
Proceedings of LISA '99: 13th Systems Administration Conference
Seattle, Washington, USA, November 7–12, 1999

S N O R T — L I G H T W E I G H T I N T R U S I O N
D E T E C T I O N F O R N E T W O R K S

Martin Roesch

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Snort – Lightweight Intrusion
Detection for Networks

Martin Roesch – Stanford Telecommunications, Inc.

ABSTRACT

Network intrusion detection systems (NIDS) are an important part of any network security
architecture. They provide a layer of defense which monitors network traffic for predefined
suspicious activity or patterns, and alert system administrators when potential hostile traffic is
detected. Commercial NIDS have many differences, but Information Systems departments must
face the commonalities that they share such as significant system footprint, complex deployment
and high monetary cost. Snort was designed to address these issues.

Introduction

Snort fills an important ‘‘ecological niche’’ in the
the realm of network security: a cross-platform,
lightweight network intrusion detection tool that can
be deployed to monitor small TCP/IP networks and
detect a wide variety of suspicious network traffic as
well as outright attacks. It can provide administrators
with enough data to make informed decisions on the
proper course of action in the face of suspicious activ-
ity. Snort can also be deployed rapidly to fill potential
holes in a network’s security coverage, such as when a
new attack emerges and commercial security vendors
are slow to release new attack recognition signatures.
This paper discusses the background of Snort and its
rules-based traffic collection engine, as well as new
and different applications where it can be very useful
as a part of an integrated network security infrastruc-
ture.

Snort is a tool for small, lightly utilized net-
works. Snort is useful when it is not cost efficient to
deploy commercial NIDS sensors. Modern commer-
cial intrusion detection systems cost thousands of dol-
lars at minimum, tens or even hundreds of thousands
in extreme cases. Snort is available under the GNU
General Public License [GNU89], and is free for use
in any environment, making the employment of Snort
as a network security system more of a network man-
agement and coordination issue than one of affordabil-
ity.

What is ‘‘lightweight’’ intrusion detection?

A lightweight intrusion detection system can eas-
ily be deployed on most any node of a network, with
minimal disruption to operations. Lightweight IDS’
should be cross-platform, have a small system foot-
print, and be easily configured by system administra-
tors who need to implement a specific security solu-
tion in a short amount of time. They can be any set of
software tools which can be assembled and put into
action in response to evolving security situations.
Lightweight IDS’ are small, powerful, and flexible
enough to be used as permanent elements of the net-
work security infrastructure.

Snort is well suited to fill these roles, weighing
in at roughly 100 kilobytes in its compressed source
distribution. On most modern architectures Snort takes
only a few minutes to compile and put into place, and
perhaps another ten minutes to configure and activate.
Compare this with many commercial NIDS, which
require dedicated platforms and user training to deploy
in a meaningful way. Snort can be configured and left
running for long periods of time without requiring
monitoring or administrative maintenance, and can
therefore also be utilized as an integral part of most
network security infrastructures.

What is Snort?

Snort is a libpcap-based [PCAP94] packet sniffer
and logger that can be used as a lightweight network
intrusion detection system (NIDS). It features rules
based logging to perform content pattern matching and
detect a variety of attacks and probes, such as buffer
overflows [ALE96], stealth port scans, CGI attacks,
SMB probes, and much more. Snort has real-time
alerting capability, with alerts being sent to syslog,
Server Message Block (SMB) ‘‘WinPopup’’ messages,
or a separate ‘‘alert’’ file. Snort is configured using
command line switches and optional Berkeley Packet
Filter [BPF93] commands. The detection engine is
programmed using a simple language that describes
per packet tests and actions. Ease of use simplifies
and expedites the development of new exploit detec-
tion rules. For example, when the IIS Showcode
[IISBT99] web exploits were revealed on the Bugtraq
mailing list [BTQ99], Snort rules to detect the probes
were available within a few hours.

Snort vs. The World!

Snort shares commonalities with both sniffers
and NIDS. Two programs that lend themselves to
direct comparison with Snort, tcpdump and Network
Flight Recorder [NFR97], will be examined and con-
trasted in this section. In many cases, Snort is finan-
cially, technically, and/or administratively easier to
implement than other Open Source [OSS98] or com-
mercially available tools.

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 229

Snort – Lightweight Intrusion Detection for Networks Roesch

How Is Snort Different From tcpdump?

