The Java EE 6 Tutorial

Part No: 821-1841-16

ORACI_EM January 2013

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Copyright and License: The Java EE 6 Tutorial

This tutorial is a guide to developing applications for the Java Platform, Enterprise Edition and contains documentation ("Tutorial") and sample code. The "sample
code" made available with this Tutorial is licensed separately to you by Oracle under the Berkeley license. If you download any such sample code, you agree to the
terms of the Berkeley license.

This Tutorial is provided to you by Oracle under the following license terms containing restrictions on use and disclosure and is protected by intellectual property
laws. Oracle grants to you a limited, non-exclusive license to use this Tutorial for information purposes only, as an aid to learning about the Java EE platform. Except
as expressly permitted in these license terms, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish,
or display any part, in any form, or by any means this Tutorial. Reverse engineering, disassembly, or decompilation of this Tutorial is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If the Tutorial is licensed on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
"commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This Tutorial is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you
use this Tutorial in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe
use.

THE TUTORIAL IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. ORACLE FURTHER DISCLAIMS ALL WARRANTIES, EXPRESS AND
IMPLIED, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NONINFRINGEMENT.

INNO EVENT SHALL ORACLE BE LIABLE FOR ANY INDIRECT, INCIDENTAL, SPECIAL, PUNITIVE OR CONSEQUENTIAL DAMAGES, OR
DAMAGES FOR LOSS OF PROFITS, REVENUE, DATA OR DATA USE, INCURRED BY YOU OR ANY THIRD PARTY, WHETHER IN AN ACTION IN
CONTRACT OR TORT, EVEN IF ORACLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. ORACLE'S ENTIRE LIABILITY FOR
DAMAGES HEREUNDER SHALL IN NO EVENT EXCEED ONE THOUSAND DOLLARS (U.S. $1,000).

No Technical Support
Oracle's technical support organization will not provide technical support, phone support, or updates to you.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

The sample code and Tutorial may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are
not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

130131@25097

http://java.net/projects/javaeetutorial/pages/BerkeleyLicense

Partl

Contents

PrEFACE ...ttt 31
INEPOAUCEION ...ttt es 35
OVEIVIEW ..ottt ettt ettt bttt s s s bbbttt ae s e s e b e b e s e bttt e s aeseseseseeseaens 37
Java EE 6 Platform HighlIghtsc.cccocniiiciiiricciiecneiecnetneeceieeereseeeesessesessessesensessesseaenne 38
Java EE Application MOMELcoeueueiiiniiiiciniieicineireieicinei ettt sese et ses et esae s 39
Distributed Multitiered APPLICAtIONSc.ovveuevreucueiniciricieirecieireietreeietee sttt seesessesesseeaes 39
Security
Java EE COMPONENLScocvimiiiiiiiiiiiiiciiicicics st sssssssssans 42
JAVAEE CLIENLS .eoevveeeeeeeeteeeeeeteeteeeeteee ettt et ese vt ese s esess et eneesesensesensesenssesensesensesensnnesen 42
WED COMPONEILS ...oueeiiniiincieieieteicietseeteis ettt ettt ettt b ettt eaebeen 44
Business COMPONENLS ...t 45
Enterprise INformation SYStem TIeTceeeuveureuercereurieeeniereeeieineseiesseeessesseesesesessesessesessnsens 46
JaVa EE CONTAINETSooveuiieieieieiiieiesieieiesteeee et teseste st ste et ese st sesassesessesesessesansesesessesansesessssesensesensans

Container Services

CONLANET TYPES ettt et
WED SEIVICES SUPPOIT w..ceuveireeieictreiccirete ettt ettt seb ettt sttt eeee e
KIML et ettt b ettt ee 49
SOAP Transport PIOtOCOL ..o esenaens 50
WSDL Standard FOTMALc.vuveuiuieereiieeieenieeeneeseie e essesessessesessesesessessesesenne 50
Java EE Application Assembly and Deploymentcoocvcveureeeeeureerecenerneeeenerneeeecenerseensessenennes 50
Packaging Applications
DeVelOPIMENT ROLESucvuiuiiiieieieieieiretee ettt ettt sttt
JaVa EE Product PROVIAETc.ovovieieeeeeeeeeeeeeeeceeteeeeeevee ettt s e s s enennnnenen 53
TOOL PIOVIAET ..ottt 53
Application Component ProOVIErcccveeuiureerniuneeeeeineineenesseseeinesessenseseesessessesessessesenne 53

Contents

ApPPLication ASSEIMDIETc.criuiciiirieiiirieicinte e 54
Application Deployer and AdmINIStIatorc.oveeeereuereunieeeeceneireseseinesescesesessesseesesesessesessees 54
JAVAEE 6 APIS oottt ettt ettt ettt et et e s et e et e eas e beessentaessentesaeessentesaseereensenseenes 55
Enterprise JavaBeans TeChnologyccccniniciiniicicceceee s 58
Java Servlet Technology .59
JavaServer Faces TeChNOLOZYcovuvveviirieerciiirrieriieieieineienieeie e ssessesesse s sssesenaees 59
JavaServer Pages TEChNOLOZYcovuvvueuiiriueicuniierieiiereieeeireeereieie e ssse e ssaesensees 60
JavaServer Pages Standard Tag LIDIAryccoeeevereeecenieeeceniinneeeneencenesessessessesesessesensens 60
JAVA PEISISTENICE API ...ttt ettt ettt e beebsenbesssens e beeasensesean 61
Java Transaction APT ...ttt et a ettt a e ae b b nes 61
Java API for RESTful Web Services .61
Managed BEAIScccuiiieerciieicireieicet ettt 61
Contexts and Dependency Injection for the Java EE Platform (JSR 299)ccccoevevvcrniereneee 62
Dependency Injection for Java (JSR 330) ...c.ccvvurreeriurmereenieeiceniirneneineeeneesesensessessesessessesensens 62
Bean ValidatiOncccceeueveieiiiiecieieretescescese ettt s s s s sssssssssas s ses s ssnsssnsnsas 62
Java Message SErvice AP ...t s 63
Java EE Connector Architecture ... 63
I BN\ N1 2N 2 OO 63
Java Authorization Contract for CONAINETScccivievevevevereeiieieeee e esesenns 63
Java Authentication Service Provider Interface for Containerscccoceeveeveevevevveeervereenenns 64
Java EE 6 APIs in the Java Platform, Standard Edition 6 and 7cccoevveveeiveeecieieceeeeeeeenes 64
Java Database Connectivity API ..o esensesssessensees 64
Java Naming and Directory Interface API .. 65
JavaBeans Activation FrameWOTIKcocooveevereveviiieieeeeteeteeeeeeee ettt s s sesne 65
Java APLfOr XML PrOCESSINGcucvrevvecrmiiieereereienseteieeseseesseesseasesensesesessesssssesessessesessessssssennees 65
Java Architecture for XIML Bindingceeeeurevereeniureeeienieieiniienseieeneseseesesesessesessesessesessees 66
SOAP with Attachments APTfOr JAVAovieueveieieiiieeeeee et 66
Java APTfOr XIML WED SEIVICES ...ooveueevivieetieeeeeeieeeeeeeeeetetee ettt sesssensenenen 66
Java Authentication and Authorization Service67
GlasSFish SErVEr TOOLSc.vueiieeeieieieieirieiceceee ettt seseees 67
Using the Tutorial EXamples ..ottt 69
Required Software .. 69
Java Platform, Standard EQItiONcccceeevieereeieiriicseeeeesseeese et essssssssssenes 69
Java EE 6 Software Development Kitccccvureeeneeriieieinienieineineeieineeecesesessesseesesesessesessees 70

The Java EE 6 Tutorial « January 2013

Contents

Partll

Java EE 6 Tutorial COMPONENLcvuveeeiurieeiiirieeieieieeeeetieeeesseisesessessesensesssssssesssssesessessesessens 70
NetBeans IDE ... e 71
APACHE AN ittt

Starting and Stopping the GlassFish Server
V To Start the GlassFish Server Using NetBeans IDE
Starting the Administration CONSOLEcccuvveeireurieineireeereereee e seeaenne 74
V To Start the Administration Console Using NetBeans IDEccccocvericrneneernerneeenerncnnen. 74
Starting and Stopping the Java DB SEIVerccovvveuirneercuneeencriereeneeneeens
WV To Start the Database Server Using NetBeans IDE
Building the EXAmIPLESccvcueueierriieicireirieieineeeieieieeeeeet e nessese e sessesessessesessessesessessessesessessssenne

Tutorial Example DIreCtory STIUCTULE ...c..c.veuevreeceeirieeieireieeeisetseeeietsesesetsesessessessesesessesessessesenaes
Getting the Latest Updates to the Tutorial

V To Update the Tutorial through the Update Center
Debugging Java EE APPLICAtIONScvcuevriecriiriecreireieicireeneeeeetneienessesensessessesessessesessessessssessessesense 77

Using the Server Log

Using a Debugger
TREWEDTIEN ... 79
Getting Started with Web Applications ... 81
WED APPLICALIONS ..cecvuvreiieieiiecietreeeictreee ettt see st sese sttt seae st sae s tenae s 81
Web Application LIfECYCleovuiieiriieiiiireieiecieieeieeiseiseiese e sessessesses e saesasesees 83
Web Modules: The hel101 EXAMPLE «..c.vvrrucreurieeicireieicireinieeeetreeeieereteeeessesseeessesseseesessessssessessesenses 84
Examining the hellol Web Modulecccooiiiiiiiiiiiiciscecccceseceenns 85
Packaging a Web MOdUle ..ot ssasesesaesesensens 88
Deploying a Web Module ... ssesesessns 90
Running a Deployed Web Modulecocveuineeeiciniinicniniceineieieneeeeeceeiseee e ssesessesens 90
Listing Deployed Web Modules ... seesesensesssensns 91
Updating @ Web MOdULEc.ciueiciriieieiiinicninecireieecestiseeeesseiesseisesensessesensessasesesaesesensees 91
Dynamic RElOAdINGc.covcuiiiciiiiciciiiricieieeceec e naens 91
Undeploying Web MOULESc.crueveuiiriciniiniiecieieecistiseieetseiesseaseeesscssessssessssesessesesessens 92
Configuring Web Applications: The hel102 EXaMPIecocveueucrcrrernineneinerneirenenerenseneeeeenans 93
Mapping URLS to Web COMPONENLSc.vururmeerivereciriiieeirereeenseanesenseseesesessesesessessesessessessssens 93
Examining the he1102 Web Module ..o nessesensens 94
Running the hel102 EXAMPILEc.cvcuieieiiiriciineiecireiectiseieeteiesseaeesescses e sssesesesaesesensees 95

Contents

Declaring Welcome FIles ..ottt seesessese s ssssessesssescssees 97
Setting Context PAarameters ... 97
Mapping Errors to EITOr SCIEENS ..ottt ssssnsssees

Declaring Resource REfEreNCescoewiuiuiieiecrniiiiieneieiseeeseeesesissssessssse s ssesseans

Further Information about Web Applications

JavaServer Faces TeChNOIOGYccooouoiiiiiiie et 103
What Is a JavaServer Faces APPLICation?c.cccueuereeuiureeeeiineieneiniienseneenesesessesensessesessessessesessees 104
JavaServer Faces Technology BENEfItscoeveuiuereciniunieeeiinieeneiieencieeseeeeesesensesesensesessesensees

Creating a Simple JavaServer Faces Application
Developing the Managed Beanc.cccicicieieieiiieeeeeense s ssessenanes
Creating the WeD Page ..ottt et
Mapping the FAacesServilet INSTANCEc.ccureurecireirieeecrreirecererseeeeeseesesessessesessessessesesesnens
The Lifecycle of the he 110 APPLICAtION ...cucvuveeveeuiecieiieeeeeiee e

Running the hel10 APPLICAIONcccuiuriecuiiiciciiceciie e

Further Information about JavaServer Faces Technology

Introduction to Facelets ... 111
WHhat IS FACELELST ...ttt et eee 111
Developing a Simple Facelets Application

Creating a Facelets Applicationcecccveueeeee.

Configuring the APPHCAtiONccuiciiiiiiciiiec s

Running the guessnumber Facelets EXamplecccveeeuninecincininencrneinecinerneeeneneeseennennene 117
Using Facelets TEMPLAESc.cvvueveuiureecriireiereieie e ssessesessessessssensessesensesssssnsessees 119
Composite COMPONENLSciuiuiuiiiiiiiiiiieieeii ittt 121
WED RESOUICES ...ttt saes 123
EXPressionLANQUAGEoooirueirieiiiiieeeetetes ettt se st ss s essss sttt sasssssssnsas
OVErVIEW Of the EL ...eieuiiiiiciciriieicicircrctetetet ettt seb ettt sttt
Immediate and Deferred Evaluation SYNtaxccocveecereunecenerneeernennereicenesneeenessesensessessssenne

Immediate EValUation ..ot asesese e seessaesneaes

Deferred Evaluation
Value and Method EXPIreSSIONSc..ccueuiucurircueireeeurineictricreieeesseneaessesesesescssesesessesesessscssesesesseacses

ValUte EXPIESSIONS ...cvuruueuiriiieieireiiecirtiseeetetseiseetsess et ssess st ssessese st sscsesncnns

The Java EE 6 Tutorial « January 2013

Contents

Method EXPIESSIONS ...cuvurvreermiuiuermeiieeisesnieesesstsneaessessesessestssesessessesessessesessesesssessessesessessesenns 132
Defining a Tag Attribute TYPEccocviuiirciiincieicieiireiecireiese e sse e 134
LIteral EXPIESSIONS ...cucuviucvriuceeirecueireictniscieesescaessesessessiessesesessesesseassessesesessesessesesessesesesasaesssnesesssasses 135
OPLTALOLS ...ttt bttt bbbttt b ettt aea s besestatanene 136
RESEIVEA WOTES ..ottt 136
Examples Of EL EXPIESSIONScceucuriiuciriuiueinicirireecineseieisesetesesesseese s sesesessesesessesesessesesssscsesssacses 137
Using JavaServer Faces TechnologyinWeb Pagesccccccooiininnccnnccnecrnenccnencnennes 139
Setting UP @aPage ..o s 139
Adding Components to a Page Using HTML Tagsccecceviureemierireererniereeneeseensenseeemsenseesesens 140

Common Component Tag AtIIDULESc.cccurureerierieeeerninieieiree e sesseseene 142

Adding HTML Head and Body Tags ..o seseeseene 145

Adding a FOrm COMPONENTcueureciiirieeicireirieineteeeeetsesseessessesesse s ssessesessessessssessessesesns 146

Using Text Components

Using Command Component Tags for Performing Actions and Navigationc........ 152

Adding Graphics and Images with the h:graphicImage Tagcccocrneninevenerrenenenn. 153

Laying Out Components with the h:panelGrid and h:panelGroup Tagscocoveeeunn. 154

Displaying Components for Selecting One Valueccocveueureemnerneemrerneeerennenneenennenenne

Displaying Components for Selecting Multiple Values

Using the f:selectItemand f:selectItems Tags ...

Displaying the Results from Selection COMPONENTSc.vueueeurereeernemeecrnernesernernesessenseseene

Using Data-Bound Table COMPONENLScvueeemmiurieemcrineeiereeeeseeenerese e nesseseens

Displaying Error Messages with the h:message and h:messages Tagsc.ccocoeeveuverrceeennne 164

Creating Bookmarkable URLs with the h:buttonand h: link Tags

Using View Parameters to Configure Bookmarkable URLScccocveurecuneinecenernceeercnnenene

The bookmarks Example APPIICAtIONccueuveeurireueureucieinicinieieseeeiseseseseseieiesesseesessesesseeaes

Resource Relocation Using h:outputScript and h:outputStylesheet Tagscc...... 169
USING COTE TAZS .evuiuiiiiciiiiiiii ittt bbb 171
Using Converters, Listeners, and Validators ... 175
Using the Standard CONVEITELSccrereuiuereieinieeneereienseiseseseessesesessessesessessesessesssssesessessesessens 175

Converting a Component’s Valtue ..o 176

Using DateTimeConverter

USing NUMDEIrCONVETTEE ...ttt

Registering Listeners on COMPONENLSc.cccuviiiiiuiiiiiiiiiiiicieiiiiccise s 180

Contents

10

Registering a Value-Change Listener on a COmMpONentcoceeeureereereureerernesererseeseenne
Registering an Action Listener on a COmMpPONentcoocvuiueivininiiccinicnincnceeeenes
Using the Standard Validatorsc..cocreieciicenceecessie s ssssesenees
Validating a Component’s VAlUecocveueureeeemieemereeneenerneeeneneseeenessesessesesessessessesenne
Using LongRangeValidator ...
Referencing a Managed Bean Method ..o sessesensees
Referencing a Method That Performs Navigationc.cececereerecuneneceneineeinennesseensesneenne
Referencing a Method That Handles an Action Eventcccocecvivecncnecncrncceennenenenne
Referencing a Method That Performs Validationcooecneericnenecencinceinenesecneenenenne
Referencing a Method That Handles a Value-Change Event

Developing with JavaServer Faces Technology ... 189
Managed Beans in JavaServer Faces TeChNOlOZYccocveeveureueecuniineeceniinienceneeeeineeseseseenesennens 189
Creating a Managed Beanccccocoevcuvevencnnennce.
Using the EL to Reference Managed Beans

Writing Bean Properties ... s

Writing Properties Bound to Component Valuesc..cccocvurecencrneenencrneeneneenenneeenenseeneenne

Writing Properties Bound to Component INStancescoceeeeereureeeererreeneremrerneeerenseneeenne
Writing Properties Bound to Converters, Listeners, or Validators
Writing Managed Bean Methodsccceriiieicninicieceeeeceeseie e nsessesensessssesenaees
Writing a Method to Handle Navigationcccueeecuncuneeeineuneenecineineeeeenneeseessessesesesseseesenne
Writing a Method to Handle an Action EVent ...
Writing a Method to Perform Validationccececvcrceinencnccineineeenceneeneiseeeenseseesenne
Writing a Method to Handle a Value-Change Event
Using Bean Validationc..ccreeeicireiriciniinieeeieieseeseiseseensssesesessese e ssesessesssesessssesessesssessesases
Validating Null and Empty Stringsc..cecceeveeeeninmenninieeeeeeeeeneseeseessesessesseseesenne

JavaServer Faces Technology: Advanced Concepts
The Lifecycle of a JavaServer Faces APPLICAtioncocveeeueureeeeeuniereeceneenieenceneeensenessesesessesensens
Overview of the JavaServer Faces LIfeCyclecocuwininiiniiinernererenecneereinesseseneneeseesans
RESLOre VIEW PRASE ...vuceiieiriiiciieicciiec ettt
Apply Request Values Phase ..o
Process Validations Phase
Update Model Values PRASEc.cocuriieeirinciririciiccirccieecieecieeeseeeiesesesseesessescseesesesneaes
Invoke APplication PRaSecccccvureueiniiniieicineiriecneieecineisecee e ssessesesesens

The Java EE 6 Tutorial « January 2013

Contents

11

Render RESPONSE PhaSEccucuuruvueuiirieciiiicieiiieieitie et e sseasesenns 215
Partial Processing and Partial Renderingccccceiininincincineicininininescseseceseseeeseseseeens 216
The Lifecycle of a Facelets APPLICAtIONcuuvuevuereereeieniereireirerenereriereesieeseesessesseessessessensssesssens 216
User Interface Component Modelcccvuenieirinieinicieccireeneeieeeeeseeetsese et sseaesees 217

User Interface Component Classescweeueureueecuneereserniunesereinesesesseseesessessesesessesessesseseens 217

Component Rendering Model ... 219

Conversion Model

Event and Listener MOdelccccuiniercininieiinieneineeneieesee et ssesessssesessesenns 221

Validation MOAELcucucuiiieeiiiiricrtireccneiseet ettt et e 222

Navigation MOdel ..o 223
Using Ajax with JavaServer Faces Technology ... 227
OVEIVIEW Of AJAX .ccorieiiiniiiiiie e es
Using Ajax Functionality with JavaServer Faces Technologyccccvvcunirnieecrnienecrneenenens 228
UsIng Ajax With FACELEScuveeuiirrcieirieicirieecieieie ettt eee e ssese s ssssssae s asesesaen 229

USING the F12JAX TAG cvuvveeereeriieieereieiscitireiecisesete ettt et 229
Sending an Ajax REQUESTcuuiuieiiiecicicicin s 231

Using the eVent AtIIDULEcccuiieiciieceee e e esenne 231

Using the eXeCUte AIIDULE «..c.vucureeieciiireccreeecieeects e e eaeesenne 232

Using the immediate AtIIDULE ...coceveieriecicireeeeirce et e 232

Using the 1istener AtIIDULE ...

Monitoring Events on the Client ...
Handling Errorscocoveevcenevvecenee
Receiving an Ajax RESPONSEcccviuiiiiiiiiiciiicii s
Ajax ReqUESt LILECYCLEouvrireciiiiccireccieceei e naes
Grouping 0f COMPONENLSc.cuerreererriierseeeirieeeetseeeesetsetessessetseeeesessesessesseseseessessesessessesessessessssesns
Loading JavaScript as @ RESOUICEc.cueueucuiurieeiiiiieieireieiseieiesieseesese e ssesesaetsess e sese s ssesesaees
Using JavaScript APT in a Facelets APPLICAtIONccoveiueeremieereemerinnieeneeseneaenenseneseaesans 237
Using the @ResourceDependency Annotation in a Bean Classcccocveveverreunecnnerreenenenne 238
The ajaxguessnumber Example Application

The ajaxguessnumber SOUICE FIles ...ttt es

Running the ajaxguessnumber Example

Further Information about Ajax in JavaServer Faces Technologycoceveveevcrneerecrneenenees 242

Contents

10

12

13

Composite Components: Advanced Topics and Exampleccoooiereennnicneeenenenes

Attributes of a Composite COMPONENTcurruruiureureeiieriieitireiereireeeneeeseeseaessessesesseasesessessasesesaees
Invoking a Managed BEan ... anes
Validating Composite Component VAlUEScccceueeureurerernemerenenineseeseasesesessessensessessesens
The compositecomponentlogin Example Application
The Composite COMPONENt FILEuvuuiiuiirieieiriciniccrcieeicseeieseee e
The USING PAZE «...ovvveiiieciireicicieieecitiseie ettt s ssenne
The Managed Beanc.cceeciieeiciniiniciineeieitie ettt e ssesesscnns

Running the compositecomponentlogin EXamplecoocnrcneneeincinenencineneenenneeeene

Creating Custom Ul Components and Other Custom Objectscccoovvrrvrnrrrirnnnnn. 251
Determining Whether You Need a Custom Component or Rendererc.coceereeevcrneennnce 253
When to Use a Custom COMPOIENTcuuvevueurevemeemienmeersernesensersesensesessesessessesessessesessessessesenns
When to Use a Custom RENAETrer ...t ssessessesenns

Component, Renderer, and Tag Combinations

Understanding the Image Map EXampleccccovuiiininciniiessseissie e
Why Use JavaServer Faces Technology to Implement an Image Map?ccocvevevcrrerneencne 256
Understanding the Rendered HTMLccocniuriiininiceniinieeineencneiseeieisese e sessesenns
Understanding the Facelets Page ...
Configuring Model Datacccueueeeuiunicriirereeeiieeneneeese e ssesessessessesesessesessessessssenns
Summary of the Image Map Application Classes

Steps for Creating a Custom COMPONENTcuueurvmemreereerieieieerenenessensersessesssessessessessessessessesseses

Creating Custom Component CLASSEScoweueureueecurerrrerrerreeeeersesereesessseessessesessessesessessessesesnes
Specifying the Component FAMILYccoocuoeuiiriiininiiincccceececeescce e
Performing ENCOAING ..ot nsenes

Performing DECOMINGccueuereurirrieeiniiriieieieieneieeseeeteeseseseasese e tasese e sese s asese s essesesncen

Enabling Component Properties to Accept Expressions

Saving and REStOrING STALEceuiueeeeriurieriireeereeiene et e seasnsenns
Delegating Rendering t0 @ RENAETETc.ccvvuevciriiriecinciniieicireieicinctseeeicineiecctsesseaessetseseesetsesesaennes
Creating the Renderer Class ...
Identifying the ReNderer TYPeccccvreeriureeremiieieneineeneiseseneieseesessessesesesesessessessesenns
Implementing an EVent LISTEIETc.ocevcureueicireireeeineineieietreieieisetsesetetsesessetsessesessessesessessesessesnes
Implementing Value-Change Listeners
Implementing ACtion LIStENETScccceueeermeuerereriermmereeneenessesessesessesessessesessesesessesessesenne

Handling Events for Custom COMPONENTSc.cuuurummimimieereieiessenseessssseesessesessessessesesseses

The Java EE 6 Tutorial « January 2013

Contents

14

Defining the Custom Component Tag in a Tag Library Descriptorcoccceeveevcereereerneenenens 276
Using a Custom COMPONENTcciiuiiiiiiiiiiiiicciiiicc e 277
Creating and Using a Custom CONVEITETcc.ccucuiiuiurimiuneieeemeesesieesesssse e ssessesssssessssssens 279

Creating a Custom Converter

Using a Custom Converteroovcveenniceninenennes
Creating and Using a Custom Validatorcccccveeneureernerneeecineieieeineeesennesesenseseeeessessesennes 283
Implementing the Validator INtEIfacecccvvveeuiureercrnieecineireceneeesee e esseseene 284
Specifying @ CUSTOM TAZvucvurveeerierirerneireeeieireiseieseisese et sese e seasesenne 286
Using a Custom Validatorc.eccueeeeeueineeeicineinieitineeeieiseiesse e ssese e ssessssesesseseens 287
Binding Component Values and Instances to Managed Bean Propertiescccccoccoeuunciunnuanee 288
Binding a Component Value t0 @ PrOPErtycccocvieucinirecrncenicncniceeieeeceeeeee e

Binding a Component Value to an Implicit Object

Binding a Component Instance to a Bean Property

Binding Converters, Listeners, and Validators to Managed Bean Propertiescoceuneunenee 293
Configuring JavaServer Faces Applicationsccoceniurieiniiniieicininienin e 295
Using Annotations to Configure Managed Beansccecvvueeerierecrnenneeemceneeenenessesenessesensens 296
Using Managed Bean SCOPEScrueueueuiuriuciniinieitiseieieiseseesessessesesessesessessese e ssessesesesseseens 296
Application Configuration Resource File ... essessensenssssessssens 297
Ordering of Application Configuration Resource Filescocveneneeercrnenercrnenneernenneenene 298
Configuring Managed Beanscccocveeeveneeeecereereceneenenens
Using the managed-bean Element
Initializing Properties Using the managed-property Elementccccccvevevcunenccencrncneenne 303
Initializing Maps and LiStSc.ccccueiriuniiiiriicicicienisieeeiset e sse s ssessssaesaas

Registering Application MESSAZESceweureuereemrerreremsemeeensenesessesseesesessessssessessessssessessssessessesessens
Using FacesMessage to Create a Message
Referencing Error Messages ...

Using Default VAlIAAtorscccveveieirieiiiniiereeieeeeieienseseieseesesessessessesessessesessesssssssessessesessens

Registering a Custom Validatorc.oceecueurecincinieeicineieienetseeeeetseseeeesesseeessessesessesseseesessessesesne

Registering a Custom CONVEITETccvvueveiiuiieereiieieiete ettt saes

Configuring Navigation RUIEScccveeiciiiriciniiniieicneiecnetnecetneseneeseseeeessessesensessesessessessesennes

V To Configure a Navigation RULEc.cc.veueiveireuriciniinieicneiscereirceeieeeee e
Implicit Navigation Rules
Registering a Custom Renderer with a Render Kitc.oceeuneriercniercniinecneneencneeenenneeeenens 317

Registering a Custom COMPONENLc.cceviiiuiiiiiiiiii s 319

Contents

12

15

Basic Requirements of a JavaServer Faces APplicationceccvcereueecurerniceneeneeeneeneneeceseuneeennes 320
Configuring an Application with a Web Deployment Descriptorc.cooceevcuneurecrreunenene 321
Configuring PrOJECt STAZEc.cucucuuciuieiiiiiicicie et sse s sss s sasenes 324
Including the Classes, Pages, and Other ReSOUICesc..coucuiuricunemnicinciniercneececeeane 324

Java Servlet TEChNOIOQGY ...t eaes 327

WRAL IS @ SEIVIEL? ..ottt 328

SEIVIEt LIFECYCLE .uvuiriviieicireiciciret ettt st
Handling Servlet Lifecycle Events
Handling SEIvIet EITOTSc.cccvcuiiriiiiiccireecicieeees e esenes

Sharing INfOrMAatIONc.cvveuciiueieireieiceireeecet ettt esensenns

USING SCOPE ODJECES .cuvvrvereirrireiniirieeiseieee et ssese s ssessasesnns

Controlling Concurrent Access to Shared RESOUICESceweuivremeriureernerneernerneeneeneenenenne 331
Creating and InitialiZing a SEIVIETccveureurivciriiricinciriecree ettt seseeaeens
Writing Service Methodscocveeuvenecencrnccencrnennn.

