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Abstract

Periodic oscillations play a key role in cell physiology from the cell cycle to circadian clocks. The interplay

of positive and negative feedback loops among genes and proteins is ubiquitous in these networks. Often,

delays in a negative feedback loop and/or degradation rates are a crucial mechanism to obtain sustained

oscillations. How does nature control delays and kinetic rates in feedback networks? Known mechanisms

include proper selection of the number of steps composing a feedback loop and alteration of protease

activity, respectively. Here, we show that a remarkably simple means to control both delays and effective

kinetic rates is the employment of DNA binding sites. We illustrate this design principle on a widely

studied activator-repressor clock motif, which is ubiquitous in natural systems. By suitably employing

DNA target sites for the activator and/or the repressor, one can switch the clock “on” and “off” and

precisely tune its period to a desired value. Our study reveals a design principle to engineer dynamic

behavior in biomolecular networks, which may be largely exploited by natural systems and employed for

the rational design of synthetic circuits.

Introduction

Periodic oscillations are essential for biological phenomena such as cell cycle regulation and circadian

rhythms [1, 2]. Several studies attribute these oscillations to bio-molecular clocks composed of genes

arranged in feedback networks [3,4]. Of the several arrangements that may produce oscillations, activator-

repressor motifs are recurrent in several natural systems [3,5]. These motifs comprise an activator module

that is self activated and that activates a repressor module. The repressor module, in turn, represses the

activator (Figure 1a). This motif has been shown to be remarkably robust to biological noise [5], leading
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to synthetic implementations as model systems to study natural clocks [6–9].

Independently of the specific topology of the network, the presence of delays in feedback loops has

long been recognized as a key mechanism to obtain periodic behavior and to tune the clock period (see

the review by [1] and the study by [10]). Similarly, a key (related) parameter controlling periodic behavior

is the relative value among protein decay rates [11, 12]. For the activator-repressor motif, for example,

analytical studies have demonstrated that a crucial mechanism for sustained oscillations is the time-scale

difference between the activator and the repressor dynamics, that is, the repressor dynamics should be

sufficiently slower than the activator dynamics [13, 14]. This is, to some extent, qualitatively similar to

having a delay in the negative feedback from the repressor to the activator. How does nature realize and

tune delays and kinetic rates in feedback motifs? Known ways to increase a delay in a feedback or to

make the feedback slower include either decreasing the decay rates of species involved in the negative

feedback and/or increasing the number of steps in the feedback loop (see, for example, [10, 14, 15]).

Recent studies of modularity in biomolecular circuits have revealed that excess of DNA targets to a

protein can slow down the protein’s dynamics [16, 17]. This effect, called retroactivity, is a consequence

of changes in the dynamics of the system due to the sequestration of the protein from the network of

interactions composing the system. Basically, the protein is “busy” in binding the targets and hence takes

longer to perform its function in the system to which it belongs. In the context of modularly designing

circuits in synthetic biology, this is an undesired effect (similar to impedance in electrical circuits) that

occurs when two modules are interconnected by a transcription factor of one module binding to DNA

target sites in the other module. From the perspective of a natural system, however, this loading effect

may provide a simple method to tune delays and change the effective kinetic rates without changing the

“hardware” of the network.

In this work, we demonstrate that indeed DNA target sites can be employed as a powerful design

parameter to finely tune and control the dynamic behavior of a biomolecular circuit, the activator-

repressor clock of Figure 1a in particular. Specifically, we illustrate how one can change the dynamics

of an activator-repressor clock utilizing DNA binding sites (load) with affinity to each of the species.

Initially, a mechanism to switch an oscillator “on” or “off” is shown depending on which node (the

activator or repressor) the load is being added to. Robustness of this behavior to intrinsic noise is verified

by employing stochastic simulation of a mechanistic model of the clock. Finally, a method to tune the

period of the clock by employing a carefully chosen amount of load to both nodes is demonstrated.
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(a) Activator-Repressor Motif (c) Activator-Repressor with Repressor Binding Sites

(b) Activator-Repressor with Activator Binding Sites (d) Activator-Repressor with Both Binding Sites

Figure 1. Illustration of the systems analyzed in this paper. Diagram (a) illustrates the
activator-repressor motif. Diagram (b) and (c) illustrate the systems after the addition of DNA binding
sites with affinity to the activator and the repressor, respectively. Diagram (d) illustrates the case in
which both types of DNA binding sites are present.

Results

We consider a general model for a two-component clock incorporating both positive and negative feedback

loops based on the activator-repressor configuration of [6] and illustrated in Figure 1a. Oscillations for

activator-repressor clocks often arise from Hopf bifurcation, wherein a stable equilibrium point bifurcates

into an unstable equilibrium and a stable periodic orbit when a key parameter is changed [9,13,14,18,19].

In the models surveyed in the literature, the fundamental mechanism responsible for this oscillatory

behavior is well captured by a reduced two-dimensional model that describes the rate of change of the

activator and repressor concentrations. This model is obtained by taking into account that the period of

oscillations occurs in a timescale slower than the dynamics of multimerization, binding and dissociation

interactions, so that quasi-steady state approximations can be made [6, 9, 19]. Additionally, it has been

shown that transcription and translation can be lumped into a one-step expression model with no impact

to the dynamics of interest [5,14]. Following these prior works, we also focus on a reduced two-dimensional

model.

In the system of Figure 1a, activator protein A promotes its own expression as well as the expression

of repressor protein R. Protein R, in turn, represses expression of protein A. Let Km1 be the apparent

dissociation constant between the activator protein and its DNA binding site and Km2 be the apparent

dissociation constant between repressor protein and its DNA binding site [20] (see SI for details). For

any species X, we denote in italics X its concentration. Consider the concentration of A and R given in

units of their respective dissociation constants a := A/Km1 and r := R/Km2. Considering a one-step
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model for protein expression, the dynamics for this system can be represented by

ȧ = −δAa+ f1(a, r)

ṙ = −δRr + f2(a),

(1)

in which δA and δR model protein decay (due to either dilution or degradation) and functions f1 and f2

model expression rates and take the form of the standard Hill functions [2]

f1(a, r) =
β1a

m + β2
1 + am + rn

and f2(a) =
β3a

m + β4
1 + am

, (2)

in which β1 and β3 are the maximal expression rates, β2 and β4 represent the basal expression, and m

and n are the Hill coefficients of the affinity between the proteins A and R and their respective binding

sites. The mathematical derivation of this reduced nondimensional model is given in the SI. In the sequel,

we refer to system (1) as the isolated system.

We assume that the values of the parameters are such that system (1) has a unique equilibrium point.

We give conditions for which this assumption holds when either m = 1 orm = 2 in the SI. In particular, it

is shown that when m = 1, the system always presents a unique and stable equilibrium and, therefore, no

oscillatory behavior can be observed. When m = 2 the uniqueness of the equilibrium is guaranteed under

the following conditions: (i) the value of β2 must be sufficiently smaller than the maximal expression rate

of the activator, which is proportional to β1; (ii) β2 must be non-zero; (iii) the maximal expression rate

of the repressor must be larger than the maximal expression rate of the activator; (iv) the smaller β2

becomes, the smaller β4 must be. In the general case (m > 2), results related to existence and uniqueness

of equilibria require a case by case analysis, which is out of the scope of this work. The results from

this paper, do not explicitly impose conditions on the Hill coefficients m and n and only assume the

uniqueness of the equilibrium (a∗, r∗) for system (1).

Since system (1) is a two-dimensional system, Poincaré-Bendixson theorem [21] can be employed to

obtain conditions for the existence of a periodic orbit. Specifically, one must show that the trajectories

of the system are bounded in a compact set and that the equilibrium point is unstable and not locally a

saddle.

The following proposition shows that the trajectories of system (1) are bounded in a compact set.

