of the pulse (stronger pulses will cover a greater distance) and the effective field
generated by the pulse.

 

Short Digression into Effective Fields

Until now, we have just considered a pulse along the x-axis as just that. Well, like most
things, it is more complicated. A spin that is offset from the center pulse frequency will not
experience the same field as a spin that is at the pulse frequency. Instead it will experience
an effective field, given by

 

The important point here is that the pulse that a nucleus feels is a complicated function that
depends on the distance from the center of the pulse and the strength of the pulse. A much
more complete treatment of effective fields can be found in most NMR books.

Back to the Main Story

Both poor calibrations and field effects lead to greater problems with 180 degree pulses
than with 90 degree pulses. To appreciate the impact of pulse imperfections, consider a
simple spin echo refocusing sequence on an uncoupled spin I in the transverse plane (Ix).



 

This sequence should be familiar by now, and students should be able to verify that if Ix
goes in, Ix goes out. Now consider a more realistic modification to that sequence:

 

The pulse imperfection factor  is a function of many variables. Here we will consider its
effect on refocusing Ix magnetization (no coupling):

 



Clearly, the factor  could cause many problems and artifacts. One fix to the problem is
the exorcycle sequence, which is the following:

 

The phase  is (nx, ny, n(-x), n(-y)) where n is an integer number. Using the same input Ix
as above (and assuming a perfect 180 degree pulse) we get for phases x and y:

 



 

Notice that the sign changes going from x to y. The student can verify that the sign will
change each time going from x to y to –x to –y. Thus the receiver phase will need to be
(n(x), n(-x), n(x), n(-x)) for the exorcycle. This phase cycle will eliminate many of the
artifacts generated by imperfect pulses.

 



Week 9: Assignments in proteins and peptides using TOCSY or
COSY and NOESY or ROESY 

References: These notes were constructed from: 

"NMR of Proteins and Nucleic Acids" by Kurt Wüthrich, Wiley Interscience (1986). 

Amino Acids and the peptide bond 

This is just a short summary of some facts. Students who are
unfamiliar with amino acids, peptides, and proteins should
consult any introductory biochemistry text for more complete
information. 

There are 20 naturally occurring amino acids that are combined
as linear polymers to make peptides and proteins. The distinction
between peptides and proteins is not clear and depends on who
you talk to. In general, peptides are short (let’s say 2-30 amino
acids) and proteins are longer (greater than 30 amino acids).
Some people will disagree about the cutoff point. The major
practical difference (and maybe a good defining property) is that
peptides tend to be quite flexible in solution while proteins are
much more structured. 

Amino acids have the general structure: 

 

Where R is one of the 20 amino acid side chains. Amino acids are
combined through peptide bonds in a linear chain: 



For a list of the different amino acids please refer to a textbook. 

1H NMR properties of peptides and amino acids 

Kurt Wüthrich was the major person who developed the initial
strategies of NMR analysis and structure determination of
peptides and proteins. Any serious student should read his book.
Here I will just outline a few of the main principles. 

In a so-called "random coil" each amino acid has characteristic
(not always unique!) patterns of NMR peaks. The term random
coil is meant to mean a completely random (not ordered) state.
Recent studies on unfolded proteins or partially folded proteins
have shown that often times there is no true random coil state.
However, for the purposes of NMR analysis and assignments, the
random coil properties are useful and a good starting point for
identification of amino acids. 

Random Coil H Chemical Shifts for the 20 common Amino Acid Residues 
  

Residue NH alpha-H βετα−H

Others (γ = gamma)

(δ = delta) 
(ε = epsilon)