Getting Information from Requests

Constructing RESPOMNSEScccruiviiiiiiiiiiici e

Filtering Requests and RESPONSESc.ccueureuricurirriecireiriieieireieieeesetseseesetsesessessessesessessesessessesessesnes

Programming FAIErscoiiiciiiiccci e
Programming Customized Requests and ReSPONSEScceueervemeurecrerneeerenneneeersennenenne 336
Specifying Filter Mappingsc.ccevevrceeercrreenne

Invoking Other Web ReSOUICESc..c.vuvcuiericeiiiieireieieneiseeeeeeseseeeesese s ssesessessenssaennes

Including Other Resources in the Response
Transferring Control to Another Web Componentc.ccocuvucueucenivneiniinerseesenceennn 339
Accessing the Web CONtEXt ... sse s ssesese s ssssesesaees 339
Maintaining CHENt STALEc.cccueurreeeriiriieieiriee et isese et ees s s s ssese s ases s ssesesaees 340

Accessing a Session

Associating Objects With @ SESSIONc.vceeureurircireinicieieeere e eaeeaenne
Ses510N MaANAZEMENL ..ot
SESSION TTACKING ..vuveireiiiiiieicie ittt naes
FINAlIZING @ SEIVIET ...ttt sttt ese s
Tracking SErvice REQUESESc.eveueureucuiirieeieiriieeeieieeie s sessese et bseseesenae
Notifying Methods to Shut Down
Creating Polite Long-Running Methodsccccereuninecrcineemernineeneeeneeeseseesesenne

The mood Example APPLICALIONc.vuuiuieeiieriieieieiiicieiseieieiseietae et sese et sesesaeen

The Java EE 6 Tutorial « January 2013

Contents

16

17

Partlil

18

19

Components of the mood Example APpliCationccecureeeecuneereernernecrerneenerneeeeenseenesenne 344

Running the mood EXAMPIEc.ovcuiiriueieiniieiciiceieeeceieeseseisese e seseeseseseseens 344
Further Information about Java Servlet Technologyccccocveeueurierernienrcrnireenerneenenneeeeeens 346
Uploading Files with Java Servlet Technologycccccooviiiieeenncee s

The @MuTltipartContig ANNOTAtION ...ccooiceieiieeieicececeeeceeete et er et senes
The getParts and getPart Methods ...t
The fileupload Example Application

Architecture of the fileupload Example Application

Running the fileupload EXample ... seseseaesans
Internationalizing and Localizing Web Applicationsc.ccoocovninninncnncenecnenccnnne 355
Java Platform Localization ClaSSESccevuveeeererereriiiiseieiese et se s s sss e se s sesasanes 355
Providing Localized Messages and Labelsccvueucrurieineinieeinciniinicneiniecineeneieeeesesseeeesenseeennes 356

Establishing the LOCALecviurieiiiriieiciiricire ettt e ssese e 356

Setting the Resource Bundle ...t ssessesenne 357

Retrieving LOCalized MESSAZEScovueveuevemeeuniurieeriiieensereaenseseesesesessesessessesessessessesesesesenns 358
Date and Number FOrmattingccccocveeeniercriuneenenieeeneieseneeseeesessesensesesessessessesessessesensens 359
Character Sets and ENCOINGSc.veuiurieeeciriccieicereieeeeeeeeeseteeienessese e sessesensessesennes 359

CRATACLET SELS w.ucvuereeeeiencecieiee ettt et saenaes

Character Encoding

WED SEIVICES ...ttt ettt eae 361

Introduction toOWeb SErvices ...ttt 363

WHhat ATE WED SEIVICES? ...ttt ettt sse sttt ssaanenssnsnses 363

TYPES Of WED SEIVICESouvuiieniiiiiiiiici e
“Big” WED SEIVICES ..couvunvririirirerrerieriieeietitise e sasesssase s sse s ssesssssse s ssesassasanes
RESTful Web Services

Building Web Services With JAX-WScooiiiieeeecce et se s 367
Creating a Simple Web Service and Clients with JAX-WSc.occennrnnncnenecneneeeeeneeneaes 368
Requirements of a JAX-WS ENAPOINT w..euvurrueuiuriueiiiniieieiniscineiseieeisesesessese e esseseens 369

Contents

14

20

21

Coding the Service Endpoint Implementation Classcccvcureeurerneeemcrnereeernenneensersenenne 370
Building, Packaging, and Deploying the SErvicecccvrivcincucinininiineiniseeeieseieennes 370
Testing the Methods of a Web Service ENApointcccvceuveuvierevcmnenecnncineeneeeeeeeeeenenne 371
A Simple JAX-WS Application CHENtccveeurircueiriiieiricirieie et sseseseeeaes 372
A SImple JAX-WS WED CLENTccurvieiiirieriiciiiriieicireieieiseieesessessese e isesessessese e sseseesesesseseens 374
Types SUPPOIted BY JAX-WS ..ottt saees 377
Schema-to-Java MaPPINGc.eccurevreueunieriiereireieiseieeseseseesesesessese e ssssesesse s ssesessessssesessses 377
Java-to-Schema MapPPINgccvcueueeemiuriereiiererieensesessee e sseseesesessesessessessssenns 378
Web Services Interoperability and JAX-WS ..o sessesesaees 379

Further Information about JAX-WS

Building RESTful Web Services With JAX-RSccocoviiininenirccsecee e 381
What Are RESTTUl Wb SEIVICES?ouvuiuiiiirrieiiiiieicineisicetiseieieiseiessciesesseseesesessasesesaesessesesnees 381
Creating a RESTful Root Resource Class

Developing RESTful Web Services with JAX-RS
Overview of a JAX-RS APPLICALION ...vuvuivrieiiiiirieiiieieicisie ettt ens
The @Path Annotation and URI Path Templatescceveuneereeuneuneeeenerneenererneneennenseennenne
Responding to HTTP Methods and ReqQUESLScoveueureemerrierecmiereeneieeeneeeee e
Using @Consumes and @Produces to Customize Requests and Responses
Extracting Request Parameters ...
Example Applications for JAX-RS ...t eeseseseesesessessese e sssssese e snesesaees
A RESTTul Web SeIviceociiiiiiiiciciic s sasnes
The rsvp Example APPLICAtION ...c.covueuiereeeiiiniiriciniinieieiseeieisesesessessese s sessese e seessesenns
Real-World Examplesc.ccceveeneneeenencernneenne
Further Information about JAX-RS ..ottt sttt nan

JAX-RS: Advanced Topics and EXamplecocooerireiiicceieieeccese e
Annotations for Field and Bean Properties of Resource Classes ...
Extracting Path Parameterscoveeereercinieneeiienesenersesensessessesessessesessessesessessessssesessesenns
Extracting Query Parameters ...
Extracting Form Data ..o
Extracting the Java Type of a Request 0r RESPONSEc.cuurvermerrereceerereererenrerereneerieneseanenne
Subresources and Runtime Resource Resolution ...
SUbTesOUIce MEthOds ..o e

SUDTIESOUICE LOCALOLS ..vouvevieevetetieiiitetetetetete ettt s s se s s s st seseasassesesesesesnanans

The Java EE 6 Tutorial « January 2013

Contents

PartIv

22

Integrating JAX-RS with EJB Technology and CDIcccocvecneinecncineeenerneieecereeseeeesesneeennes 408
Conditional HTTP REQUESESccvvueueuriuieeiiiriieiretseieieiseseeseisetsesessetsesessessessssessessesessessesessessessssesnes 409
Runtime Content Negotiationcccceiiiiiiiniiiiiiiiiiie e ssessssssesssaenens 410
Using JAX-RS With JAXBcvuiiiiciiiecicicieniesieieesseeses e ssssss st ssse s sse s sasssssssesssesensssens 412
Using Java Objects to Model YOUT DAt ...c.cecuueueuicuniereeciniinincieineeeieiseeeeeiseisesesessesesesseseene 414
Starting from an Existing XML Schema Definitioncccceeecureeevcrnenecrnerneeeneneenennenene 415
Using JSON with JAX-RS and JAXBccvevieuirieieineieieineisecssesseaeiessesessessesessessessesesesseseens 417
The customer Example APPIICAtION ...occueuricurireeciriiieiricieirciciseeie ettt sseesesseaesees 418
Overview of the customer Example APplicationccccveeeeurcericrneeneceneineeineineeeenseeseenne 419

The Customer and Address Entity Classes

The CUSTOMErSEIrVICE CLASS .ucvuvuereeieciriirieeieireieieireieeae st
The CustomerClientXML and CustomerClientISON Classescccrmieeercurerreemrereenne 424
Modifying the Example to Generate Entity Classes from an Existing Schema 426
Running the customer EXaMPIe ..ot sessesenne 428
ENTEIPriSE@BEANScoeeeie ettt et b ettt s s s s senas 433
ENTEIPriSE@BEANSc.oiiiitct ettt b bbb bbb s s e 435
What Is an Enterprise BEANTc.cveurieinincieinicieiesciecieieteie ettt eaesees 435
Benefits of ENterprise BEANScviuvieeiiunierieiiirieicisieeiseieee st seseene

When to Use Enterprise Beans
Types of ENterprise BEANS ... s sasannes
What Is a Session Bean?
Types 0f SESSION BEANScuuivuieiiciiciiiiicciice i
When to Use Session Beans ..o sssssssssnes
What Is a Message-Driven Bean? ... 439
What Makes Message-Driven Beans Different from Session Beans?cccocveuvecurcrnennce 439
When to Use Message-Driven Beans
Accessing Enterprise Beans ...
Using Enterprise Beans in CHENESccciuieuiirieecinieicrieeiciseeneseeeese e sseseseens
Deciding on Remote or Local Access
LOCAl CHENTS w.ocvevieiieiicicicici s
Remote Clientscccc....
Web Service Clients

Method Parameters aNd ACCESSuoviuvvueriiieiieeeeeeeeeeeeeeeee et st sae s saesessesessssessenan

Contents

16

23

24

The Contents of an ENterprise BEANccocvveveureuereciniineeeiireieneieeenecieeseseessesensessesessesessesensees 447
Packaging Enterprise Beans in EJB JAR ModUlesccocucuiuncincucinininiencincicceineeeennes 447
Packaging Enterprise Beans in WAR ModUlescccocuveuerninvcmnincnncreeneeeee e 448

Naming Conventions for Enterprise Beansccccveveeuneuneerernieerceneinieneeneeenenneseneenessesenens 449

The Lifecycles of ENterprise BEANScccvvureuereureueieceniiniieiniineieieiseeesseeseesesesessesessessesessessssesesaees 450
The Lifecycle of a Stateful Session Beancceieeeuninecercinececneeeereeeeeeee e 450
The Lifecycle of a Stateless SeSS10N BEANc.vuveuieriuceniiniciiincieiereseceisee e 451
The Lifecycle of a Singleton Session Beanccceeuereeerniceernineeneneeeneene e 451

The Lifecycle of a Message-Driven Bean

Further Information about Enterprise Beans

Getting Started with Enterpris@ Beansccoooeereieieniiiieieeee e
Creating the ENterprise BEANccccvcureeiciriueiciriinicieineieetreieeeesetseiessetsesessetsesessessessesessessesessesnes
Coding the Enterprise Bean Classcccco.......
Creating the converter Web Client
Running the converter EXamPple ... e
Modifying the Java EE APPLICAtION ...cuvueviuieerciiieiecineinieeieireienetseeensceseesesessessesessessesessesessesesnees
VW T0 Modify @ Class Filecuveueiecicirieicrerecreeieeeeeeee e

Running the Enterprise Bean EXamplesooooirinniceeeeer e 461
The cart EXAMPIE ...c.cuevciiiiciiiiccirieecitieeiecieie ettt ssesene 461
The BusSiness INTEITACEcvevvuieiuirerereieiiecee ettt ettt be b s s sanae e 462
Session Bean Class
The @Remove Method
HELPET CLASSES ..ottt e

Running the cart EXample ...
A Singleton Session Bean EXample: COUNTET ...t seesesessessesensenees
Creating a Singleton Session Bean
The Architecture of the counter EXamplec.ocevcuveunecincinicincinenieneineeneineeeeseesesenenene
Running the counter EXamPple ...
A Web Service EXample: NETTOSEIVICE ..ttt ssese s ssessessesensesens
The Web Service Endpoint Implementation Class
Stateless Session Bean Implementation Class
Running the helloservice EXamPple ...

USING the TIMET SEIVICE ...ouvvuveiriiiiiecireiriecintiseie ettt ese et es st sa s eesesaeen

The Java EE 6 Tutorial « January 2013

Contents

25

26

27

Creating Calendar-Based Timer EXPIeSSiOnscoeecureureeucrneeemernimneersernesenessesensenseseene 479
Programmatic TIMETSccceuviiiiiiiiiiciiiciiiciic et sesanaes 482
AUtomatic TIMETS ...vcvieiciiiicrc e 483
Canceling and Saving TIMELScccvuiuriiiiiiriiini e 484

Getting Timer Information

Transactions aNd TIINIETScocvceivveviiieerieeeeeeeeeeeeees et seaesseaesseaese e tesessese s eseseesenesssssasenen

The timersession EXAMPILE ..ottt 485
Running the timersession EXample ... 488

Handling EXCEPIONSucuuiuieieiiiiiieciscicie i sse s 489

A Message-Driven Bean EXampllecooiiiiiiininnce et
Overview of the simplemessage EXamPIecoeerereeiniirieeinienieeieineiencieeseseseesesesessesessesesees
The simplemessage APplication CLENTcccoeuruerciniereecineinieereteeneeeeseie e nseseseeseseasesenaees
The Message-Driven Bean Classcecureererneiereiniineeneinieeseesesensessssessesssssesessessesessesessssens

The onNMesSage MEtROMc.oveveeieeeeeeeeee e nenn

Running the simplemessage EXAMPIeccocociirinininiiniincieicceeeeeecie e

Administered Objects for the simplemessage Example ...

V¥ To Run the simplemessage Application Using NetBeans IDEcccccocoevecunivicncnninnenn. 496
V¥ To Run the simplemessage Application Using ANtccvcveeeereuneerecencrreeenerneenesensenneennenne 496
Removing the Administered Objects for the simplemessage Exampleccccoeuvirinnncs 497
Using the Embedded Enterprise Bean Containerc.ococccvveueinivcinnccincncnnecrneceneceeenene 499
Overview of the Embedded Enterprise Bean CONntainercccveueeeencureeeencenereecenernevenseeneuennes 499
Developing Embeddable Enterprise Bean Applicationscceeereeeeerniereernemreeererseeenenseerenens 499
Running Embedded APPLICAtIONSc.cceueeeueeiuriueiiirieeieieieieiseeseseieisesesessesessessessesesesseseens 500
Creating the Enterprise Bean CONtainerc..cocevereeererniemcrneineenerneenensesessenessesesessesenne 500
Looking Up Session Bean References ... 502
Shutting Down the Enterprise Bean CONtainercccccveeceneureeurerneemerneseeensessesensensesenne 502
The standalone Example APPLICAtiONc.ococueureeeurinicinicieinccirineerecieieeceseesetseseseeesesseesesseaeses 502
V¥ To Run the standalone Example APplicationccocveeeevcuneurererncinecencrneeneerseiseessessenenenne 503

Using Asynchronous Method Invocation in Session Beans
Asynchronous Method INVOCAIONccueuiuricuiiricieiicccieee e naens

Creating an Asynchronous Business Methodcoeucunericiniinecincnecicneecneseeenneaeene

Contents

18

PartV

28

29

Calling Asynchronous Methods from Enterprise Bean CLentscccocveeeercuneeercrrceneenne 507
The async EXample APPLICAtION ...cuvucuriieuricieiricieieeisicie ettt eeaeaees

Architecture of the async Example Application
Running the async Example

Contexts and Dependency Injection for the Java EE Platformccoooveernnnnicccncnnns 513
Introduction to Contexts and Dependency Injection for the Java EE Platform 515
OVEIVIEW Of CDI ...ttt ettt bbbt sttt st es
ADOUL BEANS ..ottt bbb
About CDI Managed Beans
Beans as Injectable Objects
USING QUALHTIETS ..ottt ses
INJECtINg BEANS ..ot s
USING SCOPES vttt bbbt
Overriding the Scope of a Bean at the Point of Injectioncccecveeeecererrecenerneeenerneeecerenneennes
Giving Beans EL Names
Adding Setter and Getter Methods
Using a Managed Bean in a Facelets PAgeccocveueveueunieeiiiniieicneiecneineieceseseseees s saees
Injecting Objects by Using Producer Methodsccvueeeuneureeeincinirnecineiniecneineeeieiseseeeeesesneeeenes
Configuring a CDI APPHCAtioNcccviuiiciiiiiiiniiec i
Using the @PostConstruct and @PreDestroy Annotations With CDI Managed Bean
CLASSES evvrvrreeererieiactreieeseettstee sttt b e 525
V To Initialize a Managed Bean Using the @PostConstruct Annotationececveeveecencnne 525
V To Prepare for the Destruction of a Managed Bean Using the @PreDestroy Annotation 526
Further Information about CDIc.cccuveuriueiciniiriieieineieieneieeeset ettt ssesesessesessesns 526
Running the Basic Contexts and Dependency Injection Examples ..o, 527
The simplegreeting CDI EXAMPIEccovvemiiricrernienreieieeneineieneneseese e ssesessesesensensesens 527
The simplegreeting SOUICE Files ... nesene 528
The Facelets Template and Pageccovveeueureeeernierenienieeineieeneeeenessesesessesessesesessenne 528
CoNfIGUIAtION FALESuvrreiiiiiicireiecitiree ettt sneen 529
Running the simplegreeting EXample ... esenseseene 530
The guessnumber CDI EXAMPLEc.vurueuiurimeiiiniieicieisicieiseieieiseseise e ssese e ssesessesseseesessesnens 531
The guesSSNUMDET SOUICE FILEScvovevevieieiieeeeeteteteeeeeeet ettt es s s s as s s enens 532

The Java EE 6 Tutorial « January 2013

Contents

30

31

The FACElets PAZEcecvuceiuieciiieiciieiccieie it 536

Running the guessnumber EXaMPIe ..o seesensenne 537

Contexts and Dependency Injection for the Java EE Platform: Advanced Topics 539
Using Alternatives in CDI APPLICAtIONSc..cuvueuiuiueiceiirieiiiriences e seeseaens 539
USING SPECIALIZATION ..vuvreviieiriiriecieireicieireie ettt et e 540
Using Producer Methods, Producer Fields, and Disposer Methods in CDI Applications 541
Using Producer Methodsociieieiieiciiriecenciseeese e sseessesnns
Using Producer Fields to Generate Resources
Using a Disposer Methodc.occuieeciiinieeiciniinietiseecineieecieesese e sessesens
Using Predefined Beans in CDI APPLICAtiONScovueveueuerecuiereeeniereeerenneeeneeneaseeensessesensessesensens
Using Events in CDI APPLICATIOIScueuvureeuiuereerniiiieneenieenseseeereeseeseeessessesensessesessessessesessesesessens
DefiNing EVENLSc.vueuuiuieereiiieeieireeneieie e sse e ese s ssese e ssssessessssssenns
Using Observer Methods to Handle Events
FIriNG EVENTS ..ot
Using Interceptors in CDI APPLICAtIONSc..c.oveuuiurieeucurieeiciiiricieieeeeeseee s ssessesensens
Using Decorators in CDI APPLICAtIONSc.ccuevecuiuieeiiiniieieiiicciseeeeeeseie e sseseeaens

Using Stereotypes in CDI APPliCations ..o

Running the Advanced Contexts and Dependency Injection Examplesccceoeneveve. 553

The encoder Example: Using AIernativesc.coceereeeeeniereerniereeenneeseeneesesensesessesenessesenens
The Coder Interface and IMplementationsccvceeeuevreeueureereesneeseesessesesesseseesessesseseens
The encoder Facelets Page and Managed Bean

Running the encoder EXample ...

The producermethods Example: Using a Producer Method To Choose a Bean
TMPIEMENTALION ...eitiriiiiiteieicirtee ettt sttt eaebes

Components of the producermethods EXamplecccoveueeenneenecininecniceneceeneenneaes
Running the producermethods Example
The producerfields Example: Using Producer Fields to Generate Resources
The Producer Field for the producerfields EXampleccccooreninenineneinenesinenseneenne
The producerfields Entity and Session Bean ...
The producerfields Facelets Pages and Managed Beanccocccceueinencniincrncnsercnennnes
Running the producerfields Example
The billpayment Example: Using Events and INterceptorscccceuveeereurcuneuncrncecreneeneennn.
The PaymentEVent EVENt ClASSccceeiiieieeeeereeteeeeeesete et esesesese et ssesesese s ssanans

Contents

20

PartVI

32

33

The PaymentHandler EVENt LISTENETcccicvveiveeeiieeceieeceeeceeeee ettt ss e eeaene e
The billpayment Facelets Pages and Managed Bean
The LoggedInterceptor Interceptor Classceureerrenecirincrerneceseneeereeseesesessesesenes
Running the billpayment EXample ..o eseessesseessenenees
The decorators Example: Decorating a Bean
Components of the decorators EXample ..o

Running the decorators EXAMPIe ... eesessenne

PEISISTENCE ... 577
Introduction to the Java Persistence API ... 579
BNEHES wvviiiic 579
Requirements for Entity Classes ..o 580
Persistent Fields and Properties in Entity Classesccccveeeuneereeuneenecinerneieiernensesensenneneene 580
Primary Keys in Entities
Multiplicity in Entity Relationshipscoceueureevcuniereniirieeneeeeeeeneisee e sessesenne 587
Direction in Entity Relationshipscocvueuiereercrnieienieereeeeeeeeieee e 587
Embeddable Classes in ENTILIESoceueureeeiceeirieieireieieireieeicisesesessesesessese e sseseesesessesenns 590
EDtity INNETTtancec.vuvecvieeeciciriecieieecieieeie ettt nsesaees
ADSIIACE ENTILIES ...vuvuviieciriciciicieiicirececcteeee ettt eae et ssnacs
Mapped Superclasses
Non-Entity SUPEICIasses ..ot ssees 592
Entity Inheritance Mapping Strate@iescveueuriuremerniureemeunesenerneeneensesnesessessesessessessesenns 592
Managing ENtIIESs ..o 595
The EntityManager INEIfACEocviivieieeeveeereteteeeeeetete ettt s e st senens 595
Persistence UNILScciuiiiiiiiiiiiiiii 599
QUErYing ENtItIEsc.cuviviiiiiiicccc e 600
Further Information about PErSiStENCec.cocueureueircrriuercrreiricireineeeieeneeeicenesseeessessesensessesesscenes 601
Running the Persistence EXamples ...
The 0rder APPLICATIONc.uveeueeierieeieireieieisei ettt et eeae
Entity Relationships in the order Application
Primary Keys in the order Applicationcccccveeecmniremneineeneieeeeeeee s
Entity Mapped to More Than One Database Tablecc.ccceeureuricrninecineneeeneineeecnncnenenne

The Java EE 6 Tutorial « January 2013

Contents

34

Cascade Operations in the order AppliCationceccueureeecuniereerneneeneineeeiseeeeeseanesenne 610
BLOB and CLOB Database Types in the order Applicationcc.coeeevereeevcuneerecrreenenenne 611
Temporal Types in the order APPICAtiONc.ocuveereueuriireeicineirieirereeesee e sesseseene 612
Managing the order Application’s ENHIEScccueveeeuriereremrereeenenienneesesseeseeesensenseneeseees 612
Running the order Example
The roster APPLICAtION ...ttt

Relationships in the roster APPliCAtionccccvceureceiniciriciereeeree et 616
Entity Inheritance in the roster APpliCationcoccreeecnerecrnenecrnceseeenneeeeseesesenne 617
Criteria Queries in the roster APPliCAtION ... 619
Automatic Table Generation in the roster Applicationcccceeeveveniercrncerereeennenens 620

Running the roster Example

The address-book APPLCALIONc.oveueiricueireiciriiecirecie ettt eeaes
Bean Validation Constraints in address-book
Specitying Error Messages for Constraints in address -Dookcecceeerneneeenerneeneenne 624
Validating Contact Input from a JavaServer Faces Applicationcccoceceeveureeecrcrrernennne 625
Running the address-book EXamPple ... 625
The Java Persistence QUEryLanguageccccouriiueuniiirinieinieieiseeie et eeaeaees 629
Query Language TerminolOZycccvcuvieucurieiciniinieineiriieieeseneesessessssesessesessessesessessessssessessesenens 630
Creating Queries Using the Java Persistence Query Languagecccecveevecenerreernerrevenscerernnees 630
Named Parameters in Queries
Positional Parameters in QUETIEScoovvveieverereereeereeeeeeteeeteeeeseseeseseseseseesesesesessesessssesensenes 631
Simplified Query Language SYNtaXccvcreeecurerrieeeneuneeemerneeeescesesseeeeessesessessessesessessesessessesesaes 632
SELECt STATEIMIEIIS «...vuvveveerevieeeereee ettt bbbttt 632
Update and Delete Statementsc.cvccureceeurecerineeeineceeinesctsiesesesessesesessesesesesesseesesseseseseaes 632
EXQMPLE QUETIESvoveerereineeiecicieie ettt ese st saen

Simple Queries
Queries That Navigate to Related ENtItiescocecuviueecuninecrnerneeneneeeeeeeeneseeeneneeeene
Queries with Other Conditional EXPreSsionscceecneeeecrneureerneunesessessesessenseseeesseseene
Bulk Updates and Deletes ..o ssseesesssesnns
Full QUery Language SYNTAXcccvveecuriuereeeureeerseneeeneseeeneesessesessessesessesssssssesssssesessessesessesessssees
BINE SYIMDOLS ettt et e et
BNF Grammar of the Java Persistence Query Language ...
FROM CIAUSE ...overierieiiiiii it

Path EXPIESSIONS ...vuvuueucireiieeeiiriieiseireieiseiseesesessessesessessese bbbt sesasns

21

Contents

22

35

36

37

38

WHERE CIAUSE ..ouvvveveveveeeeieitete ettt ettt tetesas st sesebessteas st esesesesessasasassesesesesessasasssesesesnanas 647
SELECT CLAUSE ..evuvveveveveeeeeeiistete et tsesastss et ss st s s e b esess s s s sesesesesesessasassesesesesessasasssnsesasas 657
ORDER BY CIAUSEvovveieieieeeeetetesetceeteses et tesesess st st tese st s sesesetesesssssesesesesesessssnsasesssesesesensans 659
GROUP BY and HAVING CIAUSESceevevevererererenierererereteteseseseseseseseseassesesesesesesessassssesesesesessasans 659
Using the Criteria AP to Creat@ QUENIEScoeucueveveiieecicieete st nnas

Overview of the Criteria and Metamodel APISccccouiinininininciiciiciicsccec s
Using the Metamodel API to Model Entity Classesccoeruueuemierecrnimnieemeereneneneeseeenessesensens
Using Metamodel Classes
Using the Criteria API and Metamodel API to Create Basic Typesafe Queries
Creating a Criteria QUETYccciiiiiiiiiiiii e
QUETY ROOLS ..
Querying Relationships Using Joins
Path Navigation in Criteria Queries
Restricting Criteria QUEry RESUILScccvvuevemiureeriirieneiieeieieee e sessesenns
Managing Criteria QUery ReSULLScovvviiiiciiiiciiccccc e

EXecuting QUETIESc.cuiiiiiiiiiiiiiicicc e

Creating and Using String-Based Criteria Queriescccoooeeirnniienennnn s 673
Overview of String-Based Criteria APT QUETIEScccuiuuiueiiiiniieiiiieieissiecseiscsecsssissnaes 673
Creating String-Based QUETIEScccocuuiiiiiimiiiiiciiiiesi s ssssaes 674
Executing String-Based QUETIEScccvuueviuriuriuciiiriieiterieeieineieteseeeesctsessesesessese e ases s ssssese s 675

Controlling Concurrent Access to Entity Data with Lockingcccoccocncinnnncnnes
Overview of Entity Locking and CONCUITENCYccuimueiueimeimiiecieiiiccssessssecsssasesssesessanes
Using Optimistic LOCKINGvuiviiniiiiiciiiesciiiiciecs s sesasns
LOCK IMIOGES ..ot s e
Setting the Lock Mode

Using Pessimistic LOCKING ...c.vueveururiuiiiinieeiiiniieieireieiseieiseie et sessese s ssessssenns

Using a Second-Level Cache with Java Persistence APl Applicationscccccooeernence.
Overview of the Second-Level Cacheccocvevueunnee.

Controlling Whether Entities May Be Cached
Specifying the Cache Mode Settings to Improve Performancecuceeeeveereeeencereeneceneeneeennes

The Java EE 6 Tutorial « January 2013

Contents

Part VIl

39

40

Setting the Cache Retrieval and Store Modescoeucuerecunienecunerneeeeerneeeeernensesensessesenne 686
Controlling the Second-Level Cache Programmaticallycccccoeceuveunieercrnerecrnernecnrennennn. 687
SEOCUIITY ..ottt bbbttt e s s s s et s et seseseseseses s s s ssnsnansesesas 689

Introduction to Security in the Java EE Platform
Overview 0f Java EE SECUTILYcuvvueviiiericieiricicineieicireieeeeeetseeensetsesessessessssesessesessessesessessessesennes
A Simple Application Security Walkthrough
Features of a Security MeChanismc.coeicieiiniiiiiiisecie i
Characteristics Of APplication SECUIILYccovureurecunierecrniiniicieireieicseieeesess e ssese e sseseene
SeCUrity MEChANISINGcucvieiecieirieeicireiectret ettt ettt seee et se st seae s sesensessesesacenes
Java SE Security MechaniSmsc.cceeeueeereuniureemeinienereienenessee e ssesesessesessesenne

Java EE Security Mechanisms ..o ssssssnas

Securing CONAINETSccuiiuiiiiiiic s

Using Annotations to Specify Security Information

Using Deployment Descriptors for Declarative SECUIILYcocuveeverneeeecrnernecrnerneeenrernennne 701
Using Programmatic SECUTILYccoviiiiiiiiiniiiiiiiiciiccecic e 701
Securing the GlassFish SEIVET ..ottt ettt sesesaeenes 702
Working with Realms, Users, Groups, and ROLEScoceveurureerirrieereniinnenineeeeneeenesneeeeeens 702
What Are Realms, Users, Groups, and ROLES?ccveurivreneinirnieineineinecineireereinesee e 703

Managing Users and Groups on the GlassFish Server
Setting Up Security ROLESc.ovcuiiieeiiiiiciireecieec e essesens
Mapping Roles to Users and GIOUPSceeueureeeriureuemserreeneesesnesesessesessessesessessessesesesseseens

Establishing a Secure Connection UsING SSLc..c.ovuvueuiurieemierieerenieeeeneiseeenseeseeensessessesesessesens
Verifying and Configuring SSL SUPPOTILc.cueueurerrieeieiriirieineireieteiseiseseesessese s sesseseene

Further Information about SECUTILYcucuiverereirreereiieercieee e sese s naens

Getting Started Securing Web Applications ... 713

Overview of Web Application SECUTILYc.ocvvueucureuriciriirieeireireieeeereteeesetseeetetsesessessessesessetsesennes

Securing Web APPLICALIONSc.cuveeueuriueicieiricietreieicireieeieetseeesessesessesseseseessessesessessesessessessssesnes
Specifying Security CONSIIAINTSccuiveiveririeiiiiiieicieiisee s seniaes

Specitfying Authentication Mechanisms
Specifying an Authentication Mechanism in the Deployment Descriptorccccocveune. 722
Declaring SECUrity ROLESc.cvvucuiuriueiiiieeicieineeitiseiecis et sesseseens 723

23

Contents

24

a1

42

Using Programmatic Security with Web Applicationsceccvcereeeercererrecenerneeeencuneneecenenseeennes

Authenticating Users Programmaticallycoccvereeunirneeicinceicineneceiseeeisesese e
Checking Caller Identity Programmaticallycccccoeeniuiiineiniiicieeeinininesccie e
Example Code for Programmatic SECUIItYccocveuiioriniiniiniiiniicciseinieceseiecsesnneans
Declaring and Linking Role References
Examples: Securing Web APPLICAtIONScovueveeueureeeremriieeeiierieneeseeenessesenseseeeneensessesensesesensens
V¥ To Set Up Your System for Running the Security EXamplesccocevcurerevcrncnecercrnenenenne
The hello2_basicauth Example: Basic Authentication with a Servlet

The hellol_formauth Example: Form-Based Authentication with a JavaServer Faces
APPHCALION ereiieiiieict ettt bttt ettt 734

Getting Started Securing Enterprise Applications

Securing Enterprise Beans
Securing an Enterprise Bean Using Declarative Security
Securing an Enterprise Bean Programmaticallycccocovceeeunirecmnenecrncneenenneeeeneenenenne
Propagating a Security Identity (RUN-AS) ..c..ccoeveuierremiereererneeenereeneenessesesessesessesseasesenne
Deploying Secure Enterprise BEansccoccvcecicirieniniinincneiceeie e ssesesesenans

Examples: Securing Enterprise BEANScoueveueureeereunieeeeriinieneeeeereesesensessessssensessesensessesensens
The cart-secure Example: Securing an Enterprise Bean with Declarative Security 750

The converter-secure Example: Securing an Enterprise Bean with Programmatic
SEOUTILY .t et 754

Java EE Security: Advance@d TOPICSccccvuvveirreecieieieeecece et s s saens
Working with Digital Certificatescoviuvuneurcurieireriiinercise e sasans
Creating a Server CertifiCatec..vereereureereieeneieee e e seesensenns
Adding Users to the Certificate Realmcccccoeeueuniereeuniinieieinceieneneceisee e sessesenne
Using a Different Server Certificate with the GlassFish Server ...,
Authentication MEChANISIISc.ceveviurieeriirieereieieeeeieeieneisese e ssesessese e ssesensessasesesaees
Client AUthentiCation ...t
Mutual AUthentication ...
Using Form-Based Login in JavaServer Faces Web Applicationscecevcureeevcurereecererreeennes
Using j_security checkin JavaServer Faces FOrms ...
Using a Managed Bean for Authentication in JavaServer Faces Applications
Using the JDBC Realm for User Authenticationeccveurecencrneeernceneeeecenerneeeesennesencsseseeenne
V¥ To Configure a JDBC Authentication Realmc.cccvcuiivcivcincieinininincncseceeceesiseeens

The Java EE 6 Tutorial « January 2013

Contents

Part VIl

43

44

Securing HTTP RESOUICEScccuieeiiiciriiiciieeiiietieeiceeseieie e ssecssssese s sssae s sessassensnaes
Securing ApplICation CLENLSc.oceveueureeereereeeicireieecinetseeenessesessesseteeaessessesessessesessessessesessessesesne
Using Login MOAULEScccuiuicmiiiciciieeciciee e sseseseesnns
Using Programmatic LOZINcccvviiiiiiiiiicct st

Securing Enterprise Information Systems Applications....