Snort is cosmetically similar to tcpdump
[TCPD91] but is more focused on the security applica-
tions of packet sniffing. The major feature that Snort
has which tcpdump does not is packet payload inspec-
tion. Snort decodes the application layer of a packet
and can be given rules to collect traffic that has spe-
cific data contained within its application layer. This
allows Snort to detect many types of hostile activity,
including buffer overflows, CGI scans, or any other
data in the packet payload that can be characterized in
a unique detection fingerprint.

Another Snort advantage is that its decoded out-
put display is somewhat more user friendly than tcp-
dump’s output. Snort does not currently lookup host
names or port names while running, which is a func-
tion that tcpdump can perform. Snort is focused on
collecting packets as quickly as possible and process-
ing them in the Snort detection engine. Performing
run-time host name lookup is not conducive to high
performance packet analysis. Figure 1 shows typical
Snort output for a telnet banner display, and Figure 2
shows the same packet as displayed by tcpdump.

20:59:49.153313 0:10:4B:D:A9:66 -> 0:60:97:7:C2:8E type:0x800 len:0x7D
192.168.1.3:23 -> 192.168.1.4:1031 TCP TTL:64 TOS:0x10 DF
***PA* Seq: 0xDF4A6536 Ack: 0xB3A6FD01 Win: 0x446A
FF FA 22 03 03 E2 03 04 82 0F 07 E2 1C 08 82 04 ..".............
09 C2 1A 0A 82 7F 0B 82 15 0F 82 11 10 82 13 FF
F0 0D 0A 46 72 65 65 42 53 44 20 28 65 6C 72 69 ...FreeBSD (elri
63 2E 68 6F 6D 65 2E 6E 65 74 29 20 28 74 74 79 c.home.net) (tty
70 30 29 0D 0A 0D 0A p0)....

Figure 1: Typical Snort telnet packet display.

20:59:49.153313 0:10:4b:d:a9:66 0:60:97:7:c2:8e 0800 125: 192.168.1.3.23 >
192.168.1.4.1031: P 76:147(71) ack 194 win 17514 (DF) [tos 0x10] (ttl 64,
id 660)

4510 006f 0294 4000 4006 b48d c0a8 0103
c0a8 0104 0017 0407 df4a 6536 b3a6 fd01
5018 446a d2ad 0000 fffa 2203 03e2 0304
820f 07e2 1c08 8204 09c2 1a0a 827f 0b82
150f 8211 1082 13ff f00d 0a46 7265 6542
5344 2028 656c 7269 632e 686f 6d65 2e6e
6574 2920 2874 7479 7030 290d 0a0d 0a

Figure 2: The same telnet packet as displayed by tcpdump.

One powerful feature that Snort and tcpdump
share, is the capability to filter traffic with Berkeley
Packet Filter (BPF) commands. This allows traffic to
be collected based upon a variety of specific packet
fields. For example, both tools may be instructed via
BPF commands to process TCP traffic only. While
tcpdump would collect all TCP traffic, Snort can uti-
lize its flexible rules set to perform additional func-
tions, such as searching out and recording only those
packets that have their TCP flags set a particular way

or containing web requests that amount to CGI vulner-
ability probes. The SHADOW IDS [SHD98] from the
Naval Surface Warfare Center is based on tcpdump
and uses extensive BPF filtering. SHADOW is dis-
cussed in more detail near the end of this paper.

Snort and NFR

Perhaps the best comparison of Snort to NFR is
the analogy of Snort as little brother to NFR’s college-
bound football hero. Snort shares some of the same
concepts of functionality as NFR, but NFR is a more
flexible and complete network analysis tool. That said,
the little brother idea could be extended in that Snort
tends to fit into small places and is somewhat more
‘‘nimble’’ than NFR. For example, NFR’s packet fil-
tering n-code language is a serious, full featured
scripting language, while Snort’s rules are more one
dimensional. On the other hand, writing a Snort rule to
detect a new attack takes only minutes once the attack
signature has been determined. See Appendix A for an
example of a simple web detection rule written in n-
code and the analogous Snort rule.

