
State Extensions for Java PathFinder

Tihomir Gvero
Milos Gligoric

University of Belgrade
Belgrade, Serbia

Steven Lauterburg
Marcelo d’Amorim

Darko Marinov
University of Illinois

Urbana, IL 61801, USA

Sarfraz Khurshid
University of Texas

Austin, TX 78712, USA

ABSTRACT
Java PathFinder (JPF) is an explicit-state model checker for Java
programs. JPF implements a backtrackable Java Virtual Machine
(JVM) that provides non-deterministic choices and control over
thread scheduling. JPF is itself implemented in Java and runs on
top of a host JVM. JPF represents the JVM state of the program
being checked and performs three main operations on this state
representation: bytecode execution, state backtracking, and state
comparison. This paper summarizes four extensions that we have
developed to the JPF state representation and operations. One ex-
tension provides a new functionality to JPF, and three extensions
improve performance of JPF in various scenarios. Some of our
code has already been included in publicly available JPF.
Categories and Subject Descriptors: D.2.5 [Software Engineer-
ing]: Testing and Debugging; D.2.4 [Software Engineering]: Pro-
gram Verification
General Terms: Performance, Verification
Keywords: Java PathFinder, JPF, delta execution, mixed execution

1. INTRODUCTION
Model checking is an important approach for finding bugs. While

the original success of model checking was in checking properties
of hardware or abstract models of software, recent years have seen
a variety of new model checking tools that can directly check pro-
grams written in commonly used languages. Some such tools are
Bandera, BogorVM, CHESS, CMC, JCAT, JNuke, JPF, SpecEx-
plorer, and Zing.

JPF (from Java PathFinder) [6] is an explicit-state model checker
for Java programs. It is the first open-source tool released by NASA,
publicly available for download from SourceForge [1]. The release
has spawned a growing community of JPF users and contributors,
and JPF is becoming an increasingly popular model checker for
both research and teaching.

JPF takes as input a Java program (and an optional bound on
the length of program execution) and explores all executions (up to
the given bound) that the program can have due to different non-
deterministic choices, e.g., in thread interleavings. JPF generates
as output executions that violate given properties, test inputs for
the given program, or statistics about state-space exploration [6].

To support non-deterministic choices, JPF implements a back-
trackable Java Virtual Machine (JVM). JPF is itself implemented
in Java and runs on top of a host JVM. JPF encodes the JVM state
of the program being checked with a special state representation,

Copyright is held by the author/owner(s).
ICSE’08, May 10–18, 2008, Leipzig, Germany.
ACM 978-1-60558-079-1/08/05.

different from the native representation used by the host JVM. JPF
provides three key operations on this state representation: (1) exe-
cution that manipulates the state to execute the program bytecodes,
(2) backtracking that stores/restores state to backtrack the execution
during the state-space exploration, and (3) comparison that detects
cycles in the state space.

To increase the applicability and performance of JPF, we have
developed several extensions for the JPF state representation and
operations [3–5]. This paper summarizes four extensions, which
we call Untracked State, Undo Backtracking, Delta Execution [4],
and Mixed Execution [5]. They affect the state operations in JPF:
Untracked State and Undo Backtracking affect backtracking, Mixed
Execution affects execution, and Delta Execution affects all three
key operations. While Untracked State provides a new functional-
ity to JPF (marking parts of state not to be backtracked), the other
three extensions improve performance of JPF in various scenarios;
our experiments on a number of data structures and a network pro-
tocol show a speedup in overall exploration time from a few percent
up to over two orders of magnitude, specifically speedups of 1.42x–
6.62x for Undo Backtracking, 0.88x–126.80x (a ratio less than 1x
is a slowdown) for Delta Execution [3], and 1.01x–1.73x for Mixed
Execution [3].

