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Abstract

Dynamic textures are sequences of images of moving scenes
that exhibit certain stationariety properties in space and
time; these include sea-waves, smoke, foliage, whirlwinds
etc. We present a novel characterization of dynamic tex-
ture that poses the problems of modeling, learning, recog-
nizing and synthesizing dynamic textures on a firm analyt-
ical footing. We borrow tools from stochastic realization
theory to capture the “essence” of dynamic textures; we
do so by learning models that are optimal in the sense of
maximum likelihood or minimum prediction error variance.
Once learned, therefore, a model has predictive power and
can be used for extrapolating synthetic sequences to infinite
length with negligible computational cost. We present ex-
perimental evidence that, within our framework, even low
dimensional models can capture very complex visual phe-
nomena.

1. Introduction
Consider a sequence of images of a moving scene. Each
image is an array of positive numbers that depend upon the
shape, pose and motion of the scene as well as upon its ma-
terial properties (reflectance distribution) and on the light
distribution of the environment. It is well known that the
joint reconstruction of photometry and geometry is an in-
trinsically ill-posed problem: from any (finite) number of
images it is not possible to uniquely recover all unknowns
(shape, motion, reflectance and light distribution). Tra-
ditional approaches to scene reconstruction rely on fixing
some of the unknowns either by virtue of assumption or by
restricting the experimental conditions, while estimating the
others. 1

1For instance, in stereo and structure from motion one assumes that
(most of) the scene has Lambertian reflection properties, and exploits such
an assumption to establish correspondence and estimate shape. Similarly,
in shape from shading one assumes constant albedo and exploits changes
in irradiance to recover shape.

However, such assumptions can never be validated from
visual data, since it is always possible to construct scenes
with different photometry and geometry that give rise to the
same images 2. The ill-posedness of the most general visual
reconstruction problem and the remarkable consistency in
the solution as performed by the human visual system re-
veals the importance of priors for images [42]. They are
necessary to fix the arbitrary degrees of freedom and render
the problem well-posed [21]. In general, one can use the
extra degrees of freedom to the benefit of the application at
hand: one can fix photometry and estimate geometry (e.g.
in robotics), or fix geometry and estimate photometry (e.g.
in image-based rendering), or recover a combination of the
two that satisfies some additional optimality criterion, for
instance the minimum description length of the sequence of
video data [33].

Given this arbitrariness in the reconstruction and inter-
pretation of visual scenes, it is clear that there is no notion
of a true interpretation, and the criterion for correctness is
somewhat arbitrary. In the case of humans, the interpreta-
tion that leads to a correct Euclidean reconstruction (that
can be verified by other sensory modalities, such as touch)
has obvious appeal, but there is no way in which the correct
Euclidean interpretation can be retrieved solely from the vi-
sual signal.

In this paper we will analyze sequences of images of
moving scenes solely as visual signals. “Interpreting” and
“understanding” a signal amounts to inferring a stochastic
model that generates it. The “goodness” of the model can
be measured in terms of the total likelihood of the measure-

2For example, a sequence of images of the sea at sunset could have
been originated by a very complex and dynamic shape (the surface of
the sea) with constant reflection properties (homogeneous material, water),
and also by a very simple shape (e.g. the plane of the television monitor)
with a non-homogeneous radiance (the televised spatio-temporal signal).
Similarly, the appearance of a moving Lambertian cube can be mimicked
by a spherical mirror projecting a light distribution to match the albedo of
the cube.
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ments or in terms of its predicting power: a model should be
able to give accurate predictions of the future signals (akin
to so-called prediction error methods, PEM, in system iden-
tification). Such a model will involve a combination of pho-
tometry, geometry and dynamics and will be designed for
maximum likelihood or minimal prediction error variance.
Notice that we will not require that the reconstructed pho-
tometry or geometry be correct (in the Euclidean sense),
for that is intrinsically impossible without involving non-
verifiable prior assumptions. But the model must be capa-
ble of predicting future measurements. In a sense, we look
for an “explanation” of the image data, that allows us to
recreate and extrapolate it. It can therefore be thought of as
the compressed version or the “essence” of the sequence of
images.