NFR also has a more complete feature set than
Snort, including IP fragmentation reassembly and TCP
stream decoding. These features are essential in any
commercial product that is meant to perform mission
critical intrusion detection, and NFR was the first
product which could defeat anti-NIDS attacks outlined
by Ptacek and Newsham [PTA98]. Presently, Snort
does not implement TCP stream reassembly, but
future versions will implement this capability. Snort
currently addresses IP fragmentation with a rule
option that sets a minimum size threshold for frag-
mented packets. This rule option takes advantage of

230 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Roesch Snort – Lightweight Intrusion Detection for Networks

the fact that there is virtually no commercial network
equipment on the market that fragments packets
smaller than 256-bytes. By setting this threshold value
to some reasonable value, say 128-bytes, fragmented
packet probes and attacks can be logged and alerts can
be sent by Snort automatically. Full IP fragment and
TCP stream reassembly and analysis will be addressed
in later versions of Snort.

Chain Header

Source IP Address

Destination IP Address

Source Port

Destination Port

Chai

Sour

Dest

Sour

Dest

Chain Option

Content

TCP Flags

ICMP Codes/types

Payload Size

etc.

Chain Option

Content

TCP Flags

ICMP Codes/types

Payload Size

etc.

Chain Header

Source IP Address

Destination IP Address

Source Port

Destination Port

Chain Option

Figure 3: Rule Chain logical structure.

Under the Hood

Snort’s architecture is focused on performance,
simplicity, and flexibility. There are three primary sub-
systems that make up Snort: the packet decoder, the
detection engine, and the logging and alerting subsys-
tem. These subsystems ride on top of the libpcap
promiscuous packet sniffing library, which provides a
portable packet sniffing and filtering capability. Pro-
gram configuration, rules parsing, and data structure
generation takes place before the sniffer section is ini-
tialized, keeping the amount of per packet processing
to the minimum required to achieve the base program
functionality.

The Packet Decoder

The decode engine is organized around the layers
of the protocol stack present in the supported data-link
and TCP/IP protocol definitions. Each subroutine in
the decoder imposes order on the packet data by over-
laying data structures on the raw network traffic.
These decoding routines are called in order through
the protocol stack, from the data link layer up through
the transport layer, finally ending at the application

layer. Speed is emphasized in this section, and the
majority of the functionality of the decoder consists of
setting pointers into the packet data for later analysis
by the detection engine. Snort provides decoding
capabilities for Ethernet, SLIP, and raw (PPP) data-
link protocols. ATM support is under development.

The Detection Engine
Snort maintains its detection rules in a two

dimensional linked list of what are termed Chain
Headers and Chain Options. These are lists of rules
that have been condensed down to a list of common
attributes in the Chain Headers, with the detection
modifier options contained in the Chain Options. For
example, if forty five CGI-BIN probe detection rules
are specified in a given Snort detection library file,
they generally all share common source and destina-
tion IP addresses and ports. To speed the detection
processing, these commonalities are condensed into a
single Chain Header and then individual detection sig-
natures are kept in Chain Option structures.

These rule chains are searched recursively for
each packet in both directions. The detection engine
checks only those chain options which have been set
by the rules parser at run-time. The first rule that
matches a decoded packet in the detection engine trig-
gers the action specified in the rule definition and
returns.

A major overhaul of the detection engine is cur-
rently in the planning and development stage. The
next version of the engine will include the capability
for users to write and distribute plug-in modules and

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 231

Snort – Lightweight Intrusion Detection for Networks Roesch

bind them to keywords for the detection engine rules
language. This will allow anyone with an appropriate
plug-in module to add significant detection functional-
ity to Snort and customize the program for specific
jobs.

alert tcp any any -> 10.1.1.0/24 80 (content: "/cgi-bin/phf"; msg: "PHF
probe!";)

Figure 5: Options allow increased rule complexity.

alert tcp any any -> 10.1.1.0/24 6000:6010 (msg: "X traffic";)

Figure 6: An example of port ranges.

alert tcp !10.1.1.0/24 any -> 10.1.1.0/24 6000:6010 (msg: "X traffic";)

Figure 7: Matching by exception on the source IP address

The Logging/Alerting Subsystem
The alerting and logging subsystem is selected at

run-time with command line switches. There are cur-
rently three logging and five alerting options. The log-
ging options can be set to log packets in their decoded,
human readable format to an IP-based directory struc-
ture, or in tcpdump binary format to a single log file.
The decoded format logging allows fast analysis of
data collected by the system. The tcpdump format is
much faster to record to the disk and should be used in
instances where high performance is required. Log-
ging can also be turned off completely, leaving alerts
enabled for even greater performance improvements.