The rest of this paper first provides more detailed background
on JPF and then describes our implementations of the four exten-
sions. While Untracked State and Undo Backtracking were ex-
plored previously, most notably for the SPIN model checker, our
implementations address dynamic aspects of Java in the context of
JPF. We originally proposed Delta Execution [4] and Mixed Exe-
cution [5], and detailed descriptions are available in d’Amorim’s
PhD thesis [3]. We point out that our code for Untracked State has
been recently included in the JPF codebase [1], and our code for
Undo Backtracking is being considered for inclusion by the JPF
core team. In the future, we would like to polish and make pub-
licly available our implementations of Delta Execution and Mixed
Execution. We would also like to explore the interplay among the
last three extensions since they all target performance of JPF and,
in principle, can be used together.

2. BACKGROUND ON JPF
We next introduce the aspects of JPF relevant for our presen-

tation. We use a simple example commonly used to illustrate JPF
techniques [2–5]. Figure 1 shows a part of a simplified class TreeMap
that implements a map interface using red-black trees. Each TreeMap

object represents a map, and each Entry object represents a map
element that stores a key-value pair. The map provides standard
methods for inserting pairs into the map, removing them, and query-
ing the value for a given key. We can use JPF to explore various
tree states that sequences of these methods can reach.

863



class TreeMap {
int size; Entry root;
static class Entry {

int key, value; boolean color;
Entry left, right, parent; ...

}
void put(int key, int value) { ... }

void remove(int key) { ... }
int get(int key) { ... } ...

}

// input bounds sequence length and range of input keys

static void main(int N) {
// an empty tree, the root object for exploration
TreeMap t = new TreeMap();

for (int i = 0; i < N; i++) {
int methodNum = Verify.getInt(0, 2);

switch (methodNum) {
case 0: t.put(Verify.getInt(1, N), 0); break;

case 1: t.remove(Verify.getInt(1, N)); break;
case 2: t.get(Verify.getInt(1, N)); break;
}

Verify.ignoreIfPreviouslySeen(t);
/* incrementCounters(methodNum == 1); */

}
}

Figure 1: Parts of TreeMap code and a driver for exploration
of tree states

State backtracking: Figure 1 shows driver code that instructs
JPF to explore sequences (up to the given length) of method calls
with all parameter values (within the given range). The JPF library
method Verify.getInt(int lo, int hi) returns a value between
lo and hi, inclusively. It creates a non-deterministic choice point:
JPF needs to explore the executions for all values in the range. JPF
implements this by storing and restoring the entire JVM state of the
program being checked, i.e., not only the state of the tree t but also
the program counter, local variables on the stack, etc. (An alterna-
tive approach would be to re-execute the driver, e.g., VeriSoft uses
such approach for C programs.)

State comparison: JPF performs a stateful search and stops an
execution path if it encounters a previously seen state. By default,
JPF compares entire JVM states (unless an annotation @Filter-

Field is used to omit some part of the state). However, our driver
uses abstract matching [1], represented with a library method Ver-

ify.ignoreIfPreviouslySeen, to compare only the state of the
tree, namely the state of all objects reachable from the root t. JPF
compares states based on isomorphism by linearizing object graphs
into integers arrays [1, 6].

State representation: To efficiently store/restore and compare
states, JPF uses a special state representation, different from the
native state representation. Recall that JPF is a JVM that runs on
top of a native JVM. The native JVM represents TreeMap objects
using native Java objects (which include pointers to other objects)
and thus a heap consists of a number of linked objects. In contrast,
JPF encodes each object simply as a Java integer array (int[]) and
based on type information, interprets a field as either a primitive
value or a pointer to another object. JPF encodes the entire heap
effectively as an array of integer arrays (int[][] in Java).

Bytecode execution: JPF is an interpreter for Java bytecode in-
structions. JPF provides classes that implement the semantics of
Java bytecodes by manipulating the special state representation.
The goal for this representation is to make the overall exploration
fast even if it makes one straight-line execution path slow. In par-
ticular, for bytecodes that modify the state (e.g., write a field of an
object or write to a local variable on the stack), JPF clones the in-
teger array that corresponds to the affected entity (either one object
or one stack frame).