The intuitive notion of texture is an image with certain
spatially invariant statistics, e.g. ground, tiles, straw etc.
For moving images, we are interested in capturing scenes
that contain foliage moving in wind, waterfalls, smoke, sea
waves, cheering crowds and the like. We begin by a short
survey of related work and the new contributions this paper
makes. In the context of what we discussed in the previ-
ous paragraph, we will concentrate on a precise subset of
all possible photometries and geometries, by then giving an
operational definition of what we call dynamic textures,
and inferring a dynamical model that generates the scene.

1.1. Prior related work
Statistical inference for analyzing and understanding gen-
eral images has been extensively used for the last two
decades [27]. The statistical characterization of textures
was pioneered by Julesz four decades back [19].

There has been extensive work in the area of 2D tex-
ture analysis, recognition and synthesis. Most of the ap-
proaches use statistical models to understand 2D textures
[17, 42, 30, 31, 9, 28, 8, 16] while few others rely on de-
terministic structural models [12, 41]. Another distinction
is that some work directly on the pixel values while others
project the image intensity function onto a basis of func-
tions3.

There have been many physically based algorithms
which target specific dynamic textures [11, 13, 29, 38].
Some simulations have also done by particle systems [32,
37]. These methods are computationally intensive, cus-
tomized for particular textures and allow no parameters to
control the simulation once formulated.

There has been comparatively little work in the specific
area of dynamic textures or texture movies. Schödl et al.
[34] address the problem by finding transition points in the
original video sequence where the video can be looped back
on itself in a minimally obtrusive way. The process involves

3Most common methods use Gabor filters [18, 5] and steerable filters
[14, 36, 15, 35, 17]. One could also infer and choose the best filters as part
of the learning process [26, 43].

morphing techniques to smooth out visual discontinuities.
Levoy and Wei [41] have also suggested extending their
approach to temporal textures by creating a repeatable se-
quence. The approach is clearly very restrictive and obtains
a quick solution for a small subset of problems with little or
no understanding of the texture.

Bar-Joseph [3, 4] uses multi resolution analysis (MRA)
tree merging for the synthesis and merging of 2D textures
and extends the idea to dynamic textures. For 2D textures
new MRA trees are constructed by merging MRA trees ob-
tained from the input; the algorithm is different from De
Bonet’s [9] algorithm that operates on a single texture sam-
ple. The idea is extended to dynamic textures by construct-
ing MRA trees using a 3D wavelet transform. Impressive
results were obtained for the 2D case, but only a finite
length sequence is synthesized after computing the com-
bined MRA tree. Our approach captures the essence of a
dynamic texture in some parameters and an infinite length
sequence can be generated in real-time using the parameters
computed off-line.

Szummer and Picard’s work [40, 39] on temporal tex-
ture modeling uses a similar approach towards capturing
dynamic textures. They use the spatio-temporal auto-
regressive model (STAR), which imposes a neighborhood
causality constraint even for the spatial domain. This re-
stricts the textures that can be captured to a large extent.
The STAR model fails to capture rotation, acceleration and
other simple non translational motions. It works directly on
the pixel intensities rather than a smaller dimensional rep-
resentation of the image. We incorporate spatial correlation
without imposing causal restrictions, as would be clear in
the coming sections, and can capture more complex mo-
tion. (e.g. rotational motion, on which the STAR model is
ineffective, taken from the same dataset [40])

1.2. Contributions of this work
This work presents several novel aspects in the field of dy-
namic (or time-varying) textures. On the representation, we
present a novel definition of dynamic texture that is general
(it captures a wide variety of image dynamics) and precise
(it allows making analytical statements and drawing from
the rich literature on system identification). On learning,
we propose two criteria: total likelihood or prediction error.
The estimation algorithms we use in both cases are off-the-
shelf, although more complex input distribution models call
for interesting extensions. On recognition, we propose a
rigorous notion of metric in the space of dynamic textures,
which is derived from the theory of subspace identification.
This shows promising results towards a general theory of
recognition for dynamic textures. On synthesis, we show
that even the simplest model (first-order ARMA with white
IID Gaussian input) captures a wide range of textures. Our
algorithm is simple to implement, efficient to learn and fast
to simulate, therefore allows one to generate infinitely long
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sequences from short input textures movies and to control
parameters that have intuitive physical meaning.