Proposition 1. There exists a constant D ∈ R+ such that the set K = {(a, r) ∈ R
2
+|a2 + r2 ≤ D2} is a
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positively invariant set under the vector field defined by system (1) and its equilibrium (a∗, r∗) ∈ K.

Proof. Note that f1(a, r) and f2(a) are positive bounded functions in the domain R
2
+. Let M1 =

sup(a,r)∈R
2
+
{f1(a, r)} andM2 = supa∈R+

{f2(a)}. First, notice that for a = 0, ȧ > 0 according to (1). Sim-

ilarly, for r = 0, ṙ > 0. The quadrant R2
+ is, therefore, a positively invariant set. Define δ∗ := min{δA, δR}

and M := max{M1,M2}. Consider the positive definite function v(a, r) = a2/2 + r2/2. Using the chain

rule, we obtain

dv(a, r)

dt
= −δAa2 − δRr

2 + af1(a, r) + rf2(a)

≤ −δ∗a2 − δr2 + aM + rM

= −δ∗
(

a− M

2δ∗

)2

− δ∗
(

r − M

2δ∗

)2

+
M2

2(δ∗)2
.

From the above, it is clear that v̇(a, r) < 0 on the exterior of a circle with center (M/2δ∗,M/2δ∗) and

radius
√
2M/2δ∗. Therefore, for any D > max{

√
2M/δ∗, a∗, r∗}, v̇(a, r) < 0 along the arc defined by the

boundary of K. Hence, K is a positively invariant set that contains the equilibrium (a∗, r∗).

To show that the equilibrium point is unstable and not locally a saddle, consider the Jacobian matrix

of system (1) calculated at the equilibrium:

J0 =







−δA +
∂f1(a

∗, r∗)

∂a

∂f1(a
∗, r∗)

∂r
∂f2(a

∗)

∂a
−δR






, (3)

and denote by tr(J0) and det(J0) the trace and the determinant of J0, respectively. The eigenvalues of

the Jacobian are given by

λ1,2 =
tr(J0)±

√

tr(J0)2 − 4 det(J0)

2
,

hence the equilibrium point is unstable and not locally a saddle if tr(J0) > 0 and det(J0) > 0. Given

the specific expression of the Jacobian in (3), the equilibrium (a∗, r∗) of system (1) is unstable and not

locally a saddle if the following conditions are fulfilled:

(i) δR

(

δA − ∂f1(a
∗, r∗)

∂a

)

− ∂f1(a
∗, r∗)

∂r

∂f2(a
∗)

∂a
> 0 (det(J0) > 0);

(ii)
∂f1(a

∗, r∗)

∂a
− δA − δR > 0 (tr(J0) > 0).
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System (1) satisfying conditions (i) and (ii) presents periodic orbits and will be referred to as Func-

tional Clock.
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Figure 2. Effect of the trace of the Jacobian on the stability of the equilibrium. The above plots
illustrate the trajectories of system (1) for both Functional and Non-Functional Clocks. The parameters
in the simulation were β1 = β3 = 100, β2 = .04, β4 = .004 and δA = 1. In the Functional Clock,
δR = 0.5 whereas in the Non-Functional Clock, δR = 1.5. Parameters β1 and β3 were chosen to give
about 500-2000 copies of protein per cell for activated promoters. Parameters β2 and β4 were chosen to
give about 1-10 copies per cell for non-activated promoters.

Condition (ii) highlights a crucial design principle for the activator-repressor clock. In fact, assume

that
∂f1(a

∗, r∗)

∂a
− δA > 0, which is satisfied if the self activation is sufficiently strong. Then, condition

(ii) can be satisfied if
∂f1(a

∗, r∗)

∂a
− δA is sufficiently larger than δR. This, in turn, implies that the

timescale of the activator dynamics are sufficiently faster than that of the repressor dynamics. Hence,

a central mechanism for the appearance of a limit cycle is a fast activator dynamics compared to the

repressor dynamics. Retroactivity on a species due to downstream binding sites has been shown to slow

down the species dynamics [16, 17]. It follows that downstream binding sites can be employed to vary

the relative speeds between the activator and the repressor dynamics. Hence, we will also consider the

non-oscillating version of system (1) that does not satisfy condition (ii), referred to as Non-Functional

Clock. The non-functional clock is given by system (1) in which, in addition to condition (i), the following

condition is satisfied:

(ii)’ 0 <
∂f1(a

∗, r∗)

∂a
− δA < δR.

Figure 2 illustrates how conditions (ii) and (ii)’ generate a Functional and a Non-Functional Clock,

respectively, by changing the value of parameter δR.
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In this work, we study how the addition of binding sites to the repressor or activator can switch

system (1) between the Functional Clock and the Non-Functional Clock behavior, with no change to the

parameters of the original system (1).

Switching the clock off by loading the activator

In this section, we show the effect of additional DNA binding sites for the activator in a Functional Clock.

Specifically, consider system (1) satisfying conditions (i) and (ii). The addition of DNA binding sites qA

with affinity to the activator A, which binds as homomers, illustrated in Figure 1b, is modeled by the

following chemical reaction

mA+ qA
ka1−−⇀↽−−
kb1

D1, (4)

in which D1 represents the complex formed by A and q. We will assume that the affinity between

these promoter sites and the activator protein A is given by the apparent dissociation constant Km1 =

m

√

kb1/ka1, identical to the affinity of A to the promoters in the isolated clock. Additionally, we assume the

total concentration of binding sites q̄A = (qA +D1)/Km1 to be constant. Let the complex concentration

D1 be given in units of Km1 using the nondimensional variable d1 = D1/Km1. The dynamics of the

system after nondimensionalization are given by

ȧ = −δAa+ f1(a, r) +mG1δAd1 −mG1δAa
m(q̄A − d1)

ṙ = −δRr + f2(a)

ḋ1 = −G1δAd1 +G1δAa
m(q̄A − d1),

(5)

in which G1 = kb1/δA models the timescale separation between the dissociation rate and the protein

degradation. A mathematical derivation for this model is found in the SI. Since binding and unbinding

reactions can occur in the order of milliseconds, they are in a timescale significantly faster than expression

and degradation of proteins, which occur in the order of minutes [2]. As a result, parameter G1 is very

large. This fact allows to employ a singular perturbation argument [22, 23] to facilitate the analysis of
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this system. To this end, define the small parameter ǫ := 1/G1 and re-write system (5) as

ȧ = −δAa+ f1(a, r) +
m

ǫ
(δAd1 − δAa

m(q̄A − d1))

ṙ = −δRr + f2(a)

ḋ1 =
1

ǫ
(−δAd1 + δAa

m(q̄A − d1)) .

(6)

In order to reduce this system to standard singular perturbation form, we perform the change of variables

y = md1 + a, so that system (6) becomes

ẏ = −δA(y −md1) + f1(y −md1, r) (7)

ṙ = −δRr + f2(y −md1) (8)

ǫḋ1 = −δAd1 + δA(y −md1)
m(q̄A − d1), (9)

which is in standard singular perturbation form. Setting ǫ = 0 one obtains from (9) the solution d1 =

q̄Aa
m

am+1 := φ1(a). This equation defines the slow manifold, which can be shown to be locally exponentially

stable (see SI). Hence, system (7) is well approximated by the reduced system obtained by replacing d1

by its expression on the slow manifold φ1(a). Specifically, we have that

−δAa+ f1(a, r) = ẏ = mḋ1 + ȧ = m
dφ1(a)

da
ȧ+ ȧ,

from which we obtain that

ȧ =
1

1 +mdφ1(a)
da

(−δAa+ f1(a, r)).

Denoting

SA(a, q̄A) :=
1

1 + dφ1(a)
da

=
1

1 +mq̄Aam−1(1 + am)−2
,

the reduced system in the original coordinates is given by

ȧ = SA(a, q̄A) (−δAa+ f1(a, r))

ṙ = −δRr + f2(a).