Alerts may either be sent to syslog, logged to an
alert text file in two different formats, or sent as Win-
Popup messages using the Samba smbclient program.
The syslog alerts are sent as security/authorization
messages that are easily monitored with tools such as
swatch [SWT93]. WinPopup alerts allow event notifi-
cations to be sent to a user-specified list of Microsoft
Windows consoles running the WinPopup software.
There are two options for sending the alerts to a plain
text file; full and fast alerting. Full alerting writes the
alert message and the packet header information
through the transport layer protocol. The fast alert
option writes a condensed subset of the header infor-
mation to the alert file, allowing greater performance
under load than full mode. There is a fifth option to
completely disable alerting, which is useful when
alerting is unnecessary or inappropriate, such as when
network penetrations tests are being performed.

Writing Snort Rules

Snort rules are simple to write, yet powerful
enough to detect a wide variety of hostile or merely
suspicious network traffic. There are three base action
directives that Snort can use when a packet matches a
specified rule pattern: pass, log, or alert. Pass rules
simply drop the packet. Log rules write the full packet
to the logging routine that was user selected at run-
time. Alert rules generate an event notification using

the method specified by the user at the command line,
and then log the full packet using the selected logging
mechanism to enable later analysis.

The most basic rules contain only protocol,
direction, and the port of interest, such as in Figure 4.

log tcp any any -> 10.1.1.0/24 79
Figure 4: A simple Snort rule.

This rule would record all traffic inbound for
port 79 (finger) going to the 10.1.1 class C network
address space.

Snort interprets keywords enclosed in parenthe-
ses as ‘‘option fields’’. Option fields are available for
all rule types and may be used to generate complex
behaviors from the program, such as in Figure 5.

The rule in Figure 5 would detect attempts to
access the PHF service on any of the local network’s
web servers. If such a packet is detected on the net-
work, an event notification alert is generated and then
the entire packet is logged via the logging mechanism
selected at run-time.

The rule IP address and port specifiers have sev-
eral features available. The CIDR block netmask may
be set to any value between one and thirty-two. Port
ranges can be specified using the colon ‘‘:’’ modifier.
For example, to monitor all ports upon which the X
Windows service may run (generally 6000 through
6010), the port range could be specified with the colon
modifier as shown in Figure 6.

Both ports and IP addresses can be modified to
match by exception with the bang ‘‘!’’ operator, which
would be useful in the rule described in Figure 7 to
detect X Windows traffic from sources outside of the
network.

This rule would generate an alert for all traffic
originating outside of the host network that was bound
for internal X Windows service ports.

Snort version 1.2.1 has fourteen option fields
available:

1. content: Search the packet payload for the a
specified pattern.

2. flags: Test the TCP flags for specified settings.
3. ttl: Check the IP header’s time-to-live (TTL)

field.

232 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Roesch Snort – Lightweight Intrusion Detection for Networks

4. itype: Match on the ICMP type field.
5. icode: Match on the ICMP code field.
6. minfrag: Set the threshold value for IP frag-

ment size.
7. id: Test the IP header for the specified value.
8. ack: Look for a specific TCP header acknowl-

edgement number.
9. seq: Log for a specific TCP header sequence

number.
10. logto: Log packets matching the rule to the

specified filename.
11. dsize: Match on the size of the packet payload.
12. offset: Modifier for the content option, sets the

offset into the packet payload to begin the con-
tent search.

13. depth: Modifier for the content option, sets the
number of bytes from the start position to
search through.

14. msg: Sets the message to be sent when a packet
generates an event.

These options may be combined in any manner
to detect and classify packets of interest. The rule
options are processed using a logical AND between
them; all of the testing options in a rule must be true in
order for the rule to generate a ‘‘found’’ response and
have the program perform the rule action.

052499-22:27:58.403313 192.168.1.4:1034 -> 192.168.1.3:143
TCP TTL:64 TOS:0x0 DF
***PA* Seq: 0x5295B44E Ack: 0x1B4F8970 Win: 0x7D78
90 90 90 90 90 90 90 90 90 90 90 90 90 90 EB 3B;
5E 89 76 08 31 ED 31 C9 31 C0 88 6E 07 89 6E 0C ˆ.v.1.1.1..n..n.
B0 0B 89 F3 8D 6E 08 89 E9 8D 6E 0C 89 EA CD 80n....n.....
31 DB 89 D8 40 CD 80 90 90 90 90 90 90 90 90 90 1...@...........
90 90 90 90 90 90 90 90 90 90 90 E8 C0 FF FF FF
2F 62 69 6E 2F 73 68 90 90 90 90 90 90 90 90 90 /bin/sh.........