/* @UntrackedField */
static int totalCounter = 0;
/* @UntrackedField */

static int lastRemoveCounter = 0;
static void incrementCounters(boolean isLastRemove) {

totalCounter++;
if (isLastRemove) lastRemoveCounter++;

}

Figure 2: Incorrect (as is) and correct (uncomment comments)
approaches for counters

Model Java Interface (MJI): JPF provides a mechanism for
executing parts of application code (such as TreeMap) on the host
JVM; to quote from the JPF manual [1]: “Host VM Execution - JPF
is a JVM that is written in Java, i.e. it runs on top of a host VM.
For components that are not property-relevant, it makes sense to
delegate the execution from the state-tracked JPF into the non-state
tracked host VM. The corresponding Model Java Interface (MJI)
mechanism is especially suitable to handle IO simulaion [sic] and
other standard library functionality.” MJI allows the host JVM to
manipulate the JPF state representation, e.g., to read or write field
values or to create new objects. MJI is analogous to the Java Native
Interface (JNI) that allows parts of JVM execution to be delegated
from the JVM into the native code, written in languages such as C
or C++. Some of our extensions leverage or replace MJI.

3. UNTRACKED STATE
This extension provides a new functionality to JPF. By default,

JPF stores and restores the entire JVM states. Untracked State al-
lows the user to mark that certain parts of the state should not be
restored by JPF during backtracking. This feature is useful for col-
lecting some information about all execution paths that JPF ex-
plores rather than a single execution path. A typical example is
counting some events or measuring coverage. We next show a de-
tailed example, then present our definition of Untracked State, and
finally describe our implementation in JPF.

Example: To illustrate, consider the driver from Figure 1, and
suppose that we want to count (1) the total number of method se-
quences that produce a new state and (2) the number of such se-
quences that end with a call to the remove method. (The latter is
interesting because for many data structures, a sequence that ends
with remove always results in an old state, but not so for TreeMap.)
We need to uncomment and implement incrementCounters. Fig-
ure 2 shows an incorrect attempt to add counters; it does not work
since JPF restores the counters when it backtracks the state and thus
they would count the number of events on one path not on all paths.

We introduce a new Java annotation, @UntrackedField, that can
be used to mark some fields as untracked, i.e., not to be restored
during backtracking. Uncommenting the two comments in Fig-
ure 2 results in a solution that does get the intended values for the
counters. Before we added @UntrackedField to JPF, the only way
to maintain state not backtracked by JPF had been to use MJI (see
Section 2). However, MJI requires (i) marking the incrementCoun-

ters method as native and (ii) providing a separate class that im-
plements this method, which results in a longer and non-elegant
solution. Due to space limits, we cannot show this solution, but we
quote a commit message from Peter Mehlitz, a member of the JPF
core team: “[@UntrackedField is] much better than the crude MJI
based counters we used for testing so far, or any ad-hoc applica-
tion solutions.” We point out that @UntrackedField is not just for
counters; to quote Peter Mehlitz again: “@UntrackedField is quite
useful for [...] Coverage analysis. For instance, I had this case [...]
where I need a collection of objects rather than a counter.”

864



Definition: We discuss issues that arise from aliasing when ref-
erence fields are marked as untracked. Our implementation allows
both static and non-static fields, as well as primitive and reference
fields, to be marked as untracked. An object is untracked if all its
fields are untracked. If an untracked reference points to an object,
that object and all objects reachable from it are untracked. The ra-
tionale for this can be seen from the following example: consider
that we mark a field of type String as untracked; the object that
the field points to contains an array of characters, and restoring the
array state—even if the String itself is not restored—would not
produce the desired behavior.

Any number of untracked references can point to the same ob-
ject graph, and both untracked and regular (tracked) references can
point to the same object graph, but untracked references take prece-
dence over tracked references: if an object is reachable through
any untracked reference, it is untracked. If the execution aliases
a tracked object through some untracked field, that object and all
objects reachable from it will be untracked from there on. If there
are both untracked and tracked reference that point to the same ob-
ject, the execution can remove all tracked references, and the object
remains untracked. The execution can remove all untracked ref-
erences from an object to which no tracked reference points (and
thus the object gets garbage collected). However, if the execution
removes all untracked references from the object to which there are
some tracked references, the object state becomes undefined.