Gly 8.39 3.97   

Ala 8.25 4.35 1.39



Val 8.44 4.18 2.13 γCH3 0.97, 0.94

Ile 8.19 4.23 1.90

γCH2 1.48, 1.19  

γCH3 0.95  

δCH3 0.89 

Leu 8.42 4.38 1.65, 1.65
γH 1.64 
δCH3 0.94, 0.90 

Pro  4.44 2.28, 2.02
γCH2 2.03, 2.03 

δCH2 3.68, 3.65

Ser  8.38 4.50 3.88, 3.88

Thr 8.24 4.35 4.22 γCH3 1.23 

Asp 8.41 4.76 2.84, 2.75 

Glu 8.37  4.29 2.09, 1.97 γCH2 2.31, 2.28 

Lys  8.41  4.36 1.85, 1.76

γCH2 1.45, 1.45 

δCH2 1.70, 1.70 

εCH2 3.02, 3.02 

εNH3
+ 7.52 

Arg 8.27 4.38 1.89, 1.79

γCH2 1.70, 1.70 

δCH2 3.32, 3.32 

NH 7.17, 7.17 

Asn 8.75  4.75 2.83, 2.75 γNH2 7.59, 6.91 

Gln 8.41 4.37 2.13, 2.01
γCH2 2.38, 2.38  

δNH2 6.87, 7.59 

Met 8.42 4.52 2.15, 2.01
γCH2 2.64, 2.64  

εCH3 2.13

Cys 8.31 4.69 3.28, 2.96 

Trp 8.09 4.70 3.32, 3.19

2H 7.24  
4H 7.65  
5H 7.17  
6H 7.24  
7H 7.50  
NH 10.22

Phe  8.23 4.66 3.22, 3.19
2,6H 7.30  
3,5H 7.39  
4H 7.34

Tyr 8.18 4.60  3.13, 2.92
2,6H 7.15  
3,5H 6.86



His 8.41 4.63 3.26, 3.20
2H  8.12  
4H 7.14

  

Two types of experiments form the basis of analysis of peptides
and proteins by 1H NMR. The first is Total Correlation
Spectroscopy (TOCSY) or Correlation Spectroscopy (COSY),
both of which correlate protons through scalar (J) coupling. Both
of these experiments were discussed earlier in the course, so I will
just remind you here that COSY only correlates peaks with
non-zero coupling constants (usually 2 or 3 covalent bonds apart).
TOCSY, on the other hand, is capable of correlating all peaks in a
coupled spin network. That is, if "I" is coupled to "S" and "S" is
coupled to "T", then there will be a TOCSY interaction between
"I" and "T", even if they are not directly coupled. 

NOESY (nuclear Overhauser effect spectroscopy) or ROESY
(rotating frame Overhauser effect spectroscopy) experiments
correlate protons that are close together (within about 5 Å in
space). There will be more about the NOE next week. The set of
NOESY or ROESY peaks will often contain peaks that are
covalently connected but will also include peaks that are not. This
is shown in the following diagram of schematic TOCSY and
NOESY spectra for a dipeptide. In the figure, note that covalent
connections are shown in blue for the alanine (R=CH3) and red
for the serine (R=CH2OH). The TOCSY spectrum correlates
peaks within an amino acid but does not cross outside of that
amino acid, as indicated by just red and blue peaks in the figure.
NOESY or ROESY, on the other hand, correlate both within and
between amino acids, as indicated by the additional purple peak. 





The schematic of the TOCSY and NOESY experiments suggests a
way in which peptides and proteins can be sequentially assigned
using these two experiments. Much more detail is provided by
Wüthrich, but the general idea is shown below. 

In the above figure, connections indicated by "J" are present in
TOCSY or COSY (and often also NOESY or ROESY), but those
indicated by "NOE" are only present in NOESY or ROESY). 

A real example of this is shown below for a 14 amino acid
neuropeptide with the amino acid sequence 

Gly-Phe-Gly-Asp-Glu-Met-Ser-Met-Pro-Gly-Val-Leu-Arg-Phe-NH

The spectrum is a ROESY, but peaks that are colored black are
also in the TOCSY. Note that often times the NH peak of first
amino acid in a peptide is missing due to rapid exchange with
solvent. Also note that the chain that is traced out connecting the
amino acids is broken by a proline. Why? 





Week 10: Relaxation and the nuclear Overhauser effect

References: These notes were constructed from:

"Protein NMR spectroscopy: Principles and Practice" Cavanagh, Fairbrother, Palmer, and
Skelton, Academic Press, (1996).