Figure 8: Notional

alert tcp any any -> 192.168.1.0/24 143 (content:"|E8C0 FFFF FF|/bin/sh";
msg:"New IMAP Buffer Overflow detected!";)

Figure 9: Alert rule for the new buffer overflow.

Rule Development

Snort is extremely useful for rapidly developing
new Snort rules. The clear and concise manner in
which the data is displayed by the tool makes it per-
fect for writing new rules. The general method for
development consists of getting the exploit of interest,
such as a new buffer overflow, running the exploit on
a test network with Snort recording all traffic between
the target and attack hosts, and then analyzing the data
for a unique signature and condensing that signature
into a rule. Figure 8 shows Snort’s view of a notional
‘‘IMAP buffer overflow’’ that has just come into
widespread use by the ‘‘script kiddie’’ community.

The unique signature data in the application layer
is the machine code just prior to the /bin/sh text string,

as well as the string itself. Using this information, a
new rule can be developed quickly, such as the one
defined in Figure 9.

The content field of the rule contains mixed pain
text and hex formatted bytecode, which is enclosed in
pipes. At run-time, this data is converted into its
binary representation, as displayed in the decoded
packet dump in Figure 8, and then stored in an internal
list of rules by Snort. Thus, the rule contained in Fig-
ure 9 will raise an alarm any time a packet containing
the ‘‘fingerprint’’ of the new IMAP buffer overflow is
detected.

Writing High Performance Pattern Matching
Rules
The current rules system lends itself to high per-

formance under most conditions, but there are some
general concepts that can be applied when writing
Snort rules to keep the processing speeds as high as
possible. Computationally, the content matching
option is the most expensive process that can be per-
formed in the detection engine. Accordingly, it is per-
formed after all other rule tests. This fact can be used
to advantage by specifying other rule options in com-
bination with the content option. For example, almost
all requests to web servers have their TCP PUSH and
ACK flags set. Using this knowledge, it is relatively
easy to write a rule which will perform a simple TCP
flag test before running the far more computationally
intensive pattern match test.

Other options can be combined with the content
rules to limit the amount of data that must be searched.
The offset and depth keywords were made specifically
to fulfill this function. Using these options, the area of
the packet payload to search for an exploit pattern can
be localized. Care should be taken to avoid limiting
the search too severely. For example, many buffer
overflows use variable offsets to tune the size and
placement of the exploit machine code. A Snort rule
that has been tuned too tightly to key on a specific
area of a packet’s payload may overlook the real
exploit that has been shifted to a different area within

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 233

Snort – Lightweight Intrusion Detection for Networks Roesch

the packet. On the other hand, web CGI probes and
attacks generally all take place at the beginning of the
packet within the first thirty to fifty bytes. This can be
a great place to optimize Snort content searching.

The actual search pattern used in the content rule
is another area where performance tuning may take
place. Snort uses a Boyer-Moore [SEDG97] algorithm
to perform its pattern matching, which is one of the
best algorithms available for that task. It achieves its
greatest efficiency in cases where the pattern to match
consists of non-repeating sets of unique bytes. For
example, the Intel x86 architecture uses the hex value
0x90 to indicate a NOP in machine code. Buffer over-
flows generally use large regions of NOPs to pad the
actual exploit code and make the return jump calcula-
tions easier for the exploit programmer. When specify-
ing content match patterns, it is best to avoid including
any NOPs in the match pattern, which will otherwise
cause the Boyer-Moore routine to complete many par-
tial matches before actually finding the correct match
pattern.

Advanced Snorting

Snort is a flexible tool with a wide variety of
uses. It is intended to be used in the most classic sense
of a network intrusion detection system. It examines
network traffic against a set of rules, and alerts admin-
istrators to suspicious network activity so that they
may react appropriately. There are many other areas
where Snort can be useful as well.