We would like to emphasize that this is not a paper in
computer graphics. The capability to effectively synthesize
dynamic textures comes as a byproduct of the model learned
for the textures. What we are interested in modeling in this
paper is the intrinsic spatio-temporal structure of a class of
images that present some sort of spatio-temporal stationari-
ety. The model is not physics-bases, but is designed so as to
allow generalization (predictive power) in space and time.

We pose the problem of dynamic texture modeling,
learning, recognition and synthesis in a firm analytic foot-
ing. Although in our experiments we only consider sim-
ple choices of input distributions, more general classes can
be easily taken into account by using particle filtering tech-
niques and more general classes of filter banks. Some of
these results may be useful for image compression and for
image-based rendering and synthesis of image sequences.

2. Representation of dynamic textures

What is a suitable definition of texture? for a single image,
one can say it is a texture if it is a realization from a station-
ary stochastic process with spatially invariant statistics [42].
This definition captures the intuitive notion of texture dis-
cussed earlier. For a sequence of images (temporal texture),
individual images are clearly not independent realizations
from a stationary distribution, for there is a temporal coher-
ence intrinsic in the process that needs to be captured. The
underlying assumption, therefore, is that individual images
are realizations of a dynamical system driven by a stationary
distribution. Although the output of the system (measured
images) is not stationary, the input is. We now make this
concept precise as an operative definition of dynamic tex-
ture.

2.1. Definition of dynamic texture

Let fI(t)gt=1:::M be a sequence of images, or a subset of
it. Suppose that at each instant of time t we can measure
a noisy version of the image, y(t) = I(t) + n(t) where
n(t) is an independent and identically distributed (IID) se-
quence drawn from a known distribution pn(�) resulting in
a positive measured sequence fy(t)gt=1:::M 4. We say that
the sequence fI(t)g is a (linear) dynamic texture of order
k if there exists a set of spatial filters ��; � = 1 : : :N and
a stationary distribution q(�) with spatially invariant statis-
tics such that, calling x(t)

:
= �(I(t)) we have x(t) =Pk

i=1
Aix(t� i)+Bv(t), with v(t) an IID realization from

the density q(�), for some choice of matrices A1; : : : ; Ak; B

and initial condition x(0) = x0. Therefore, a dynamic tex-
ture is associated to an auto-regressive, moving average pro-

4This distribution can be inferred from the physics of the imaging de-
vice. For CCD sensors, for instance, a good approximation is a Poisson
distribution with intensity related to the average photon count.

cess with unknown input (ARMAUX)

�
x(t) = A1x(t� 1) + : : :+Akx(t� k) +Bv(t)
y(t) = �(x(t)) + n(t)

(1)

with x(0) = x0, v(t)
IID
� q(�) unknown, n(t)

IID
� pn(�)

given and I(t) = �(x(t)). Without loss of generality, we
can assume k = 1 since we can augment the state of the
above model to be �x(t)

:
= [x(t)T x(t�1)T : : : x(t�k)T ]T ,

and we can obviously extend the definition to an arbitrary
non-linear (but finite-dimensional) model of the form x(t+
1) = f(x(t); v(t)), which brings us into the realm of non-
linear dynamic textures.

2.2. Filters and dimensionality reduction
The definition of dynamic texture above entails a choice of
filters ��; � = 1 : : :N . These filters are also inferred as
part of the learning process for a given dynamic texture.

There are several criteria for choosing a suitable class
of filters, ranging from biological motivations to computa-
tional efficiency. In the trivial case, we can take � to be the
identity, and therefore look at the dynamics of individual
pixels x(t) = I(t) in (1). We view the choice of filters as a
dimensionality reduction step, and seek for a decomposition
of the image in the simple (linear) form

I(t) =
NX
i=1

xi(t)�i
:
= Cx(t) (2)

where C = [�1; : : : ; �N ] and f�g can be an ortonormal ba-
sis of L2, a set of principal components, or a wavelet filter
bank. In this work we choose simple principal components,
estimated from the given collection of images using the sin-
gular value decomposition (SVD).