Container-Managed Sign-Onc..c.cceereereuniinieriinieneineeneseeeee e ssessesenns
Component-Managed Sign-ONccceeeuireerineenereeeneieee e sessesenns
Configuring Resource Adapter SECULILY ...
V¥ To Map an Application Principal to EIS Principalsccccoveuveeneincinecineineseeineeneerenneneene
Configuring Security Using Deployment DeSCIIPLOLSc.ccvvueecererreeeeneereeeeseerereeecenerseeenseesesenaes
Specitying Security for Basic Authentication in the Deployment Descriptorc........ 783
Specitying Non-Default Principal-to-Role Mapping in the Deployment Descriptor 784
Further Information about SECUIILYcc.ccuiiiiiiiiiiiiic e 785
Java EE Supporting Technologiesc.oooiiiiiireinincceee e eeeas 787
Introduction to Java EE Supporting Technologiescoooovernrnnininicrecrereeeeeene 789
Transactions in Java EE APPLICAtIONSc.cveueueecuieneieieineieicineisieceineeeseisese e sssssese e ssesenaees 789
Resources in Java EE APPLCAtIONSc.cuvuieeunicuririecieieicirictece ettt eesesseaesees 790
The Java EE Connector Architecture and Resource Adaptersoocvevcuvcevcueeenereenennes 790
Java Database Connectivity Software
JaVa MESSAZE SEIVICE ...ouvuiuiiiiiiiniiiiii bbb
TrANSACLIONS ... 793
What Is @ Transaction? ... sa e 793
Container-Managed Transactions ...
Transaction AIIDULESccocuiiciiiiiiiii e
Rolling Back a Container-Managed TTansactionc.ceceeureemrerneeemerneeeeensemseensenseeenne

Synchronizing a Session Bean’s Instance Variables
Methods Not Allowed in Container-Managed Transactionscoeeecureeeeeunerreerserneenne 799
Bean-Managed Transactions
JTA Transactionsccceeeeeeveeveveeereereerenreeereereeseesessenns
Returning without Committing
Methods Not Allowed in Bean-Managed Transactionscc.cecevcereeeecrneereerneuneensenseneene 801

25

Contents

26

45

46

47

TTansaction TIIMEOULScicviveiirietieectceere ettt ettt esr st e s sae b et esseseereesessessessetessesensessessesessens
VW To Seta Transaction TIIMEOULc.ocvvuivveieiirieritcreiete ettt ettt e e reeseebessesessesseseerensens
Updating Multiple Databasescccvcueeeeriurieereeriuereeienienieeeenesseeessesessssessessesessessesessesessssesens

Transactions in Web Components

Further Information about TTanSACtIONS ...cveveuevieeiieeeieeeeeeeeeeeeee ettt tes et etes et se s eenenen

Resources and Resource AdapLerscoooveeeeieieinisieccee ettt sessssnans 805

Resources and JNDI Naming
DataSource Objects and Connection Pools
Resource INJECHIONcviiiiiiiiiiiicc e
Field-Based INJECTION ...ucuuvueurerieincieieiicitinieeieiseietae ettt et
Method-Based Injection
Class-Based Injection

Resource Adapters and Contracts

Management CONIACESc.cviiuiiiiiiiiciiiieiice e ssaes 811
Generic WOrk Context CONTIACEc.o.eveviveeveeeeeeeereeeeteeeeeeeereteeesesseseseeeeteseseseesesessssesesesseseses 813
Outbound and INbOUNA CONTIACESc.vvveeeevieieeeceecectceeee ettt enenens 813

Metadata ANNOtationscceeeveveeeeveereeeeeeeeerenens

Common Client Interface

Using Resource Adapters With Contexts and Dependency Injection for the Java EE Platform
(CDI) 816

Further Information about Resources

The Resource Adapter EXamPIeccoooiiiieicceeeececee et sesnes 819

The Resource Adapter

The Message-Driven Bean

The WebD APPIICALION ...uvuvrieieiiiriieicircieiecret ettt bbb
Running the mailconnector EXAmple ... seesesessesessesenees 820
V Before You Deploy the mailconnector EXampleccenenenernernenerenieeeneesensensenens 820
V¥V To Build, Package, and Deploy the mailconnector Example Using NetBeans IDE 821
V¥ To Build, Package, and Deploy the mailconnector Example Using Antcccocuvvuence. 822
V¥ To Run the mailconnector EXAMPILEcocceereeurineeeiniiieinecisineieteececeseesesseseseeeseeseesesseaeaes 822
Java Message Service CONCEPRESccouvueveueiiiirieieieieiee ettt ettt be b saesesesesasanens 825
OVEIVIEW O the JIMIS AP ..ottt ettt ettt et et stene s senesenan 825

The Java EE 6 Tutorial « January 2013

Contents

48

WHRat IS MESSAZING? ...vuverrcrrieeirerreiercireiseeeteireseeset ettt ssese ettt sseseescnns 825
WHhat I the JIMS API? ..ottt ettt eeenen 826
When Can You Use the JIMS API? ...ttt 826
How Does the JMS API Work with the Java EE Platform?ccceceveveveeeveereeiereeeenennas 827
Basic JMS API Concepts
JIMS APT ATCRITECTULE ..ottt ae et ess et e s s s e s s enenenenen 829
Messaging DOmMAINS ..o 829
Message CONSUMPLION ... 832
The JMS API Programming MOdelcocueueueuneurieciniinieiiineeeieneieeeciseisese e ssessessesessssesesaees 832

JMS Administered Objects
JMS Connections

JIVIS SESSIONS ..vevevinrenreereriereiteeseeereeseeseesesesseseeteeseesesesseseesessessessesseseesesensessessesesensensessessesesensen
JMS MESSAZE PIOAUCELS ..ot sae s sseseanesenne
JMS Message COMSUIMETScucuviiiiiiiiiiiiiiiisscsces st
JIVIS MESSAZES ...eeeiiiiiiiincicici ittt
JIMS QUEUE BIOWSET'Seveviieieieieiieteniieteteseesteseseesesesesesaesesssesessesasaesessssesessesansesesesesssesesensn
JMS Exception Handling

Creating RODUST JIMS APPLICALIONS ...uvuevrveeririecieireieicireieeeetsetseeeeetseseesessetseee et sesessessessesessessesenne 842
Using Basic Reliability MechaniSmsccccoeveeuiunieecrninecereeseencssese e essesenns 843
Using Advanced Reliability MeChaniSmsccccvcureeevcuninecrneuneenernecnerneeeensessesenessesenne 847

Using the JMS API in Java EE APPlICationsc.cccccueiuiuniiriincicineicieieesiieecicsesescssesesssesaeens 851
Using @Resource Annotations in Enterprise Bean or Web Componentsccccecuueeee. 852
Using Session Beans to Produce and to Synchronously Receive Messagesccveueunee. 852
Using Message-Driven Beans to Receive Messages Asynchronouslyccccccccvieciniianee 853
Managing Distributed Transactionsccceveeueureeererneemerneeeeenessesenessesensesseseesesessesenne 856
Using the JMS API with Application Clients and Web Componentscocccveveeerrcrneunc. 858

Further Information abOUt JIMLScouiviieiiiieeereeeese ettt 858

Java Message Service EXamPlescoooiieeeiiiiiiiiecee ettt nnanaas 859

Writing Simple JMS APPLICALIONScvucviueueiiiiriciiiecicireeceieee e 860
A Simple Example of Synchronous Message RECEIVESccueurecuernierecrnerneennenneeeesennenene 860
A Simple Example of Asynchronous Message CONSUMPLIONccueveeecrreeeeeereuneeerenneneene 870
A Simple Example of Browsing Messages in a Queue
Running JMS Clients on Multiple SYStEIMScoceveurureecriurecuerreeenerneeeeensesneseaessesessesseseene
Undeploying and Cleaning the Simple JMS EXamplescccoeueeuriuniireuneencescecnennineenennes 886

27

Contents

28

49

Writing RObust JMS APPLCAtIONScueureeuierreerciirereeiienieeetiresensessesensessessesessessesessessesessessessesessees
A Message Acknowledgment EXamPple ..ot esseseens
A Durable Subscription EXamplecccvceeeeirieiniinieeicinesecineisee e esseseens

A Local Transaction EXAMPIec.cveeeeiriciricieiicirinceeiceinecenecieseecseeese e sessesessesesessescses
An Application That Uses the JMS API with a Session Bean
Writing the Application Components for the clientsessionmdb Example
Creating Resources for the clientsessionmdb EXampleccoooemnocnenicncrneenencnnennene
Running the clientsessionmdb EXamPple ..o ssenseseene
An Application That Uses the JMS API with an Entityccoccoeeevereericeneneereeneecneeseeeeneeennens
Overview of the clientmdbentity Example Applicationcccocveevcecevcreieereerenneerennes
Writing the Application Components for the clientmdbentity Example
Creating Resources for the clientmdbentity EXamplecccccoeniencrninencnnerneennennene
Running the clientmdbentity EXamMPIeccoveiniincininecineiniceeeereeeeeesseeeneneaene
An Application Example That Consumes Messages from a Remote Servercoocevecuneeence
Overview of the consumeremote Example Modulescoevcureerivcrnenecineinccincnneenerernennens
Writing the Module Components for the consumeremote Exampleccoocvcuvcrvcrcrcnnnee
Creating Resources for the consumeremote Exampleccccocveeveuniercrnienecnnceneeennees
Using Two Application Servers for the consumeremote Example
Running the consumeremote EXample ...
An Application Example That Deploys a Message-Driven Bean on Two Servers
Overview of the sendremote Example Modulesocccvureincininicnenecnencseneneenenene
Writing the Module Components for the sendremote Exampleccccooceveeunevecenerrcnnnen.
Creating Resources for the sendremote Example
V¥ To Enable Deployment on the Remote SYStemccccuciuiiuciineiiieceinisiessiesieisians
V¥ To Use Two Application Servers for the sendremote Examplecccooveeurnceenencenenecnnn.
Running the sendremote EXamPle ..o ssesensenns

V¥ To Disable Deployment on the Remote SYStem ..o,

Bean Validation: Advanced TOPICSc.ccoeviiieiucicieieeeece ettt nanas
Creating Custom CONSLIAINESccccviiciiiiiiiiiicc s naes
Using the Built-In Constraints to Make a New Constraintcccoeceeeeeveureerneuneeeerseeneenne
Customizing Validator MESSAZESc.weueureveeeererreeeieireiesetreseeseesessesessessesessessesessessessssesessesessesnes
The ValidationMessages Resource Bundle
Grouping CONSIIANESccviiiiiiiiiiii e s

Customizing Group Validation Order ...

The Java EE 6 Tutorial « January 2013

Contents

50

PartIX

51

52

Using Java EE INTEICEPLOLSccooviiieeiecicetee ettt sne 933
Overview of Interceptors
INEEICEPLOT CLASSES ..ecvrvuveereuiinereieecieieietsiseseeeaetseese s atae s b sese e esetseae e satae e s seaesennaes

Interceptor Lifecycle

Interceptors and CDI
USING INTEICEPLOLS .ottt
Intercepting Method INVOCAtIONScvueuierecmmiureeneiieeneneienseseesesenessesense e seseeseessesenne 936
Intercepting Lifecycle Callback EVENLSccocuuiriiiiiniiniiiiicciciicciseiieceseiesie i 937
Intercepting Timeout EVENLScccouviiiiiiiiiciiiiccc e 938
The interceptor Example APPLICAtionceccueureeeueureeeicinieeieineeneeceeeneieneesesensesessesessessesensees 939
Running the interceptor EXamPple ... sessesensenne 940
CASE@STUAIES ... s 943

Duke’s Bookstore Case Study Example

Design and Architecture of Duke’s BOOKSTOTEc.c.eveuiureeeriinieereiiecreneineeneiseeensesseseneeseeseaens 945
The Duke’s BooKkstore INterface ... 946
The Book Java Persistenice APTENTILY ..covcuiereeeeeenieeieineirieieiseseeeiseseesescssese e sseseasenns 946
Enterprise Beans Used in DuKke’s BOOKSTOTEccc.euveueuriiuriniuciricieineeenineseinicieesesetseesesseaeans 947
Facelets Pages and Managed Beans Used in Duke’s BOOKStOTeccocveucucicucenieniunennes 947
Custom Components and Other Custom Objects Used in Duke’s Bookstore 949
Properties Files Used in DUKe’s BOOKSTOIEc..ccuvvuiuiireriicrneriereeieineieseesesenieneesaseseasenae 949
Deployment Descriptors Used in Duke’s BOOKSTOTEc.cveuevucuneuricrnienencrnerneneiennceeeennenene 950
Running the Duke’s Bookstore Case Study Applicationc.ceeeeeveemeereeenerneeeeenseeseenenrenns 951
V To Build and Deploy Duke’s Bookstore Using NetBeans IDEccceveureeneneineenccerennenene 951
V¥ To Build and Deploy Duke’s Bookstore Using Antc.ccccveureueereunernecrnerneeeescusenneensenseeenne 951
VW T0 RUN DUKE’S BOOKSLOTEooeirieiriiiiiiiiie e na s saens 952
Duke’s Tutoring Case Study EXamplecc.oooouiiiriirinieeee e
Design and Architecture of DuKe’s TULOTINGc.cuvvveveeuiereeriirieeneireieeeeeeeeeneeseeensessesensesesseaens
Main TNEEITACE ..ot

Java Persistence API Entities Used in the Main Interface

Enterprise Beans Used in the Main INterfaceccoeueurereeeneireeinerneeieinesieiseesee s

Facelets Files Used in the Main INtErfaceovvveeieiveeiieeceiceieeceeeeeeeee et

29

Contents

Helper Classes Used in the Main INterfacecccocveeveuneveceneinecincnecncineeeeeneesesessenseseene
ProPerties FIlESc.ouiuiuriueiiiriieicicieiciisee ettt e
Deployment Descriptors Used in Duke’s TUtOTINGcccvvueveemmerreemernieenereieeenenneeenenneeenne
Administration INErfacecc.ccuciiiiiuiiiiiiiiiicic s

Enterprise Beans Used in the Administration Interface ...

Facelets Files Used in the Administration Interfaceccocoveeveunevevcunenecernerneeererneeneenne
Running the Duke’s Tutoring Case Study APPliCationceceeecerevrecencereeeencerereecererneseeseeseeennes
Setting Up GlassFish SEIVETc.c.vuiiiiiriciiriciciricce e
Running DUKE’S TULOTINGccuvuveeumrueeeimiiieenieiieneeneineae e ssessesessessesessessessssessesesenns
53 Duke’s Forest Case Study EXample ... seseaes 965
Design and Architecture 0f DUKE’s FOIEStc.ciuireuniuriiereiniiereiieneeceeeneeeneeseseneensessesesessesensens 966
TRE @VENTS PIOJECT ..cuvuieiieirieicicieec ittt e 968
The entities PrOJEC oo seae 969
The dukes - payment PrOJECTcocueureciiirieincireireeieiseeeietseieesetsetseae ettt esesesens 971
The dukes - reSources PIOJECT ... sssssees 972
The DUKE’S StOT€ PTOJECtcuvuiviecimiiecieiiecciireieneieie et easesenns 972
The Duke’s ShIPMENt PTOJECE ...uvuvuiuiuieiirierieciiireicieireieieiseieescseieese e ssese e esesesseseene 977
Building and Deploying the Duke’s Forest Case Study Applicationc.cccceeuveuniuvciinciniunees 979
PrereqUisite TaSKcceiciriceeiccieirceseci ettt ettt 979
V¥ To Build and Deploy the Duke’s Forest Application Using NetBeans IDEccccocueuee. 980
V¥V To Build and Deploy the Duke’s Forest Application Using Ant
Running the Duke’s Forest APPliCAtioNnc.occcevcureeeecineunrecenerreeeecrnereecererseeeesessesensesseseesessessesenses
¥V To Register as a Duke’s Store CUSLOMETc.cvuvuiuiuiureucicieienieienieeeiseese e sseseseaens
VW To Purchase Products ... ssssns
V¥ To Approve Shipment 0f @ PTOAUCEc.ovcucinieinciniricircncccrcrececeeeeseiseseese e
VW T0 Create @ NeW PrOQUCL ..ot ssses
INAEX ..o s 985

30 The Java EE 6 Tutorial « January 2013

Preface

This tutorial is a guide to developing enterprise applications for the Java Platform, Enterprise
Edition 6 (Java EE 6) using GlassFish Server Open Source Edition.

Oracle GlassFish Server, a Java EE compatible application server, is based on GlassFish Server
Open Source Edition, the leading open-source and open-community platform for building and
deploying next-generation applications and services. GlassFish Server Open Source Edition,
developed by the GlassFish project open-source community at http://glassfish.java.net/,
is the first compatible implementation of the Java EE 6 platform specification. This lightweight,
flexible, and open-source application server enables organizations not only to leverage the new
capabilities introduced within the Java EE 6 specification, but also to add to their existing
capabilities through a faster and more streamlined development and deployment cycle. Oracle
GlassFish Server, the product version, and GlassFish Server Open Source Edition, the
open-source version, are hereafter referred to as GlassFish Server.

The following topics are addressed here:

“Before You Read This Book” on page 31
“Related Documentation” on page 32
“Typographic Conventions” on page 32
“Default Paths and File Names” on page 33
“Third-Party Web Site References” on page 34

Before You Read This Book

Before proceeding with this tutorial, you should have a good knowledge of the Java
programming language. A good way to get to that point is to work through the Java Tutorials
(http://docs.oracle.com/javase/tutorial/index.html).

31

http://glassfish.java.net/
http://docs.oracle.com/javase/tutorial/index.html
http://docs.oracle.com/javase/tutorial/index.html

Preface

Related Documentation

The GlassFish Server documentation set describes deployment planning and system
installation. To obtain documentation for GlassFish Server Open Source Edition, go to
http://glassfish.java.net/docs/. The Uniform Resource Locator (URL) for the Oracle
GlassFish Server product documentation is http://docs.oracle.com/cd/E26576_01/
index.htm.

The API documentation for packages that are provided with GlassFish Server is available as
follows.

= The API specification for version 6 of Java EE is located at http: //docs.oracle. com/
javaee/6/api/.

= The API specification for GlassFish Server, including Java EE 6 platform packages and
nonplatform packages that are specific to the GlassFish Server product, is located at
http://glassfish.java.net/nonav/docs/v3/api/.

Additionally, the Java EE Specificationsat http: //www.oracle.com/technetwork/java/
javaee/tech/index.html might be useful.

For information about creating enterprise applications in the NetBeans Integrated
Development Environment (IDE), see http://www.netbeans.org/kb/.

For information about the Java DB database for use with the GlassFish Server, see
http://www.oracle.com/technetwork/java/javadb/overview/index.html.

The GlassFish Samples project is a collection of sample applications that demonstrate a broad
range of Java EE technologies. The GlassFish Samples are bundled with the Java EE Software
Development Kit (SDK) and are also available from the GlassFish Samples project page at
http://glassfish-samples.java.net/.

Typographic Conventions

32

Table P-1 describes the typographic changes that are used in this book.

TABLEP-1 Typographic Conventions

Typeface Meaning Example
AaBbCc123 The names of commands, files, and Edit your . login file.
directories, and onscreen computer .
Use 1s -a to list all files.
output
machine_name% you have mail.
AaBbCc123 What you type, contrasted with onscreen machine_name% su
computer output

Password:

The Java EE 6 Tutorial « January 2013

http://glassfish.java.net/docs/
http://docs.oracle.com/cd/E26576_01/index.htm
http://docs.oracle.com/cd/E26576_01/index.htm
http://docs.oracle.com/javaee/6/api/
http://docs.oracle.com/javaee/6/api/
http://glassfish.java.net/nonav/docs/v3/api/
http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.netbeans.org/kb/
http://www.oracle.com/technetwork/java/javadb/overview/index.html
http://glassfish-samples.java.net/

Preface

TABLEP-1 Typographic Conventions

(Continued)

Typeface

Meaning

Example

AaBbCcl23

AaBbCc123

A placeholder to be replaced with a real
name or value

Book titles, new terms, and terms to be
emphasized (note that some emphasized
items appear bold online)

The command to remove a file is rm filename.

Read Chapter 6 in the Users Guide.
A cacheis a copy that is stored locally.

Do not save the file.

Default Paths and File Names

Table P-2 describes the default paths and file names that are used in this book.

TABLEP-2 Default Paths and File Names

Placeholder

Description

Default Value

as-install

as-install-parent

tut-install

domain-root-dir

domain-dir

Represents the base installation
directory for the GlassFish Server
or the SDK of which the
GlassFish Server is a part.

Represents the parent of the base
installation directory for
GlassFish Server.

Represents the base installation
directory for the Java EE Tutorial
after you install the GlassFish
Server or the SDK and run the
Update Tool.

Represents the directory in which
adomain is created by default.

Represents the directory in which
a domain’s configuration is
stored.

Installations on the Solaris operating system, Linux
operating system, and Mac operating system:

user’s-home-directory/glassfish3/glassfish
Windows, all installations:
SystemDrive:\glassfish3\glassfish

Installations on the Solaris operating system, Linux
operating system, and Mac operating system:

users-home-directory/glassfish3
Windows, all installations:
SystemDrive:\glassfish3

as-install/docs/javaee-tutorial

as-install/domains/

domain-root-dir/domain-name

33

Preface

Third-Party Web Site References

Third-party URLs are referenced in this document and provide additional, related information.

Note - Oracle is not responsible for the availability of third-party web sites mentioned in this
document. Oracle does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Oracle will
not be responsible or liable for any actual or alleged damage or loss caused or alleged to be
caused by or in connection with use of or reliance on any such content, goods, or services that
are available on or through such sites or resources.

34 The Java EE 6 Tutorial « January 2013

PART |

Introduction

Part I introduces the platform, the tutorial, and the examples. This part contains the
following chapters:

= Chapter 1, “Overview”
= Chapter 2, “Using the Tutorial Examples”

35

36

CHAPTER 1

Overview

This chapter introduces you to Java EE enterprise application development. Here you will
review development basics, learn about the Java EE architecture and APIs, become acquainted
with important terms and concepts, and find out how to approach Java EE application
programming, assembly, and deployment.

Developers today increasingly recognize the need for distributed, transactional, and portable
applications that leverage the speed, security, and reliability of server-side technology.
Enterprise applications provide the business logic for an enterprise. They are centrally managed
and often interact with other enterprise software. In the world of information technology,
enterprise applications must be designed, built, and produced for less money, with greater
speed, and with fewer resources.

With the Java Platform, Enterprise Edition (Java EE), development of Java enterprise
applications has never been easier or faster. The aim of the Java EE platform is to provide
developers with a powerful set of APIs while shortening development time, reducing
application complexity, and improving application performance.

The Java EE platform is developed through the Java Community Process (JCP), which is
responsible for all Java technologies. Expert groups, composed of interested parties, have
created Java Specification Requests (JSRs) to define the various Java EE technologies. The work
of the Java Community under the JCP program helps to ensure Java technology’s standard of
stability and cross-platform compatibility.

The Java EE platform uses a simplified programming model. XML deployment descriptors are
optional. Instead, a developer can simply enter the information as an annotation directly into a
Java source file, and the Java EE server will configure the component at deployment and
runtime. These annotations are generally used to embed in a program data that would
otherwise be furnished in a deployment descriptor. With annotations, you put the specification
information in your code next to the program element affected.

In the Java EE platform, dependency injection can be applied to all resources a component
needs, effectively hiding the creation and lookup of resources from application code.

37

Java EE 6 Platform Highlights

Dependency injection can be used in EJB containers, web containers, and application clients.
Dependency injection allows the Java EE container to automatically insert references to other
required components or resources, using annotations.

This tutorial uses examples to describe the features available in the Java EE platform for
developing enterprise applications. Whether you are a new or experienced Enterprise
developer, you should find the examples and accompanying text a valuable and accessible
knowledge base for creating your own solutions.

The following topics are addressed here:

“Java EE 6 Platform Highlights” on page 38

“Java EE Application Model” on page 39

“Distributed Multitiered Applications” on page 39

“Java EE Containers” on page 47

“Web Services Support” on page 49

“Java EE Application Assembly and Deployment” on page 50
“Packaging Applications” on page 51

“Development Roles” on page 52

“Java EE 6 APIs” on page 55

“Java EE 6 APIs in the Java Platform, Standard Edition 6 and 7” on page 64
“GlassFish Server Tools” on page 67

Java EE 6 Platform Highlights

38

The most important goal of the Java EE 6 platform is to simplify development by providing a
common foundation for the various kinds of components in the Java EE platform. Developers
benefit from productivity improvements with more annotations and less XML configuration,
more Plain Old Java Objects (POJOs), and simplified packaging. The Java EE 6 platform
includes the following new features:

= Profiles: configurations of the Java EE platform targeted at specific classes of applications.
Specifically, the Java EE 6 platform introduces a lightweight Web Profile targeted at
next-generation web applications, as well as a Full Profile that contains all Java EE
technologies and provides the full power of the Java EE 6 platform for enterprise
applications.

= New technologies, including the following:
= Java API for RESTful Web Services (JAX-RS)
= Managed Beans

= Contexts and Dependency Injection for the Java EE Platform (JSR 299), informally
known as CDI

= Dependency Injection for Java (JSR 330)
®m Bean Validation (JSR 303)

The Java EE 6 Tutorial « January 2013

Distributed Multitiered Applications

= Java Authentication Service Provider Interface for Containers (JASPIC)

= New features for Enterprise JavaBeans (EJB) components (see “Enterprise JavaBeans
Technology” on page 58 for details)

= New features for servlets (see “Java Servlet Technology” on page 59 for details)

= New features for JavaServer Faces components (see “JavaServer Faces Technology” on
page 59 for details)

Java EE Application Model

The Java EE application model begins with the Java programming language and the Java virtual
machine. The proven portability, security, and developer productivity they provide forms the
basis of the application model. Java EE is designed to support applications that implement
enterprise services for customers, employees, suppliers, partners, and others who make
demands on or contributions to the enterprise. Such applications are inherently complex,
potentially accessing data from a variety of sources and distributing applications to a variety of
clients.

To better control and manage these applications, the business functions to support these
various users are conducted in the middle tier. The middle tier represents an environment that
is closely controlled by an enterprise’s information technology department. The middle tier is
typically run on dedicated server hardware and has access to the full services of the enterprise.

The Java EE application model defines an architecture for implementing services as multitier
applications that deliver the scalability, accessibility, and manageability needed by
enterprise-level applications. This model partitions the work needed to implement a multitier
service into the following parts:

= The business and presentation logic to be implemented by the developer
= The standard system services provided by the Java EE platform

The developer can rely on the platform to provide solutions for the hard systems-level problems
of developing a multitier service.

Distributed Multitiered Applications

The Java EE platform uses a distributed multitiered application model for enterprise
applications. Application logic is divided into components according to function, and the
application components that make up a Java EE application are installed on various machines,
depending on the tier in the multitiered Java EE environment to which the application
component belongs.

Chapter 1 « Overview 39

Distributed Multitiered Applications

40

Figure 1-1 shows two multitiered Java EE applications divided into the tiers described in the
following list. The Java EE application parts shown in Figure 1-1 are presented in “Java EE
Components” on page 42.

= Client-tier components run on the client machine.

= Web-tier components run on the Java EE server.

= Business-tier components run on the Java EE server.

= Enterprise information system (EIS)-tier software runs on the EIS server.