Shoring Up Commercial IDS’s
Snort can be used to fill holes in commercial

vendor ’s network-based intrusion detection tools, such
as when a new attack makes its debut in the
hacker/cracker community and signature updates are
slow to come from the vendor. In this case, Snort may
be used to characterize the new attack by running it
locally on a test network and determining it’s signa-
ture. Once the signature is written into a snort rule, the
BPF command line filtering may be used to limit the
traffic that Snort analyzes to the service or protocol of
interest. Snort can be used as a very specialized detec-
tor for a single attack or family of attacks in this
mode.

The recent IRDP denial of service attack
[IRDP99] revealed by the L0pht provides a good
example of this concept. The same day that the attack
was announced, Snort rules were made available by
the user community and these attacks were detectable.

Passive Traps
Another application to which Snort is very well

suited is as a Honeypot monitor. Honeypots are pro-
grams or computers that are dedicated to the notion of
deceiving hostile parties interested in a network. Most
honeypot systems, for example Fred Cohen & Associ-
ates Deception Toolkit [DTK98], record their data at
the server level, with a fake ‘‘service’’, such as an FTP
server actually recording the data sent to it. The

problem with that concept is that the services doing
the recording have to be started before they will record
anything. This means that events such as stealth port
scans or binary data streams will be missed or garbled
on honeypots that don’t perform packet level monitor-
ing. Another problem is that the data generated by
such a system will tend to be complex by its nature.

The data coming out of a honeypot requires a
skilled analyst to properly interpret the results. Snort
can be a great help to the analyst/administrator with its
packet classification and automatic alerting functional-
ity. With these capabilities a honeypot can be erected
as a stand alone intrusion detection mechanism. It
requires no other monitoring or maintenance because
Snort can be set to record and generate event notifica-
tion on the first packet that arrives at the honeypot.

Snort can be used to implement another concept
that is being advocated today; that of ‘‘passive traps’’
[MJR99]. A passive trap uses the ‘‘home field advan-
tage’’ that network administrators enjoy when secur-
ing their networks. One aspect of this concept is that
administrators know which services are not
available on their networks. Snort rules can be written
that watch for traffic headed for these non-existent ser-
vices. Packets which are found to be using these ports
may be an indication of port scanning, backdoors, or
other hostile traffic. For example, a network that is not
using TFTP can be configured with Snort alert rules
for all packets headed to or from any node on the net-
work bound for port 69. This can be a good method
for detecting covert communications channels such as
Loki or backdoors like Back Orifice. Another easy
concept to implement to set up pass rules for all of the
services known to be running on a network and log
inbound connections to other ports or port ranges.

Shining Some Light on SHADOW
SHADOW is designed to be a cheap alternative

to commercial NIDS. As an aside, SHADOW was
probably the first true lightweight intrusion detection
system. tcpdump is used as the sensor in these sys-
tems, which are configured using often extensive BPF
commands. All traffic that is not filtered out with these
BPF rules is collected into a single file that can
become quite large over extended periods of time.
Once the data is collected by the sensor, it is post-pro-
cessed using a variety of external third party tools.
There are some limitations to this system, including a
complete lack of real-time alerts and a lack of good
data classification tools to aid the analyst in identify-
ing the data produced by the sensor.

Snort uses the same BPF filter language rules as
tcpdump, and can be used as a complete replacement
for tcpdump sensors in environments where
SHADOW is the IDS of choice. The advantages of
using Snort as a replacement sensor include real-time
automatic traffic classification as it is collected and
real-time alerting. This allows security events to be
detected and acted upon by the administrative staff in

234 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Roesch Snort – Lightweight Intrusion Detection for Networks

a more timely manner and log file sizes to be reduced
significantly. At the same time, Snort can record the
data it collects to tcpdump formatted files so that the
data generated by the system can be post-processed
for in depth analysis with existing tools that analysts
are comfortable using.

Focused Monitoring

‘‘Focused monitoring’’ is the concept of watch-
ing a single critical node or service on a network for
signs of hostile activity. For example, the Sendmail
[ALMN99] SMTP server has an extensive and well
known list of vulnerabilities and exploits. A single
Snort sensor could be deployed with a rule set that
covers all known Sendmail attacks and would provide
highly focused monitoring of that specific traffic on
the network. These rules could even be extended to
provide a running narrative of all of the commands
and responses into and out of SMTP servers on the
defended network. This can make the network security
analysts job somewhat easier by letting the collection
engine (Snort) describe the normal flow of commands
and responses as well as the attacks.