An alternative non-linear choice of filters can be ob-
tained by processing the image with a filter bank, and rep-
resenting it with the collection of positions of the maximal
response in the passband [25].

3. Learning dynamic textures
Given a sequence of noisy images fy(t)gt=1:::M , learn-
ing the dynamic texture amounts to inferring the dynamics
A1; : : : ; Ak; B and the distribution of the input q(�) in the
model (1). This is a form of stochastic realization problem
[22], where one is to infer a dynamical model from a time
series. However, in the literature of dynamical systems, it
is commonly assumed that the distribution of the input is
known. In the context of dynamic textures, we have the ad-
ditional complication of having to infer the distribution of
the input along with the dynamical model. For the sake of
simplicity, we will restrict our attention to first-order linear
dynamic textures. The learning, or system identification,
problem can then be posed as follows, for instance in the
maximum likelihood sense.
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3.1. Maximum likelihood learning
The maximum-likelihood formulation of the dynamic tex-
ture learning problem can be posed as follows:

given x(0); y(1); : : : ; y(M); �nd

Â; B̂; q̂(�) = arg max
A;B;q

log p(y(1); : : : ; y(M))

such that

�
x(t+ 1) = Ax(t) +Bv(t)
y(t) = Cx(t) + n(t)

(3)

and v(t)
IID
� q:

The inference method depends crucially upon what type of
representation we choose for q. Note that the above infer-
ence problem involves the hidden variables x(t) multiply-
ing the unknown parameter A and realizations v(t) multi-
plying the unknown parameter B, and is therefore intrinsi-
cally non-linear even if the original state model is linear.
We will use, as usual, iterative techniques that alternate
between estimating (sufficient statistic of) the conditional
density of the state and maximizing the likelihood with re-
spect to the unknown parameters, in a fashion similar to the
expectation-maximization (EM) algorithm [10]. In order
for such iterative techniques to converge to a unique min-
imum, canonical realizations need to be considered, cor-
responding to particular forms for the matrices A and B.
A simple example is the so-called “controllable canonical
form” [20], that however results in poor numerical condi-
tioning of the algorithms. Balanced realizations of various
sorts can be considered, of the kind described in [2]. In the
experimental section we will avoid this issue by consider-
ing convergence to any realization that maximizes the joint
likelihood of the output.

The use of EM algorithms to learn parameters of dynam-
ical models is standard and we therefore refer the reader to
[24] for details.

3.2. Prediction error methods
As an alternative to maximum likelihood, one can con-
sider estimating the model that results in the least predic-
tion error, for instance in the sense of mean square. Let
x̂(t + 1jt)

:
= E[x(t + 1)jy(1); : : : ; y(t)] be the best one-

step predictor, that depends upon the unknown parameters
A;B; q. One can then pose the problem in a causal fashion
as

Â; B̂; q̂
:
= argmin y(t+ 1)� Cx̂(t+ 1jt) (4)

subject to (3)

unfortunately, explicit forms of the one-step predictors are
available only under restricted assumptions, for instance lin-
ear models driven by white Gaussian noise [24]. In the ex-
perimental section we do consider one such model, how-
ever, we repeat results obtained only for the case of ML
learning. For details the reader is again referred to [24].

3.3. Representation of the driving distribution
So far we have managed to defer addressing the fact that
the unknown driving distribution belongs, in principle, to an
infinite-dimensional space, and therefore something needs
to be said about how this issue is dealt with algorithmically.

We see three ways to approach this problem. One is
to transform this into a finite-dimensional inference prob-
lem by choosing a parametric class of densities. This is
done in the experimental section, where we have postu-
lated that the unknown driving density belongs to a finite-
dimensional parameterizations of a class of exponential
densities, and therefore the inference problem is reduced to
a finite-dimensional optimization. The exponential class is
quite rich and it includes, in particular, multi-modal as well
as skewed densities, although with experiments we show
that even a single guassian models allows achieving good
results.