(10)
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Since SA(a, q̄A) 6= 0, the equilibria of (10) are the same as the ones of (1). Therefore, if (1) has a unique

equilibrium (a∗, r∗), this will also be a unique equilibrium of (10). Also, we have that 0 < SA(a, q̄A) ≤ 1

and that SA(a, q̄A) is a strictly monotonically decreasing function of the amounts of DNA binding sites

q̄A. Hence, in system (10), the dynamics of the activator have been slowed down compared to the original

isolated system (1). That is, the effective kinetic rate of the activator dynamics is now decreased by a

factor equal to SA(a, q̄A). Note additionally that

lim
q̄A→∞

SA(a, q̄A) = 0 and SA(a, 0) = 1. (11)

The Jacobian of system (10) calculated at the equilibrium is given by

JA(q̄A) =







S∗

A(q̄A)

(

−δA +
∂f1(a

∗, r∗)

∂a

)

S∗

A(q̄A)
∂f1(a

∗, r∗)

∂r
∂f2(a

∗)

∂a
−δR






, (12)

in which we use the shorthand notation S∗

A(q̄A) := SA(q̄A, a∗). We have det(JA(q̄A)) = S∗

A(q̄A) det(J0) >

0 from condition (i) and that

tr(JA(q̄A)) = S∗

A(q̄A)

(

−δA +
∂f1(a

∗, r∗)

∂a

)

− δR.

Hence, while the addition of load does not change the sign of the determinant of the Jacobian, it can

change the sign of the trace. For large enough load, because of (11), the trace becomes negative and the

equilibrium point becomes stable. Hence, the periodic orbit disappears (see the SI for details). Figure 3

a shows the effect of load on system (5).

For the value of q̄A for which tr(JA(q̄A)) = 0, the eigenvalues of the Jacobian are imaginary, hence the

system goes through a Hopf bifurcation. A continuation study shows that the Hopf bifurcation is present

also in the full three-state system (5). In particular, the amounts of load needed to switch the clock off is

about four times the amplitude of the activator oscillations. For the specific choice of parameters in this

example, the amount of load required to stop this clock is of the same order of the dissociation constant

Km1, which usually amounts to a low concentration. For example, for the NRI activator used in the

oscillator in [6], Km1 ≈ 10pM [24] which amounts to approximately 10 copies of the binding site per cell

in E. coli.
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Figure 3. (a) Load to the Activator can stop a Functional Clock. The plots illustrate the trajectories of
system (5) with two different amounts of load. The parameters in the simulation were β1 = β3 = 100,
β2 = .04, β4 = .004, δA = 1, δR = 0.5, G1 = 100, m = 2 and n = 4. The amount of DNA binding sites in
the system with no load is q̄A = 0 whereas in the system with activator load is q̄A = 20. (b) Bifurcation
diagram with load as parameter. A continuation of the equilibrium as a function of the load parameter
q̄A shows that, for this set of parameters, the amount of load to the activator required to stop the clock
is on the order of the affinity coefficient Km1, with the bifurcation occurring at q̄A = 2.17. The analysis
was made on the full system (5) with the same parameters as before. The solid lines indicate a stable
trajectory (the limit cycle to the left side of the Hopf bifurcation point and the equilibrium point to the
right side of the Hopf bifurcation point). The dotted line indicates an unstable equilibrium point.

Switching the clock on by loading the repressor

We now consider a Non-Functional Clock and show how it can be turned into a Functional Clock by

adding load to the repressor. Specifically, consider system (1) satisfying conditions (i) and (ii)’. We

model here the addition of DNA binding sites qR with affinity to the repressor R, similar to the binding

sites found in the original clock. This interaction, illustrated in Figure 1c, is modeled by the following

chemical reaction

nR+ qR
ka2−−⇀↽−−
kb2

D2, (13)

in which D2 represents the complex formed by the R and qR. Let the affinity between the repressor and

the binding sites is given by the apparent dissociation constant Km2 = n

√

kb2/ka2. Let d2 := D2/Km2 be

the nondimensional concentration of complexes and q̄R = (qR + D2)/Km2 be the total nondimensional
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concentration of binding sites. The nondimensionalized dynamics of the system are given by

ȧ = −δAa+ f1(a, r)

ṙ = −δRr + f2(a) + nδRG2d2 − nδRG2r
n(q̄R − d2)

ḋ2 = −δRG2d2 + δRG2r
n(q̄R − d2),

(14)

in which G2 := kb2/δR models timescale separation between the dissociation rate of the complex D2 and

the repressor decay rate. It is possible to reduce the order of system (14) by a similar technique employed

in the previous section. To this end, define ǫ := G−1
2 . Define also the variable y := r + nd2, system (14)

can be taken to the standard singular perturbation form

ȧ = −δAa+ f1(a, y − nd2)

ẏ = −δR(y − nd2) + f2(a)

ǫḋ2 = −δRd2 + δR(y − nd2)
n(q̄R − d2).

(15)

By setting ǫ = 0, one obtains the reduced system in the original coordinates, which, since the slow

manifold is locally exponentially stable (see the SI), is a good approximation of system (14). This

reduced system is given by

ȧ = −δAa+ f1(a, r)

ṙ = SR(r, q̄R)(−δRr + f2(a))

(16)

in which

SR(r, q̄R) =
1

1 + nq̄Rrn−1(1 + rn)−2
.

Since SR(r, q̄R) 6= 0, the equilibrium points of (16) are the same as the ones of the isolated system (1).

Therefore the unique equilibrium point (a∗, r∗) of (1) is also the unique equilibrium point of (16). We

employ the shorthand notation S∗

R(q̄R) := SR(r, q̄R). It is easy to verify that 0 < S∗

R(q̄R) ≤ 1 and that

S∗

R(q̄R) is a strictly monotonically decreasing function of q̄R. Furthermore, we have that

lim
q̄R→∞

S∗

R(q̄R) = 0 and S∗

R(0) = 1. (17)



12

Hence, the addition of the load to the repressor makes the dynamics of the repressor slower compared to

that of the isolated system (1). That is, the repressor effective kinetic rates are now smaller by a factor

equal to S∗

R(q̄R), which can be arbitrarily decreased by increasing the amounts of sites q̄R. The Jacobian

of system (16) calculated at the equilibrium (a∗, r∗) is given by

JR(q̄R) =







−δA +
∂f1(a

∗, r∗)

∂a

∂f1(a
∗, r∗)

∂r

S∗

R(q̄R)
∂f2(a

∗)

∂a
−S∗

R(q̄R)δR






. (18)

Thus, the addition of load to the repressor does not change the sign of the determinant of the Jacobian

as det(JR(q̄R)) = S∗

R(q̄R) det(J0) > 0. However, it can change the sign of the trace

tr(JR(q̄R)) = −δA +
∂f1(a

∗, r∗)

∂a
− S∗

R(q̄R)δR

from negative to positive as condition (ii)’ is satisfied and condition (17) holds. Hence, the equilibrium

point can become unstable with sufficient addition of the load and the system begins oscillating (see the

formal derivations in the SI). Figure 4a shows the effect of load on system (14). Note that the parameters

were chosen so that the system satisfies conditions (i) and (ii)’.

When tr(JR(q̄R)) = 0, a Hopf bifurcation occurs since both eigenvalues are imaginary. A continuation

analysis can be used to show that this Hopf bifurcation is also present in the full system (14). Figure

4b illustrates that the amount of load required for the Hopf bifurcation is given by q̄R = 1.32 in units of

Km2. Hence, the amounts of load needed to switch the clock on is on the same order of the amounts of

repressor at the equilibrium. For the LacI repressor employed in [6], Km2 ≈ 1pM [25], which amounts

few copies per cell of the load.