Although a Java EE application can consist of all tiers shown in Figure 1-1, Java EE multitiered
applications are generally considered to be three-tiered applications because they are
distributed over three locations: client machines, the Java EE server machine, and the database
or legacy machines at the back end. Three-tiered applications that run in this way extend the
standard two-tiered client-and-server model by placing a multithreaded application server
between the client application and back-end storage.

The Java EE 6 Tutorial « January 2013

Distributed Multitiered Applications

FIGURE1-1 Multitiered Applications

Java EE Java EE
Application 1 Application 2

/ Client Client
L Tier Machine
Application | 452>
Client

JavaServer
Faces
Pages Web
Tier
‘ Java EE
Server

Enterprise Enterprise
Beans Beans

Business

A

EIS Database
Tier Server

' Database Database

Security

Although other enterprise application models require platform-specific security measures in
each application, the Java EE security environment enables security constraints to be defined at
deployment time. The Java EE platform makes applications portable to a wide variety of
security implementations by shielding application developers from the complexity of
implementing security features.

The Java EE platform provides standard declarative access control rules that are defined by the
developer and interpreted when the application is deployed on the server. Java EE also provides
standard login mechanisms so application developers do not have to implement these
mechanisms in their applications. The same application works in a variety of security
environments without changing the source code.

Chapter 1 « Overview 41

Distributed Multitiered Applications

42

Java EE Components

Java EE applications are made up of components. A Java EE component is a self-contained
functional software unit that is assembled into a Java EE application with its related classes and
files and that communicates with other components.

The Java EE specification defines the following Java EE components:

= Application clients and applets are components that run on the client.

= Java Servlet, JavaServer Faces, and JavaServer Pages (JSP) technology components are web
components that run on the server.

= Enterprise JavaBeans (EJB) components (enterprise beans) are business components that
run on the server.

Java EE components are written in the Java programming language and are compiled in the
same way as any program in the language. The differences between Java EE components and
“standard” Java classes are that Java EE components are assembled into a Java EE application,
they are verified to be well formed and in compliance with the Java EE specification, and they
are deployed to production, where they are run and managed by the Java EE server.

Java EE Clients

A Java EE client is usually either a web client or an application client.

Web Clients

A web client consists of two parts:

= Dynamic web pages containing various types of markup language (HTML, XML, and so
on), which are generated by web components running in the web tier

= A web browser, which renders the pages received from the server

A web client is sometimes called a thin client. Thin clients usually do not query databases,
execute complex business rules, or connect to legacy applications. When you use a thin client,
such heavyweight operations are oft-loaded to enterprise beans executing on the Java EE server,
where they can leverage the security, speed, services, and reliability of Java EE server-side
technologies.

Application Clients

An application client runs on a client machine and provides a way for users to handle tasks that
require a richer user interface than can be provided by a markup language. An application client
typically has a graphical user interface (GUT) created from the Swing or the Abstract Window
Toolkit (AWT) API, but a command-line interface is certainly possible.

The Java EE 6 Tutorial « January 2013

Distributed Multitiered Applications

Application clients directly access enterprise beans running in the business tier. However, if
application requirements warrant it, an application client can open an HTTP connection to
establish communication with a servlet running in the web tier. Application clients written in
languages other than Java can interact with Java EE servers, enabling the Java EE platform to
interoperate with legacy systems, clients, and non-Java languages.

Applets

A web page received from the web tier can include an embedded applet. Written in the Java
programming language, an applet is a small client application that executes in the Java virtual
machine installed in the web browser. However, client systems will likely need the Java Plug-in
and possibly a security policy file for the applet to successfully execute in the web browser.

Web components are the preferred API for creating a web client program, because no plug-ins
or security policy files are needed on the client systems. Also, web components enable cleaner
and more modular application design because they provide a way to separate applications
programming from web page design. Personnel involved in web page design thus do not need
to understand Java programming language syntax to do their jobs.

The JavaBeans Component Architecture

The server and client tiers might also include components based on the JavaBeans component
architecture (JavaBeans components) to manage the data flow between the following:

= Anapplication client or applet and components running on the Java EE server
= Server components and a database

JavaBeans components are not considered Java EE components by the Java EE specification.

JavaBeans components have properties and have get and set methods for accessing the
properties. JavaBeans components used in this way are typically simple in design and
implementation but should conform to the naming and design conventions outlined in the
JavaBeans component architecture.

Java EE Server Communications

Figure 1-2 shows the various elements that can make up the client tier. The client
communicates with the business tier running on the Java EE server either directly or, as in the
case of a client running in a browser, by going through web pages or servlets running in the web
tier.

Chapter 1 « Overview 43

Distributed Multitiered Applications

44

FIGURE1-2 Server Communication

Application Client and | Web Browser, Web /
Optional JavaBeans Pages, Applets, 7
Components and Optional
p VY JavaBeans W i
\‘\‘\Q Components *\-\Q Client
- b Tier
A A
\4
Web Tier y
§\\
i i |
Business Tier jov4 EE
Server

Web Components

Java EE web components are either servlets or web pages created using JavaServer Faces
technology and/or JSP technology (JSP pages). Servlets are Java programming language classes
that dynamically process requests and construct responses. JSP pages are text-based documents
that execute as servlets but allow a more natural approach to creating static content. JavaServer
Faces technology builds on servlets and JSP technology and provides a user interface component
framework for web applications.

Static HTML pages and applets are bundled with web components during application assembly
but are not considered web components by the Java EE specification. Server-side utility classes
can also be bundled with web components and, like HTML pages, are not considered web
components.

As shown in Figure 1-3, the web tier, like the client tier, might include a JavaBeans component
to manage the user input and send that input to enterprise beans running in the business tier for
processing.

The Java EE 6 Tutorial « January 2013

Distributed Multitiered Applications

FIGURE 1-3 Web Tier and Java EE Applications

Application Client | Web Browser, Web /
and Optional Pages, Applets, 7
JavaBeans and Optional
Components JavaBeans \\/
¥ Components ! i
p V! R VY Client
\‘Q \‘\Q Tier
A A
A
JavaBeans Web Pages
Components Servlets
(Optional) / Web
o o Tier
K, .2
¥ ' i Java EE
Business Server
Tier

Business Components

Business code, which is logic that solves or meets the needs of a particular business domain such
as banking, retail, or finance, is handled by enterprise beans running in either the business tier
or the web tier. Figure 1-4 shows how an enterprise bean receives data from client programs,
processes it (if necessary), and sends it to the enterprise information system tier for storage. An
enterprise bean also retrieves data from storage, processes it (if necessary), and sends it back to

the client program.

Chapter 1 « Overview

45

Distributed Multitiered Applications

FIGURE 1-4 Business and EIS Tiers

Application Client and | Web Browser, Web /
Optional JavaBeans Pages, Applets, and 7
Components Optional JavaBeans \/

Components
KT i
&Q Client
A

gy

Tier

JavaBeans Web Pages
Components Servlets
(Optional) Web
l il Tier
A
v

Java Persistence Entities
Business Java EE

Session Beans
Message-Driven Beans * Tier Server

A

|

\
Database
and Legacy E_|S
Systems Tier

Enterprise Information System Tier

The enterprise information system tier handles EIS software and includes enterprise
infrastructure systems, such as enterprise resource planning (ERP), mainframe transaction
processing, database systems, and other legacy information systems. For example, Java EE
application components might need access to enterprise information systems for database
connectivity.

46 The Java EE 6 Tutorial « January 2013

Java EE Containers

Java EE Containers

Normally, thin-client multitiered applications are hard to write because they involve many lines
of intricate code to handle transaction and state management, multithreading, resource
pooling, and other complex low-level details. The component-based and platform-independent
Java EE architecture makes Java EE applications easy to write because business logic is
organized into reusable components. In addition, the Java EE server provides underlying
services in the form of a container for every component type. Because you do not have to
develop these services yourself, you are free to concentrate on solving the business problem at
hand.

Container Services

Containers are the interface between a component and the low-level platform-specific
functionality that supports the component. Before it can be executed, a web, enterprise bean, or
application client component must be assembled into a Java EE module and deployed into its
container.

The assembly process involves specifying container settings for each component in the Java EE
application and for the Java EE application itself. Container settings customize the underlying
support provided by the Java EE server, including such services as security, transaction
management, Java Naming and Directory Interface (JNDI) API lookups, and remote
connectivity. Here are some of the highlights.

= The Java EE security model lets you configure a web component or enterprise bean so that
system resources are accessed only by authorized users.

= The Java EE transaction model lets you specify relationships among methods that make up a
single transaction so that all methods in one transaction are treated as a single unit.

= JNDIlookup services provide a unified interface to multiple naming and directory services
in the enterprise so that application components can access these services.

= The Java EE remote connectivity model manages low-level communications between clients
and enterprise beans. After an enterprise bean is created, a client invokes methods on it as if
it were in the same virtual machine.

Because the Java EE architecture provides configurable services, application components within
the same Java EE application can behave differently based on where they are deployed. For
example, an enterprise bean can have security settings that allow it a certain level of access to
database data in one production environment and another level of database access in another
production environment.

The container also manages nonconfigurable services, such as enterprise bean and servlet
lifecycles, database connection resource pooling, data persistence, and access to the Java EE
platform APIs (see “Java EE 6 APIs” on page 55).

Chapter 1 « Overview 47

Java EE Containers

48

Container Types

The deployment process installs Java EE application components in the Java EE containers as
illustrated in Figure 1-5.

FIGURE1-5 Java EE Server and Containers

Application Client
Container
Client
Machine
Application
Client
A
Servlet
« Web
¢ Container
\ | 4
Java EE
v l Server
Enterprise Enterprise
Bean Bean EJB
. . Container
A
v
Database

= Java EE server: The runtime portion of a Java EE product. A Java EE server provides EJB and
web containers.

= Enterprise JavaBeans (EJB) container: Manages the execution of enterprise beans for Java
EE applications. Enterprise beans and their container run on the Java EE server.

= Web container: Manages the execution of web pages, servlets, and some EJB components
for Java EE applications. Web components and their container run on the Java EE server.

The Java EE 6 Tutorial « January 2013

Web Services Support

= Application client container: Manages the execution of application client components.
Application clients and their container run on the client.

= Applet container: Manages the execution of applets. Consists of a web browser and Java
Plug-in running on the client together.

Web Services Support

Web services are web-based enterprise applications that use open, XML-based standards and
transport protocols to exchange data with calling clients. The Java EE platform provides the
XML APIs and tools you need to quickly design, develop, test, and deploy web services and
clients that fully interoperate with other web services and clients running on Java-based or
non-Java-based platforms.

To write web services and clients with the Java EE XML APIs, all you do is pass parameter data
to the method calls and process the data returned; for document-oriented web services, you
send documents containing the service data back and forth. No low-level programming is
needed, because the XML API implementations do the work of translating the application data
to and from an XML-based data stream that is sent over the standardized XML-based transport
protocols. These XML-based standards and protocols are introduced in the following sections.

The translation of data to a standardized XML-based data stream is what makes web services
and clients written with the Java EE XML APIs fully interoperable. This does not necessarily
mean that the data being transported includes XML tags, because the transported data can itself
be plain text, XML data, or any kind of binary data, such as audio, video, maps, program files,
computer-aided design (CAD) documents, and the like. The next section introduces XML and
explains how parties doing business can use XML tags and schemas to exchange datain a
meaningful way.

XML

Extensible Markup Language (XML) is a cross-platform, extensible, text-based standard for
representing data. Parties that exchange XML data can create their own tags to describe the
data, set up schemas to specify which tags can be used in a particular kind of XML document,
and use XML style sheets to manage the display and handling of the data.

For example, a web service can use XML and a schema to produce price lists, and companies
that receive the price lists and schema can have their own style sheets to handle the data in a way
that best suits their needs. Here are examples.

= One company might put XML pricing information through a program to translate the XML
to HTML so that it can post the price lists to its intranet.

= A partner company might put the XML pricing information through a tool to create a
marketing presentation.

Chapter 1 « Overview 49

Java EE Application Assembly and Deployment

= Another company might read the XML pricing information into an application for
processing.

SOAP Transport Protocol

Client requests and web service responses are transmitted as Simple Object Access Protocol
(SOAP) messages over HTTP to enable a completely interoperable exchange between clients
and web services, all running on different platforms and at various locations on the Internet.
HTTP is a familiar request-and-response standard for sending messages over the Internet, and
SOAP is an XML-based protocol that follows the HTTP request-and-response model.

The SOAP portion of a transported message does the following:

= Defines an XML-based envelope to describe what is in the message and explain how to
process the message

= Includes XML-based encoding rules to express instances of application-defined data types
within the message

= Defines an XML-based convention for representing the request to the remote service and
the resulting response

WSDL Standard Format

The Web Services Description Language (WSDL) is a standardized XML format for describing
network services. The description includes the name of the service, the location of the service,
and ways to communicate with the service. WSDL service descriptions can be published on the
Web. GlassFish Server provides a tool for generating the WSDL specification of a web service
that uses remote procedure calls to communicate with clients.

Java EE Application Assembly and Deployment

50

A Java EE application is packaged into one or more standard units for deployment to any Java
EE platform-compliant system. Each unit contains

= A functional component or components, such as an enterprise bean, web page, servlet, or
applet
= Anoptional deployment descriptor that describes its content

Once a Java EE unit has been produced, it is ready to be deployed. Deployment typically
involves using a platform’s deployment tool to specify location-specific information, such asa
list of local users who can access it and the name of the local database. Once deployed on a local
platform, the application is ready to run.

The Java EE 6 Tutorial « January 2013

Packaging Applications

Packaging Applications

A Java EE application is delivered in a Java Archive (JAR) file,a Web Archive (WAR) file, or an
Enterprise Archive (EAR) file. A WAR or EAR fileis a standard JAR (. jar) filewitha .war or
.ear extension. Using JAR, WAR, and EAR files and modules makes it possible to assemble a
number of different Java EE applications using some of the same components. No extra coding

is needed; it is only a matter of assembling (or packaging) various Java EE modules into Java EE
JAR, WAR, or EAR files.

An EAR file (see Figure 1-6) contains Java EE modules and, optionally, deployment descriptors.
A deployment descriptor, an XML document with an . xml extension, describes the deployment
settings of an application, a module, or a component. Because deployment descriptor
information is declarative, it can be changed without the need to modify the source code. At
runtime, the Java EE server reads the deployment descriptor and acts upon the application,
module, or component accordingly.

FIGURE 1-6 EAR File Structure

’ Assembly Root
I
|

| |
META-INF Web EJB
Module Module

Application Client
Module

Resource Adapter
Module

application.xml
glassfish-application.xml
(optional)

The two types of deployment descriptors are Java EE and runtime. A Java EE deployment
descriptor is defined by a Java EE specification and can be used to configure deployment settings
on any Java EE-compliant implementation. A runtime deployment descriptor is used to
configure Java EE implementation-specific parameters. For example, the GlassFish Server
runtime deployment descriptor contains such information as the context root of a web
application, as well as GlassFish Server implementation-specific parameters, such as caching

Chapter 1 « Overview 51

Development Roles

directives. The GlassFish Server runtime deployment descriptors are named
glassfish-moduleType.xml and are located in the same META- INF directory as the Java EE
deployment descriptor.

A Java EE module consists of one or more Java EE components for the same container type and,
optionally, one component deployment descriptor of that type. An enterprise bean module
deployment descriptor, for example, declares transaction attributes and security authorizations
for an enterprise bean. A Java EE module can be deployed as a stand-alone module.

Java EE modules are of the following types:

= EJB modules, which contain class files for enterprise beans and, optionally, an EJB
deployment descriptor. EJB modules are packaged as JAR files with a . jar extension.

= Web modules, which contain servlet class files, web files, supporting class files, image and
HTML files, and, optionally, a web application deployment descriptor. Web modules are
packaged as JAR files with a .war (web archive) extension.

= Application client modules, which contain class files and, optionally, an application client
deployment descriptor. Application client modules are packaged as JAR files with a . jar
extension.

= Resource adapter modules, which contain all Java interfaces, classes, native libraries, and,
optionally, a resource adapter deployment descriptor. Together, these implement the
Connector architecture (see “Java EE Connector Architecture” on page 63) for a particular
EIS. Resource adapter modules are packaged as JAR files with an . rar (resource adapter
archive) extension.

Development Roles

52

Reusable modules make it possible to divide the application development and deployment
process into distinct roles so that different people or companies can perform difterent parts of
the process.

The first two roles, Java EE product provider and tool provider, involve purchasing and
installing the Java EE product and tools. After software is purchased and installed, Java EE
components can be developed by application component providers, assembled by application
assemblers, and deployed by application deployers. In a large organization, each of these roles
might be executed by different individuals or teams. This division of labor works because each
of the earlier roles outputs a portable file that is the input for a subsequent role. For example, in
the application component development phase, an enterprise bean software developer delivers
EJB JAR files. In the application assembly role, another developer may combine these EJB JAR
files into a Java EE application and save it in an EAR file. In the application deployment role, a
system administrator at the customer site uses the EAR file to install the Java EE application into
aJava EE server.

The Java EE 6 Tutorial « January 2013

Development Roles

The different roles are not always executed by different people. If you work for a small company,
for example, or if you are prototyping a sample application, you might perform tasks in every
phase.

Java EE Product Provider

The Java EE product provider is the company that designs and makes available for purchase the
Java EE platform APIs and other features defined in the Java EE specification. Product providers
are typically application server vendors that implement the Java EE platform according to the
Java EE 6 Platform specification.

Tool Provider

The tool provider is the company or person who creates development, assembly, and packaging
tools used by component providers, assemblers, and deployers.

Application Component Provider

The application component provider is the company or person who creates web components,
enterprise beans, applets, or application clients for use in Java EE applications.

Enterprise Bean Developer

An enterprise bean developer performs the following tasks to deliver an EJB JAR file that
contains one or more enterprise beans:

= Writes and compiles the source code
= Specifies the deployment descriptor (optional)
= Packages the . class files and deployment descriptor into the EJB JAR file

Web Component Developer

A web component developer performs the following tasks to deliver a WAR file containing one
or more web components:

= Writes and compiles servlet source code

= Writes JavaServer Faces, JSP, and HTML files

= Specifies the deployment descriptor (optional)

= Packagesthe .class, . jsp,and.html files and deployment descriptor into the WAR file

Chapter 1 « Overview 53

Development Roles

54

Application Client Developer

An application client developer performs the following tasks to deliver a JAR file containing the
application client:

= Writes and compiles the source code
= Specifies the deployment descriptor for the client (optional)
= Packages the . class files and deployment descriptor into the JAR file

Application Assembler

The application assembler is the company or person who receives application modules from
component providers and may assemble them into a Java EE application EAR file. The
assembler or deployer can edit the deployment descriptor directly or can use tools that correctly
add XML tags according to interactive selections.

A software developer performs the following tasks to deliver an EAR file containing the Java EE
application:

= Assembles EJB JAR and WAR files created in the previous phases into a Java EE application
(EAR) file

= Specifies the deployment descriptor for the Java EE application (optional)

= Verifies that the contents of the EAR file are well formed and comply with the Java EE
specification

Application Deployer and Administrator

The application deployer and administrator is the company or person who configures and
deploys application clients, web applications, Enterprise JavaBeans components, and Java EE
applications, administers the computing and networking infrastructure where Java EE
components and applications run, and oversees the runtime environment. Duties include
setting transaction controls and security attributes and specifying connections to databases.

During configuration, the deployer follows instructions supplied by the application component
provider to resolve external dependencies, specify security settings, and assign transaction
attributes. During installation, the deployer moves the application components to the server
and generates the container-specific classes and interfaces.

The Java EE 6 Tutorial « January 2013

JavaEE 6 APIs

A deployer or system administrator performs the following tasks to install and configure a Java
EE application or components:

= Configures the Java EE application or components for the operational environment

= Verifies that the contents of the EAR, JAR, and/or WAR files are well formed and comply
with the Java EE specification

= Deploys (installs) the Java EE application or components into the Java EE server

Java EE 6 APIs

Figure 1-7 shows the relationships among the Java EE containers.

FIGURE 1-7 Java EE Containers

Client System Java EE Server
Browser < Web Container
JavaServer
‘ B s Servlet
Application
Client I -
Container
Application EJB Container ! j
cient | T T([BE | [EE |7 ’~ J/I

Database

Figure 1-8 shows the availability of the Java EE 6 APIs in the web container.

Chapter 1 « Overview 55

JavaEE 6 APIs

FIGURE 1-8 Java EE APIs in the Web Container

Web Java SE
Container
JavaMail
Servlet
JSP
JavaServer | Connectors
Faces
Java Persistence
JMS
Management

WS Metadata
Web Services
JACC

JAX-WS
JAX-RPC

Figure 1-9 shows the availability of the Java EE 6 APIs in the EJB container.

56 The Java EE 6 Tutorial « January 2013

JavaEE 6 APIs

FIGURE1-9 Java EE APIsin the EJB Container

EJB
Container

EJB

JavaMail

Java Persistence
JTA

Connectors

JMS

Management

WS Management

Web Services
JACC

EE |
G

JAX-WS
JAX-RPC

Java SE

Figure 1-10 shows the availability of the Java EE 6 APIs in the application client container.

Chapter 1 « Overview

57

JavaEE 6 APIs

58

FIGURE 1-10 Java EE APIs in the Application Client Container

Application | Java Persistence Java SE

Client

Container Management
WS Metadata

Tt Web Services
Application
Client | JSR 299

JMS
JAXR
JAX-WS 2
JAX-RPC | &

L New in Java EE 6

The following sections give a brief summary of the technologies required by the Java EE
platform and the APIs used in Java EE applications.

Enterprise JavaBeans Technology

An Enterprise JavaBeans (EJB) component, or enterprise bean, is a body of code having fields and
methods to implement modules of business logic. You can think of an enterprise bean as a
building block that can be used alone or with other enterprise beans to execute business logic on
the Java EE server.

Enterprise beans are either session beans or message-driven beans.

= A session bean represents a transient conversation with a client. When the client finishes
executing, the session bean and its data are gone.

= A message-driven bean combines features of a session bean and a message listener, allowing
a business component to receive messages asynchronously. Commonly, these are Java
Message Service (JMS) messages.

The Java EE 6 Tutorial « January 2013

JavaEE 6 APIs

In the Java EE 6 platform, new enterprise bean features include the following:

= The ability to package local enterprise beans in a WAR file
= Singleton session beans, which provide easy access to shared state

= Alightweight subset of Enterprise JavaBeans functionality (EJB Lite) that can be provided
within Java EE Profiles, such as the Java EE Web Profile.

The Java EE 6 platform requires Enterprise JavaBeans 3.1 and Interceptors 1.1. The Interceptors
specification, which is part of the EJB 3.1 specification, makes more generally available the
interceptor facility originally defined as part of the EJB 3.0 specification.

Java Servlet Technology

Java Servlet technology lets you define HTTP-specific servlet classes. A servlet class extends the
capabilities of servers that host applications accessed by way of a request-response
programming model. Although servlets can respond to any type of request, they are commonly
used to extend the applications hosted by web servers.

In the Java EE 6 platform, new Java Servlet technology features include the following:

Annotation support
Asynchronous support

Ease of configuration
Enhancements to existing APIs
Pluggability

The Java EE 6 platform requires Servlet 3.0.

JavaServer Faces Technology

JavaServer Faces technology is a user interface framework for building web applications. The
main components of JavaServer Faces technology are as follows:

= A GUI component framework.

= A flexible model for rendering components in different kinds of HTML or different markup
languages and technologies. A Renderer object generates the markup to render the
component and converts the data stored in a model object to types that can be represented
inaview.

= Astandard RenderKit for generating HTML/4.01 markup.

The following features support the GUI components:

= Inputvalidation
= Eventhandling

Chapter 1 « Overview 59

JavaEE 6 APIs

60

Data conversion between model objects and components
Managed model object creation

Page navigation configuration

Expression Language (EL)

All this functionality is available using standard Java APIs and XML-based configuration files.

In the Java EE 6 platform, new features of JavaServer Faces include the following:

= The ability to use annotations instead of a configuration file to specify managed beans and
other components

= Facelets, a display technology that replaces JavaServer Pages (JSP) technology using
XHTML files

= Ajax support
= Composite components

= Implicit navigation

The Java EE 6 platform requires JavaServer Faces 2.0 and Expression Language 2.2.

JavaServer Pages Technology

JavaServer Pages (JSP) technology lets you put snippets of servlet code directly into a text-based
document. A JSP page is a text-based document that contains two types of text:

= Static data, which can be expressed in any text-based format such as HTML or XML

= JSP elements, which determine how the page constructs dynamic content

For information about JSP technology, see the The Java EE 5 Tutorial at
http://docs.oracle.com/javaee/5/tutorial/doc/.

The Java EE 6 platform requires JavaServer Pages 2.2 for compatibility with earlier releases, but
recommends the use of Facelets as the display technology in new applications.

JavaServer Pages Standard Tag Library

The JavaServer Pages Standard Tag Library (JSTL) encapsulates core functionality common to
many JSP applications. Instead of mixing tags from numerous vendors in your JSP applications,
you use a single, standard set of tags. This standardization allows you to deploy your
applications on any JSP container that supports JSTL and makes it more likely that the
implementation of the tags is optimized.

JSTL has iterator and conditional tags for handling flow control, tags for manipulating XML
documents, internationalization tags, tags for accessing databases using SQL, and commonly
used functions.

The Java EE 6 Tutorial « January 2013

http://docs.oracle.com/javaee/5/tutorial/doc/

JavaEE 6 APIs

The Java EE 6 platform requires JSTL 1.2.

Java Persistence API

The Java Persistence API (JPA) is a Java standards-based solution for persistence. Persistence
uses an object/relational mapping approach to bridge the gap between an object-oriented
model and a relational database. The Java Persistence API can also be used in Java SE
applications, outside of the Java EE environment. Java Persistence consists of the following
areas:

= The Java Persistence API
= The query language
= Object/relational mapping metadata

The Java EE 6 platform requires Java Persistence API 2.0.

Java Transaction API

The Java Transaction API (JTA) provides a standard interface for demarcating transactions.
The Java EE architecture provides a default auto commit to handle transaction commits and
rollbacks. An auto commit means that any other applications that are viewing data will see the
updated data after each database read or write operation. However, if your application performs
two separate database access operations that depend on each other, you will want to use the JTA
API to demarcate where the entire transaction, including both operations, begins, rolls back,
and commits.

The Java EE 6 platform requires Java Transaction API 1.1.

Java API for RESTful Web Services

The Java API for RESTful Web Services (JAX-RS) defines APIs for the development of web
services built according to the Representational State Transfer (REST) architectural style. A
JAX-RS application is a web application that consists of classes packaged as a servlet ina WAR
file along with required libraries.

The JAX-RS APl is new to the Java EE 6 platform. The Java EE 6 platform requires JAX-RS 1.1.

Managed Beans

Managed Beans, lightweight container-managed objects (POJOs) with minimal requirements,
support a small set of basic services, such as resource injection, lifecycle callbacks, and

Chapter 1 « Overview 61

JavaEE 6 APIs

62

interceptors. Managed Beans represent a generalization of the managed beans specified by
JavaServer Faces technology and can be used anywhere in a Java EE application, not just in web
modules.

The Managed Beans specification is part of the Java EE 6 platform specification (JSR 316).

Managed Beans are new to the Java EE 6 platform. The Java EE 6 platform requires Managed
Beans 1.0.

Contexts and Dependency Injection for the Java EE
Platform (JSR 299)

Contexts and Dependency Injection (CDI) for the Java EE platform defines a set of contextual
services, provided by Java EE containers, that make it easy for developers to use enterprise beans
along with JavaServer Faces technology in web applications. Designed for use with stateful
objects, CDI also has many broader uses, allowing developers a great deal of flexibility to
integrate different kinds of components in a loosely coupled but type-safe way.

CDl is new to the Java EE 6 platform. The Java EE 6 platform requires CDI 1.0.

Dependency Injection for Java (JSR 330)

Dependency Injection for Java defines a standard set of annotations (and one interface) for use
on injectable classes.

In the Java EE platform, CDI provides support for Dependency Injection. Specifically, you can
use DI injection points only in a CDI-enabled application.

Dependency Injection for Java is new to the Java EE 6 platform. The Java EE 6 platform requires
Dependency Injection for Java 1.0.

Bean Validation

The Bean Validation specification defines a metadata model and APT for validating data in
JavaBeans components. Instead of distributing validation of data over several layers, such as the
browser and the server side, you can define the validation constraints in one place and share
them across the different layers.

Bean Validation is new to the Java EE 6 platform. The Java EE 6 platform requires Bean
Validation 1.0.

The Java EE 6 Tutorial « January 2013

JavaEE 6 APIs

Java Message Service API

The Java Message Service (JMS) API is a messaging standard that allows Java EE application
components to create, send, receive, and read messages. It enables distributed communication
that is loosely coupled, reliable, and asynchronous.

The Java EE 6 platform requires JMS 1.1.

Java EE Connector Architecture

The Java EE Connector architecture is used by tools vendors and system integrators to create
resource adapters that support access to enterprise information systems that can be plugged in
to any Java EE product. A resource adapter is a software component that allows Java EE
application components to access and interact with the underlying resource manager of the EIS.
Because a resource adapter is specific to its resource manager, a different resource adapter
typically exists for each type of database or enterprise information system.

The Java EE Connector architecture also provides a performance-oriented, secure, scalable, and
message-based transactional integration of Java EE based web services with existing EISs that
can be either synchronous or asynchronous. Existing applications and EISs integrated through
the Java EE Connector architecture into the Java EE platform can be exposed as XML-based web
services by using JAX-WS and Java EE component models. Thus JAX-WS and the Java EE
Connector architecture are complementary technologies for enterprise application integration
(EAI) and end-to-end business integration.

The Java EE 6 platform requires Java EE Connector architecture 1.6.

JavaMail API

Java EE applications use the JavaMail API to send email notifications. The JavaMail API has two
parts:

= Anapplication-level interface used by the application components to send mail
= A service provider interface

The Java EE platform includes the JavaMail API with a service provider that allows application
components to send Internet mail.

The Java EE 6 platform requires JavaMail 1.4.

Java Authorization Contract for Containers

The Java Authorization Contract for Containers (JACC) specification defines a contract
between a Java EE application server and an authorization policy provider. All Java EE
containers support this contract.

Chapter 1 « Overview 63

Java EE 6 APIs in the Java Platform, Standard Edition 6 and 7

The JACC specification defines java.security.Permission classes that satisfy the Java EE
authorization model. The specification defines the binding of container-access decisions to
operations on instances of these permission classes. It defines the semantics of policy providers
that use the new permission classes to address the authorization requirements of the Java EE
platform, including the definition and use of roles.