The second alternative is to represent the density q via
a finite number of fair samples drawn from it; the model
(1) can be used to represent the evolution of the conditional
density of the state given the measurements (the discrete-
time equivalent of Fokker-Planck’s operator), and the den-
sity is evolved by updating the samples so that they remain
fair realization of the conditional density as time evolves.
Algorithms of this sort are called “particle filters” [23], and
in particular the CONDENSATION filter [6] is the best
known instance in the Computer Vision community. Al-
though we believe that this avenue is very promising, we
have not pursued it.

The third alternative is to treat (3) as a semi-parametric
statistical problem, where one of the parameters (q) lives
in the infinite-dimensional manifold of probability densities
that satisfy certain regularity conditions, endowed with a
Riemannian metric (corresponding to Fisher’s Information
matrix), and designing gradient descent algorithms with re-
spect to the natural connection, as it has been done in the
context of independent component analysis (ICA) by Amari
and Cardoso [1]. This avenue is considerably more labori-
ous, albeit admittedly more principled, and we are therefore
not considering it in this study.

3.4. Recognition
According to our definition in section 2.1, each texture is
characterized by an ARMAUX model. Therefore, in order
to compare textures, we need to first define a base measure
in the space of linear dynamical systems, and then possibly
to characterize probability distributions in that space.

Defining an appropriate base measure in the space of
ARMAUX models is not trivial, since each model entails a
combination of an input density and state and output transi-
tion matrices. However, if we restrict our attention to mod-
els having input density in the same class, then recent results
from the theory of subspace identification provide guidance
on efficient ways to compute the distance between models.
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Figure 1: The figure shows how an “infinite length” texture sequence is
synthesized from a typically “short” input texture sequence by just draw-
ing samples from v(t). The data set used comes from the MIT temporal
texture database. The particular structure of this sequence (spiraling-
water synthesized using N = 50 principal components), is amongst the
ones that cannot be captured by the STAR model [40].

In particular, [7] defines subspace angles between models,
and provides efficient algorithms to compute them. In the
experimental section we discuss how we have computed
distances between different realizations of the textures and
show how similar textures cluster together in some space.

4. Experiments: implementation
In our experiments we show results on three sequences
from the MIT temporal texture database (courtesy of Mar-
tin Szummer), namely steam, river and spiraling-
water. The sequences are 140, 120 and 120 frames
long respectively, while the dimensions of the frames are
96� 176 for the steam and 115� 170 for the river and
the spiraling-water.

In the first-order linear dynamic texture model we as-
sume that B is an identity matrix. The evolution of the

model is centered around the average frame of the origi-
nal sequence, � = E[y(t)], so that each frame can be rep-
resented in the domain of the principal components U

:
=

[�1; : : : �N ], as

x(t) = UT (y(t)� �): (5)

Thus, in the model (3), x(t) become a zero mean random
vector as well as v(t). We choose v(t) lo lie in the para-
metric class of multivariate Gaussian random vectors with
zero-mean, independent components and covariance matrix

�, therefore we have v(t)
IID
� N (0; �).

After the parameter estimation, the generation process of
the images is given, in accordance with (5) and (3), by

�
x(t) = Âx(t� 1) + v(t)
I(t) = (UUT )�1Ux(t) + �̂

(6)

where v(t)
IID
� N (0; �̂). The learning process therefore,

consists of estimating �̂ as the average frame of the train-
ing sequence, the principal components U via SVD and the
ML-estimation of the parameters Â and �̂ via gradient de-
scent.

4.1. Synthesis
Figure 1 shows that an “infinite length” texture sequence
can be synthesized from a typically “short” input sequence
by just drawing samples from v(t). The initial frame,
represented by x(0), is chosen randomly from the origi-
nal sequence, it could also be drawn from a distribution
learnt from the sequence using 2D texture synthesis tech-
niques, e.g. [42]. The frames belongs to the spiraling-
water sequence. From a 120 frames training sequence a
1000 frames synthesized sequence5 has been generated us-
ing N = 50 principal components. This sequence has been
showed in [40] as a test-bed example to point out the lim-
itations of the STAR model in capturing non-translational
motion. Since our model incorporates spatial correlation
without imposing any spatial causal restrictions, it can cap-
ture much more complex motion.