Figure 4c shows that the addition of load increases the period of oscillation. This suggests the

possibility that the load can be employed not only for switching an oscillator “on” and “off” but for also

tuning the period. However, the increase in period is accompanied by an increase in the amplitude of

the oscillation (Figure 4b), which may be undesired. We discuss how the period can be changed while

maintaining the amplitude through simultaneous addition of activator and repressor loads in Section

“Tuning the Clock period”.
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Figure 4. (a) Load to the Repressor triggers a Non-functional Clock. The plots illustrate the
trajectories of system (14) with two different amounts of load. The parameters in the simulation were
β1 = β3 = 100, β2 = .04, β4 = .004, δA = 1, δR = 1.5, G2 = 100, m = 2 and n = 4. The amount of DNA
binding sites in the system with no load is q̄R = 0 whereas in the system with repressor load is q̄R = 20.
(b) Hopf Bifurcation with q̄R as a parameter. A continuation of the equilibrium as a function of the
load parameter q̄R shows that, for this set of parameters, the amount of load required to activate the
clock is in the same order of magnitude as that of the the affinity coefficient Km2, with bifurcation
occurring at q̄R = 1.32. This plot was obtained via continuation of system (14) with the same
parameters as before. Solid lines indicate a stable trajectory (limit cycle to the right of the Hopf
bifurcation and the equilibrium to its right). The dotted line indicates an unstable equilibrium point.
(c) Period increases as a function of the repressor load q̄R.

Stochastic simulations of the switching behavior

In order to understand how robust the switching behavior is to intrinsic noise, we employ stochastic

simulations of the system. An implementation of the Gillespie algorithm [26] was employed to produce

realizations of trajectories of an activator repressor clock in which both activator and repressor bind to

DNA as dimers (m = n = 2).

In these simulations, we assumed the presence of 5 copies of each activator and repressor gene to

emulate the situation in which the circuit is present in a low copy number plasmid. Expression rates

and degradation rates were chosen based on the values used in the deterministic models to obtain a

functional and a non-functional oscillator. The association and dissociation rates between proteins and
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dimers were chosen so that the apparent dissociation constants Km1 = Km2 = 1, which consider a

bacterial transcription factor with apparent dissociation constant on the order of picomolars. A detailed

description of this model is given in the SI.

Figure 5a shows that addition of binding sites with affinity to the activator can eliminate oscillations

from a functional clock. Figure 5b shows how the addition of binding sites with affinity to the repressor

can generate sustained more robust oscillations in a non-functional clock. In both situations, the amount

of loads employed to switch the clock is on the order of 102 − 103 copies of binding sites per cell, which

can be achieved by inserting small arrays in high copy number plasmids.
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Figure 5. Effect of the load on clock holds under intrinsic noise. The plots above are stochastic
realizations of an activator-repressor clock with m = n = 2 and containing 5 copies of activator and
repressor genes. (a) Functional clock stops with load to the activator. We show that, with the chosen
parameters, it is possible to stop the clock with an amount of load that is roughly 100 times higher than
the copy number of the circuit. (b) Load to the activator leads to robust oscillation. We show that, the
it is possible to generate robust oscillation with roughly 400 times the number of circuit genes with the
choice of parameters above.

Tuning the clock period

As noticed in Figure 4c, addition of binding sites to the repressor increases the period of the limit cycles

of the system. However, this may cause an increase in the amplitude of the cycle (Figure 4b), which may

be undesirable. In this section, we illustrate how the simultaneous addition of load to both the activator

and repressor can be employed to vary the period as desired with little impact on the cycle amplitude.

Consider the nondimensional model for the system with DNA binding sites for both the activator and
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the repressor as shown in Figure 1d:

Ȧ = −δAA+ g1(A,R) + ku1D1 − kb1A
m(qA,T −D1)

Ṙ = −δRR+ g2(A) + ku2D2 − kb2R
n(qR,T −D2)

Ḋ1 = −k′u1D1 + k′b1A
m(qA,T −D1)

Ḋ2 = −k′u2D2 + k′b2R
n(qR,T −D2).

(19)

Here, kb1, ku1 model the association and dissociation rates between the activator protein and its corre-

sponding DNA binding site qA, kb2, ku2 model the association and dissociation rates between the repressor

protein and its corresponding DNA binding site qR, g1(A,R), g2(A) represent the dimensional version

of the Hill functions (see SI), and qA,T , qR,T represent the total concentration of activator and repressor

DNA sites.

This system can be nondimensionalized, by setting the nondimensional states a = A/Km1, r =

R/Km2, d1 = D1/Km1 and k2 = D2/Km2, as shown in the SI, to obtain system

ȧ = −δAa+ f1(A,R) +mG1δAd1 −mG1δAa
m(q̄A − d1)

ṙ = −δRr + f2(A) + nG2δRd2 − nG2δRr
n(q̄R − d2)

ḋ1 = −G1δAd1 +G1δAa
m(q̄A − d1)

ḋ2 = −G2δRd2 +G2δRr
n(q̄R − d2),

(20)

in which f1(A,R) and f2(A) are the nondimensional Hill functions as given in expressions (2), q̄A =

qA,T /Km1 and q̄R = qR,T /Km2, and G1 and G2 are as defined before. In order to employ a singular

perturbation argument similar to what was done in the previous sections, define ǫ = 1/G1, ν = G2/G1

to model the explicit timescale separation present in this system. Define also the following change of

variables y1 := a+md1 and y2 = r+nd2. Substituting these in (20), one obtains the system in standard
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singular perturbation form:

ẏ1 = −δA(y1 −md1) + f1(y1 −md1, y2 − nd2)

ẏ2 = −δR(y2 − nd2) + f2(y1 −md1)

ǫḋ1 = −δAd1 + δA(y1 −md1)
m(q̄A − d1)

ǫḋ2 = −νδRd2 + νδR(y2 − nd2)
n(q̄R − d2).

(21)

By setting ǫ = 0, one obtains the slow manifold

(d1, d2) =

(

q̄A
am

am + 1
, q̄R

rn

rn + 1

)

:= (φ1(a), φ2(r)) .

Since the slow manifold is locally exponentially stable (see SI), the reduced system is a good approximation

of system (21). Since ẏ1 = ȧ + mdφ1(a)
da ȧ and ẏ2 = ṙ + ndφ2(r)

dr ṙ, this reduced system, in the original

variables, takes the form

ȧ = SA(a, q̄A) (−δAa+ f1(a, r))

ṙ = SR(r, q̄R) (−δRr + f2(a)) ,

(22)

in which

SA(a, q̄A) =
1

1 +m
dφ1(a)

da

=
1

1 + q̄Am2am−1(1 + am)−2

and

SR(r, q̄R) :=
1

1 + n
dφ2(r)

dr

=
1

1 + q̄Rn2rn−1(1 + an)−2
.

Let the activator and repressor loads be added at a fixed ratio ρ = q̄A/q̄R and define F (a, r, q̄R) :=

SR(r, q̄A/ρ)

SA(a, q̄A)
. System (22) can be re-written as

ȧ = (−δAa+ f1(a, r)) SA(a, q̄A)

ṙ = (−δRr + f2(a))SA(a, q̄A)F (a, r, q̄A).

(23)
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Since SA(a, q̄A) > 0, this system is orbitally equivalent [18] to the system

ȧ = (−δAa+ f1(a, r))

ṙ = (−δRr + f2(a))F (a, r, q̄A).