The Java EE 6 platform requires JACC 1.4.

Java Authentication Service Provider Interface for
Containers

The Java Authentication Service Provider Interface for Containers (JASPIC) specification
defines a service provider interface (SPI) by which authentication providers that implement
message authentication mechanisms may be integrated in client or server message-processing
containers or runtimes. Authentication providers integrated through this interface operate on
network messages provided to them by their calling containers. The authentication providers
transform outgoing messages so that the source of each message can be authenticated by the
receiving container, and the recipient of the message can be authenticated by the message
sender. Authentication providers authenticate each incoming message and return to their
calling containers the identity established as a result of the message authentication.

JASPIC is new to the Java EE 6 platform. The Java EE 6 platform requires JASPIC 1.0.

Java EE 6 APIs in the Java Platform, Standard Edition 6 and 7

64

Several APIs that are required by the Java EE 6 platform are included in the Java Platform,
Standard Edition 6 and 7 (Java SE 6 and 7) and are thus available to Java EE applications.

Java Database Connectivity API

The Java Database Connectivity (JDBC) API lets you invoke SQL commands from Java
programming language methods. You use the JDBC API in an enterprise bean when you have a
session bean access the database. You can also use the JDBC API from a servlet or a JSP page to
access the database directly without going through an enterprise bean.

The JDBC API has two parts:

= Anapplication-level interface used by the application components to access a database

= A service provider interface to attach a JDBC driver to the Java EE platform

The Java SE 6 platform requires JDBC 4.0.

The Java EE 6 Tutorial « January 2013

Java EE 6 APIs in the Java Platform, Standard Edition 6 and 7

Java Naming and Directory Interface API

The Java Naming and Directory Interface (JNDI) API provides naming and directory
functionality, enabling applications to access multiple naming and directory services such as
LDAP, DNS, and NIS. The JNDI API provides applications with methods for performing
standard directory operations, such as associating attributes with objects and searching for
objects using their attributes. Using JNDI, a Java EE application can store and retrieve any type
of named Java object, allowing Java EE applications to coexist with many legacy applications
and systems.

Java EE naming services provide application clients, enterprise beans, and web components
with access to a JNDI naming environment. A naming environment allows a component to be
customized without the need to access or change the component’s source code. A container
implements the component’s environment and provides it to the component as a [NDI naming
context.

ATJava EE component can locate its environment naming context by using JNDI interfaces. A
component can create a javax.naming.InitialContext object and look up the environment
naming context in InitialContext under the name java:comp/env. A component’s naming
environment is stored directly in the environment naming context or in any of its direct or
indirect subcontexts.

A Java EE component can access named system-provided and user-defined objects. The names
of system-provided objects, such as JTA UserTransaction objects, are stored in the
environment naming context java: comp/env. The Java EE platform allows a component to
name user-defined objects, such as enterprise beans, environment entries, JDBC DataSource
objects, and message connections. An object should be named within a subcontext of the
naming environment according to the type of the object. For example, enterprise beans are
named within the subcontext java: comp/env/ejb, and JDBC DataSource references are
named within the subcontext java: comp/env/jdbc.

JavaBeans Activation Framework

The JavaBeans Activation Framework (JAF) is used by the JavaMail API. JAF provides standard
services to determine the type of an arbitrary piece of data, encapsulate access to it, discover the
operations available on it, and create the appropriate JavaBeans component to perform those
operations.

Java API for XML Processing

The Java API for XML Processing (JAXP), part of the Java SE platform, supports the processing
of XML documents using Document Object Model (DOM), Simple API for XML (SAX), and

Chapter 1 « Overview 65

Java EE 6 APIs in the Java Platform, Standard Edition 6 and 7

66

Extensible Stylesheet Language Transformations (XSLT). JAXP enables applications to parse
and transform XML documents independently of a particular XML processing
implementation.

JAXP also provides namespace support, which lets you work with schemas that might otherwise
have naming conflicts. Designed to be flexible, JAXP lets you use any XML-compliant parser or
XSL processor from within your application and supports the Worldwide Web Consortium
(W3C) schema. You can find information on the W3C schema at this URL:
http://www.w3.0rg/XML/Schema.

Java Architecture for XML Binding

The Java Architecture for XML Binding (JAXB) provides a convenient way to bind an XML
schema to a representation in Java language programs. JAXB can be used independently or in
combination with JAX-WS, where it provides a standard data binding for web service messages.
All Java EE application client containers, web containers, and EJB containers support the JAXB
APL

The Java EE 6 platform requires JAXB 2.2.

SOAP with Attachments API for Java

The SOAP with Attachments API for Java (SAAJ) is a low-level API on which JAX-WS depends.
SAAJ enables the production and consumption of messages that conform to the SOAP 1.1 and
1.2 specifications and SOAP with Attachments note. Most developers do not use the SAAJ APJ,
instead using the higher-level JAX-WS APL

Java APl for XML Web Services

The Java API for XML Web Services (JAX-WS) specification provides support for web services
that use the JAXB API for binding XML data to Java objects. The JAX-WS specification defines
client APIs for accessing web services as well as techniques for implementing web service
endpoints. The Implementing Enterprise Web Services specification describes the deployment
of JAX-WS-based services and clients. The EJB and Java Servlet specifications also describe
aspects of such deployment. JAX-WS-based applications can be deployed using any of these
deployment models.

The JAX-WS specification describes the support for message handlers that can process message
requests and responses. In general, these message handlers execute in the same container and
with the same privileges and execution context as the JAX-WS client or endpoint component
with which they are associated. These message handlers have access to the same JNDI
java:comp/env namespace as their associated component. Custom serializers and deserializers,
if supported, are treated in the same way as message handlers.

The Java EE 6 Tutorial « January 2013

http://www.w3.org/XML/Schema

GlassFish ServerTools

The Java EE 6 platform requires JAX-WS 2.2.

Java Authentication and Authorization Service

The Java Authentication and Authorization Service (JAAS) provides a way for a Java EE
application to authenticate and authorize a specific user or group of users to run it.

JAAS is a Java programming language version of the standard Pluggable Authentication
Module (PAM) framework, which extends the Java Platform security architecture to support
user-based authorization.

GlassFish Server Tools

The GlassFish Server is a compliant implementation of the Java EE 6 platform. In addition to
supporting all the APIs described in the previous sections, the GlassFish Server includes a
number of Java EE tools that are not part of the Java EE 6 platform but are provided as a
convenience to the developer.

This section briefly summarizes the tools that make up the GlassFish Server. Instructions for
starting and stopping the GlassFish Server, starting the Administration Console, and starting
and stopping the Java DB server are in Chapter 2, “Using the Tutorial Examples.”

The GlassFish Server contains the tools listed in Table 1-1. Basic usage information for many of
the tools appears throughout the tutorial. For detailed information, see the online help in the
GUTI tools.

TABLE 1-1 GlassFish Server Tools

Tool Description

Administration Console A web-based GUI GlassFish Server administration utility. Used to stop the
GlassFish Server and to manage users, resources, and applications.

asadmin A command-line GlassFish Server administration utility. Used to start and stop
the GlassFish Server and to manage users, resources, and applications.

appclient A command-line tool that launches the application client container and invokes
the client application packaged in the application client JAR file.

capture-schema A command-line tool to extract schema information from a database, producing
a schema file that the GlassFish Server can use for container-managed
persistence.

package-appclient A command-line tool to package the application client container libraries and
JAR files.

Java DB database A copy of the Java DB server.

Chapter 1 « Overview 67

GlassFish ServerTools

TABLE 1-1 GlassFish Server Tools (Continued)
Tool Description
xjc A command-line tool to transform, or bind, a source XML schema to a set of

JAXB content classes in the Java programming language.

schemagen A command-line tool to create a schema file for each namespace referenced in
your Java classes.
wsimport A command-line tool to generate JAX-WS portable artifacts for a given WSDL

file. After generation, these artifacts can be packaged in a WAR file with the
WSDL and schema documents, along with the endpoint implementation, and
then deployed.

wsgen A command-line tool to read a web service endpoint class and generate all the
required JAX-WS portable artifacts for web service deployment and invocation.

68 The Java EE 6 Tutorial « January 2013

CHAPTER 2

Using the Tutorial Examples

This chapter tells you everything you need to know to install, build, and run the tutorial
examples.

The following topics are addressed here:

“Required Software” on page 69

“Starting and Stopping the GlassFish Server” on page 73
“Starting the Administration Console” on page 74
“Starting and Stopping the Java DB Server” on page 75
“Building the Examples” on page 75

“Tutorial Example Directory Structure” on page 76
“Getting the Latest Updates to the Tutorial” on page 77
“Debugging Java EE Applications” on page 77

Required Software

The following software is required to run the examples:

“Java Platform, Standard Edition” on page 69
“Java EE 6 Software Development Kit” on page 70
“Java EE 6 Tutorial Component” on page 70
“NetBeans IDE” on page 71

“Apache Ant” on page 72

Java Platform, Standard Edition

To build, deploy, and run the examples, you need a copy of the Java Platform, Standard Edition
6.0 Development Kit (JDK 6) or the Java Platform, Standard Edition 7.0 Development Kit (JDK
7). You can download the JDK 6 or JDK 7 software from http://www.oracle.com/
technetwork/java/javase/downloads/index.html.

69

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Required Software

70

Download the current JDK update that does not include any other software, such as NetBeans
IDE or the Java EE SDK.

Java EE 6 Software Development Kit

GlassFish Server Open Source Edition 3.1.2 is targeted as the build and runtime environment
for the tutorial examples. To build, deploy, and run the examples, you need a copy of the
GlassFish Server and, optionally, NetBeans IDE. To obtain the GlassFish Server, you must
install the Java EE 6 Software Development Kit (SDK), which you can download from
http://www.oracle.com/technetwork/java/javaee/downloads/index.html. Make sure
you download the Java EE 6 SDK, not the Java EE 6 Web Profile SDK.

SDK Installation Tips
During the installation of the SDK, do the following:

= Allow the installer to download and configure the Update Tool. If you access the Internet
through a firewall, provide the proxy host and port.

= Configure the GlassFish Server administration user name as admin, and specify no
password. This is the default setting.

m Accept the default port values for the Admin Port (4848) and the HT'TP Port (8080).

= Do not select the check box to create an operating system service for the domain.

You can leave the check box to start the domain after creation selected if you wish, but this is not
required.

This tutorial refers to as-install-parent, the directory where you install the GlassFish Server. For
example, the default installation directory on Microsoft Windows is C:\glassfish3, so
as-install-parent is C: \glassfish3. The GlassFish Server itself is installed in as-install, the
glassfish directory under as-install-parent. So on Microsoft Windows, as-install is
C:\glassfish3\glassfish.

After you install the GlassFish Server, add the following directories to your PATH to avoid having
to specify the full path when you use commands:

as-install-parent/bin

as-install/bin

Java EE 6 Tutorial Component

The tutorial example source is contained in the tutorial component. To obtain the tutorial
component, use the Update Tool.

The Java EE 6 Tutorial « January 2013

http://www.oracle.com/technetwork/java/javaee/downloads/index.html

Required Software

Next Steps

To Obtain the Tutorial Component Using the Update Tool
Start the Update Tool by doing one of the following:
= Fromthe command line, type the command updatetool.

= OnaWindows system, from the Start menu, select All Programs, then select Java EE 6 SDK,
then select Start Update Tool.

Expand the Java EE 6 SDK node.

Select the Available Updates node.

From the list, select the Java EE 6 Tutorial check box.
Click Install.

Accept the license agreement.

After installation, the Java EE 6 Tutorial appears in the list of installed components. The tool is
installed in the as-install/docs/javaee-tutorial directory. This directory contains two
subdirectories: docs and examples. The examples directory contains subdirectories for each of
the technologies discussed in the tutorial.

Updates to the Java EE 6 Tutorial are published periodically. For details on obtaining these
updates, see “Getting the Latest Updates to the Tutorial” on page 77.

NetBeans IDE

The NetBeans integrated development environment (IDE) is a free, open-source IDE for
developing Java applications, including enterprise applications. NetBeans IDE supports the Java
EE platform. You can build, package, deploy, and run the tutorial examples from within
NetBeans IDE.

To run the tutorial examples, you need the latest version of NetBeans IDE. You can download
NetBeans IDE from http://www.netbeans.org/downloads/index.html. Make sure that you
download the Java EE bundle.

To Install NetBeans IDE without GlassFish Server

When you install NetBeans IDE, do not install the version of GlassFish Server that comes with
NetBeans IDE. To skip the installation of GlassFish Server, follow these steps.

On the first page of the NetBeans IDE Installer wizard, deselect the check box for GlassFish
Server and click OK.

Chapter2 - Using the Tutorial Examples 71

http://www.netbeans.org/downloads/index.html

Required Software

72

Accept both the License Agreement and the Junit License Agreement.

A few of the tutorial examples use the Junit library, so you should install it.

Continue with the installation of NetBeans IDE.

To Add GlassFish Server as a Server in NetBeans IDE

To run the tutorial examples in NetBeans IDE, you must add your GlassFish Server as a server
in NetBeans IDE. Follow these instructions to add the GlassFish Server to NetBeans IDE.

From the Tools menu, select Servers.

The Servers wizard opens.

Click Add Server.

Under Choose Server, select GlassFish Server 3+ and click Next.

Under Server Location, browse to the location of the Java EE 6 SDK and click Next.
Under Domain Location, select Register Local Domain.

Click Finish.

Apache Ant

Ant is a Java technology-based build tool developed by the Apache Software Foundation
(http://ant.apache.org/) and is used to build, package, and deploy the tutorial examples. To
run the tutorial examples, you need Ant 1.7.1 or higher. If you do not already have Ant, you can
install it from the Update Tool that is part of the GlassFish Server.

To Obtain Apache Ant
Start the Update Tool.
= From the command line, type the command updatetool.

= OnaWindows system, from the Start menu, select All Programs, then select Java EE 6 SDK,
then select Start Update Tool.

Expand the Java EE 6 SDK node.

Select the Available Add-ons node.

The Java EE 6 Tutorial « January 2013

http://ant.apache.org/

Starting and Stopping the GlassFish Server

4 From thelist, select the Apache Ant Build Tool check box.
5 ClickInstall.

6 Acceptthelicense agreement.

After installation, Apache Ant appears in the list of installed components. The tool is installed
in the as-install-parent/ant directory.

NextSteps To use the ant command, add as-install-parent/ant/bin to your PATH environment variable.

Starting and Stopping the GlassFish Server

To start the GlassFish Server from the command line, open a terminal window or command
prompt and execute the following:

asadmin start-domain --verbose

A domain is a set of one or more GlassFish Server instances managed by one administration
server. Associated with a domain are the following:

= The GlassFish Server’s port number. The default is 8080.
= The administration server’s port number. The default is 4848.
= Anadministration user name and password. The default user name is admin, and by default

no password is required.

You specify these values when you install the GlassFish Server. The examples in this tutorial
assume that you chose the default ports as well as the default user name and lack of password.

With no arguments, the start-domain command initiates the default domain, which is
domainl. The - -verbose flag causes all logging and debugging output to appear on the terminal
window or command prompt. The output also goes into the server log, which is located in
domain-dir/logs/server.log.

Or, on Windows, from the Start menu, select All Programs, then select Java EE 6 SDK, then
select Start Application Server.

To stop the GlassFish Server, open a terminal window or command prompt and execute:

asadmin stop-domain domainl

Or, on Windows, from the Start menu, select All Programs, then select Java EE 6 SDK, then
select Stop Application Server.

Chapter2 - Using the Tutorial Examples 73

Starting the Administration Console

v To Start the GlassFish Server Using NetBeans IDE

1

Next Steps

Click the Services tab.
Expand the Servers node.

Right-click the GlassFish Server instance and select Start.

To stop the GlassFish Server using NetBeans IDE, right-click the GlassFish Server instance and
select Stop.

Starting the Administration Console

74

To administer the GlassFish Server and manage users, resources, and Java EE applications, use
the Administration Console tool. The GlassFish Server must be running before you invoke the
Administration Console. To start the Administration Console, open a browser at
http://localhost:4848/.

Or, on Windows, from the Start menu, select All Programs, then select Java EE 6 SDK, then
select Administration Console.

To Start the Administration Console Using NetBeans
IDE

Click the Services tab.
Expand the Servers node.

Right-click the GlassFish Server instance and select View Domain Admin Console.

Note - NetBeans IDE uses your default web browser to open the Administration Console.

The Java EE 6 Tutorial « January 2013

Building the Examples

Starting and Stopping the Java DB Server

The GlassFish Server includes the Java DB database server.

To start the Java DB server from the command line, open a terminal window or command
prompt and execute:

asadmin start-database

To stop the Java DB server from the command line, open a terminal window or command
prompt and execute:

asadmin stop-database

For information about the Java DB included with the GlassFish Server, see
http://www.oracle.com/technetwork/java/javadb/overview/index.html.

v To Start the Database Server Using NetBeans IDE

When you start the GlassFish Server using NetBeans IDE, the database server starts
automatically. If you ever need to start the database server manually, follow these steps.

1 Clickthe Services tab.
2 Expandthe Databases node.

3 Right-click Java DB and select Start Server.

NextSteps To stop the database using NetBeans IDE, right-click Java DB and select Stop Server.

Building the Examples

The tutorial examples are distributed with a configuration file for either NetBeans IDE or Ant.
Either NetBeans IDE or Ant may be used to build, package, deploy, and run the examples.
Directions for building the examples are provided in each chapter.

Chapter2 - Using the Tutorial Examples 75

http://www.oracle.com/technetwork/java/javadb/overview/index.html

Tutorial Example Directory Structure

Tutorial Example Directory Structure

76

To facilitate iterative development and keep application source separate from compiled files,
the tutorial examples use the Java BluePrints application directory structure.

Each application module has the following structure:

= build.xml: Antbuild file

® src/java: Java source files for the module

= src/conf: configuration files for the module, with the exception of web applications
= web: web pages, style sheets, tag files, and images (web applications only)

= web/WEB-INF: configuration files for web applications (web applications only)

= nbproject: NetBeans project files

When an example has multiple application modules packaged into an EAR file, its submodule
directories use the following naming conventions:

= example-name-app-client: application clients
= example-name-ejb: enterprise bean JAR files
= example-name-war: web applications

The Ant build files (build.xml) distributed with the examples contain targets to create a build
subdirectory and to copy and compile files into that directory; a dist subdirectory, which holds
the packaged module file; and a client- jar directory, which holds the retrieved application
client JAR.

The tut-install/examples/bp-project/ directory contains additional Ant targets called by the
build.xml file targets.

For some web examples, an Ant target will open the example URL in a browser if one is
available. This happens automatically on Windows systems. If you are running on a UNIX
system, you may want to modify a line in the
tut-install/examples/bp-project/build.properties file. Remove the comment character
from the line specifying the default. browser property and specify the path to the command
that invokes a browser. If you do not make the change, you can open the URL in the browser
yourself.

The Java EE 6 Tutorial « January 2013

Debugging Java EE Applications

Getting the Latest Updates to the Tutorial

Check for any updates to the tutorial by using the Update Center included with the Java EE 6
SDK.

v To Update the Tutorial through the Update Center

1 Openthe Services tab in NetBeans IDE and expand Servers.

2 Right-click the GlassFish Server instance and select View Update Center to display the Update
Tool.

3 Select Available Updates in the tree to display a list of updated packages.
4 Lookfor updates to the Java EE 6 Tutorial (javaee-tutorial) package.

5 Ifthereisan updated version of the Tutorial, select Java EE 6 Tutorial (javaee-tutorial) and click
Install.

Debugging Java EE Applications

This section explains how to determine what is causing an error in your application deployment
or execution.

Using the Server Log

One way to debug applications is to look at the server log in domain-dir/1logs/server.log. The
log contains output from the GlassFish Server and your applications. You can log messages
from any Java class in your application with System.out.printlnand the Java Logging APIs
(documented at http://docs.oracle.com/javase/6/docs/technotes/guides/logging/
index.html) and from web components with the ServietContext.log method.

If you use NetBeans IDE, logging output appears in the Output window as well as the server log.

If you start the GlassFish Server with the - -verbose flag, all logging and debugging output will
appear on the terminal window or command prompt and the server log. If you start the
GlassFish Server in the background, debugging information is available only in the log. You can
view the server log with a text editor or with the Administration Console log viewer.

Chapter2 - Using the Tutorial Examples 77

http://docs.oracle.com/javase/6/docs/technotes/guides/logging/index.html
http://docs.oracle.com/javase/6/docs/technotes/guides/logging/index.html

Debugging Java EE Applications

78

To Use the Administration Console Log Viewer
Select the GlassFish Server node.

Click the View Log Files button.

The log viewer opens and displays the last 40 entries.

To display other entries, follow these steps.

a. Click the Modify Search button.

b. Specify any constraints on the entries you want to see.

¢. Clickthe Search button at the top of the log viewer.

Using a Debugger

The GlassFish Server supports the Java Platform Debugger Architecture (JPDA). With JPDA,
you can configure the GlassFish Server to communicate debugging information using a socket.

To Debug an Application Using a Debugger
Enable debugging in the GlassFish Server using the Administration Console:
a. Expand the Configurations node, then expand the server-config node.

b. Selectthe JVM Settings node. The default debug options are set to:

-Xdebug -Xrunjdwp:transport=dt socket,server=y,suspend=n,address=9009

Asyou can see, the default debugger socket port is 9009. You can change it to a port not in
use by the GlassFish Server or another service.

c. Select the Debug Enabled check box.
d. Click the Save button.

Stop the GlassFish Server and then restart it.

The Java EE 6 Tutorial « January 2013

PART 11

The Web Tier

Part I explores the technologies in the web tier. This part contains the following chapters:

Chapter 3, “Getting Started with Web Applications”

Chapter 4, “JavaServer Faces Technology”

Chapter 5, “Introduction to Facelets”

Chapter 6, “Expression Language”

Chapter 7, “Using JavaServer Faces Technology in Web Pages”

Chapter 8, “Using Converters, Listeners, and Validators”

Chapter 9, “Developing with JavaServer Faces Technology”

Chapter 10, “JavaServer Faces Technology: Advanced Concepts”
Chapter 11, “Using Ajax with JavaServer Faces Technology”

Chapter 12, “Composite Components: Advanced Topics and Example”
Chapter 13, “Creating Custom UI Components and Other Custom Objects”
Chapter 14, “Configuring JavaServer Faces Applications”

Chapter 15, “Java Servlet Technology”

Chapter 16, “Uploading Files with Java Servlet Technology”

Chapter 17, “Internationalizing and Localizing Web Applications”

79

80

L K R 4 CHAPTER 3

Getting Started with Web Applications

A web application is a dynamic extension of a web or application server. Web applications are of
the following types:

= Presentation-oriented: A presentation-oriented web application generates interactive web
pages containing various types of markup language (HTML, XHTML, XML, and so on) and
dynamic content in response to requests. Development of presentation-oriented web
applications is covered in Chapter 4, “JavaServer Faces Technology,” through Chapter 9,
“Developing with JavaServer Faces Technology”

= Service-oriented: A service-oriented web application implements the endpoint of a web
service. Presentation-oriented applications are often clients of service-oriented web
applications. Development of service-oriented web applications is covered in Chapter 19,
“Building Web Services with JAX-WS,” and Chapter 20, “Building RESTful Web Services
with JAX-RS,” in Part III, “Web Services.”

The following topics are addressed here:

“Web Applications” on page 81

“Web Application Lifecycle” on page 83

“Web Modules: The hellol Example” on page 84

“Configuring Web Applications: The hello2 Example” on page 93
“Further Information about Web Applications” on page 101

Web Applications

In the Java EE platform, web components provide the dynamic extension capabilities for a web
server. Web components can be Java servlets, web pages implemented with JavaServer Faces
technology, web service endpoints, or JSP pages. Figure 3-1 illustrates the interaction between a
web client and a web application that uses a servlet. The client sends an HTTP request to the
web server. A web server that implements Java Servlet and JavaServer Pages technology
converts the request into an HTTPServletRequest object. This object is delivered to a web
component, which can interact with JavaBeans components or a database to generate dynamic

81

Web Applications

82

content. The web component can then generate an HTTPServletResponse or can pass the
request to another web component. A web component eventually generates a
HTTPServletResponse object. The web server converts this object to an HT'TP response and
returns it to the client.

FIGURE3-1 Java Web Application Request Handling

Web @ ,| HttpServlet (2 @
Client ~ prrp Request — ||| Web —

Request ||| Components

& Database
¢/ 1o
® HttpServlet
L THTTP Response JavaBeans
[a—— Components
Response 4]

@

Database

Servlets are Java programming language classes that dynamically process requests and
construct responses. Java technologies, such as JavaServer Faces and Facelets, are used for
building interactive web applications. (Frameworks can also be used for this purpose.)
Although servlets and Java Server Faces and Facelets pages can be used to accomplish similar
things, each has its own strengths. Servlets are best suited for service-oriented applications (web
service endpoints can be implemented as servlets) and the control functions of a
presentation-oriented application, such as dispatching requests and handling nontextual data.
Java Server Faces and Facelets pages are more appropriate for generating text-based markup,
such as XHTML, and are generally used for presentation-oriented applications.

Web components are supported by the services of a runtime platform called a web container. A
web container provides such services as request dispatching, security, concurrency, and
lifecycle management. A web container also gives web components access to such APIs as
naming, transactions, and email.

Certain aspects of web application behavior can be configured when the application is installed,
or deployed, to the web container. The configuration information can be specified using Java EE
annotations or can be maintained in a text file in XML format called a web application
deployment descriptor (DD). A web application DD must conform to the schema described in
the Java Servlet specification.

The Java EE 6 Tutorial « January 2013

Web Application Lifecycle

This chapter gives a brief overview of the activities involved in developing web applications.
First, it summarizes the web application lifecycle and explains how to package and deploy very
simple web applications on the GlassFish Server. The chapter moves on to configuring web
applications and discusses how to specify the most commonly used configuration parameters.

Web Application Lifecycle

A web application consists of web components; static resource files, such as images; and helper
classes and libraries. The web container provides many supporting services that enhance the
capabilities of web components and make them easier to develop. However, because a web
application must take these services into account, the process for creating and running a web
application is different from that of traditional stand-alone Java classes.

The process for creating, deploying, and executing a web application can be summarized as
follows:

Develop the web component code.

Develop the web application deployment descriptor, if necessary.

Compile the web application components and helper classes referenced by the components.
Optionally, package the application into a deployable unit.

Deploy the application into a web container.

AN S o o

Access a URL that references the web application.

Developing web component code is covered in the later chapters. Steps 2 through 4 are
expanded on in the following sections and illustrated with a Hello, World-style
presentation-oriented application. This application allows a user to enter a name into an HTML
form and then displays a greeting after the name is submitted.

The Hello application contains two web components that generate the greeting and the
response. This chapter discusses the following simple applications:

= hellol, aJavaServer Faces technology-based application that uses two XHTML pages and a
managed bean

= hello2, aservlet-based web application in which the components are implemented by two
servlet classes

The applications are used to illustrate tasks involved in packaging, deploying, configuring, and
running an application that contains web components. The source code for the examples is in
the tut-install/examples/web/hellol/ and tut-install/examples/web/hello2/ directories.

Chapter3 - Getting Started with Web Applications 83

Web Modules: The hello1 Example

Web Modules: The hello1 Example

84

In the Java EE architecture, a web module is the smallest deployable and usable unit of web
resources. A web module contains web components and static web content files, such as images,
which are called web resources. A Java EE web module corresponds to a web application as
defined in the Java Servlet specification.

In addition to web components and web resources, a web module can contain other files:

= Server-side utility classes, such as shopping carts
= Client-side classes, such as applets and utility classes

A web module has a specific structure. The top-level directory of a web module is the document
root of the application. The document root is where XHTML pages, client-side classes and
archives, and static web resources, such as images, are stored.

The document root contains a subdirectory named WEB- INF, which can contain the following
files and directories:

= classes: A directory that contains server-side classes: servlets, enterprise bean class files,
utility classes, and JavaBeans components

® lib: A directory that contains JAR files that contain enterprise beans, and JAR archives of
libraries called by server-side classes

= Deployment descriptors, such as web . xml (the web application deployment descriptor) and
ejb-jar.xml (an EJB deployment descriptor)

A web module needs a web . xm1 file if it uses JavaServer Faces technology, if it must specify
certain kinds of security information, or if you want to override information specified by web
component annotations.

You can also create application-specific subdirectories (that is, package directories) in either the
document root or the WEB- INF/classes/ directory.

A web module can be deployed as an unpacked file structure or can be packaged in a JAR file
known as a Web Archive (WAR) file. Because the contents and use of WAR files differ from
those of JAR files, WAR file names use a .war extension. The web module just described is
portable; you can deploy it into any web container that conforms to the Java Servlet
specification.

To deploy a WAR on the GlassFish Server, the file must contain a runtime deployment
descriptor. The runtime DD is an XML file that contains such information as the context root of
the web application and the mapping of the portable names of an application’s resources to the
GlassFish Server’s resources. The GlassFish Server web application runtime DD is named
glassfish-web.xml and is located in the WEB- INF directory. The structure of a web module that
can be deployed on the GlassFish Server is shown in Figure 3-2.

For example, the glassfish-web.xml file for the hellol application specifies the following
context root:

The Java EE 6 Tutorial « January 2013

Web Modules: The hello1 Example

<context-root>/hellol</context-root>

FIGURE3-2 Web Module Structure

‘ Assembly Root
[

WEB-INF
lib classes
Web pages

web.xml
glassfish-web.xml
(optional))

lere}ry _ All server-side

archive files .class files for

this web module

Examining the hello1 Web Module

The hellol application is a web module that uses JavaServer Faces technology to display a
greeting and response. You can use a text editor to view the application files, or you can use
NetBeans IDE.

¥ ToView the hello1 Web Module Using NetBeans IDE

1 From the File menu, choose Open Project.

2 Inthe Open Project dialog, navigate to:

tut-install/examples/web/

3 Selectthe hellolfolder.

4 Select the Open as Main Project check box.

Chapter3 - Getting Started with Web Applications 85

Web Modules: The hello1 Example

86

Expand the Web Pages node and double-click the index. xhtml file to view it in the right-hand
pane.