Implementation: Our implementation consists of a new pack-
age, gov.nasa.jpf.jvm.untracked, and several changes to exist-
ing classes. We made our changes to minimally affect existing JPF
code. In particular, we did not change the way that JPF stores the
state: JPF still stores all fields of all objects, even if some are un-
tracked. We only changed the way that JPF restores the state to
avoid restoring untracked fields and objects. Our implementation
allows one to dynamically change the status of any object to be
either tracked or untracked, although we find reasoning about such
changes complicated and recommend the users to make each object
either tracked or untracked during its entire lifetime. An alternative
implementation would be to not even store the fields and objects
that are untracked. Our code is integrated in JPF and publicly avail-
able [1].

4. UNDO BACKTRACKING
This extension focuses on speeding up backtracking, but it can

reduce the execution time as well as the backtracking time. The
key idea is to incrementally store and restore states in JPF. By de-
fault, JPF at each choice point stores and restores the entire JVM
state (except for the untracked part enabled by our Untracked State
extension): JPF stores the state when it encounters a choice point
and restores it whenever it backtracks to that point. For example,
in code from Figure 1, JPF stores the state whenever it executes
Verify.getInt to assign a new value to methodNum. In contrast,
Undo Backtracking does not store the state but only keeps track of
the state changes that happen between choice points and restores
the state by undoing these state changes.

Example: To illustrate, consider Figure 1 and an execution of
the method remove that removes value 3 from the balanced tree that
contains values 1 to 3. By default, JPF would store the entire tree
before the call (effectively serializing/linearizing the object graph
consisting of three nodes into an array of integers) and restore it
after the call to execute another method. With Undo Backtracking,
JPF observes the execution of remove and builds a list of fields that
are written during the execution. In this example, only the right

field of the node with value 2 is changed from referencing the node
with value 3 to being null. Thus, Undo Backtracking would need

to remember only one field change: Undo Backtracking remembers
the old value and restores it when the method finishes. (Changes are
undone in the reverse order of that in which they were performed,
so the list of changes is effectively a stack.) Undo Backtracking
reduces the execution time as it does not require JPF to clone the
integer array that encodes all fields of an object whose one field is
being written to.

Implementation: Undos/redos (sometimes called “(state) deltas”,
but we do not use that term to avoid confusion with our orthogonal
Delta Execution extension) are a known mechanism for restoring
state, e.g., for explicit-state exploration or time-traveling debug-
ging. We implemented Undo Backtracking by adding new classes
for storing and restoring states. JPF already provides a modular de-
sign for these operations, so we did not need to change any existing
code for them. However, we had to change the code that executes
field writes to add observers for building the undo objects. Our im-
plementation modifies the JPF interpreter; an alternative would be
to use instrumentation to observe the field writes [3].

We have submitted our implementation of Undo Backtracking
to the JPF developers to obtain comments on our design and code.
Currently, our code tracks changes only to heap objects and ar-
rays, and supports only single-threaded code. When our patch is
approved for inclusion into JPF, we plan to add support for multi-
threaded code by keeping track of the changes to object moni-
tors/locks. We also plan to add support for undos on stack frames;
currently, our code stores and restores stack frames fully, as done
by default in JPF.

Evaluation: We have evaluated Undo Backtracking on ten data
structures, similar to that used in Figure 1, but with drivers that gen-
erate data structures directly as object graphs rather than through
method sequences. Our initial experiments show that Undo Back-
tracking can speed up JPF from 1.42x to 6.62x. The speedup (or
slowdown) from Undo Backtracking depends on the relative ratio
of the state size and the number of state changes between consecu-
tive choice points. In our experience, the number of state changes
is almost always smaller than the state size, but it would be worth-
while to explore how to dynamically choose between Undo Back-
tracking or standard JPF store/restore for certain choice points.