(24)

Hence, if system (23) has a periodic orbit, system (24) will have a corresponding periodic orbit with

identical trajectories. The corresponding periodic signals, however, will have different periods whose

values depend on function SA(a, q̄A). Thus, if the value of F (a, r, q̄A) does not appreciably change

when q̄A changes, the addition of the load will affect the period of oscillations without impacting their

amplitudes. Since

∂F (a, r, q̄A)

∂q̄A
=

(

m2am−1

(1 + am)2
− ρ

n2rn−1

(1 + rn)2

)

(1 + rn)4

((1 + rn)2 + ρq̄An2rn−1)
2 , (25)

we have that for large values of q̄A,
∂F (a,r,q̄A)

∂q̄A
≈ 0. Under these conditions, since the function SA(a, q̄A)

is a monotonically decreasing function of q̄A, the periodic orbits of system (23) will display decreasing

periods as q̄A increases, while maintaining the same amplitude, due to orbital equivalence between system

(24) and system (23) (see the SI for a formal proof).

Figure 6a illustrates this result. The addition of repressor load to a functioning clock increases the

period but also leads to a higher amplitude. This effect in the amplitude is not observed when both

activator and repressor loads are added. Figure 6b shows this behavior for increasing amount of load.

When only repressor load is added, there is an increase in the period of the limit cycles along with an

increase in the amplitude, as it was seen in the previous section (Figure 4(b) and (c)). However, if a

sufficient amount of activator load is simultaneously added along with the repressor load, the increase of

the period occurs with very little impact on the amplitude of oscillations.

Discussion

Effective kinetic rates are crucial parameters for the dynamic behavior of biomolecular networks. In

particular, delays in negative feedback loops have been shown to be a fundamental mechanism for periodic

oscillations both in electronic circuits [27] and in biomolecular networks [1, 10, 15]. Research has shown

that in natural systems these delays are realized by the number of steps, such as transcription, translation,
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Figure 6. Tuning the period without affecting the amplitude. (a) When compared to the isolated
system, the amplitude of oscillations in system (20) increases when we add exclusively DNA binding
sites with affinity to the repressor (q̄A = 0, q̄R = 10). However, if we simultaneously add DNA binding
sites with affinity to the activator, the amplitude is not affected as much (q̄A = q̄R = 10). (b) The period
of system (20) can be changed with no effect on the amplitude when DNA binding sites with affinity to
both the repressor and the activator are added simultaneously. The upper plot shows that a similar
increase of period observed via the addition of repressor load can be obtained via the simultaneous
addition of activator and repressor load. This second method has the advantage of not generating an
increase in the amplitude, as shown in the lower plot. In this simulation we assumed the ratio
ρ = q̄A/q̄R = 1. Parameters of the activator repressor system used in the simulation were β1 = β3 = 100,
β2 = .04, β3 = .004, δA = 1, δR = 0.5, G1 = G2 = 100 and m = 2, n = 4. In the traces showing only
repressor load ρ = 0, while the traces showing simultaneous repressor and activator load, ρ = 1.

and post-translational modifications, involved in the implementation of the feedback loop. More steps

lead to larger delays. Hence, adding a delay involves engineering the structure and length of a pathway.

In this paper, we have revealed that a different mechanism exists for adding and carefully tuning delays

and effective kinetic rates: the addition of DNA targets. In natural systems, transcription factors can

have large numbers of DNA binding sites, several of which do not even have regulatory functions (see [28]

and [29], for example). Our study suggests that a role of these DNA binding sites is to carefully tune

effective kinetic rates to realize the desired dynamics in genetic networks.

As an example, consider the regulation network of cellular resources such as ribosomes or RNA

polymerase (RNAP). Since both molecules need themselves to be assembled, there is a self activating

loop. Additionally, it has been shown [30,31] that RNAP and ribosomes are negatively regulated through

transcriptional repression. Hence, the regulation motif of these species has the form of Figure 1a, in

which we can view A as the resource (RNAP or ribosome) and R as a repressor system. This motif, as
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we have shown, can present sustained oscillations, which would be undesired for RNAP or ribosomes.

However, due to the large demand by the cellular environment, RNAP and ribosomes are being used

through (reversible) binding processes, so that the actual motif is closer to that of Figure 1(b). Since the

amount of q is fairly high, the system is brought back to stability.

The capacity of tuning the dynamics stems from the sequestration effect of the protein by the binding

sites. The dynamics of the protein slow down because the additional DNA sites increase the demand the

system has on the protein. In other words, the protein becomes “busy” having to interact with additional

DNA sites. In fact, the technique of employing DNA binding sites to tune a synthetic biomolecular circuit

has also been used for reducing the effective concentration of a transcription factor [32]. More generally,

this effect can be achieved by employing various protein loads, such as substrates, inhibitors [19], and

targets on other proteins [17, 33]. Specifically, the experimental results of [17, 33] show that protein

binding domains on other target proteins can function as loads, tuning both protein dynamics and the

static characteristics.

The mechanism revealed in this paper for tuning effective kinetic rates is especially relevant for

synthetic circuits due to its simple implementation. Instead of modifying promoter or operator regions,

or changing degradation tags or protease recognition motifs, a simple addition of DNA with binding

sites through transformation or transfection can achieve the desired modifications. This can also simplify

prototyping of some synthetic biology modules whose correct function is sensitive to specific kinetic

parameters. Gradual addition of DNA sites through inducible plasmids, for example, could be employed

to search the parameter space for expected behavior before final adjustment of expression, degradation,

and dissociation constants.

Materials and Methods

Simulations were performed using the ode23s numerical solver that comes in MATLAB. Continuation

diagrams were made using Matcont. Stochastic simulations were made using an implementation of the

Stochastic Simulation Algorithm as described in [26] in a C/POSIX environment. The parameters used

in all deterministic simulations are shown in the captions of the figures. Parameters used in the stochastic

simulations are given in the Supplementary Information.
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1 Supplementary Information

1.1 Model of Hill functions

In this section we identify the Hill function approximations for the expression of proteins controlled by (i)

an activator protein and (ii) a repressor and an activator protein. Consider first the expression of protein

X whose expression rate is regulated by an activator protein A via the promoter pR. These processes

can be modeled by the following chemical reactions

pR +mA
ka1−−⇀↽−−
kb1

C1

C1
κ2−→ C1 +X

pR
κ4−→ pR +X,

(26)

in which κ2 is the expression level of the promoter bound to A, κ4 is the basal expression level of the

promoter, ka1 and kb1 are the association and dissociation rates of the promoter to A respectively and

m models the cooperative binding of the activator protein. Assuming that there is a conservation of the

total amount of promoter sites, modeled by the expression pR+C1 = pR,T , the expression level from this

promoter can be modeled by g2(A) = κ2C1(A) + κ4(pR,T − C1(A)). The quasi-steady state value of C1

can be obtained by identifying the equilibrium of the following ODE

Ċ1 = ka1(pR,T − C1)A
m − kb1C1. (27)

Defining Km1 = m

√

kb1/ka1, we obtain

g2(A) = κ2pR,T
Am

Am +Km
m1

+ κ4pR,T
Km
m1

Am +Km
m1

=
K2A

m +K4K
m
m1

Am +Km
m1

, (28)

in which K2 := κ2pR,T and K4 := κ4pR,T .

Consider now the expression of a protein X whose expression rate is regulated by an activator protein

A as well as by repressor protein R via the promoter pA. We will assume that the binding is competitive.
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Expression can be modeled by the following chemical reactions

pA +mA
ka1−−⇀↽−−
kb1

C1

pA + nR
ka2−−⇀↽−−
kb2

C2

C1
κ1−→ C1 +X

pA
κ3−→ pA +X,

(29)

in which κ1 is the expression level of the promoter bound to A, κ3 is the basal expression level of the

promoter, ka1 and kb1 are the association and dissociation rates of the promoter to A, respectively, ka2 and

kb2 are the association and dissociation rates of the promoter to R, respectively, and m and n model the

cooperative binding of the activator and repressor proteins, respectively. We assume that the repressor

activity is perfect and therefore no expression can occur from the repressed promoter. Assuming that there

is a conservation of the total amount of promoter sites, modeled by the expression pA+C1+C2 = pA,T , the

expression level from this promoter can be modeled by g1(A,R) = κ1C1(A)+ κ3(pA,T −C1(A)−C2(R)).