The index.xhtml file is the default landing page for a Facelets application. For this application,
the page uses simple tag markup to display a form with a graphic image, a header, a text field,
and two command buttons:

<?xml version='1.0' encoding='UTF-8’ 7>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtmll-transitional.dtd">
<html lang="en"
xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">
<h:head>
<title>Facelets Hello Greeting</title>
</h:head>
<h:body>
<h:form>
<h:graphicImage url="duke.waving.gif" alt="Duke waving his hand"/>
<h2>Hello, my name is Duke. What's yours?</h2>
<h:inputText id="username"
title="My name is: "
value="#{hello.name}"
required="true"
requiredMessage="Error: A name is required."
maxlength="25" />
<p></p>
<h:commandButton id="submit" value="Submit" action="response">
</h:commandButton>
<h:commandButton id="reset" value="Reset" type="reset">
</h:commandButton>
</h:form>

</h:65&y>
</html>
The most complex element on the page is the inputText text field. The maxlength attribute
specifies the maximum length of the field. The required attribute specifies that the field must
be filled out; the requiredMessage attribute provides the error message to be displayed if the
field is left empty. The title attribute provides the text to be used by screen readers for the
visually disabled. Finally, the value attribute contains an expression that will be provided by the
Hello managed bean.

The Submit commandButton element specifies the action as response, meaning that when the
button is clicked, the response.xhtml page is displayed.

Double-click the response.xhtml file to view it.

The response page appears. Even simpler than the greeting page, the response page contains a
graphic image, a header that displays the expression provided by the managed bean, and a
single button whose action element transfers you back to the index.xhtml page:

<?xml version="1.0" encoding='UTF-8' 7>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.0rg/TR/xhtml1/DTD/xhtmll-transitional.dtd">
<html lang="en"

The Java EE 6 Tutorial « January 2013

Web Modules: The hello1 Example

xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">
<h:head>
<title>Facelets Hello Response</title>
</h:head>
<h:body>
<h:form>
<h:graphicImage url="duke.waving.gif" alt="Duke waving his hand"/>
<h2>Hello, #{hello.name}!</h2>
<p></p>
<h:commandButton id="back" value="Back" action="index" />
</h:form>
</h:body>
</html>

Expand the Source Packages node, then the hellol node.

Double-click the Hello. javafile to viewit.

The Hello class, called a managed bean class, provides getter and setter methods for the name
property used in the Facelets page expressions. By default, the expression language refers to the
class name, with the first letter in lowercase (hello.name).

package hellol;

import javax.faces.bean.ManagedBean;
import javax.faces.bean.RequestScoped;

@ManagedBean
@RequestScoped
public class Hello {

private String name;

public Hello() {
}

public String getName() {
return name;
}

public void setName(String user name) {
this.name = user name;
}
}

Under the Web Pages node, expand the WEB-INF node and double-click the web . xm1 file to view
it.

The web. xml file contains several elements that are required for a Facelets application. All these
are created automatically when you use NetBeans IDE to create an application:

= A context parameter specifying the project stage:

<context-param>
<param-name>javax.faces.PROJECT STAGE</param-name>
<param-value>Development</param-value>
</context-param>

Chapter3 - Getting Started with Web Applications 87

Web Modules: The hello1 Example

88

A context parameter provides configuration information needed by a web application. An
application can define its own context parameters. In addition, JavaServer Faces technology
and Java Servlet technology define context parameters that an application can use.

m Aservlet element and its serviet-mapping element specifying the FacesServlet:

<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1l</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>/faces/*</url-pattern>

</servlet-mapping>

= Awelcome-file-list element specifying the location of the landing page; note that the

location is faces/index.xhtml, not just index.xhtml:
<welcome-file-list>

<welcome-file>faces/index.xhtml</welcome-file>
</welcome-file-list>

Introduction to Scopes

In the Hello. java class, the annotations javax. faces.bean.ManagedBean and
javax.faces.bean.RequestScoped identify the class as a JavaServer Faces managed bean using
request scope. Scope defines how application data persists and is shared.

The most commonly used scopes in JavaServer Faces applications are the following:

= Request (@RequestScoped): Request scope persists during a single HTTP request in a web
application. In an application like hello1l, where the application consists of a single request
and response, the bean uses request scope.

= Session (@SessionScoped): Session scope persists across multiple HTTP requests in a web
application. When an application consists of multiple requests and responses where data
needs to be maintained, beans use session scope.

= Application (@ApplicationScoped): Application scope persists across all users’ interactions
with a web application.

For more information on scopes in JavaServer Faces technology, see “Using Managed Bean
Scopes” on page 296.

Packaging aWeb Module

A web module must be packaged into a WAR in certain deployment scenarios and whenever
you want to distribute the web module. You package a web module into a WAR by executing
the jar command in a directory laid out in the format of a web module, by using the Ant utility,
or by using the IDE tool of your choice. This tutorial shows you how to use NetBeans IDE or
Ant to build, package, and deploy the hellol sample application.

The Java EE 6 Tutorial « January 2013

Web Modules: The hello1 Example

To Set the Context Root

A context root identifies a web application in a Java EE server. A context root must start with a
forward slash (/) and end with a string.

In a packaged web module for deployment on the GlassFish Server, the context root is stored in
glassfish-web.xml.

To view or edit the context root, follow these steps.
Expand the Web Pages and WEB-INF nodes of the hello1 project.
Double-click glassfish-web.xml.

In the General tab, observe that the Context Root field is set to /hellol.

If you needed to edit this value, you could do so here. When you create a new application, you
type the context root here.

(Optional) Click the XML tab.

Observe that the context root value /hellol is enclosed by the context-root element. You
could also edit the value here.

To Build and Package the hello1 Web Module Using NetBeans IDE

From the File menu, choose Open Project.

In the Open Project dialog, navigate to:

tut-install/examples/web/

Select the hellol folder.
Select the Open as Main Project check box.
Click Open Project.

In the Projects tab, right-click the hello1l project and select Build.

To Build and Package the hello1 Web Module Using Ant

In a terminal window, go to:
tut-install/examples/web/hellol/

Type the following command:

ant

Chapter3 - Getting Started with Web Applications 89

Web Modules: The hello1 Example

This command spawns any necessary compilations, copies files to the directory
tut-install/examples/web/hellol/build/, creates the WAR file, and copies it to the directory
tut-install/examples/web/hellol/dist/.

Deploying a Web Module
You can deploy a WAR file to the GlassFish Server by

Using NetBeans IDE

Using the Ant utility

Using the asadmin command

Using the Administration Console

Copying the WAR file into the domain-dir/autodeploy/ directory

Throughout the tutorial, you will use NetBeans IDE or Ant for packaging and deploying.

V¥ ToDeploy the hello1 Web Module Using NetBeans IDE

® Right-click the hellol project and select Deploy.

¥ To Deploy the hello1 Web Module Using Ant

1 Inaterminal window, go to:
tut-install/examples/web/hellol/

2 Typethe following command:
ant deploy

Running a Deployed Web Module

Now that the web module is deployed, you can view it by opening the application in a web
browser. By default, the application is deployed to host Localhost on port 8080. The context
root of the web application is hellol.

¥ ToRun aDeployed Web Module

1 Openaweb browser.

2 Typethefollowing URL:
http://localhost:8080/hellol/

3 Typeyour name and click Submit.
The response page displays the name you submitted. Click the Back button to try again.

90 The Java EE 6 Tutorial « January 2013

Web Modules: The hello1 Example

Listing Deployed Web Modules

The GlassFish Server provides two ways to view the deployed web modules: the Administration
Console and the asadmin command.

To List Deployed Web Modules Using the Administration Console
Openthe URL http://localhost:4848/ in a browser.

Select the Applications node.
The deployed web modules appear in the Deployed Applications table.

To List Deployed Web Modules Using the asadmin Command

Type the following command:

asadmin list-applications

Updating a Web Module

A typical iterative development cycle involves deploying a web module and then making
changes to the application components. To update a deployed web module, follow these steps.

To Update a Deployed Web Module
Recompile any modified classes.
Redeploy the module.

Reload the URL in the client.

Dynamic Reloading

If dynamic reloading is enabled, you do not have to redeploy an application or module when
you change its code or deployment descriptors. All you have to do is copy the changed pages or
class files into the deployment directory for the application or module. The deployment
directory for a web module named context-root is domain-dir/applications/context-root. The
server checks for changes periodically and redeploys the application, automatically and
dynamically, with the changes.

Chapter3 - Getting Started with Web Applications 91

Web Modules: The hello1 Example

92

This capability is useful in a development environment because it allows code changes to be
tested quickly. Dynamic reloading is not recommended for a production environment,
however, because it may degrade performance. In addition, whenever a reload is done, the
sessions at that time become invalid, and the client must restart the session.

In the GlassFish Server, dynamic reloading is enabled by default.

To Disable or Modify Dynamic Reloading

If for some reason you do not want the default dynamic reloading behavior, follow these steps in
the Administration Console.

Openthe URL http://localhost:4848/ inabrowser.

Select the GlassFish Server node.

Select the Advanced tab.

To disable dynamic reloading, deselect the Reload Enabled check box.

To change the interval at which applications and modules are checked for code changes and
dynamically reloaded, type a number of seconds in the Reload Poll Interval field.

The default value is 2 seconds.

Click the Save button.

Undeploying Web Modules

You can undeploy web modules and other types of enterprise applications by using either
NetBeans IDE or the Ant tool.

To Undeploy the hello1 Web Module Using NetBeans IDE

Ensure that the GlassFish Server is running.

In the Services window, expand the Servers node, GlassFish Server instance, and the
Applications node.

Right-click the hellol module and choose Undeploy.

To delete the class files and other build artifacts, right-click the project and choose Clean.

The Java EE 6 Tutorial « January 2013

Configuring Web Applications: The hello2 Example

V¥ To Undeploy the hello1 Web Module Using Ant

1 Inaterminal window, go to:
tut-install/examples/web/hellol/

2 Typethefollowing command:
ant undeploy

3 Todelete the class files and other build artifacts, type the following command:

ant clean

Configuring Web Applications: The hello2 Example

Web applications are configured by means of annotations or by elements contained in the web
application deployment descriptor.

The following sections give a brief introduction to the web application features you will usually
want to configure. Examples demonstrate procedures for configuring the Hello, World
application.

Mapping URLs to Web Components

When it receives a request, the web container must determine which web component should
handle the request. The web container does so by mapping the URL path contained in the
request to a web application and a web component. A URL path contains the context root and,
optionally, a URL pattern:

http://host:port/context-root[/url-pattern]

You set the URL pattern for a servlet by using the @WebServlet annotation in the servlet source
file. For example, the GreetingServlet. java file in the hello2 application contains the
following annotation, specifying the URL pattern as /greeting:

@webServlet("/greeting")
public class GreetingServlet extends HttpServlet {

This annotation indicates that the URL pattern /greeting follows the context root. Therefore,
when the servlet is deployed locally, it is accessed with the following URL:

http://localhost:8080/hello2/greeting

To access the servlet by using only the context root, specify "/" as the URL pattern.

Chapter3 - Getting Started with Web Applications 93

Configuring Web Applications: The hello2 Example

94

Examining the hello2 Web Module

The hello2 application behaves almost identically to the hellol application, but it is
implemented using Java Servlet technology instead of JavaServer Faces technology. You can use
a text editor to view the application files, or you can use NetBeans IDE.

To View the hello2 Web Module Using NetBeans IDE
From the File menu, choose Open Project.

In the Open Project dialog, navigate to:

tut-install/examples/web/

Select the helloz2 folder.
Select the Open as Main Project check box.
Expand the Source Packages node, then the servlets node.

Double-click the GreetingServlet. java file to viewit.

This servlet overrides the doGet method, implementing the GET method of HTTP. The servlet
displays a simple HTML greeting form whose Submit button, like that of hello1, specifies a
response page for its action. The following excerpt begins with the @WebServlet annotation
that specifies the URL pattern, relative to the context root:

@WebServlet("/greeting")
public class GreetingServlet extends HttpServlet {

@Override

public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

response.setContentType("text/html")
response.setBufferSize(8192);
PrintWriter out = response.getWriter();

// then write the data of the response

out.println("<html lang=\"en\">
+ "<head><title>Servlet Hello</title></head>");

// then write the data of the response
out.println("<body bgcolor=\"#ffffff\">"
+ ""
+ "<form method=\"get\">"
+ "<h2>Hello, my name is Duke. What's yours?</h2>"
+ "<input title=\"My name is: \"type=\"text\" '
+ "name=\"username\" size=\"25\">"
+ "<p></p>"
+ "<input type=\"submit\" value=\"Submit\">"

The Java EE 6 Tutorial « January 2013

Configuring Web Applications: The hello2 Example

7

+ "<input type=\"reset\" value=\"Reset\">
+ "</form>")

String username = request.getParameter("username");
if (username != null && username.length() > 0) {
RequestDispatcher dispatcher =
getServletContext().getRequestDispatcher("/response");

if (dispatcher !'= null) {
dispatcher.include(request, response);
}
}
out.println("</body></html>");
out.close();

Double-click the ResponseServlet. java file to view it.

This servlet also overrides the doGet method, displaying only the response. The following
excerpt begins with the @WebServlet annotation, which specifies the URL pattern, relative to
the context root:

@WebServlet("/response")
public class ResponseServlet extends HttpServlet {

@Override
public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
PrintWriter out = response.getWriter();

// then write the data of the response

String username = request.getParameter("username");

if (username != null && username.length() > 0) {
out.println("<h2>Hello, " + username + "!</h2>")

}

Under the Web Pages node, expand the WEB-INF node and double-click the
glassfish-web.xml file to view it.

In the General tab, observe that the Context Root field is set to /hello2.

For this simple servlet application, a web . xm1 file is not required.

Running the hello2 Example

You can use either NetBeans IDE or Ant to build, package, deploy, and run the hello2 example.

Chapter3 - Getting Started with Web Applications 95

Configuring Web Applications: The hello2 Example

96

¥ ToRun the hello2 Example Using NetBeans IDE

1

From the File menu, choose Open Project.

In the Open Project dialog, navigate to:

tut-install/examples/web/

Select the hello2 folder.

Select the Open as Main Project check box.

Click Open Project.

In the Projects tab, right-click the hello2 project and select Build.
Right-click the project and select Deploy.

In a web browser, open the URL http://localhost:8080/hello2/greeting.
The URL specifies the context root, followed by the URL pattern.

The application looks much like the hello1l application. The major difference is that after you
click the Submit button, the response appears below the greeting, not on a separate page.

To Run the hello2 Example Using Ant

In a terminal window, go to:
tut-install/examples/web/hello2/

Type the following command:

ant

This target builds the WAR file and copies it to the tut-install/examples/web/hello2/dist/
directory.

Type ant deploy.
Ignore the URL shown in the deploy target output.

Inaweb browser, open the URL http://localhost:8080/hello2/greeting.
The URL specifies the context root, followed by the URL pattern.

The application looks much like the hellol application. The major difference is that after you
click the Submit button, the response appears below the greeting, not on a separate page.

The Java EE 6 Tutorial « January 2013

Configuring Web Applications: The hello2 Example

Declaring Welcome Files

The welcome files mechanism allows you to specify a list of files that the web container will use
for appending to a request for a URL (called a valid partial request) that is not mapped to a web
component. For example, suppose that you define a welcome file welcome. html. When a client
requests a URL such as host: port/webapp/directory, where directory is not mapped to a servlet
or XHTML page, the file host: port/webapp/directory/welcome. html is returned to the client.

Ifa web container receives a valid partial request, the web container examines the welcome file
list and appends to the partial request each welcome file in the order specified and checks
whether a static resource or servlet in the WAR is mapped to that request URL. The web
container then sends the request to the first resource that matches in the WAR.

If no welcome file is specified, the GlassFish Server will use a file named index. html as the
default welcome file. If there is no welcome file and no file named index. html, the GlassFish
Server returns a directory listing.

By convention, you specify the welcome file for a JavaServer Faces application as
faces/file-name.xhtml.

Setting Context Parameters

The web components in a web module share an object that represents their application context.
You can pass context parameters to the context, or initialization parameters to a servlet.
Context parameters are available to the entire web application. For information on
initialization parameters, see “Creating and Initializing a Servlet” on page 331.

To Add a Context Parameter Using NetBeans IDE

These steps apply generally to web applications, but do not apply specifically to the examples in
this chapter.

Open the project.
Expand the project’s node in the Projects pane.
Expand the Web Pages node and then the WEB-INF node.

Double-click web . xm1.

If the project does not have a web . xml file, follow the steps in “To Create a web . xm1 File Using
NetBeans IDE” on page 98.

Click General at the top of the editor pane.

Expand the Context Parameters node.

Chapter3 - Getting Started with Web Applications 97

Configuring Web Applications: The hello2 Example

98

7

Click Add.
An Add Context Parameter dialog opens.

In the Parameter Name field, type the name that specifies the context object.
In the Parameter Value field, type the parameter to pass to the context object.

Click OK.

To Create aweb. xml File Using NetBeans IDE
From the File menu, choose New File.

In the New File wizard, select the Web category, then select Standard Deployment Descriptor
under File Types.

Click Next.

Click Finish.
A basicweb. xml file appears in web/WEB-INF/.

Mapping Errors to Error Screens

When an error occurs during execution of a web application, you can have the application
display a specific error screen according to the type of error. In particular, you can specify a
mapping between the status code returned in an HTTP response or a Java programming
language exception returned by any web component and any type of error screen.

You can have multiple error-page elements in your deployment descriptor. Each element
identifies a different error that causes an error page to open. This error page can be the same for
any number of error-page elements.

To Set Up Error Mapping Using NetBeans IDE

These steps apply generally to web applications, but do not apply specifically to the examples in
this chapter.

Open the project.
Expand the project’s node in the Projects pane.

Expand the Web Pages node and then the WEB-INF node.

The Java EE 6 Tutorial « January 2013

Configuring Web Applications: The hello2 Example

10

Double-click web . xm1.

If the project does not have a web . xml file, follow the steps in “To Create a web . xm1 File Using
NetBeans IDE” on page 98.

Click Pages at the top of the editor pane.
Expand the Error Pages node.

Click Add.
The Add Error Page dialog opens.

Click Browse to locate the page that you want to act as the error page.

Specify either an error code or an exception type:

= To specify an error code, in the Error Code field, type the HTTP status code that will cause
the error page to be opened, or leave the field blank to include all error codes.

= To specify an exception type, in the Exception Type field, type the exception that will cause
the error page to load. To specify all throwable errors and exceptions, type
java.lang.Throwable.

Click OK.

Declaring Resource References

If your web component uses such objects as enterprise beans, data sources, or web services, you
use Java EE annotations to inject these resources into your application. Annotations eliminate a
lot of the boilerplate lookup code and configuration elements that previous versions of Java EE
required.

Although resource injection using annotations can be more convenient for the developer, there
are some restrictions on using it in web applications. First, you can inject resources only into
container-managed objects, since a container must have control over the creation of a
component so that it can perform the injection into a component. As a result, you cannot inject
resources into such objects as simple JavaBeans components. However, JavaServer Faces
managed beans and CDI managed beans are managed by the container; therefore, they can
accept resource injections.

Components that can accept resource injections are listed in Table 3-1.

This section explains how to use a couple of the annotations supported by a web container to
inject resources. Chapter 33, “Running the Persistence Examples,” explains how web
applications use annotations supported by the Java Persistence API. Chapter 40, “Getting

Chapter3 - Getting Started with Web Applications 99

Configuring Web Applications: The hello2 Example

100

Started Securing Web Applications,” explains how to use annotations to specify information
about securing web applications. See Chapter 45, “Resources and Resource Adapters,” for more
information on resources.

TABLE3-1 Web Components That Accept Resource Injections

Component Interface/Class

Servlets javax.servlet.Servlet

Servlet filters javax.servlet.ServletFilter

Event listeners javax.servlet.ServletContextListener

javax.servlet.ServletContextAttributelListener
javax.servlet.ServletRequestListener
javax.servlet.ServletRequestAttributelListener
javax.servlet.http.HttpSessionListener
javax.servlet.http.HttpSessionAttributeListener
javax.servlet.http.HttpSessionBindingListener

Managed beans Plain Old Java Objects

Declaring a Reference to a Resource

The @Resource annotation is used to declare a reference to a resource, such as a data source, an
enterprise bean, or an environment entry.

The @Resource annotation is specified on a class, a method, or a field. The container is
responsible for injecting references to resources declared by the @Resource annotation and
mapping it to the proper JNDI resources.

In the following example, the @Resource annotation is used to inject a data source into a
component that needs to make a connection to the data source, as is done when using JDBC
technology to access a relational database:

@Resource javax.sql.DataSource catalogDS;

public getProductsByCategory() {
// get a connection and execute the query
Connection conn = catalogDS.getConnection();

}

The container injects this data source prior to the component’s being made available to the
application. The data source JNDI mapping is inferred from the field name catalogDS and the
type, javax.sql.DataSource.

If you have multiple resources that you need to inject into one component, you need to use the
@Resources annotation to contain them, as shown by the following example:

The Java EE 6 Tutorial « January 2013

Further Information about Web Applications

@Resources ({
@Resource (name="myDB" type=java.sql.DataSource),
@Resource(name="myMQ" type=javax.jms.ConnectionFactory)
1)

The web application examples in this tutorial use the Java Persistence API to access relational
databases. This API does not require you to explicitly create a connection to a data source.
Therefore, the examples do not use the @Resource annotation to inject a data source. However,
this API supports the @PersistenceUnit and @PersistenceContext annotations for injecting
EntityManagerFactory and EntityManager instances, respectively. Chapter 33, “Running the
Persistence Examples,” describes these annotations and the use of the Java Persistence API in
web applications.

Declaring a Reference to aWeb Service

The @WebServiceRef annotation provides a reference to a web service. The following example
shows uses the @WebServiceRef annotation to declare a reference to a web service.
WebServiceRef uses thewsdlLocation element to specify the URI of the deployed service’s
WSDL file:

import javax.xml.ws.WebServiceRef;

public class ResponseServlet extends HTTPServlet {
@WebServiceRef(wsdlLocation=

"http://localhost:8080/helloservice/hello?wsdl")
static HelloService service;

Further Information about Web Applications

For more information on web applications, see
= JavaServer Faces 2.0 specification:
http://jcp.org/en/jsr/detail?id=314
= JavaServer Faces technology web site:
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
= Java Servlet 3.0 specification:
http://jcp.org/en/jsr/detail?id=315
m Java Servlet web site:

http://www.oracle.com/technetwork/java/index-jsp-135475.html

Chapter3 - Getting Started with Web Applications 101

http://jcp.org/en/jsr/detail?id=314
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://jcp.org/en/jsr/detail?id=315
http://www.oracle.com/technetwork/java/index-jsp-135475.html

102

CHAPTER 4

JavaServer Faces Technology

JavaServer Faces technology is a server-side component framework for building Java
technology-based web applications.

JavaServer Faces technology consists of the following:

= An API for representing components and managing their state; handling events, server-side
validation, and data conversion; defining page navigation; supporting internationalization
and accessibility; and providing extensibility for all these features

= Taglibraries for adding components to web pages and for connecting components to
server-side objects

JavaServer Faces technology provides a well-defined programming model and various tag
libraries. The tag libraries contain tag handlers that implement the component tags. These
features significantly ease the burden of building and maintaining web applications with
server-side user interfaces (Uls). With minimal effort, you can complete the following tasks.

Create a web page.

Drop components onto a web page by adding component tags.
Bind components on a page to server-side data.

Wire component-generated events to server-side application code.
Save and restore application state beyond the life of server requests.
Reuse and extend components through customization.

This chapter provides an overview of JavaServer Faces technology. After explaining what a
JavaServer Faces application is and reviewing some of the primary benefits of using JavaServer
Faces technology, this chapter describes the process of creating a simple JavaServer Faces
application. This chapter also introduces the JavaServer Faces lifecycle by describing the
example JavaServer Faces application progressing through the lifecycle stages.

The following topics are addressed here:

= “What Is a JavaServer Faces Application?” on page 104
= “JavaServer Faces Technology Benefits” on page 105

103

What Is a JavaServer Faces Application?

“Creating a Simple JavaServer Faces Application” on page 106

“Further Information about JavaServer Faces Technology” on page 110

What Is a JavaServer Faces Application?

The functionality provided by a JavaServer Faces application is similar to that of any other Java
web application. A typical JavaServer Faces application includes the following parts:

A set of web pages in which components are laid out
A set of tags to add components to the web page

A set of managed beans, which are lightweight container-managed objects (POJOs) with
minimal requirements. They support a small set of basic services, such as resource injection,
lifecycle callbacks and interceptors.

A web deployment descriptor (web . xml file)

Optionally, one or more application configuration resource files, such as a
faces-config.xml file, which can be used to define page navigation rules and configure
beans and other custom objects, such as custom components

Optionally, a set of custom objects, which can include custom components, validators,
converters, or listeners, created by the application developer

Optionally, a set of custom tags for representing custom objects on the page

Figure 4-1 shows the interaction between client and server in a typical JavaServer Faces
application. In response to a client request, a web page is rendered by the web container that
implements JavaServer Faces technology.

FIGURE 4-1

104

o8

Responding to a Client Request for a JavaServer Faces Page

g : | Web Container

Access page LQQ myfacelet.xhtml

HTTP Request
|

Browser

Renders HTML

myUl
HTTP Response

The Java EE 6 Tutorial « January 2013

JavaServer Faces Technology Benefits

The web page, myfacelet.xhtml, is built using JavaServer Faces component tags. Component
tags are used to add components to the view (represented by myUI in the diagram), which is the
server-side representation of the page. In addition to components, the web page can also
reference objects, such as the following:

= Any event listeners, validators, and converters that are registered on the components

= The JavaBeans components that capture the data and process the application-specific
functionality of the components

On request from the client, the view is rendered as a response. Rendering is the process
whereby, based on the server-side view, the web container generates output, such as HTML or
XHTML, that can be read by the client, such as a browser.

JavaServer Faces Technology Benefits

One of the greatest advantages of JavaServer Faces technology is that it offers a clean separation
between behavior and presentation for web applications. A JavaServer Faces application can
map HTTP requests to component-specific event handling and manage components as stateful
objects on the server. JavaServer Faces technology allows you to build web applications that
implement the finer-grained separation of behavior and presentation that is traditionally
offered by client-side UI architectures.

The separation of logic from presentation also allows each member of a web application
development team to focus on a single piece of the development process and provides a simple
programming model to link the pieces. For example, page authors with no programming
expertise can use JavaServer Faces technology tags in a web page to link to server-side objects
without writing any scripts.

Another important goal of JavaServer Faces technology is to leverage familiar component and
web-tier concepts without limiting you to a particular scripting technology or markup
language. JavaServer Faces technology APIs are layered directly on top of the Servlet API, as
shown in Figure 4-2.

FIGURE4-2 Java Web Application Technologies

JavaServer Faces JavaServer Pages
Standard Tag Library

JavaServer Pages

Chapter4 - JavaServer Faces Technology 105

Creating a Simple JavaServer Faces Application

This layering of APIs enables several important application use cases, such as using different
presentation technologies, creating your own custom components directly from the component
classes, and generating output for various client devices.

Facelets technology, available as part of JavaServer Faces 2.0, is now the preferred presentation
technology for building JavaServer Faces technology-based web applications. For more
information on Facelets technology features, see Chapter 5, “Introduction to Facelets”

Facelets technology offers several advantages.

= Code can be reused and extended for components through the templating and composite
component features.

= When you use the JavaServer Faces Annotations feature, you can automatically register the
managed bean as a resource available for JavaServer Faces applications. In addition, implicit
navigation rules allow developers to quickly configure page navigation. These features
reduce the manual configuration process for applications.

= Most important, JavaServer Faces technology provides a rich architecture for managing
component state, processing component data, validating user input, and handling events.

Creating a Simple JavaServer Faces Application

106

JavaServer Faces technology provides an easy and user-friendly process for creating web
applications. Developing a simple JavaServer Faces application typically requires the following
tasks:

= Developing managed beans
= Creating web pages using component tags
= Mapping the javax. faces.webapp.FacesServlet instance

This section describes those tasks through the process of creating a simple JavaServer Faces
Facelets application.

The example is a Hello application that includes a managed bean and a web page. When
accessed by a client, the web page prints out a Hello World message. The example application is
located in the tut-install/examples/web/hello/ directory. The tasks involved in developing
this application can be examined by looking at the application components in detail.

Developing the Managed Bean

As mentioned earlier in this chapter, a managed bean is a lightweight container-managed
object. Components in a page are associated with managed beans that provide application logic.
The example managed bean, Hello. java, contains the following code:

The Java EE 6 Tutorial « January 2013

Creating a Simple JavaServer Faces Application

package hello;
import javax.faces.bean.ManagedBean;

@ManagedBean
public class Hello {

final String world = "Hello World!"

public String getworld() {
return world;
}
}

The example managed bean sets the value of the variable world with the string "HelloWorld!".
The @ManagedBean annotation registers the managed bean as a resource with the JavaServer
Faces implementation. For more information on managed beans and annotations, see

Chapter 9, “Developing with JavaServer Faces Technology”

Creating the Web Page

In a typical Facelets application, web pages are created in XHTML. The example web page,
beanhello.xhtml, is a simple XHTML page. It has the following content:

<html lang="en"
xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">
<h:head>
<title>Facelets Hello World</title>
</h:head>
<h:body>
#{hello.world}
</h:body>
</html>

A Facelets XHTML web page can also contain several other elements, which are covered later in
this tutorial.

The web page connects to the managed bean through the Expression Language (EL) value
expression #{hello.world}, which retrieves the value of the world property from the managed
bean Hello. Note the use of hello to reference the managed bean Hello. If no name is specified
in the @ManagedBean annotation, the managed bean is always accessed with the first letter of the
class name in lowercase.

For more information on using EL expressions, see Chapter 6, “Expression Language.” For
more information about Facelets technology, see Chapter 5, “Introduction to Facelets” For
more information about the JavaServer Faces programming model and building web pages
using JavaServer Faces technology, see Chapter 7, “Using JavaServer Faces Technology in Web
Pages”

Chapter4 - JavaServer Faces Technology 107

Creating a Simple JavaServer Faces Application

108

Mapping the FacesServlet Instance

The final task requires mapping the FacesServlet, which is done through the web deployment
descriptor (web.xml). A typical mapping of FacesServlet is as follows:

<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>l</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>/faces/*</url-pattern>

</servlet-mapping>

The preceding file segment represents part of a typical JavaServer Faces web deployment
descriptor. The web deployment descriptor can also contain other content relevant to a
JavaServer Faces application configuration, but that information is not covered here.

Mapping the FacesServlet is automatically done for you if you are using an IDE such as
NetBeans IDE.