Focused monitoring can be especially useful in
instances where existing NIDS provide inadequate
coverage. For example, a set of rules that monitor
SQL database queries to a web or database server
could be developed. This would provide more com-
plete coverage of CGI and ODBC SQL attacks and
probes than any commercial NIDS on the market
today. This concept can be extended to any network
communications technology that is under represented
by commercial NIDS.

Conclusions

Snort was designed to fulfill the requirements of
a prototypical lightweight network intrusion detection
system. It has become a small, flexible, and highly
capable system that is in use around the world on both
large and small networks. It has attained its initial
design goals and is a fully capable alternative to com-
mercial intrusion detection systems in places where it
is cost inefficient to install full featured commercial
systems.

Availability and Requirements

Snort will run on any platform where libpcap
will run. The current version of Snort is 1.2.1, and
libpcap is required to compile and run the software.
Snort is known to run on RedHat Linux 5.1/5.2/6.0,
Debian Linux, MkLinux, S/Linux, HP-UX, Solaris
2.5.1-2.7 (x86 and Sparc), x86 Free/Net/OpenBSD,
M68k NetBSD, and MacOS X.

Information about snort may be acquired directly
from the author’s web site at http://www.clark.
net/˜roesch/security.html .

Snort may be downloaded from the author’s web
site at http://www.clark.net/˜roesch/snort-1.2.1.tar.gz .

There is a slowly growing library of Snort rules
available at http://www.clark.net/˜roesch/snort-lib .

Acknowledgements

Snort originally used Mike Borella’s ipgrab pro-
gram as a development template and example for how
to properly code libpcap programs and packet
decoders. ipgrab can be found at http://www.
borella.net. Mike’s code is an excellent starting point
for any libpcap-based project.

Ron Gula of Network Security Wizards
http://www.securitywizards.com provided valuable
advice on logging methodologies and some of the ini-
tial program logic, as well as contributing example
rules to the system.

Ken Williams <jkw@frey.rapidnet.com> has been
fantastically supportive throughout the development of
Snort, providing encouragement and ideas for addi-
tional features as well as providing a friendly forum
for the distribution of Snort.

The Snort user community has been especially
enjoyable to work with, providing bug reports, ideas
for new development directions, and new rules for the
library since the program’s initial release. Their sup-
port and enthusiasm has kept this a vital and growing
collaborative project far past what I had imagined was
possible!

References

[SHD98] SHADOW, Steven Northcutt et al., Naval
Surface Warfare Center Dahlgren Laboratory,
1998, http://www.nswc.navy.mil/ISSEC/CID/ .

[TCPD91] tcpdump, Van Jacobson, Craig Leres and
Steven McCanne, Lawrence Berkeley National
Laboratory, 1991, http://www-nrg.ee.lbl.gov/ .

[PCAP94] libpcap, Van Jacobson, Craig Leres and
Steven McCanne, Lawrence Berkeley National
Laboratory, 1994, http://www-nrg.ee.lbl.gov/ .

[DTK98] Deception Toolkit, Fred Cohen & Associ-
ates, 1998, http://all.net/dtk/dtk.html .

[GNU89] GNU General Public License, Richard Stall-
man, 1989, http://www.gnu.org/copyleft/gpl.txt .

[BPF93] ‘‘The BSD Packet Filter: A New Architec-
ture for User-level Packet Capture,’’ Steven
McCanne, Van Jacobson, USENIX Technical
Conference Proceedings, 1993.

[ALE96] ‘‘Smashing the Stack for Fun and Profit,’’
Aleph1, Phrack #49, 1996, http://www.phrack.
com .

[BTQ99] Bugtraq Mailing List, archives and vulnera-
bility data base are available at Security Focus,
http://www.securityfocus.com .

[IISBT99] ‘‘NT IIS Showcode ASP Vulnerability,’’
Bugtraq ID #167, Parcens/L0pht, May, 1999,
http://www.securityfocus.com .

[OSS98] The Cathedral and the Bazaar, Eric S. Ray-
mond, 1998, http://www.tuxedo.org/˜esr/writings/
cathedral-bazaar/ .

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 235

Snort – Lightweight Intrusion Detection for Networks Roesch

[FYD97] ‘‘The Art of Port Scanning,’’ Fyodor, Phrack
#51, 1997, http://www.insecure.org/nmap/p51-11.
txt .