5. DELTA EXECUTION
This extension can reduce overall state-exploration time in JPF.

Delta Execution exploits the fact that the execution paths for many
methods during state-space exploration overlap. The key idea of
Delta Execution is to share overlapping parts of multiple executions
and to separately execute only those parts that differ [4]. Delta
Execution introduces (1) a novel representation for a set of concrete
states (called ∆State) and (2) a collection of efficient operations
for that representation. This extension targets all three key JPF
operations (execution, backtracking, and state comparison).

Example: Consider the driver in Figure 1 for the exploration of
sequences of method calls over a range of values. In this driver,
t represents a single TreeMap state. Each method/value combina-
tion is executed separately against t and subsequently against each
new TreeMap state encountered during the exploration. In contrast,
Delta Execution enables the execution of a method/value combina-
tion against multiple TreeMap states at the same time. By combin-
ing multiple individual TreeMap objects into a single ∆State, Delta
Execution can perform operations on multiple states at once. It
splits a set of states into separate subsets at branch control points
(e.g., if statements), but only when necessary. For example, a split
occurs if for one subset of states a branch condition evaluates to
true, while it evaluates to false for the other subset. Naturally,
Delta Execution performs best when states are combined. Thus,

865



with Delta Execution, the driver would be modified [4] to merge all
TreeMap states that result at the end of each for-loop iteration back
into a single ∆State.

Implementation: Our implementation of Delta Execution uses
instrumented Java code that executes under a modified version of
JPF. (To automate instrumentation of Java code, we developed an
Eclipse plugin [3], but it is not relevant for this description.) We
extended JPF in a number of ways to support Delta Execution. For
example, to support the key operation of splitting mentioned above,
we introduced a new choice generator [1] internal to JPF. When
splitting a ∆State, a branch control point effectively becomes a
non-deterministic choice point, since both branches of execution
must ultimately be followed for their respective states. The new
choice generator facilitates the identification of which subset of
states is active during execution. Another example is the use of
special ∆Objects as part of our ∆State. ∆Objects represent sets
of values across multiple states. For example, the size field for
TreeMap from Figure 1 would be replaced with a special DeltaInt
object that would represent the value of size across all the states
in the current ∆State. Special arithmetic and relational operations
that perform on these sets of values were implemented as native
methods using JPF’s MJI interface.

Evaluation: We evaluated Delta Execution using a bounded-
exhaustive exploration as shown in Figure 1 and a non-exhaustive
exploration based on abstract matching [1]. For bounded-exhaustive
explorations of ten simple subject programs and one larger case
study, Delta Execution reduced total exploration time from 0.88x to
126.80x (with median 5.60x) [3]. For non-exhaustive explorations
of four subject programs, Delta Execution reduced exploration time
from 0.92x to 6.28x (with median 4.52x) [3].

6. MIXED EXECUTION
The key idea of Mixed Execution is to execute some parts of the

program being checked not on JPF but directly on the host JVM [5].
Of the three main JPF operations on state, this extension addresses
only execution; JPF still performs backtracking and state compar-
ison as usual. Mixed Execution executes on the host JVM only
deterministic blocks, i.e., parts of the execution that have no thread
interleavings or non-deterministic choices. Mixed Execution trans-
lates the state from JPF to JVM at the beginning of a block and
from JVM to JPF at the end of a block. These two translations in-
troduce an overhead, but the speedup obtained by executing on the
host JVM can easily outweigh the slowdown due to the translations.
We also developed and implemented lazy translation, an optimiza-
tion that speeds up Mixed Execution by translating only the parts
of the state that an execution dynamically depends on rather than
always translating the entire state reachable from a set of roots.

Example: In the TreeMap driver from Figure 1, executions of the
put, remove, and get methods manipulate the tree (passed as the
implicit this argument). JPF uses a special JVM state representa-
tion to efficiently store/restore and compare states. Without Mixed
Execution, JPF executes all three methods on this special represen-
tation, which slows down every field read and write. However, note
from Figure 1 that JPF needs to store/restore and compare the state
of the tree only at the beginning and at the end of these methods,
namely each method can execute atomically.