The Lifecycle of the hello Application

Every web application has a lifecycle. Common tasks, such as handling incoming requests,
decoding parameters, modifying and saving state, and rendering web pages to the browser, are
all performed during a web application lifecycle. Some web application frameworks hide the
details of the lifecycle from you, whereas others require you to manage them manually.

By default, JavaServer Faces automatically handles most of the lifecycle actions for you.
However, it also exposes the various stages of the request lifecycle, so that you can modify or
perform different actions if your application requirements warrant it.

It is not necessary for the beginning user to understand the lifecycle of a JavaServer Faces
application, but the information can be useful for creating more complex applications.

The lifecycle of a JavaServer Faces application starts and ends with the following activity: The
client makes a request for the web page, and the server responds with the page. The lifecycle
consists of two main phases: execute and render.

During the execute phase, several actions can take place:

The application view is built or restored.

The request parameter values are applied.

Conversions and validations are performed for component values.
Managed beans are updated with component values.

Application logic is invoked.

The Java EE 6 Tutorial « January 2013

Creating a Simple JavaServer Faces Application

For a first (initial) request, only the view is built. For subsequent (postback) requests, some or all
of the other actions can take place.

In the render phase, the requested view is rendered as a response to the client. Rendering is
typically the process of generating output, such as HTML or XHTML, that can be read by the
client, usually a browser.

The following short description of the example JavaServer Faces application passing through its
lifecycle summarizes the activity that takes place behind the scenes.

The hello example application goes through the following stages when it is deployed on the
GlassFish Server.

1.

® N D

When the hello application is built and deployed on the GlassFish Server, the application is
in an uninitiated state.

When a client makes an initial request for the beanhello.xhtml web page, the hello
Facelets application is compiled.

The compiled Facelets application is executed, and a new component tree is constructed for
the hello application and is placed in a javax. faces.context.FacesContext.

The component tree is populated with the component and the managed bean property
associated with it, represented by the EL expression hello.world.

A new view is built, based on the component tree.
The view is rendered to the requesting client as a response.
The component tree is destroyed automatically.

On subsequent (postback) requests, the component tree is rebuilt, and the saved state is
applied.

For more detailed information on the JavaServer Faces lifecycle, see Chapter 10, “JavaServer
Faces Technology: Advanced Concepts”

Running the hello Application

You can use either NetBeans IDE or Ant to build, package, deploy, and run the hello example.

To Run the hello Applicationin NetBeans IDE

From the File menu, choose Open Project.

In the Open Project dialog box, navigate to:

tut-install/examples/web

Select the hello folder.

Chapter4 - JavaServer Faces Technology 109

Further Information about JavaServer Faces Technology

Select the Open as Main Project check box.
Click Open Project.

In the Projects tab, right-click the hello project and select Run.

This step compiles, assembles, and deploys the application and then brings up a web browser
window displaying the following URL:

http://localhost:8080/hello
The output looks like this:

Hello World!

To Run the hello Example Using Ant

In a terminal window, go to:
tut-install/examples/web/hello/

Type the following command:

ant

This target builds the WAR file and copies it to the tut-install/examples/web/hello/dist/
directory.

Type ant deploy.

In a web browser, type the following URL:
http://localhost:8080/hello/

The output looks like this:

Hello World!

Further Information about JavaServer Faces Technology

110

For more information on JavaServer Faces technology, see

= JavaServer Faces 2.0 specification:
http://jcp.org/en/jsr/detail?id=314

= JavaServer Faces project web site:
http://javaserverfaces.java.net/

= Mojarra (JavaServer Faces 2.0 implementation) Release Notes:

http://javaserverfaces.java.net/nonav/rlnotes/2.1.4/

The Java EE 6 Tutorial « January 2013

http://jcp.org/en/jsr/detail?id=314
http://javaserverfaces.java.net/
http://javaserverfaces.java.net/nonav/rlnotes/2.1.4/

L K R 4 CHAPTER 5

Introduction to Facelets

The term Facelets refers to the view declaration language for JavaServer Faces technology.
JavaServer Pages (JSP) technology, previously used as the presentation technology for
JavaServer Faces, does not support all the new features available in JavaServer Faces in the Java
EE 6 platform. JSP technology is considered to be a deprecated presentation technology for
JavaServer Faces. Facelets is a part of the JavaServer Faces specification and also the preferred
presentation technology for building JavaServer Faces technology-based applications.

The following topics are addressed here:

“What Is Facelets?” on page 111

“Developing a Simple Facelets Application” on page 113
“Using Facelets Templates” on page 119

“Composite Components” on page 121

“Web Resources” on page 123

What s Facelets?

Facelets is a powerful but lightweight page declaration language that is used to build JavaServer
Faces views using HTML style templates and to build component trees. Facelets features
include the following:

= Use of XHTML for creating web pages
= Support for Facelets tag libraries in addition to JavaServer Faces and JSTL tag libraries
= Support for the Expression Language (EL)

= Templating for components and pages

Advantages of Facelets for large-scale development projects include the following:

= Support for code reuse through templating and composite components

= Functional extensibility of components and other server-side objects through customization

11

What Is Facelets?

= Faster compilation time
® Compile-time EL validation

= High-performance rendering

In short, the use of Facelets reduces the time and effort that needs to be spent on development
and deployment.

Facelets views are usually created as XHTML pages. JavaServer Faces implementations support
XHTML pages created in conformance with the XHTML Transitional Document Type
Definition (DTD), as listed at http://www.w3.0rg/TR/xhtml1/
#a_dtd_XHTML-1.0-Transitional. By convention, web pages built with XHTML have an
.xhtml extension.

JavaServer Faces technology supports various tag libraries to add components to a web page. To
support the JavaServer Faces tag library mechanism, Facelets uses XML namespace
declarations. Table 5-1 lists the tag libraries supported by Facelets.

TABLE5-1 Tag Libraries Supported by Facelets

Tag Library URI Prefix Example Contents
JavaServer http://java.sun.com/jsf/facelets ui: ui:component Tags for
Faces Facelets o templating
Tag Library ui:insert
JavaServer http://java.sun.com/jsf/html h: h:head JavaServer
Faces HTML Faces
Tag Library h:body component
h:outputText tags for all
UIComponent
h:inputText objects
JavaServer http://java.sun.com/jsf/core f: f:actionListener Tags for
Faces Core JavaServer
. f:attribute
Tag Library Faces
custom
actions that
are
independent
of any
particular
render kit
JSTL Core Tag http://java.sun.com/jsp/jstl/core c: c:forEach JSTL1.2
Library Core Tags
c:catch
JSTL http://java.sun.com/jsp/jstl/ fn: fn:toUpperCase JSTL1.2
Functions Tag functions Functions
. fn:toLowerCase
Library Tags

112 The Java EE 6 Tutorial « January 2013

http://www.w3.org/TR/xhtml1/#a_dtd_XHTML-1.0-Transitional
http://www.w3.org/TR/xhtml1/#a_dtd_XHTML-1.0-Transitional

Developing a Simple Facelets Application

In addition, Facelets supports tags for composite components, for which you can declare
custom prefixes. For more information on composite components, see “Composite
Components” on page 121.

Based on the JavaServer Faces support for Expression Language (EL) syntax, Facelets uses EL
expressions to reference properties and methods of managed beans. EL expressions can be used
to bind component objects or values to methods or properties of managed beans. For more
information on using EL expressions, see “Using the EL to Reference Managed Beans” on

page 191.

Developing a Simple Facelets Application

This section describes the general steps involved in developing a JavaServer Faces application.
The following tasks are usually required:

Developing the managed beans

Creating the pages using the component tags

Defining page navigation

Mapping the javax. faces.webapp.FacesServlet instance
Adding managed bean declarations

Creating a Facelets Application

The example used in this tutorial is the guessnumber application. The application presents you
with a page that asks you to guess a number between 0 and 10, validates your input against a
random number, and responds with another page that informs you whether you guessed the
number correctly or incorrectly.

Developing a Managed Bean

In a typical JavaServer Faces application, each page of the application connects to a managed
bean. The managed bean defines the methods and properties that are associated with the
components. In this example, both pages use the same managed bean.

The following managed bean class, UserNumberBean. java, generates a random number from 0
to 10:

package guessNumber;

import java.io.Serializable;

import java.util.Random;

import javax.faces.bean.ManagedBean;

import javax.faces.bean.SessionScoped;

@ManagedBean

Chapter5 -« Introduction to Facelets 113

Developing a Simple Facelets Application

@SessionScoped
public class UserNumberBean implements Serializable {

private static final long serialVersionUID = 5443351151396868724L;
Integer randomInt = null;

Integer userNumber = null;

String response = null;

private long maximum=10;

private long minimum=0;

public UserNumberBean() {
Random randomGR = new Random();
randomInt = new Integer(randomGR.nextInt(10));
System.out.println("Duke’s number: " + randomInt);

}

public void setUserNumber(Integer user number) {
userNumber = user_number;

}

public Integer getUserNumber() {
return userNumber;

}
public String getResponse() {
if ((userNumber !'= null) && (userNumber.compareTo(randomInt) == 0)) {
return "Yay! You got it!"
} else {

return "Sorry, " + userNumber + " is incorrect."

}
}

public long getMaximum() {
return (this.maximum);

}

public void setMaximum(long maximum) {
this.maximum = maximum;
}

public long getMinimum() {
return (this.minimum);
}

public void setMinimum(long minimum) {
this.minimum = minimum;
}
}

Note the use of the @ManagedBean annotation, which registers the managed bean as a resource
with the JavaServer Faces implementation. The @SessionScoped annotation registers the bean
scope as session.

Creating Facelets Views

To create a page or view, you add components to the pages, wire the components to managed
bean values and properties, and register converters, validators, or listeners on the components.

114 The Java EE 6 Tutorial « January 2013

Developing a Simple Facelets Application

For the example application, XHTML web pages serve as the front end. The first page of the
example application is a page called greeting.xhtml. A closer look at various sections of this
web page provides more information.

The first section of the web page declares the content type for the page, which is XHTML:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtmll-transitional.dtd">

The next section specifies the language of the XHTML page, then declares the XML namespace
for the tag libraries that are used in the web page:

<html lang="en"
xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

The next section uses various tags to insert components into the web page:

<h:head>
<h:outputStylesheet library="css" name="default.css"/>
<title>Guess Number Facelets Application</title>

</h:head>
<h:body>
<h:form>

<h:graphicImage library="images" name="wave.med.gif"
alt="Duke waving his hand"/>
<h2>
Hi, my name is Duke. I am thinking of a number from
#{userNumberBean.minimum} to #{userNumberBean.maximum}.
Can you guess it?
</h2>
<p><h:inputText
id="userNo"
title="Type a number from @ to 10:"
value="#{userNumberBean.userNumber}">
<f:validatelLongRange
minimum="#{userNumberBean.minimum}"
maximum="#{userNumberBean.maximum}"/>
</h:inputText>

<h:commandButton id="submit" value="Submit"
action="response"/>

</p>

<h:message showSummary="true" showDetail="false"
style="color: #d20005;
font-family: ’'New Century Schoolbook’, serif;
font-style: oblique;
text-decoration: overline"
id="errorsl"
for="userNo"/>

</h:form>
</h:body>

Chapter5 -« Introduction to Facelets 115

Developing a Simple Facelets Application

116

Note the use of the following tags:

= Facelets HTML tags (those beginning with h:) to add components
= The Facelets core tag f: validateLongRange to validate the user input

An h:inputText tag accepts user input and sets the value of the managed bean property
userNumber through the EL expression #{userNumberBean.userNumber}. The input value is
validated for value range by the JavaServer Faces standard validator tag f: validatelLongRange.

The image file, wave . med. gif, is added to the page as a resource; so is the style sheet. For more
details about the resources facility, see “Web Resources” on page 123.

An h:commandButton tag with the ID submit starts validation of the input data when a user
clicks the button. Using implicit navigation, the tag redirects the client to another page,
response.xhtml, which shows the response to your input. The page specifies only response,
which by default causes the server to look for response. xhtml.

You can now create the second page, response.xhtml, with the following content:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtmll-transitional.dtd">

<html lang="en"
xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">

<h:head>
<h:outputStylesheet library="css" name="default.css"/>
<title>Guess Number Facelets Application</title>

</h:head>
<h:body>
<h:form>

<h:graphicImage library="images" name="wave.med.gif"
alt="Duke waving his hand"/>

<h2>
<h:outputText id="result" value="#{userNumberBean.response}"/>
</h2>
<h:commandButton id="back" value="Back" action="greeting"/>
</h:form>
</h:body>

</html>

Configuring the Application

Configuring a JavaServer Faces application involves mapping the Faces Servlet in the web
deployment descriptor file, such as aweb . xm1 file, and possibly adding managed bean
declarations, navigation rules, and resource bundle declarations to the application
configuration resource file, faces-config.xml.

The Java EE 6 Tutorial « January 2013

Developing a Simple Facelets Application

If you are using NetBeans IDE, a web deployment descriptor file is automatically created for
you. In such an IDE-created web . xm1 file, change the default greeting page, which is
index.xhtml, to greeting.xhtml. Here is an example web.xm1 file, showing this change in
bold.

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app 3 0.xsd">
<context-param>
<param-name>javax.faces.PROJECT STAGE</param-name>
<param-value>Development</param-value>
</context-param>
<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1l</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>/faces/*</url-pattern>
</servlet-mapping>
<session-config>
<session-timeout>
30
</session-timeout>
</session-config>
<welcome-file-list>
<welcome-file>faces/greeting.xhtml</welcome-file>
</welcome-file-list>
</web-app>

Note the use of the context parameter PROJECT_STAGE. This parameter identifies the status of a
JavaServer Faces application in the software lifecycle.

The stage of an application can affect the behavior of the application. For example, if the project
stage is defined as Development, debugging information is automatically generated for the user.
If not defined by the user, the default project stage is Production.

Running the guessnumber Facelets Example

You can use either NetBeans IDE or Ant to build, package, deploy, and run the guessnumber
example. The source code for this example is available in the
tut-install/examples/web/guessnumber/ directory.

Chapter5 -« Introduction to Facelets 17

Developing a Simple Facelets Application

118

v

To Build, Package, and Deploy the guessnumber Example Using
NetBeans IDE

From the File menu, choose Open Project.

In the Open Project dialog, navigate to:

tut-install/examples/web/

Select the guessnumber folder.
Select the Open as Main Project check box.
Click Open Project.

In the Projects tab, right-click the guessnumber project and select Deploy.

This option builds and deploys the example application to your GlassFish Server instance.

To Build, Package, and Deploy the guessnumber Example Using Ant

In a terminal window, go to:

tut-install/examples/web/guessnumber/

Type the following command:

ant

This command calls the default target, which builds and packages the application intoa WAR
file, guessnumber.war, thatis located in the dist directory.

Make sure that the GlassFish Server is started.

To deploy the application, type the following command:
ant deploy

To Run the guessnumber Example

Open aweb browser.

Type the following URL in your web browser:
http://localhost:8080/guessnumber

A web page opens.

The Java EE 6 Tutorial « January 2013

Using Facelets Templates

3 Inthetextfield, type a numberfrom 0to 10 and click Submit.

Another page appears, reporting whether your guess is correct or incorrect.

4 Ifyou guessed incorrectly, click the Back button to return to the main page.

You can continue to guess until you get the correct answer.

Using Facelets Templates

JavaServer Faces technology provides the tools to implement user interfaces that are easy to
extend and reuse. Templating is a useful Facelets feature that allows you to create a page that
will act as the base, or template, for the other pages in an application. By using templates, you
can reuse code and avoid recreating similarly constructed pages. Templating also helps in
maintaining a standard look and feel in an application with a large number of pages.

Table 5-2 lists Facelets tags that are used for templating and their respective functionality.

TABLE5-2 Facelets Templating Tags

Tag Function

ui:component Defines a component that is created and added to the component tree.

ui:composition Defines a page composition that optionally uses a template. Content outside of this
tag is ignored.

ui:debug Defines a debug component that is created and added to the component tree.

ui:decorate Similar to the composition tag but does not disregard content outside this tag.

ui:define Defines content that is inserted into a page by a template.

ui:fragment Similar to the component tag but does not disregard content outside this tag.

ui:include Encapsulate and reuse content for multiple pages.

ui:insert Inserts content into a template.

ui:param Used to pass parameters to an included file.

ui:repeat Used as an alternative for loop tags, such as c: forEach or h:dataTable.

ui:remove Removes content from a page.

For more information on Facelets templating tags, see the documentation at
http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/vdldocs/facelets/.

The Facelets tag library includes the main templating tag ui:insert. A template page that is
created with this tag allows you to define a default structure for a page. A template page is used
as a template for other pages, usually referred to as client pages.

Chapter5 -« Introduction to Facelets 119

http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/vdldocs/facelets/

Using Facelets Templates

Here is an example of a template saved as template.xhtml:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html">

<h:head>
<meta http-equiv="Content-Type"
content="text/html; charset=UTF-8" />
<h:outputStylesheet library="css" name="default.css"/>
<h:outputStylesheet library="css" name="cssLayout.css"/>
<title>Facelets Template</title>
</h:head>

<h:body>
<div id="top" class="top">
<ui:insert name="top">Top Section</ui:insert>
</div>
<div>
<div id="left">
<ui:insert name="left"sLeft Section</ui:insert>
</div>
<div id="content" class="left content">
<ui:insert name="content">Main Content</ui:insert>
</div>
</div>
</h:body>
</html>

The example page defines an XHTML page that is divided into three sections: a top section, a
left section, and a main section. The sections have style sheets associated with them. The same
structure can be reused for the other pages of the application.

The client page invokes the template by using the ui: composition tag. In the following
example, a client page named templateclient.xhtml invokes the template page named
template.xhtml from the preceding example. A client page allows content to be inserted with
the help of the ui:define tag.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1l-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html">

<h:body>
<ui:composition template="./template.xhtml">
<ui:define name="top">
Welcome to Template Client Page
</ui:define>

<ui:define name="left">

<h:outputLabel value="You are in the Left Section"/>
</ui:define>

120 The Java EE 6 Tutorial « January 2013

Composite Components

<ui:define name="content">
<h:graphicImage value="#{resource['images:wave.med.gif’]1}"/>
<h:outputText value="You are in the Main Content Section"/>
</ui:define>
</ui:composition>
</h:body>
</html>
You can use NetBeans IDE to create Facelets template and client pages. For more information

on creating these pages, see http://netbeans.org/kb/docs/web/jsf20-intro.html.

Composite Components

JavaServer Faces technology offers the concept of composite components with Facelets. A
composite component is a special type of template that acts as a component.

Any component is essentially a piece of reusable code that behaves in a particular way. For
example, an input component accepts user input. A component can also have validators,
converters, and listeners attached to it to perform certain defined actions.

A composite component consists of a collection of markup tags and other existing components.
This reusable, user-created component has a customized, defined functionality and can have
validators, converters, and listeners attached to it like any other component.

With Facelets, any XHTML page that contains markup tags and other components can be
converted into a composite component. Using the resources facility, the composite component
can be stored in a library that is available to the application from the defined resources location.

Table 5-3 lists the most commonly used composite tags and their functions.

TABLE5-3 Composite Component Tags

Tag Function

composite:interface Declares the usage contract for a composite component. The
composite component can be used as a single component whose
feature set is the union of the features declared in the usage contract.

composite:implementation Defines the implementation of the composite component. Ifa
composite:interface element appears, there must be a
corresponding composite:implementation.

composite:attribute Declares an attribute that may be given to an instance of the
composite component in which this tag is declared.

composite:insertChildren Any child components or template text within the composite
component tag in the using page will be reparented into the
composite component at the point indicated by this tag’s placement
within the composite:implementation section.

Chapter5 -« Introduction to Facelets 121

http://netbeans.org/kb/docs/web/jsf20-intro.html

Composite Components

122

TABLE5-3 Composite Component Tags (Continued)
Tag Function
composite:valueHolder Declares that the composite component whose contract is declared

by the composite:interface in which this element is nested exposes
an implementation of javax. faces.component.ValueHolder
suitable for use as the target of attached objects in the using page.

composite:editableValueHolder Declares that the composite component whose contract is declared
by the composite:interface in which this element is nested exposes
an implementation of
javax.faces.component.EditableValueHolder suitable for use as
the target of attached objects in the using page.

composite:actionSource Declares that the composite component whose contract is declared
by the composite:interface in which this element is nested exposes
an implementation of javax. faces.component.ActionSource2
suitable for use as the target of attached objects in the using page.

For more information and a complete list of Facelets composite tags, see the documentation at
http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/vdldocs/facelets/.

The following example shows a composite component that accepts an email address as input:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:composite="http://java.sun.com/jsf/composite"
xmlns:h="http://java.sun.com/jsf/html">

<h:head>
<title>This content will not be displayed</title>
</h:head>
<h:body>
<composite:interface>
<composite:attribute name="value" required="false"/>
</composite:interface>

<composite:implementation>
<h:outputLabel value="Email id: "></h:outputLabel>
<h:inputText value="#{cc.attrs.value}"></h:inputText>
</composite:implementation>
</h:body>
</html>

Note the use of cc.attrs.value when defining the value of the inputText component. The
word cc in JavaServer Faces is a reserved word for composite components. The
#{cc.attrs.attribute-name} expression is used to access the attributes defined for the
composite component’s interface, which in this case happens to be value.

The preceding example content is stored as a file named email.xhtml in a folder named
resources/emcomp, under the application web root directory. This directory is considered a

The Java EE 6 Tutorial « January 2013

http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/vdldocs/facelets/

Web Resources

library by JavaServer Faces, and a component can be accessed from such a library. For more
information on resources, see “Web Resources” on page 123.

The web page that uses this composite component is generally called a using page. The using
page includes a reference to the composite component, in the xml namespace declarations:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:em="http://java.sun.com/jsf/composite/emcomp/">

<h:head>
<title>Using a sample composite component</title>
</h:head>

<body>
<h:form>
<em:email value="Enter your email id" />
</h:form>
</body>
</html>

The local composite component library is defined in the xmlns namespace with the declaration
xmlns:em="http://java.sun.com/jsf/composite/emcomp/". The component itselfis
accessed through the em: email tag. The preceding example content can be stored as a web page
named emuserpage . xhtml under the web root directory. When compiled and deployed on a
server, it can be accessed with the following URL:

http://localhost:8080/application-name/faces/emuserpage.xhtml

Web Resources

Web resources are any software artifacts that the web application requires for proper rendering,
including images, script files, and any user-created component libraries. Resources must be
collected in a standard location, which can be one of the following.

= Aresource packaged in the web application root must be in a subdirectory of a resources
directory at the web application root: resources/resource-identifier.

= Aresource packaged in the web application’s classpath must be in a subdirectory of the
META-INF/resources directory within a web application:
META-INF/resources/resource-identifier. You can use this file structure to package
resources in a JAR file bundled in the web application. See Chapter 53, “Duke’s Forest Case
Study Example,” for an application that uses this mechanism.

The JavaServer Faces runtime will look for the resources in the preceding listed locations, in
that order.

Resource identifiers are unique strings that conform to the following format:

Chapter5 -« Introduction to Facelets 123

Web Resources

124

[locale-prefix/1[library-name/ [library-version/ 1 resource-namel / resource-version]

Elements of the resource identifier in brackets ([]) are optional, indicating that only a
resource-name, which is usually a file name, is a required element. For example, the most
common way to specify a style sheet, image, or script is to use the library and name attributes,
as in the following tag from the guessnumber example:

<h:outputStylesheet library="css" name="default.css"/>

This tag specifies that the default. css style sheet is in the directory web/resources/css.

You can also specify the location of an image using the following syntax, also from the
guessnumber example:

<h:graphicImage value="#{resource[’images:wave.med.gif’]}"/>

This tag specifies that the image named wave .med . gif is in the directory
web/resources/images.

Resources can be considered as a library location. Any artifact, such as a composite component
or a template that is stored in the resources directory, becomes accessible to the other
application components, which can use it to create a resource instance.

The Java EE 6 Tutorial « January 2013

L K R 4 CHAPTER 6

Expression Language

This chapter introduces the Expression Language (also referred to as the EL), which provides an
important mechanism for enabling the presentation layer (web pages) to communicate with the
application logic (managed beans). The EL is used by both JavaServer Faces technology and
JavaServer Pages (JSP) technology. The EL represents a union of the expression languages
offered by JavaServer Faces technology and JSP technology.

The following topics are addressed here:

“Overview of the EL” on page 125

“Immediate and Deferred Evaluation Syntax” on page 126
“Value and Method Expressions” on page 128

“Defining a Tag Attribute Type” on page 134

“Literal Expressions” on page 135

“Operators” on page 136

“Reserved Words” on page 136

“Examples of EL Expressions” on page 137

Overview of the EL

The EL allows page authors to use simple expressions to dynamically access data from
JavaBeans components. For example, the test attribute of the following conditional tag is
supplied with an EL expression that compares 0 with the number of items in the session-scoped
bean named cart.

<c:if test="${sessionScope.cart.numberOfItems > 0}">

</é;if>

JavaServer Faces technology uses the EL for the following functions:

= Deferred and immediate evaluation of expressions
= The ability to set as well as get data

125

Immediate and Deferred Evaluation Syntax

= The ability to invoke methods

See “Using the EL to Reference Managed Beans” on page 191 for more information on how to
use the EL in JavaServer Faces applications.

To summarize, the EL provides a way to use simple expressions to perform the following tasks:

= Dynamically read application data stored in JavaBeans components, various data structures,
and implicit objects

= Dynamically write data, such as user input into forms, to JavaBeans components
= Invoke arbitrary static and public methods
= Dynamically perform arithmetic operations

The EL is also used to specify the following kinds of expressions that a custom tag attribute will
accept:

= Immediate evaluation expressions or deferred evaluation expressions. An immediate
evaluation expression is evaluated at once by the underlying technology, such as JavaServer
Faces. A deferred evaluation expression can be evaluated later by the underlying technology
using the EL.

= Value expression or method expression. A value expression references data, whereas a
method expression invokes a method.

= Rvalue expression or Ivalue expression. An rvalue expression can only read a value,
whereas an Ivalue expression can both read and write that value to an external object.

Finally, the EL provides a pluggable API for resolving expressions so custom resolvers that can
handle expressions not already supported by the EL can be implemented.

Immediate and Deferred Evaluation Syntax

126

The EL supports both immediate and deferred evaluation of expressions. Immediate evaluation
means that the expression is evaluated and the result returned as soon as the page is first
rendered. Deferred evaluation means that the technology using the expression language can use
its own machinery to evaluate the expression sometime later during the page’s lifecycle,
whenever it is appropriate to do so.

Those expressions that are evaluated immediately use the ${} syntax. Expressions whose
evaluation is deferred use the #{} syntax.

Because of its multiphase lifecycle, JavaServer Faces technology uses mostly deferred evaluation
expressions. During the lifecycle, component events are handled, data is validated, and other
tasks are performed in a particular order. Therefore, a JavaServer Faces implementation must
defer evaluation of expressions until the appropriate point in the lifecycle.

Other technologies using the EL might have different reasons for using deferred expressions.

The Java EE 6 Tutorial « January 2013

Immediate and Deferred Evaluation Syntax

Immediate Evaluation

All expressions using the ${} syntax are evaluated immediately. These expressions can be used
only within template text or as the value of a tag attribute that can accept runtime expressions.

The following example shows a tag whose value attribute references an immediate evaluation
expression that gets the total price from the session-scoped bean named cart:

<fmt:formatNumber value="${sessionScope.cart.total}"/>

The JavaServer Faces implementation evaluates the expression ${sessionScope.cart.total},
converts it, and passes the returned value to the tag handler.

Immediate evaluation expressions are always read-only value expressions. The preceding
example expression cannot set the total price, but instead can only get the total price from the
cart bean.

Deferred Evaluation

Deferred evaluation expressions take the form #{expr} and can be evaluated at other phases of
a page lifecycle as defined by whatever technology is using the expression. In the case of
JavaServer Faces technology, its controller can evaluate the expression at different phases of the
lifecycle, depending on how the expression is being used in the page.

The following example shows a JavaServer Faces h: inputText tag, which represents a text field
component into which a user enters a value. The h: inputText tag’s value attribute references a
deferred evaluation expression that points to the name property of the customer bean:

<h:inputText id="name" value="#{customer.name}" />

For an initial request of the page containing this tag, the JavaServer Faces implementation
evaluates the #{customer.name} expression during the render-response phase of the lifecycle.
During this phase, the expression merely accesses the value of name from the customer bean, as
is done in immediate evaluation.

For a postback request, the JavaServer Faces implementation evaluates the expression at
different phases of the lifecycle, during which the value is retrieved from the request, validated,
and propagated to the customer bean.

As shown in this example, deferred evaluation expressions can be

= Value expressions that can be used to both read and write data
= Method expressions

Value expressions (both immediate and deferred) and method expressions are explained in the
next section.

Chapter6 - Expression Language 127

Value and Method Expressions

Value and Method Expressions

128

The EL defines two kinds of expressions: value expressions and method expressions. Value
expressions can either yield a value or set a value. Method expressions reference methods that
can be invoked and can return a value.

Value Expressions

Value expressions can be further categorized into rvalue and Ivalue expressions. Rvalue
expressions can read data but cannot write it. Lvalue expressions can both read and write data.

All expressions that are evaluated immediately use the ${} delimiters and are always rvalue
expressions. Expressions whose evaluation can be deferred use the #{} delimiters and can act as
both rvalue and Ivalue expressions. Consider the following two value expressions:

${customer.name}

#{customer.name}

The former uses immediate evaluation syntax, whereas the latter uses deferred evaluation
syntax. The first expression accesses the name property, gets its value, adds the value to the
response, and gets rendered on the page. The same can happen with the second expression.
However, the tag handler can defer the evaluation of this expression to a later time in the page
lifecycle, if the technology using this tag allows.

In the case of JavaServer Faces technology, the latter tag’s expression is evaluated immediately
during an initial request for the page. In this case, this expression acts as an rvalue expression.
During a postback request, this expression can be used to set the value of the name property with
user input. In this case, the expression acts as an lvalue expression.

Referencing Objects Using Value Expressions

Both rvalue and Ivalue expressions can refer to the following objects and their properties or
attributes:

= JavaBeans components

= Collections

= Java SE enumerated types

= Implicit objects

To refer to these objects, you write an expression using a variable that is the name of the object.
The following expression references a managed bean called customer:

${customer}

The Java EE 6 Tutorial « January 2013

Value and Method Expressions

The web container evaluates the variable that appears in an expression by looking up its value
according to the behavior of PageContext. findAttribute(String), where the String
argument is the name of the variable. For example, when evaluating the expression
${customer}, the container will look for customer in the page, request, session, and application
scopes and will return its value. If customer is not found, a null value is returned.