[SWT92] ‘‘Centralized System Monitoring With
Swatch,’’ Stephen E. Hansen and E. Todd
Atkins, USENIX Seventh Systems Administration
Conference, 1993, http://www.stanford.edu/
˜atkins/swatch/lisa93.html .

[SEDG97] Algorithms in C: Fundamentals, Data
Structures, Sorting, Searching, Robert
Sedgewick, Addison-Wesely Publishing Com-
pany, 1997.

[IRDP99] L0pht Security Advisory, Silicosis and
Mudge, August 1999, http://www.l0pht.com/
advisories/rdp.txt .

[ALMN99] Sendmail, Eric Allman, 1999 http://www.
sendmail.com .

[PTA98] Insertion, Evasion, and Denial of Service:
Eluding Network Intrusion Detection, Thomas
Ptacek and Timothy Newsham, Secure Networks
Inc, 1998, http://www.nai.com/services/support/
whitepapers/security/IDSpaper.pdf .

[MJR99] Burglar Alarms for Detecting Intrusions,
Marcus Ranum, NFR Inc, 1999, http://www.
blackhat.com/html/bh-usa-99/bh3-speakers.html .

Author Information

Martin Roesch is a Network Security Engineer
with Stanford Telecommunications Inc. He holds a
B.S. in Computer Engineering from Clarkson Univer-
sity. He has extensive experience with intrusion detec-
tion systems and has developed several systems pro-
fessionally. He was a primary software engineer dur-
ing the development of GTE Internetworking’s Global
Network Infrastructure IDS, and designed and devel-
oped GTE’s new commercial honeypot/deception sys-
tem ‘‘Sentinel’’. He is also a member of the Trinux
Linux Security Toolkit distribution development team.
Snort is his first Open Source Software project, and
has been an excellent learning experience for him.
Contact him at <roesch@clark.net>.

236 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Roesch Snort – Lightweight Intrusion Detection for Networks

Appendix A

Sample NFR rule to detect web server CGI probes (n-code sample excerpted from the L0pht’s NFR IDS Mod-
ules web page at http://www.l0pht.com/NFR).

badweb_schema = library_schema:new(1, ["time", "int",
"ip", "ip", "str"], scope());

list of web servers to watch. List IP address of servers or a netmask
that matches all. use 0.0.0.0:0.0.0.0 to match any server

da_web_servers = [0.0.0.0:0.0.0.0] ;

query_list = ["/cgi-bin/nph-test-cgi?",
"/cgi-bin/test-cgi?",
"/cgi-bin/perl.exe?",
"/cgi-bin/phf?"
] ;

filter bweb tcp (client, dport: 80)
{

if (! (tcp.connDst inside da_web_servers))
return;

declare $blob inside tcp.connSym;
if ($blob == null)

$blob = tcp.blob;
else

$blob = cat ($blob, tcp.blob);
while (1 == 1) {

$x = index($blob, "\n");
if ($x < 0) # break loop if no complete line yet

break;
$t=substr($blob,$x-1,1); # look for cr at end of line
if ($t == ’\r’)

$t=substr($blob,0,$x-1); # tear off line
else

$t=substr($blob,0,$x);

$counter=0;
foreach $y inside (query_list) {

$z = index($blob, $y);
if ($z >= 0) {

$counter=1;
save the time, the connection hash, the client,
the server, and the command to a histogram
record system.time, tcp.connHash, tcp.connSrc, tcp.connDst,

$t to badweb_hist;

}
}
if ($counter)

break;
}
keep us from getting flooded if there is no newline in the data
if (strlen($blob) > 4096)

$blob = "";

save the blob for next pass
$blob = substr($blob, $x + 1);

}

badweb_hist = recorder ("bin/histogram packages/test/badweb.cfg",
"badweb_schema");

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 237

Snort – Lightweight Intrusion Detection for Networks Roesch

Appendix B: Snort rules to detect the same web CGI probes.

alert tcp any any -> any 80 (msg:"CGI-nph-tst-cgi";
content:"cgi-bin/nph-test-cgi?"; flags: PA;)

alert tcp any any -> any 80 (msg:"CGI-test-cgi";
content:"cgi-bin/test-cgi?"; flags: PA;)

alert tcp any any -> any 80 (msg:"CGI-perl.exe";
content:"cgi-bin/perl.exe?"; flags: PA;)

alert tcp any any -> any 80 (msg:"CGI-phf";
content:"cgi-bin/phf?"; flags: PA;)

238 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