"The Nuclear Overhauser Effect in Structural and Conformational Analysis" Neuhaus and
Williamson, VCH (1989).

"Biomolecular NMR Spectroscopy" Evans, Oxford University Press, (1995).

"Principles of Nuclear Magnetic Resonance in One and Two Dimensions" Ernst, Bodenhausen,
and Wokaun, Oxford (1987).

Physical interpretation of T1 and T2

Recall from the first week the relaxation terms T1 (longitudinal or
spin-latice) and T2 (transverse or spin-spin). T1 is the rate that

magnetization from a single spin relaxes along the z-axis. T2 is the

rate that magnetization relaxes in the x-y plane. In the next
lecture we will describe in more detail the mathematical
properties that influence T1 and T2. For the present discussion, T1
is the rate of the following process:



The circles in the diagram above represent the Boltzman
population distribution of nuclei in a magnetic field. (Recall from
the first homework that the true distribution is much smaller than
the 6:4 shown above.). 

The transition between the two states is caused by fluctuating
local magnetic fields created by neighboring chemical
environments. These fluctuations are a result of molecular
motion. In liquids with spin ½ nuclei, the major contributors to
relaxation are dipolar effects and chemical shift anisotropy
(CSA). The dipolar effects, as the name implies, are results of
interactions between two nuclei with magnetic dipoles. CSA is
somewhat more complicated and is due to the fact that the
chemical shift of a given nucleus is dependent on the orientation
of that nucleus with the external field (e.g. chemical shift is a
tensor). Motions of the molecule will thus cause fluctuations in the
chemical shifts; certain nuclei, especially atoms in the peptide



bond of proteins, have large CSAs and thus produce larger
effects.

T2 relaxation is a "fanning out" of transverse magnetization in

the x-y plane. A good analogy for T2 is to imagine a room full of
people with old-fashioned spring operated watches. At 12 noon on
Monday all watches are synchronized (e.g. there is a coherent rf
pulse that brings all the magnetization into the x-y plane). The
next day the times on the watches are compared (e.g. the
linewidth of a resonance is measured). Not surprisingly, it would
be found that some of the watches are slow and some are fast. The
distribution of the watch speeds would depend on the quality and
homogeneity of the watches. With peaks in an NMR spectrum, it
is found that some are broad (a big mix of times) and some are
narrow (almost the same time). The major factor that influences
the fanning out is size of the molecule: the larger the molecule
(really the slower it moves in solution), the broader the lines. 

A Note on Coherent vs. Incoherent processes

Most of what we have described in class so far is "coherent". This
includes the effects of rf pulses and scalar coupling. Relaxation,
on the other hand, is incoherent. Neuhaus and Williamson
describe the difference between coherent and incoherent very
well: A fluctuating dipole will influence the relaxation of a
neighboring nucleus and thus can be thought of as a "local pulse"
delivered in a small region of a molecule. In contrast to a regular
rf pulse, which would pass the magnetization through a coherent
transverse state (e.g. Iz->Iy->-Iz), a "local pulse" will only lead to
a transition along the z-axis (e.g. –Iz->Iz). The local fluctuations
are thus incoherent. 



NOE and T1

A single spin ½ nucleus has 2 energy levels, and . A two spin
(I and S) energy system can be described with four energy levels, 

, , , and . In this nomenclature, the first term
refers to the I spin and the second to the S spin. The energy level
diagram is often shown as: 

The levels each refer to the state of the system (e.g.  is I in 
and S in ). The W’s are the transition frequencies between the
levels. If there is no cross-relaxation, characterized by W0 and

W2, then the transition frequencies along the edge (WI and WS)



correspond directly to the T1 relaxation rates of I and S.

However, when W0 and W2 are not zero there the interpretation
of T1 is complicated, and there can be an NOE between the two

spins. 