The first row of Figures 4 and 5 shows a few frames of
the original steam and river sequence respectively. The
second row shows a section of frames from the “infinitely
long” synthesized texture sequence5 (N=20 principal com-
ponents).

4.2. Performance assessment
As explained in section 3.2 we use ML by fixing the num-
ber N of principal components and learning the parameters
for different lengths, M , of the same training sequence; in
order to cross-verify our models, we test this with PEM. For
each length, M , we predict the frame M + 1 and compute
the prediction error per pixel in gray levels. The results are

5Refer accompanying movie dynamic-textures.avi (uploaded
with this submission), for the synthesized sequences.
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Figure 2: Model veri�cation : to verify the quality of the model
learned, we have used a fixed number of principal components in the rep-
resentation (20) and considered sub-sequences of the original data set of
length varying from 10 to 120. We have used such sub-sequences to learn
the parameters of the model in the Maximum-Likelihood sense, and then
used the model to predict the next image. Using one criterion for learning
(ML) and another one for validation (PEM) is informative, for it challenges
the model. The average prediction error per pixel is shown as a function of
the length of the training sequence (for the steam sequence), expressed
in gray scale within a range of 256 levels. The average error per pixel
decreases and becomes stable after some critical length (in this case 80
frames).

shown in Figure 2. The average error per pixel decreases
and becomes stable after the 80th frame. The standard de-
viation has the same shape of the average error. Thus, the
predicting power of the model grows with the length of
the training sequence and so does its ability to capture the
spatial-temporal dynamics. Furthermore, after some “criti-
cal” length of the sequence, there is no improvement in the
predicting power: the spatial-temporal dynamics has been
captured and the use of a longer sequence does not provide
any additional information. Figure 2 shows that this happen
after the 80th frame for the sequence steam.

The graph is important in analyzing the information con-
tent of the input sequence. If the sequence terminates before
the graph stabilizes, it implies “insufficient data” to model
the texture comprehensively. Moreover data after the crit-
ical point is “redundant”. This measure or technique can
be used as a benchmark to compare different temporal tex-
ture for “information content” for a particular model or to
compare different texture synthesis models for a particular
temporal texture. In the latter case if a model stabilizes after
reading fewer input frames, doesn’t necessarily imply that
it is richer or more efficient. It may be disregarding some
information in the input. Therefore, its a weigh up between
when (i.e. the “critical point”) and where (i.e. along the
ordinate axis) the graph stabilizes that tells us, how good a
texture synthesis model is.
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Figure 3: The figure demonstrates that textures belonging to the same
class tend to cluster together in the K-L distance space. In particular for
this figure distances are computed amongst three realizations of the river
sequence and three of the steam sequence w.r.t. the former. The cluster
of graphs on top refer to (steam w.r.t. river) type of distances and the ones
below refer to the (river w.r.t. river) type. The K-L distances are computed
using Monte-Carlo methods.

4.3. Extrapolating sequences

Another important parameter to compare various texture
synthesis models is the time it takes to synthesize.

It is well established that models using Gibbs sampling
[42] and other sampling methods to draw sample from com-
plex distributions are computationally intensive. Moreover,
there is always an uncertainty whether the samples have
converged. Deterministic methods to extend and extrapo-
late sequences have to go back and query the input texture
in one way or the other to obtain information that generates
the next [12, 41] 6. In our model, once the learning phase
is over, generation is much faster because it is pure simu-
lation and there is no need to refer to the input texture and
the distributions are straightforward to sample from. More-
over, we can even control the size of parameters to obtain
a particular synthesis speed and change the model parame-
ters (e.g. the eigenvalues of Â) to manipulate the original
dynamics.

The generation problem was not as critical in the 2D tex-
ture domain, as we usually did have a size estimate (finite)
to extend the input to and there were no real time constrains.
In addressing the problem of generating “infinitely” long
temporal sequences this is one of the key issues.

We would now discuss another facet of temporal texture,
texture differentiation or recognition.