The quasi-steady state value of C1 and C2 can be obtained by identifying the equilibrium of the following

ODE

Ċ1 = ka1(pA,T − C1 − C2)A
m − kb1C1

Ċ2 = ka2(pA,T − C1 − C2)R
n − kb2C2

(30)

Defining Km1 = (kb1/ka1)
1/m and Km2 = (kb2/ka2)

1/n, we obtain the expression

g1(A,R) = pA,T
κ1K

n
m2A

m + κ3K
m
m1K

n
m2

Km
m1K

n
m2 +Kn

m2A
m +Km

m1R
n
=

K1K
n
m2A

m +K3K
m
m1K

n
m2

Km
m1K

n
m2 +Kn

m2A
m +Km

m1R
n
, (31)

in which K1 := κ1pA,T and K3 := κ3pA,T .

1.2 Nondimensionalization of the activator repressor clock

In this section, we identify a nondimensional model of the activator repressor clock having loads to

activator and repressor, given in Figure 1d. The association and dissociation between transcription factor
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A and R and their respective additional binding sites qA and qR are model by the following dynamics

qA +mA
k′
a1−−⇀↽−−
k′
b1

D1 (32)

qR + nR
k′
a2−−⇀↽−−
k′
b2

D2. (33)

The model for this system can be obtained by adding the binding dynamics to the model given in [14]

for the activator-repressor clock as

Ȧ = −δAA+ g1(A,R) +mk′b1D1 −mk′a1A
m(qA,T −D1)

Ṙ = −δRR+ g2(A) + nk′b2D2 − nk′a2R
n(qR −D2)

Ḋ1 = −k′b1D1 + k′a1A
m(qA,T −D1)

Ḋ2 = −k′b2D2 + k′a2R
n(qR,T −D2),

(34)

in which qA,T := qA + D1 and qR,T := qR + D2 model the total amount of DNA bindings sites in the

system, δA and δR model protein decay (due to either dilution or degradation) and functions f1 and f2

model expression rates and take the form of the standard Hill functions derived on Section 1.1.

g1(A,R) =
K1(A/Km1)

m +K3

1 + (A/Km1)m + (R/Km2)n
and g2(A) =

K2(A/Km1)
m +K4

1 + (A/Km1)m
, (35)

in which K1 and K2 are the maximal expression rates, K3 and K4 represent the basal expression,

Km1 and Km2 is related to the affinity between the proteins and their respective binding sites and

m and n are the Hill coefficients related to the multimerization of activator and repressor proteins,

respectively. Define G1 := k′b1/δA and G2 := k′b2/δR to be non-dimensional constants modeling the

timescale difference between complex dissociation and transcription factor degradations rates. Define

additionally K ′

m1 := m

√

k′b1/k
′

a1 and K ′

m2 = n

√

k′b2/k
′

a2 as the apparent dissociation constant as defined

in [20].

From this system, define the nondimensional variables a := A/Km1, r := R/Km2, d = D1/K
′

m1 and

d2 = D2/K
′

m2. Let σ1 = K ′

m1/Km1 and let σ2 = K ′

m2/Km2 describe the difference in affinity of the

transcription factor to the promoter in the circuit or the additional DNA load. The differential equation
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is then reduced to

ȧ = −δAa+
β1a

m + β2
1 + am + rn

+mG1δAσ1d1 −mG1δAσ
(1−m)
1 am(q̄A − d1)

ṙ = −δRr +
β3a

m + β4
1 + am

+ nG2δRσ2d2 − nG2δRσ
(1−n)
2 rn(q̄R − d2)

ḋ1 = −G1δAd1 +G1δAσ
−m
1 am(q̄A − d1)

ḋ2 = −G2δRd2 +G2δRσ
−n
2 rn(q̄R − d2),

(36)

in which β1 := K1/Km1, β2 := KA/Km1, β3 := K2/Km2, β4 := KR/Km2, q̄A = qA,T /K
′

m1 and

q̄R = qR,T /K
′

m2.

From system (36), one can obtain non-dimensional models for the various systems described in this

paper. In particular, to obtain (1), q̄R = q̄A = 0; in (5) q̄R = 0 and σ1 = 1; in (14) q̄A = 0 and σ2 = 1

and finally in (20) σ1 = σ2 = 1.

1.3 Conditions for a unique and unstable equilibrium

We next establish parameter conditions for which we can guarantee that there is a unique equilibrium of

system (1).

Let β̄1 = β1/δA, β̄2 = β2/δA, β̄3 = β3/δR, β̄4 = β4/δR and let

f(a, r) := −δAa+ f1(a, r) and g(a, r) := −δRr + f2(a). (37)

Then, the nullclines are given by f(a, r) = 0 and g(a, r) = 0, which define r as a function of a in the

following way:

f(a, r) = 0 =⇒ r =

(

β̄1a
m + β̄2 − a(1 + am)

a

)1/n

(38)

g(a, r) = 0 =⇒ r =
β̄3a

m + β̄4
1 + am

. (39)

Proposition 2. If m = 1, system (1) admits a unique stable equilibrium point. If m = 2, system (1)

admits a unique unstable (not locally a saddle) equilibrium point if the following parameter relations are

verified

0 < β̄2 ≤ β̄3
1

27
, L ≤ β̄3A

2
L + β̄4

1 +A2
L

, l ≥ β̄3A
2
l + β̄4

1 +A2
l

, (40)
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and

δR
∂f1/∂a

∣

∣

∣

∣

(a∗,r∗)

− δA < 1, (41)

in which

Al =
β̄1
6

(

1− (cos(φ/3)−
√
3sin(φ/3))

)

AL =
β̄1
6

+
β̄1
3
cos(φ/3)

φ = atan

(

√

27β̄2(β̄3
1 − 27β̄2)

β̄3
1

2 − 27β̄2

)

, (42)

l =
n

√

β̄1A2
l + β̄2 −Al(1 +A2

l )

Al
,

L =
n

√

β̄1A2
L + β̄2 −AL(1 +A2

L)

AL
.

Proof. The Jacobian at S∗ := (a∗, r∗) is given by the matrix

J(S∗) =







∂f
∂a

∂f
∂r

∂g
∂a

∂g
∂r ,






,

in which the partial derivatives are computed at the equilibrium point S∗. For an unstable node or spiral

to occur, it is sufficient that

(i) tr(J(S∗)) > 0 and (ii) det(J(S∗)) > 0.

Case 1: m = 1. The nullcline f(a, r) = 0 has always negative slope, and therefore we always have only

one equilibrium point. Furthermore, expression (38) with m = 1 leads to

dr

da

∣

∣

∣

∣

f(a,r)=0

= −r
−1+1/n

n

a2 + β̄2
a2

< 0.

Since dr/da|f(a,r)=0 = −(∂f/∂a)/(∂f/∂r) by the implicit function theorem and since ∂f/∂r < 0, it

must be that ∂f/∂r < 0. As a consequence, tr(J(S∗)) < 0 because ∂g
∂r = −δR < 0. To show that both

eigenvalues of J(S∗) are negative, we are left to show that det(J(S∗)) > 0. This is readily seen to be
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Figure 7. Nullclines and the values AL, Al, L, and l.

true as we have that

dr

da

∣

∣

∣

∣

g(a,r)=0

= −∂g/∂a
∂g/∂r

>
dr

da

∣

∣

∣

∣

f(a,r)=0

= −∂f/∂a
∂f/∂r

< 0,

thus implying that ∂f
∂a

∂g
∂r −

∂f
∂r

∂g
∂a = det(J(S∗)) > 0.