Neuhaus and Williamson give a good pictorial, description of the
NOE based on the 2 spin energy level diagram:



The numbers given for each energy level diagram are populations
of each state. The intensity of the I and S spins are given by:

Iz = P  + P  - P  - P  

Sz = P  + P  - P  - P  

The terms like P  are the populations of spins in the
coresponding (e.g. ) energy level. Thus, at equilibrium in the
example above, I0 = S0 = 1 (The 0 refers to the value of the
magnetization at equilibrium). When we saturate or apply a 90
degree pulse to S (indicated by the red transition), there is no net
S magnetization, but I is still 1. The system is no longer at
equilibrium. What will it do? Like any dynamic system, it will
come to equilibrium. The route that it takes to get there depends
on many factors.

When conditions favor (to be described shortly) the W2 pathway,

some amount ( /4 here) of magnetization is transferred from 

to . Since S is still saturated, the  and  levels will also
adjust to keep the net magnetization on S = 0. However, I now has



1 +  magnetization. This is a positive NOE. 

When conditions favor the W0 pathway, /4 of magnetization is

transferred across from to  until equilibrium is reached.

Since S is still saturated,  and  adjust to make S = 0. Now
the intensity of I is 1 – . This is a negative NOE.

Whether the NOE is positive or negative depends on the pathway.
For any transition there needs to be motion that is producing a
local field in the vicinity. The motion must be matched to the
transition frequency. W0 is close to 0 Hz for homonuclear spins.
W2, on the other hand, is equal to the sum of I and S
transitions. This frequency is dependent on the magnetic field: at
11.74 T (500 MHz), the frequency gap for two protons is 1 GHz
(109/second). Small molecules that tumble rapidly will be able to
excite these frequencies and thus show positive NOEs. Large
macromolecules, on the other hand, tumble slowly and are
matched more closely with W0 transitions. At intermediate
molecular weights the two pathways cancel and lead to no NOE
signal.



Week 11: Spectral Density and Dynamics

References: These notes were constructed from:

Peng and Wagner, "Investigation of Protein Motions via Relaxation
Measurements" Methods in Enzymology 239, pp 563-596 (1994).

Peng and Wagner, "Mapping of the Spectral Densities of N-H Bond
Motions in Eglin c using Heteronuclear Relaxation Experiments"
Biochemistry 31, 8571-8586 (1992).

"Protein NMR spectroscopy: Principles and Practice" Cavanagh,
Fairbrother, Palmer, and Skelton, Academic Press, (1996).

Autocorrelation

Correlation is an important concept in NMR. Consider a particular
covalent bond in a molecule (for example the NH bond along the
backbone of proteins). The autocorrelation function describes the
decay of the orientation of that vector (more properly the ensemble of
those vectors in a sample) with time. The two extremes are most
instructive: when there is absolutely no tumbling or internal motion
over a period of time, there is no change in autocorrelation, so it is
constant over that period of time. On the other hand, if the motion is
so rapid that the vector no longer has a component along its starting
axis, then there is no correlation over that period of time. For simple
isotropic Brownian motion the autocorrelation function is simply

where  is the correlation time. Correlation times range from less



than 1 ns for small molecules to several hundred nanoseconds for
large proteins. Typical small proteins (e.g. 100 amino acids) have
correlation times in the tens of nanoseconds. The correlation time is
strongly dependent on molecular weight but also is a function of the
shape of the molecule. 

The spectral density function is the Fourier transform of the
autocorrelation function. For the simple case of isotropic Brownian
motion shown above, the spectral density function becomes

Using the same values of correlation time as the plots above, the
spectral density functions are



The spectral density is the distribution of frequencies giving rise to a
particular autocorrelation function. What this means in practice is
that a different range of frequencies are present for different
correlation times.

Recall that relaxation in NMR is dependent on perturbations at
particular frequencies. Thus, by measuring relaxation rates of
different spin states which are sensitive to different frequencies, the
spectral density can be "mapped". Applications of spectral density
mapping can be found in some of the references listed at the top.



Answers for Homework 1 

1. Calculate Nα/Nβ for the following 4 cases: 

  
  

1H at 500 MHz (11.7 T) 

1H at 750 MHz (17.6 T) 

13C at 500 MHz 

13C at 750 MHz 
  
  
  
  

A 500 MHz spectrometer costs ~ $700,000. 