6In [41] for each new pixel a search is conducted for a similar neigh-
borhood pattern in the original texture.
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Figure 4: A few frames of the original steam sequence (140 frames-long) in the first row and a section of frames from the “infinitely long” synthesized
texture sequence (1000 frames-long; synthesized using N = 20 principal components) in the second row. Spatial smoothing in the synthesized patterns
obtained is the result of using a low number of principal components.

Figure 5: A similar representation as in Figure 4 for the river sequence.

4.4. Recognition

The motivation of the recognition problem for dynamic tex-
tures was discussed in section 3.4. We use the Kullback-
Leibler distance (K-L distance) to compute the discrepancy
between different dynamic textures. The problem is formal-
ized as follows.

Let I(t), t = 0; 1; : : : be an infinite-long sequence of
images. This can be modeled as a stochastic process which
takes values in a subset of Rm�n for an m�n dimensional
image. Let �IT

:
= (I(1); I(2); : : : ; I(T )) be a sequence of

images and let p( �IT ) be the corresponding probability den-
sity function (p.d.f.). The p.d.f. p( �IT ) is completely deter-
mined by the parameters that define the model (1). Now,
let p1 and p2 be two p.d.f.s that belongs to two different
dynamic textures. The K-L distance, I(p1kp2), between p

1

and p
2

is defined as I(p
1
kp

2
)
:
= limT!1 IT (p

1
kp

2
) where

IT (p
1
kp

2
) = 1

T
Ep1 [log(p1(�I

T
1
)=p2(�I

T
1
))] and Ep1 [�] is the

expectation taken with respect to p1.
In Figure 3 we display the distance, the quantity

IT (p1kp2), between different dynamic textures plotted
against the length T . We have taken different realizations
of the textures river and steam and have computed the
distance of the former realizations against themselves and
the latter7. It is evident that alike textures tend to cluster to-
gether. Therefore in principle a comprehensive database of

7We obtain a similar plot if we compute the distance from the latter
w.r.t. the former although the K-L distance by definition is not commuta-
tive.

parameters learned from commonly occurring dynamic tex-
tures can be maintained and a new temporal sequence can
be categorized after learning its parameters and computing
the distance. An extensive assessment of the recognition ca-
pabilities of our system is premature at this point due to the
lack of extensive databases of dynamic textures.

4.5. Sequence compression
In this section we present a subjective comparison between
storage requirements for the estimated parameters w.r.t. the
original space requirement of the texture sequences, to get
an estimate of the sequence comparison capabilities of our
model. Note again that the parameters (�, U , A, �) are self
sufficient and we don’t need to refer to the original texture
for the synthesis of new sequences.

To make the comparison we only consider the optimal
number of frames or the frames which are informative in the
input sequence although there may be many more redun-
dant frames. Consider the steam sequence. The critical
number of frames in the steam sequence as given by Fig-
ure 3 is 80. Therefore the storage requirement amounts to
80�96�176or 1:35�106. We used N=20 principal compo-
nents, with one average image I, the space requirement for
the estimated parameters equals 76 � 176 (I) +20� 96 � 176
(principal components) +20 � 20 (A) +20 (�) or 4:5� 105.
This gives us a worst case compression of 1 : 3 for a typi-
cal example. It should be understood however that the the
number of input frames are often far more than the critical
length and our space complexity is indifferent to this value.
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For instance, if the requirement is to generate an infinite se-
quence from a given 10,000 frame movie the compression
would be 1 : 400.

5. Discussion
We have introduced a novel representation of dynamic tex-
ture and associated algorithms to perform learning, recogni-
tion and synthesis of sequences from training data. We have
demonstrated experimentally that even the simplest choices
in the model (linear stochastic systems driven by Gaussian
white noise) can capture complex visual phenomena. The
algorithm is simple to implement, efficient to learn and fast
to simulate. Some of these results may be useful for image
compression and for image-based rendering and synthesis
of image sequences.

Our framework can be extended to account for higher-
order and nonlinear dynamics, and arbitrary input distribu-
tions, although we do not pursue this avenue in this paper.
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