Case 2: m = 2. Figure 7 shows the only possible configuration of the nullclines in which (a) we have

a unique equilibrium and (b) the nullclines are intersecting with the same positive slope. The plots imply

that

dr

da

∣

∣

g(a,r)=0 = −∂g/∂a
∂g/∂r

>
dr

da

∣

∣

f(a,r)=0 = −∂f/∂a
∂f/∂r

> 0,

and thus that ∂f
∂a

∂g
∂r − ∂f

∂r
∂g
∂a = det(J(S∗)) > 0. By relations (37), we have that ∂g/∂a = ∂f2/∂a,

∂g/∂r = −δR, ∂f/∂a = (−δA + ∂f1/∂a), and ∂f/∂r = −|∂f1/∂r|. If at the equilibrium point S∗ the

nullcline f(a, r) = 0 has negative slope, S∗ is stable, as we have shown for the case m = 1. Therefore,

we examine what additional conditions should be enforced to guarantee that the equilibrium point is

unstable when the nullclines intersect both with positive slopes. Since condition (ii) is verified by the

condition that the nullclines cross with positive slopes, we are left to provide conditions for which (i) is

also true. To have that tr(J(S∗)) > 0, we require that (∂f1∂a − δA)− δR > 0, which is verified if condition

(41) holds.

We finally determine sufficient conditions on the parameters for having one crossing and such that the
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slopes of the two nullclines at the crossing are both positive (and thus (ii) is verified). This is performed

by simple geometric considerations. For this purpose, consider Figure 7.

The values Al and AL of the location of the minimum and maximum of f(a, r) = 0 can be computed

by computing the derivative with respect to A of expression

rn =
β̄1a

2 + β̄2 − a(1 + a2)

a

obtained by (38) and equating it to zero, as the square root function is monotone. This way, we find a

third order polynomial that has two positive roots if 0 < β̄2 ≤ β̄3
1

27 , otherwise it has one positive and two

complex roots. These roots are given by relations (42) and they are shown in Figure 7. Thus, by looking

at the same figure, one deduces that if conditions (40) are satisfied, we have on equilibrium point only,

and (ii) is verified.

For having one equilibrium point only, we require the activator basal transcription rate, proportional

to β̄2, to be sufficiently smaller then the maximal expression rate of the activator, which is proportional

to β̄1. Also, β̄2 must be non-zero. Also, in case β̄1 >> β̄2, one can verify that AL ≈ β̄1/2 and thus

L ≈ n

√

β̄2
1/4. As a consequence, conditions (40) require also that if β̄1 increases then so must do β̄3. This

qualitatively implies that the maximal expression rate of the repressor must be larger than the maximal

expression rate of the activator, when expressed in units of the affinity constant. Finally, Al ≈ 0 and

l ≈ n

√

β̄2/Al. As a consequence, conditions (40) also imply that the smaller β̄2 becomes, the smaller β̄3

must be.

1.4 Proofs on the effect of load

Proposition 3. Consider system (10) satisfying conditions (i) and (ii). There exists q∗ > 0 such that

the equilibrium (a∗, r∗) is asymptotically stable if and only if q̄A > q∗.

Proof. We first show that det(JA(q̄A)) > 0 for all q̄A. This follows from the fact that det(JA(q̄A)) =

S∗

A(q̄A) det(J0) > 0, from condition (i). We now focus on

tr(JA(q̄A)) = S∗

A(q̄A)

[

−δa +
∂f1(a

∗, r∗)

∂a

]

− δR.

From (11) and condition (ii), when q̄A = 0 tr(JA(0)) > 0. Additionally, as q̄A → ∞, tr(JA(q̄A)) →
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−δR < 0. Since the trace is a monotonic smooth function of q̄A, one can apply the intermediate value

theorem to show that there is an unique 0 < q∗ < ∞ such that tr(JA(q
∗)) = 0. Since det(JA(q

∗)) > 0,

the eigenvalues of JA(q
∗) are imaginary. From the monotonicity of the trace with respect to q̄A, it follows

that the real parts of the eigenvalues of JA(q̄A) are positive for all 0 ≤ q̄A < q∗ and negative for all

q̄A > q∗. It follows that the system goes through a Hopf bifurcation at q̄A = q∗, and thus presents a

periodic solution for 0 ≤ qA < q∗ while it converges to the equilibrium for q̄A > q∗.

Proposition 4. Consider system (16) satisfying conditions (i) and (ii)’. There exists a q∗ > 0 such that

the equilibrium (a∗, r∗) is asymptotically stable if and only if q̄R < q∗.

Proof. We first show that the det(JR(q̄R)) > 0 for all qR. This follows from the fact that det(JR(q̄R)) =

S∗

R(q̄R) det(J0) > 0 from condition (i). We now proceed to show that the trace can change its sign. Note

that

tr(JR(q̄R)) = −δA +
∂f1(a

∗, r∗)

∂a
− S∗

R(q̄R)δR.

From (17) and condition (ii)’, when q̄R = 0, tr(JR(q̄R)) < 0. Additionally, as limq̄R→∞ tr(JR(q̄R)) =

−δA+
∂f1(a

∗, r∗)

∂a
< 0 from condition (ii)’. Since the trace is a monotonic smooth function of q̄R, one can

apply the intermediate value theorem to show that there is an unique 0 < q∗ <∞ such that tr JR(q
∗) = 0.

Since det(JR(q
∗)) > 0, the eigenvalues of JR(q

∗) are imaginary. From the monotonicity of the trace with

respect to q̄R, it follows that the real parts of the eigenvalues of JR(q̄R) are negative for all 0 ≤ q̄R < q∗

and positive for all qR > q∗. It follows thus that the system goes through a Hopf bifurcation at q̄R = q∗

and thus presents a periodic solution for q̄R > q∗ while it converges to the equilibrium for q̄R < q∗.

1.5 Proofs on stability of the slow manifolds

Proposition 5. The stability of the slow manifold d1 = ψ1(y) defined by setting ǫ = 0 in system (7-9) is

locally exponentially stable.

Proof. The manifold d1 = ψ1(y) is the unique solution of the algebraic equation

g(y, d1) := −δAd1 + δA(y −md1)
m(qT − d1) = 0.

Note that, since 0 ≤ d1 ≤ qT , 0 ≤ ψ1(y) ≤ qT .
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To prove this proposition, we need to show that
∂g(y, d1)

∂d1

∣

∣

∣

∣

d1=ψ1(y)

< 0 [22].

∂g(y, d1)

∂d1
= −δA −mδA(y −md1)

m−1(q̄A − d1)− δA(y −md1)
m.

Since g(y, ψ1(y)) = 0, y −mψ1(y) =
m

√

ψ1(y)

q̄A − ψ1(y)
and therefore

∂g(y, d1)

∂d1

∣

∣

∣

∣

d1=ψ1(y)

= −δA −mδA

(

ψ1(y)

q̄A − ψ1(y)

)
m−1

m

(q̄A − ψ1(y))− δA
ψ1(y)

q̄A − ψ1(y)
< 0,

since 0 ≤ ψ1(y) ≤ q̄A for all values of y as shown above.

Proposition 6. The stability of the manifold d2 = ψ2(y) defined by setting ǫ = 0 in system (15) is locally

exponentially stable.

Proof. The proof of this result is similar to the proof of the previous proposition. Here we must show

that
∂h(y, d2)

∂d2

∣

∣

∣

∣

d2=ψ2(y)

< 0 where the manifold d2 = ψ2(y) is the unique solution of equation

h(y, d2) := −δRd2 + δR(y − nd2)
n(q̄R − d2) = 0.

Since 0 ≤ d2 ≤ q̄R, 0 ≤ ψ2(y) ≤ q̄R. Additionally, from the definition of the manifold, y − nψ2(y) =

n

√

ψ2(y)

q +R− ψ2(y)
. Therefore

∂h(y, d2)

∂d2

∣

∣

∣

∣

d2=ψ2(y)

= −δR − nδR(y − nψ2(y))
n−1(q̄R − ψ2(y))− δR(y − nψ2(y))

n

= −δR − nδR

(

ψ2(y)

q̄R − ψ2(y)

)
n−1

n

(q̄R − ψ2(y))− δR
ψ2(y)

q̄R − ψ2(y)
< 0.