Mixed Execution executes these methods on the host JVM in
three steps. First, At the beginning of each method execution,
Mixed Execution translates the objects reachable from the method
parameters (including the tree reachable from this) from the JPF
representation into the host JVM representation. (Lazy translation
does not translate all objects at the beginning but only on demand
during the execution.) Second, Mixed Execution then invokes the

method on the translated state in the host JVM. The method execu-
tion can then modify this state. Third, at the end of each method
execution, Mixed Execution translates the state back from the host
JVM representation into the JPF representation. JPF then compares
whether it has already explored the resulting state, appropriately
backtracks the execution (restores the state), and the process con-
tinues.

The speedup (or slowdown) that Mixed Execution achieves de-
pends on the size of the state and the length of the method execu-
tion. The smaller the state is, the less Mixed Execution has to copy
between the JPF and JVM representations. (Lazy translation fur-
ther reduces this cost such that it does not depend on the size of the
state at the beginning of the method but on the size of the state that
the execution accesses.) Also, the longer the execution is, the more
Mixed Execution saves by executing on JVM rather than on JPF.

Implementation: We implemented Mixed Execution by modi-
fying the dynamic dispatch in JPF and providing state translations.
Our implementation uses MJI in a novel way: while MJI was origi-
nally designed for “components that are not property-relevant” (see
Section 2), Mixed Execution uses MJI to delegate the execution
from the state-tracked JPF into the non-state tracked host JVM even
for components that are property-relevant. Indeed, Mixed Execu-
tion executes on the host JVM some program code that can modify
the program state and thus affect a property, for example assertion
violation. In contrast, the previous use of MJI in JPF did not ex-
ecute such program code on JVM and did not translate the state
between JPF and JVM representations. The pseudo-code of the
translation algorithms (including lazy translation) and more details
about the implementation are available elsewhere [3, 5].

Evaluation: We evaluated Mixed Execution and lazy transla-
tion on six subject programs that use JPF to generate tests for data
structures, similar to Figure 1. The experimental results show that
Mixed Execution can improve the overall time for state exploration
up to 1.73x, while improving the time for execution of determinis-
tic blocks up to 3.05x. Additionally, lazy translation can improve
the eager Mixed Execution up to 1.35x. We also evaluated Mixed
Execution on a case study that uses JPF to find a bug in a fairly
complex routing protocol, AODV, and the results show a speedup
of up to 1.41x.

Acknowledgments. We thank Peter Mehlitz, Corina Pasareanu,
and Willem Visser for help with JPF; Sasa Misailovic and Alek-
sandar Milicevic for comments on our work; and Ahmed Sobeih
for work on mixed execution. This work was partially supported by
the NSF awards #CCF-0702680, #CNS-0615372, #CNS-0613665,
and #IIS-0438967, and a gift from Microsoft. Milos and Tihomir
did a part of this work as undergraduate summer interns at the In-
formation Trust Institute at the University of Illinos.

7. REFERENCES
[1] Java PathFinder web site.

http://javapathfinder.sourceforge.net.
[2] S. Anand, C. S. Pasareanu, and W. Visser. JPF-SE: A symbolic

execution extension to Java PathFinder. In TACAS, 2007.
[3] M. d’Amorim. Efficient Explicit-State Model Checking of Programs

with Dynamically-Allocated Data Structures. Ph.D., University of
Illinois at Urbana-Champaign, Urbana, IL, Oct. 2007.

[4] M. d’Amorim, S. Lauterburg, and D. Marinov. Delta execution for
efficient state-space exploration of object-oriented programs. In
ISSTA, pages 50–60, 2007.

[5] M. d’Amorim, A. Sobeih, and D. Marinov. Optimized execution of
deterministic blocks in Java PathFinder. In ICFEM, 2006.

[6] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model
checking programs. Automated Software Engineering, 10(2):203–232,
April 2003.

866