A 750 MHz spectrometer costs ~ $2,000,000. Why spend the extra money? 
  
  

ANSWER: 

 
  
  

 
  
  

 (1H)=26.7510 × 10^7 T-1s-1 

 (13C)=6.7263 × 10^7 T-1s-1 

=1.05459 × 10^-34 J s 

kB=1.38066 × 10^-23 J K-1 

T=298 K 
  



  

Plugging it in gives: 
  

 500 MHz (11.7 T) 750 MHz (17.6 T)

1H 1.0000802 1.0001206867

13C 1.00002017 1.000030344

  

Because of a higher gyromagnetic ratio, 1H is more sensitive than 13C. This is a major

reason that most protein NMR experiments start on 1H and end on 1H and visit less
sensitive nuclei in the middle. 
  
  

The higher magnetic field strength leads to higher polarization (more spins in the ground
energy state). This translates into higher signal to noise. 



Answers for Homework 2 
  
  

1. Draw a right-handed coordinate system and, using vectors to represent magnetization, show the effects
of a) 90 degree x-pulse and b) 90 degree y-pulse on z-magnetization. Next, with transverse magnetization
(in the x-y plane) show the direction of a positive chemical shift (one that follows the right-hand rule). 
  
  

Positive chemical shift rotation is from x to y to –x to –y in the (x,y) plane. 
  
  

2. Using both vectors and product operators, evaluate the following sequence on a single spin I: 
  
  

  
  

Vectors: 



 
  
  

Product operators: 



  
  

NOTE THE DIFFERENCE IN SIGN BETWEEN THE PRODUCT OPERATOR AND
VECTOR PICTURE. THIS IS A RESULT OF AN EARLY DECISION TO CHANGE THE

SIGN OF . 



Answers for Homework 3 
  
  

Using product operators and two coupled (e.g. JIS≠0) spins I and S,

evaluate the following sequences: 
  
  

1) 

Noting the results from homework 2 in which the chemical shift of I was refocused with a
symmetric 180 degree pulse, we will neglect chemical shift: 



 
  
  

Thus, the results of 1) is to decouple I from S and refocus the chemical shift of I. 
  
  
  
  
  
  

2) 



  
  

 
  
  
  
  

The last result is from the following two trig relations: 
  
  
  
  





Also note that when τ=1/4J, the result of 2) is to create
an antiphase term IxSz. 
  
  



Answers for Homework 4 
  
  

Using product operators and two coupled (e.g. JIS≠0) spins I and S, evaluate the following sequence: 

  
  

Inspection of the pulse sequence suggests that we should get a symmetric spectrum with
respect to I and S. To simplify the number of terms, we will first just start with the I term
alone: 



We can
now make another simplification by dropping longitudinal (e.g. Iz) and multiple quantum
(e.g. IxSy) terms that will never become observable without another pulse (which we don’t
have): 
  
  

We can
now make YET another simplification by dropping all antiphase (e.g. IzSy) terms that will
never become observable without another precession period (which we don’t have): 



 

Now, we need to think about this answer for just a minute (and
remember that it is only ½ of a symmetric pair). Notice for the top
two terms with Ix and Iy that they are modulated by the chemical
shift of I in both t1 and t2. This is a diagonal peak. On the other
hand, the terms involving Sx and Sy are modulated by the chemical
shift of I in t1 and S in t2. These are cross peaks. Finally, notice the
coupling terms multiplying the diagonal and cross peaks: for the
diagonals it is cos(πJt) and for the cross peaks it is sin(πJt). The
Fourier transform of a cosine of a coupling gives two peaks pointing
in the same direction; these are called in-phase. The FT of a sine of a
coupling gives two peaks that are opposite in sign and are called
anti-phase. This is seen more clearly from the following relationship: 
  
  

 
  
  

Note that both of these relations have peaks at the center frequency



(I) + or – the coupling. The 2nd term with sin(πJt) has two peaks
with different signs. 
  
  

The other symmetric part of the spectrum is easily obtained by
replacing S for I (along with the appropriate chemical shift changes). 