Proposition 7. The stability of the manifold (d1, d2) = (ψ1(y1), ψ2(y2)) defined by setting ǫ = 0 in

system (21) is locally exponentially stable.

Proof. Define g(y1, d1) := −δAd1 + δA(y1 − md1)
m(q̄A − d1) = 0 and h(y2, d2) := −δRd2 + δR(y2 −

nd2)
n(q̄R − d2) = 0. The manifold (d1, d2) = (ψ1(y1), ψ2(y2)) is defined such that g(y1, ψ1(y1)) = 0 and
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h(y2, ψ2(y2)) = 0. To prove the local exponential stability of the manifold, we need to show that the

Jacobian

J =







∂g(y1, d1)

∂d1

∂g(y1, d1)

∂d2
∂h(y2, d2)

∂d1

∂h(y2, d2)

∂d2






=







∂g(y1, d1)

∂d1
0

0
∂h(y2, d2)

∂d2






.

calculated at the manifold (d1, d2) = (ψ1(y1), ψ2(y2)) has negative eigenvalues. Since this is a diagonal

matrix, the problem is reduced to proving that the two following inequalities hold:

∂g(y1, d1)

∂d1

∣

∣

∣

∣

d1=ψ1(y1)

< 0

∂h(y2, d2)

∂d2

∣

∣

∣

∣

d2=ψ2(y2)

< 0.

(43)

From the definition of the manifold,

0 ≤ ψ1(y1) ≤ q̄A and 0 ≤ ψ2(y2) ≤ q̄R.

Additionally,

y1 − ψ1(y1) =
m

√

ψ1(y1)

q̄A − ψ1(y1)
and y2 − ψ2(y2) =

n

√

ψ2(y2)

q̄R − ψ2(y2)
.

Therefore

∂g(y1, d1)

∂d1

∣

∣

∣

∣

d1=ψ1(y1)

= −δA − δA

(

ψ1(y1)

q̄A − ψ1(y1)

)
m−1

m

(q̄A − ψ1(y1))− δA
ψ1(y1)

q̄A − ψ1(y1)
< 0

∂h(y2, d2)

∂d2

∣

∣

∣

∣

d2=ψ2(y2)

= −δR − δR

(

ψ2(y2)

q̄R − ψ2(y2)

)
n−1

n

(q̄R − ψ2(y2))− δR
ψ2(y2)

q̄R − ψ2(y2)
< 0.

(44)
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1.6 Proofs on orbital equivalence

Proposition 8. Consider the following ordinary differential equations

ẋ = f(x) (45)

ẋ = g(x) = µ(x)f(x), (46)

in which x ∈ R
n, f : Rn → R

n is Lipschitz continuous and 0 < a ≤ µ(x) ≤ b < ∞ is a Lipschitz

continuous scalar function. Then, there exists a function α : R → R, monotonically increasing and

bounded such that if φ(t), t ∈ R
n is a solution of (45) with initial condition x = x0, then ψ(t) := φ(α(t)),

is a solution of (46) with the same initial conditions. Furthermore,
dα(t)

dt
= µ(φ(α(t))).

Proof. Since φ(t) is a solution of (45), for all t > 0, we have that
dφ(t)

dt
= f(φ(t)). Let α(t) be the

solution of the ordinary differential equation

dα

dt
= µ(φ(α)) (47)

with initial condition α(0) = 0. Let also ψ(t) be defined as above. Since g(x) is Lipschitz continuous,

system (46) has an unique local solution at the point ψ(t) whose tangent is given by g(ψ(t)). The vector

tangent to ψ(t) is given by

dψ(t)

dt
=
dφ(α(t))

dt
=
dφ(α)

dα

dα(t)

dt
= f(ψ(t))µ(ψ(t)) = g(ψ(t)) (48)

for all t. Additionally, note that α(0) = 0 and therefore ψ(0) = φ(0) = x0. It follows that ψ(t) is the

solution for (46) with initial condition x = x0.

The following proposition is used to show that the addition of load will increase the period.

Proposition 9. Consider the ordinary differential equations (45-46) under the same conditions as in

Proposition 8. Assume that (45) has a periodic solution φ(t) with period T . If µ(x) < 1, then the solution

of (46) is a periodic solution with period T ′ > T .

Proof. From Proposition 8, we have that ψ(t) := φ(α(t)) is a solution for (46), in which α(t) satisfies the
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differential equation

dα(t)

dt
= µ(φ(α(t))). (49)

Since the solution α(t) is monotonic and unbounded and since α(0) = 0, for all T > 0, there is T ′ > 0

such that α(T ) = T ′. Since φ(T ) = φ(0), ψ(T ′) = ψ(0), and hence ψ is periodic with period T ′. From

(49) and the fact that µ(x) < 1,

T ′ = α(T ) =

∫ T

0

µ(φ(α(t)))dt <

∫ T

0

1dt = T. (50)

1.7 Mechanistic Model for Stochastic Simulation

For the analysis employing the stochastic simulation algorithm [26], we considered a mechanistic model

that includes all the reactions in Table 1. Table 2 gives the description the states.

This system is equivalent to the system 20 with m = n = 2. We consider a one-step model for protein

expression and assume the rate of expression is a function of whether the promoter pA and pR are free,

bound to an activator dimer and bound to a repressor dimer in the case of pA. Additionally, we consider

the dynamics of the dimerization of both transcription factors.

The degradation rate δR was the parameter chosen to generate a model for a functioning and a non-

functioning clock. The total number of promoters in both simulations was pA,T = pR,T = 5. Changes in

the number of binding sites qA and qR were used to generate retroactivity to the activator and repressor

respectively.
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Table 1. Reactions considered in the mechanistic model

Reaction Description Rate Value
2R→ R2 Repressor Dimerization kra 200
R2 → 2R Repressor Monomerization krb 200
2A→ A2 Activator Dimerization kaa 200
A2 → 2A Activator Monomerization kab 200

pR +A2 → C3 Activator Binding ka1 2000
C3 → pR +A2 Activator Dissociation kb1 2000
C3 → C3 +R Repressor Maximal Expression κ3 100
pR → pR +R Repressor Basal Expression κ4 .004
pA +A2 → C1 Activator Binding ka1 2000
C1 → pA +A2 Activator Dissociation kb1 2000
pA +R2 → C2 Repressor Binding ka2 2000
C2 → pA +R2 Repressor Dissociation kb2 2000
C1 → C1 +A Activator Maximal Expression κ1 100
pA → pA +A2 Activator Basal Expression κ2 .04

A→ ∅ Activator Monomer Degradation δA 1
R → ∅ Repressor Monomer Degradation δR .2 / .4
A2 → ∅ Activator Dimer Degradation δA 1
R2 → ∅ Repressor Dimer Degradation δR .2 /.4

qA +A2 → D1 Activator-Load Binding ka1 2000
D1 → qA +A2 Activator-Load Dissociation kb1 2000
qR +R2 → D2 Repressor-Load Binding ka1 2000
D2 → qR +R2 Repressor-Load Dissociation kb1 2000

Table 2. Species in mechanistic model

State Species
R Repressor Monomer
R2 Repressor Dimer
A Activator Monomer
A2 Activator Dimer
pR Promoter Regulating Repressor Expression
pA Promoter Regulating Activator Expression
C1 Promoter-Activator Complex, Activator Expression
C2 Promoter-Repressor Complex, Activator Expression
C3 Promoter-Activator Complex, Repressor Expression
qA Load with affinity to the activator
qR Load with affinity to the repressor
D1 Activator-Load Complex
D2 Repressor-Load Complex