You can use a custom EL resolver to alter the way variables are resolved. For instance, you can
provide an EL resolver that intercepts objects with the name customer, so that ${customer}
returns a value in the EL resolver instead.

To reference an enum constant with an expression, use a String literal. For example, consider
this Enum class:

public enum Suit {hearts, spades, diamonds, clubs}

To refer to the Suit constant Suit.hearts with an expression, use the String literal "hearts".
Depending on the context, the String literal is converted to the enum constant automatically.
For example, in the following expression in which mySuit is an instance of Suit, "hearts" is
first converted to Suit.hearts before it is compared to the instance:

${mySuit == "hearts"}

Referring to Object Properties Using Value Expressions

To refer to properties of a bean or an enum instance, items of a collection, or attributes of an
implicit object, you use the . or [] notation.

To reference the name property of the customer bean, use either the expression
${customer.name} or the expression ${customer["name"]}. The part inside the brackets is a
String literal that is the name of the property to reference.

You can use double or single quotes for the String literal. You can also combine the [] and .
notations, as shown here:

${customer.address["street"]}

Properties of an enum constant can also be referenced in this way. However, as with JavaBeans
component properties, the properties of an Enum class must follow JavaBeans component
conventions. This means that a property must at least have an accessor method called
getProperty, where Property is the name of the property that can be referenced by an
expression.

For example, consider an Enum class that encapsulates the names of the planets of our galaxy and
includes a method to get the mass of a planet. You can use the following expression to reference
the method getMass of the Enum class Planet:

${myPlanet.mass}

Chapter6 - Expression Language 129

Value and Method Expressions

130

If you are accessing an item in an array or list, you must use either a literal value that can be
converted to int or the [] notation with an int and without quotes. The following examples
could resolve to the same item in a list or array, assuming that socks can be converted to int:

m ${customer.orders[1]}

m ¢${customer.orders.socks}

In contrast, an item in a Map can be accessed using a string literal key; no coercion is required:

${customer.orders["socks"1}

An rvalue expression also refers directly to values that are not objects, such as the result of
arithmetic operations and literal values, as shown by these examples:

" ${"literal"}

m ¢{customer.age + 20}
= ¢{true}

= ${57}

The EL defines the following literals:
= Boolean: trueand false
= Integer:asin Java

= Floating-point: as in Java

= String: with single and double quotes; " is escaped as \", * is escaped as \ ', and \ is escaped as

\\
= Null: null

You can also write expressions that perform operations on an enum constant. For example,
consider the following Enum class:

public enum Suit {club, diamond, heart, spade}

After declaring an enum constant called mySuit, you can write the following expression to test
whether mySuit is spade:

${mySuit == "spade"}

When it resolves this expression, the EL resolving mechanism will invoke the value0Of method
of the Enum class with the Suit class and the spade type, as shown here:

mySuit.valueOf(Suit.class, "spade"}

The Java EE 6 Tutorial « January 2013

Value and Method Expressions

Where Value Expressions Can Be Used
Value expressions using the ${} delimiters can be used in

= Static text
= Anystandard or custom tag attribute that can accept an expression

The value of an expression in static text is computed and inserted into the current output. Here
is an example of an expression embedded in static text:

<some:tag>
some text ${expr} some text
</some:tag>

If the static text appears in a tag body, note that an expression will not be evaluated if the body is
declared to be tagdependent.

Lvalue expressions can be used only in tag attributes that can accept Ivalue expressions.

A tag attribute value using either an rvalue or Ivalue expression can be set in the following ways:
= With a single expression construct:

<some:tag value="${expr}"/>

<another:tag value="#{expr}"/>

These expressions are evaluated, and the result is converted to the attribute’s expected type.

= With one or more expressions separated or surrounded by text:

<some:tag value="some${expr}${expritext${expr}"/>

<another:tag value="some#{expr}#{expr}text#{expr}"/>

These kinds of expression, called composite expressions, are evaluated from left to right. Each
expression embedded in the composite expression is converted to a String and then
concatenated with any intervening text. The resulting String is then converted to the
attribute’s expected type.

= With text only:
<some:tag value="sometext"/>

This expression is called a literal expression. In this case, the attribute’s St ring value is
converted to the attribute’s expected type. Literal value expressions have special syntax rules.
See “Literal Expressions” on page 135 for more information. When a tag attribute has an
enum type, the expression that the attribute uses must be a literal expression. For example,
the tag attribute can use the expression "hearts" to mean Suit.hearts. The literal is
converted to Suit, and the attribute gets the value Suit.hearts.

All expressions used to set attribute values are evaluated in the context of an expected type. If
the result of the expression evaluation does not match the expected type exactly, a type
conversion will be performed. For example, the expression ${1.2E4} provided as the value of
an attribute of type float will result in the following conversion:

Chapter6 - Expression Language 131

Value and Method Expressions

132

Float.valueOf("1.2E4").floatValue()

See Section 1.18 of the JavaServer Pages 2.2 Expression Language specification (available from
http://jcp.org/aboutJava/communityprocess/final/jsr245/) for the complete type
conversion rules.

Method Expressions

Another feature of the EL is its support of deferred method expressions. A method expression is
used to invoke an arbitrary public method of a bean, which can return a result.

In JavaServer Faces technology, a component tag represents a component on a page. The
component tag uses method expressions to invoke methods that perform some processing for
the component. These methods are necessary for handling events that the components generate
and for validating component data, as shown in this example:

<h:form>
<h:inputText
id="name"
value="#{customer.name}"
validator="#{customer.validateName}"/>
<h:commandButton

id="submit"
action="#{customer.submit}" />
</h:form>

The h:inputText tag displays as a text field. The validator attribute of this h: inputText tag
references a method, called validateName, in the bean, called customer.

Because a method can be invoked during different phases of the lifecycle, method expressions
must always use the deferred evaluation syntax.

Like Ivalue expressions, method expressions can use the . and the [] operators. For example,
#{object.method} is equivalent to #{object ["method"]}. The literal inside the [] is converted
to String and is used to find the name of the method that matches it. Once the method is found,
itis invoked, or information about the method is returned.

Method expressions can be used only in tag attributes and only in the following ways:

= With a single expression construct, where bean refers to a JavaBeans component and
method refers to a method of the JavaBeans component:

<some:tag value="#{bean.method}"/>

The expression is evaluated to a method expression, which is passed to the tag handler. The
method represented by the method expression can then be invoked later.

= With text only:

<some:tag value="sometext"/>

The Java EE 6 Tutorial « January 2013

http://jcp.org/aboutJava/communityprocess/final/jsr245/

Value and Method Expressions

Method expressions support literals primarily to support action attributes in JavaServer
Faces technology. When the method referenced by this method expression is invoked, the
method returns the String literal, which is then converted to the expected return type, as
defined in the tag’s tag library descriptor.

Parameterized Method Calls

The EL offers support for parameterized method calls. Method calls can use parameters without
having to use static EL functions.

Both the . and [] operators can be used for invoking method calls with parameters, as shown in
the following expression syntax:

= expr-alexpr-b] (parameters)
= expr-a.identifier-b(parameters)

In the first expression syntax, expr-a is evaluated to represent a bean object. The expression
expr-b is evaluated and cast to a string that represents a method in the bean represented by
expr-a. In the second expression syntax, expr-a is evaluated to represent a bean object, and
identifier-b is a string that represents a method in the bean object. The parameters in
parentheses are the arguments for the method invocation. Parameters can be zero or more
values or expressions, separated by commas.

Parameters are supported for both value expressions and method expressions. In the following
example, which is a modified tag from the guessnumber application, a random number is
provided as an argument rather than from user input to the method call:

<h:inputText value="#{userNumberBean.userNumber(’5’)}">

The preceding example uses a value expression.

Consider the following example of a JavaServer Faces component tag that uses a method
expression:

<h:commandButton action="#{trader.buy}" value="buy"/>

The EL expression trader.buy calls the trader bean’s buy method. You can modify the tag to
pass on a parameter. Here is the revised tag where a parameter is passed:

<h:commandButton action="#{trader.buy(’SOMESTOCK’)}" value="buy"/>

In the preceding example, you are passing the string ' SOMESTOCK’ (a stock symbol) as a
parameter to the buy method.

For more information on the updated EL, see http://uel.java.net/.

Chapter6 - Expression Language 133

http://uel.java.net/

Defining a Tag Attribute Type

Defining a Tag Attribute Type

134

As explained in the previous section, all kinds of expressions can be used in tag attributes.
Which kind of expression and how it is evaluated, whether immediately or deferred, are
determined by the type attribute of the tag’s definition in the View Description Language
(VDL) that defines the tag.

If you plan to create custom tags, for each tag in the VDL, you need to specify what kind of
expression to accept. Table 6-1 shows the kinds of tag attributes that accept EL expressions,
gives examples of expressions they accept, and provides the type definitions of the attributes
that must be added to the VDL. You cannot use #{} syntax for a dynamic attribute, meaning an
attribute that accepts dynamically calculated values at runtime. Similarly, you also cannot use
the ${} syntax for a deferred attribute.

TABLE6-1 Definitions of Tag Attributes That Accept EL Expressions

Attribute Type Example Expression Type Attribute Definition
Dynamic "literal" <rtexprvalue>true</rtexprvalue>
Dynamic ${literal} <rtexprvalue>true</rtexprvalue>
Deferred value "literal" <deferred-value>

<type>java.lang.String</type>
</deferred-value>

Deferred value #{customer.age} <deferred-value>
<type>int</type>
</deferred-value>

Deferred method "literal" <deferred-method>
<method-signature>
java.lang.String submit()
</method-signature>
<deferred-method>

Deferred method #{customer.calcTotal} <deferred-method>
<method-signature>
double calcTotal(int, double)
</method-signature>
</deferred-method>

In addition to the tag attribute types shown in Table 6-1, you can define an attribute to accept
both dynamic and deferred expressions. In this case, the tag attribute definition contains both
an rtexprvalue definition set to true and either a deferred-value or deferred-method
definition.

The Java EE 6 Tutorial « January 2013

Literal Expressions

Literal Expressions

A literal expression is evaluated to the text of the expression, which is of type String. A literal
expression does not use the ${} or #{} delimiters.

If you have a literal expression that includes the reserved ${} or #{} syntax, you need to escape
these characters as follows:
= By creating a composite expression as shown here:

${"${ texprA}

#{'#{'}exprB}

The resulting values would then be the strings ${exprA} and #{exprB}.

= By using the escape characters \$ and \# to escape what would otherwise be treated as an
eval-expression:

\${exprA}
\#{exprB}

The resulting values would again be the strings ${exprA} and #{exprB}.

When a literal expression is evaluated, it can be converted to another type. Table 6-2 shows
examples of various literal expressions and their expected types and resulting values.

TABLE6-2 Literal Expressions

Expression Expected Type Result

Hi String Hi

true Boolean Boolean.TRUE
42 int 42

Literal expressions can be evaluated immediately or deferred and can be either value or method
expressions. At what point a literal expression is evaluated depends on where it is being used. If
the tag attribute that uses the literal expression is defined to accept a deferred value expression,
when referencing a value, the literal expression is evaluated at a point in the lifecycle that is
determined by other factors, such as where the expression is being used and to what it is
referring.

In the case of a method expression, the method that is referenced is invoked and returns the
specified String literal. For example, the h: commandButton tag of the guessnumber application
uses a literal method expression as a logical outcome to tell the JavaServer Faces navigation
system which page to display next.

Chapter6 - Expression Language 135

Operators

Operators
In addition to the . and [] operators discussed in “Value and Method Expressions” on
page 128, the EL provides the following operators, which can be used in rvalue expressions only:
= Arithmetic: +, - (binary), *, / and div, % and mod, - (unary)
® Logical: and, &, or, | |, not, !
= Relational: ==, eq, =, ne, <, 1t, >, gt, <=, ge, >=, le. Comparisons can be made against other

values or against Boolean, string, integer, or floating-point literals.
= Empty: The empty operator is a prefix operation that can be used to determine whether a
value is null or empty.

= Conditional: A ? B : C. Evaluate B or C, depending on the result of the evaluation of A.
The precedence of operators highest to lowest, left to right is as follows:
= [].
= () (used to change the precedence of operators)
= - (unary) not ! empty
= * / div % mod
=+ - (binary)
B <><=>= 1t gt le ge
m == l=eq ne
= && and
= || or
7

Reserved Words

The following words are reserved for the EL and should not be used as identifiers:

and or not eq
ne 1t gt le
ge true false null
instanceof empty div mod

136 The Java EE 6 Tutorial « January 2013

Examples of EL Expressions

Examples of EL Expressions

Table 6-3 contains example EL expressions and the result of evaluating them.

TABLE6-3 Example Expressions

EL Expression Result
${1 > (4/2)} false
${4.0 >= 3} true
${100.0 == 100} true
${(10*10) ne 100} false
${'a’ < 'b"} true
${"hip’ gt "hit'} false
${4 > 3} true
${1.2E4 + 1.4} 12001.4
${3 div 4} 0.75
${10 mod 4} 2

${'!empty param.Add}

${pageContext.request.contextPath}

${sessionScope.cart.numberOfItems}

${param['mycom.productId’]}

${header["host"1}

${departments[deptName]}

${requestScope[’javax.servlet.forward.

servlet path’]}

#{customer.Name}

#{customer.calcTotal}

False if the request parameter named Add is null or an
empty string.

The context path.

The value of the numberOfItems property of the
session-scoped attribute named cart.

The value of the request parameter named
mycom.productId.

The host.

The value of the entry named deptName in the
departments map.

The value of the request-scoped attribute named
javax.servlet.forward.servlet path.

Gets the value of the property IName from the customer
bean during an initial request. Sets the value of IName
during a postback.

The return value of the method calcTotal of the
customer bean.

Chapter6 - Expression Language

137

138

L K R 4 CHAPTER 7

Using JavaServer Faces Technology in Web
Pages

Web pages represent the presentation layer for web applications. The process of creating web
pages for a JavaServer Faces application includes adding components to the page and wiring
them to managed beans, validators, listeners, converters, and other server-side objects that are
associated with the page.

This chapter explains how to create web pages using various types of component and core tags.
In the next chapter, you will learn about adding converters, validators, and listeners to
component tags to provide additional functionality to components.

Many of the examples in this chapter are taken from Chapter 51, “Duke’s Bookstore Case Study
Example”

The following topics are addressed here:

= “Setting Up a Page” on page 139
= “Adding Components to a Page Using HTML Tags” on page 140
= “Using Core Tags” on page 171

Setting Up a Page
A typical JavaServer Faces web page includes the following elements:

= A set of namespace declarations that declare the JavaServer Faces tag libraries
= Optionally, the HTML head (h:head) and body (h: body) tags
= Aform tag (h: form) that represents the user input components

To add the JavaServer Faces components to your web page, you need to provide the page access
to the two standard tag libraries: the JavaServer Faces HTML render kit tag library and the
JavaServer Faces core tag library. The JavaServer Faces standard HTML tag library defines tags
that represent common HTML user interface components. This library is linked to the HTML

139

Adding Components to a Page Using HTML Tags

render kitat http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/
renderkitdocs/. The JavaServer Faces core tag library defines tags that perform core actions
and are independent of a particular render kit.

For a complete list of JavaServer Faces Facelets tags and their attributes, refer to the
documentation at http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/
vdldocs/facelets/.

To use any of the JavaServer Faces tags, you need to include appropriate directives at the top of
each page specifying the tag libraries.

For Facelets applications, the XML namespace directives uniquely identify the tag library URI
and the tag prefix.

For example, when you create a Facelets XHTML page, include namespace directives as follows:

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

The XML namespace URI identifies the tag library location, and the prefix value is used to
distinguish the tags belonging to that specific tag library. You can also use other prefixes instead
of the standard h or f. However, when including the tag in the page, you must use the prefix that
you have chosen for the taglibrary. For example, in the following web page, the form tag must
be referenced using the h prefix because the preceding tag library directive uses the h prefix to
distinguish the tags defined in HTML tag library:

<h:form ...>

The sections “Adding Components to a Page Using HTML Tags” on page 140 and “Using Core
Tags” on page 171 describe how to use the component tags from the JavaServer Faces standard
HTML tag library and the core tags from the JavaServer Faces core tag library.

Adding Components to a Page Using HTML Tags

140

The tags defined by the JavaServer Faces standard HTML tag library represent HTML form
components and other basic HTML elements. These components display data or accept data
from the user. This data is collected as part of a form and is submitted to the server, usually
when the user clicks a button. This section explains how to use each of the component tags
shown in Table 7-1.

The Java EE 6 Tutorial « January 2013

http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/renderkitdocs/
http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/renderkitdocs/
http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/vdldocs/facelets/
http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/vdldocs/facelets/

Adding Components to a Page Using HTML Tags

TABLE7-1 The Component Tags

Tag Functions Rendered as Appearance
h:column Representsa column of data A columnofdatainan A column in a table
in a data component HTML table
h:commandButton Submits a form to the An HTML <input A button
application type=type> element,
where the type value can
be "submit", "reset", or
"image"
h:commandLink Links to another page or An HTML <a href> A hyperlink
location on a page element
h:dataTable Represents a data wrapper An HTML <table> A table that can be
element updated dynamically
h:form Represents an input form An HTML <form> No appearance
(inner tags of the form receive element
the data that will be
submitted with the form)
h:graphicImage Displays an image AnHTML element Animage
h:inputHidden Allows a page author to An HTML <input No appearance
include a hidden variableina type="hidden">element
page
h:inputSecret Allows a user to input astring An HTML <input A text field, which
without the actual string type="password"> displays a row of
appearing in the field element characters instead of
the actual string
entered
h:inputText Allows a user to input a string An HTML <input A text field
type="text"> element
h:inputTextarea Allows a user to enter a An HTML <textarea> A multi-row text
multiline string element field
h:message Displays alocalized message ~ An HTML tagif A text string
styles are used
h:messages Displays localized messages A set of HTML A text string
tags if styles are used
h:outputFormat Displays alocalized message ~ Plain text Plain text
h:outputLabel Displays a nested component An HTML <label> Plain text
as a label for a specified input element

field

Chapter7 - Using JavaServer Faces Technology in Web Pages

141

Adding Components to a Page Using HTML Tags

142

TABLE7-1 The Component Tags (Continued)
Tag Functions Rendered as Appearance
h:outputLink Links to another page or AnHTML <a>element A hyperlink
location on a page without
generating an action event
h:outputText Displays a line of text Plain text Plain text
h:panelGrid Displays a table AnHTML <table> A table

h:panelGroup

h:selectBooleanCheckbox

h:selectManyCheckbox

h:selectManyListbox

h:selectManyMenu

h:selectOneListbox

h:selectOneMenu

h:selectOneRadio

Groups a set of components
under one parent

Allows a user to change the
value of a Boolean choice

Displays a set of check boxes
from which the user can
select multiple values

Allows a user to select
multiple items from a set of
items, all displayed at once

Allows a user to select
multiple items from a set of
items

Allows a user to select one
item from a set of items, all
displayed at once

Allows a user to select one
item from a set of items

Allows a user to select one
item from a set of items

element with <tr>and
<td> elements

A HTML <div>or
 element

An HTML <input
type="checkbox">
element.

A set of HTML <input>
elements of type
checkbox

An HTML <select>
element

An HTML <select>
element

An HTML <select>
element

An HTML <select>
element

An HTML <input
type="radio"> element

A row in a table

A check box

A set of check boxes

Alist box

A scrollable combo
box

Alist box

A scrollable combo
box

A set of radio
buttons

The next section explains the important tag attributes that are common to most component
tags. For each of the components discussed in the following sections, “Writing Bean Properties”
on page 192 explains how to write a bean property bound to a particular component or its value.

Common Component Tag Attributes

Most of the component tags support the attributes shown in Table 7-2.

The Java EE 6 Tutorial « January 2013

Adding Components to a Page Using HTML Tags

TABLE7-2 Common Component Tag Attributes

Attribute Description

binding Identifies a bean property and binds the component instance to it.

id Uniquely identifies the component.

immediate If set to true, indicates that any events, validation, and conversion associated with

the component should happen when request parameter values are applied,

rendered Specifies a condition under which the component should be rendered. If the
condition is not satisfied, the component is not rendered.

style Specifies a Cascading Style Sheet (CSS) style for the tag.
styleClass Specifies a CSS class that contains definitions of the styles.
value Specifies the value of the component, in the form of a value expression.

All the tag attributes (except id) can accept expressions, as defined by the EL, described in
Chapter 6, “Expression Language.”

Theid Attribute

The id attribute is not usually required for a component tag but is used when another
component or a server-side class must refer to the component. If you don’t include an id
attribute, the JavaServer Faces implementation automatically generates a component ID. Unlike
most other JavaServer Faces tag attributes, the id attribute takes expressions using only the
evaluation syntax described in “Immediate Evaluation” on page 127, which uses the ${}
delimiters. For more information on expression syntax, see “Value Expressions” on page 128.

The immediate Attribute

Input components and command components (those that implement the

javax. faces.component.ActionSource interface, such as buttons and hyperlinks) can set the
immediate attribute to true to force events, validations, and conversions to be processed when
request parameter values are applied.

You need to carefully consider how the combination of an input component’s immediate value
and a command component’s immediate value determines what happens when the command
component is activated.

Assume that you have a page with a button and a field for entering the quantity of a bookin a
shopping cart. If the immediate attributes of both the button and the field are set to true, the
new value entered in the field will be available for any processing associated with the event that
is generated when the button is clicked. The event associated with the button as well as the
events, validation, and conversion associated with the field are all handled when request
parameter values are applied.

Chapter7 - Using JavaServer Faces Technology in Web Pages 143

Adding Components to a Page Using HTML Tags

144

If the button’s immediate attribute is set to true but the field’s immediate attribute is set to
false, the event associated with the button is processed without updating the field’s local value
to the model layer. The reason is that any events, validation, or conversion associated with the
field occur after request parameter values are applied.

The bookshowcart.xhtml page of the Duke’s Bookstore case study has examples of
components using the immediate attribute to control which component’s data is updated when
certain buttons are clicked. The quantity field for each book does not set the immediate
attribute, so the value is false (the default).

<h:inputText id="quantity"
size="4"
value="#{item.quantity}"
title="#{bundle.ItemQuantity}">
<f:validateLongRange minimum="1"/>
</h:inputText>

The immediate attribute of the Continue Shopping hyperlink is set to true, while the
immediate attribute of the Update Quantities hyperlink is set to false:

<h:commandLink id="continue"
action="bookcatalog"
immediate="true">
<h:outputText value="#{bundle.ContinueShopping}"/>
</h:commandLink>

<h:commandLink id="update"
action="#{showcart.update}"
immediate="false">
<h:outputText value="#{bundle.UpdateQuantities}"/>
</h:commandLink>

If you click the Continue Shopping hyperlink, none of the changes entered into the quantity
input fields will be processed. If you click the Update Quantities hyperlink, the values in the
quantity fields will be updated in the shopping cart.

The rendered Attribute

A component tag uses a Boolean EL expression along with the rendered attribute to determine
whether the component will be rendered. For example, the commandLink component in the
following section of a page is not rendered if the cart contains no items:

<h:commandLink id="check"

rendered="#{cart.numberOfItems > 0}">
<h:outputText
value="#{bundle.CartCheck}"/>
</h:commandLink>

Unlike nearly every other JavaServer Faces tag attribute, the rendered attribute is restricted to
using rvalue expressions. As explained in “Value and Method Expressions” on page 128, these
rvalue expressions can only read data; they cannot write the data back to the data source.

The Java EE 6 Tutorial « January 2013

Adding Components to a Page Using HTML Tags

Therefore, expressions used with rendered attributes can use the arithmetic operators and
literals that rvalue expressions can use but Ivalue expressions cannot use. For example, the
expression in the preceding example uses the > operator.

Note - In this example and others, bundle refers to a java.util.ResourceBundle file that
contains locale-specific strings to be displayed. Resource bundles are discussed in Chapter 17,
“Internationalizing and Localizing Web Applications.”

The style and styleClass Attributes

The style and styleClass attributes allow you to specify CSS styles for the rendered output of
your tags. “Displaying Error Messages with the h:message and h:messages Tags” on page 164
describes an example of using the style attribute to specify styles directly in the attribute. A
component tag can instead refer to a CSS class.

The following example shows the use of a dataTable tag that references the style class
list-background:
<h:dataTable id="items"

é‘.c)IIIeCIass="list-backg round"

value="#{cart.items}"

var="book">

The style sheet that defines this class is stylesheet. css, which will be included in the
application. For more information on defining styles, see Cascading Style Sheets Specification at
http://www.w3.0rg/Style/CSS/.

The value and binding Attributes

A tag representing an output component uses the value and binding attributes to bind its
component’s value or instance, respectively, to a data object.

Adding HTML Head and Body Tags

The HTML head (h:head) and body (h:body) tags add HTML page structure to JavaServer
Faces web pages.

= The h:head tag represents the head element of an HTML page
= The h:body tag represents the body element of an HTML page

The following is an example of an XHTML page using the usual head and body markup tags:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1l-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">

Chapter7 - Using JavaServer Faces Technology in Web Pages 145

http://www.w3.org/Style/CSS/

Adding Components to a Page Using HTML Tags

146

<head>
<title>Add a title</title>
</head>
<body>
Add Content
</body>
</html>

The following is an example of an XHTML page using h: head and h: body tags:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">
<h:head>
Add a title
</h:head>
<h:body>
Add Content
</h:body>
</html>

Both of the preceding example code segments render the same HTML elements. The head and
body tags are useful mainly for resource relocation. For more information on resource
relocation, see “Resource Relocation Using h:outputScript and h:outputStylesheet Tags”
on page 169.

Adding a Form Component

An h: formtag represents an input form, which includes child components that can contain
data that is either presented to the user or submitted with the form.

Figure 7-1 shows a typical login form in which a user enters a user name and password, then
submits the form by clicking the Login button.

FIGURE7-1 A Typical Form

User Name: | Duke

Password: Fokkkkkkkk

1

Login

V

The h: form tag represents the form on the page and encloses all the components that display or
collect data from the user, as shown here:

The Java EE 6 Tutorial « January 2013

Adding Components to a Page Using HTML Tags

<h:form>
. other JavaServer Faces tags and other content...
</h:form>

The h: form tag can also include HTML markup to lay out the components on the page. Note

that the h: form tag itself does not perform any layout; its purpose is to collect data and to
declare attributes that can be used by other components in the form.

A page can include multiple h: form tags, but only the values from the form submitted by the

user will be included in the postback request.

Using Text Components

Text components allow users to view and edit text in web applications. The basic types of text

components are as follows:
= Label, which displays read-only text
= Text field, which allows users to enter text, often to be submitted as part of a form

= Textarea, which is a type of text field that allows users to enter multiple lines of text

= Password field, which is a type of text field that displays a set of characters, such as asterisks,

instead of the password text that the user enters

Figure 7-2 shows examples of these text components.

FIGURE7-2 Example Text Components

Label User Name: | Duke Text Field

Password: | #x#xsxsxsx Password Field

e

Comments: | A user can enter text across Text Area
multiple lines.

.

Text components can be categorized as either input or output. A JavaServer Faces output
component is rendered as read-only text. An example is a label. A JavaServer Faces input
component is rendered as editable text. An example is a text field.

The input and output components can each be rendered in various ways to display more
specialized text.

Table 7-3 lists the tags that represent the input components.

Chapter7 - Using JavaServer Faces Technology in Web Pages

147

Adding Components to a Page Using HTML Tags

148

TABLE7-3 Input Tags

Tag Function
h:inputHidden Allows a page author to include a hidden variable in a page
h:inputSecret The standard password field: accepts one line of text with no spaces and displays it

as a set of asterisks as it is typed
h:inputText The standard text field: accepts a one-line text string

h:inputTextarea The standard text area: accepts multiple lines of text

The input tags support the tag attributes shown in Table 7-4 in addition to those described in
“Common Component Tag Attributes” on page 142. Note that this table does not include all the
attributes supported by the input tags but just those that are used most often. For the complete
list of attributes, refer to the documentation at http://docs.oracle.com/javaee/6/
javaserverfaces/2.1/docs/vdldocs/facelets/.

TABLE7-4 Input Tag Attributes

Attribute Description

converter Identifies a converter that will be used to convert the component’s local
data. See “Using the Standard Converters” on page 175 for more
information on how to use this attribute.

converterMessage Specifies an error message to display when the converter registered on
the component fails.

dir Specifies the direction of the text displayed by this component.
Acceptable values are LTR, meaning left-to-right, and RTL, meaning
right-to-left.

label Specifies a name that can be used to identify this component in error
messages.

lang Specifies the code for the language used in the rendered markup, such as
en_US.

required Takes a boolean value that indicates whether the user must enter a value

in this component.

requiredMessage Specifies an error message to display when the user does not enter a
value into the component.

validator Identifies a method expression pointing to a managed bean method that
performs validation on the component’s data. See “Referencing a
Method That Performs Validation” on page 187 for an example of using
the f:validator tag.

The Java EE 6 Tutorial « January 2013

http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/vdldocs/facelets/
http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/vdldocs/facelets/

Adding Components to a Page Using HTML Tags

TABLE7-4 Input Tag Attributes (Continued)
Attribute Description

validatorMessage Specifies an error message to display when the validator registered on
the component fails to validate the component’s local value.

valueChangeListener Identifies a method expression that points to a managed bean method
that handles the event of entering a value in this component. See
“Referencing a Method That Handles a Value-Change Event” on
page 188 for an example of using valueChangelListener.

Table 7-5 lists the tags that represent the output components.

TABLE7-5 Output Tags

Tag Function

h:outputFormat Displays a formatted message

h:outputLabel The standard read-only label: displays a component as a label for a specified input
field

h:outputLink Displays an <a href> tag that links to another page without generating an action
event

h:outputText Displays a one-line text string

The output tags support the converter tag attribute in addition to those listed in “Common
Component Tag Attributes” on page 142.

The rest of this section explains how to use some of the tags listed in Table 7-3 and Table 7-5.
The other tags are written in a similar way.

Rendering a Text Field with the h:inputText Tag

The h:inputText tagis used to display a text field. A similar tag, the h:outputText tag, displays
aread-only, single-line string. This section shows you how to use the h: inputText tag. The
h:outputText tagis written in a similar way.

Here is an example of an h: inputText tag:

<h:inputText id="name"
label="Customer Name"
size="30"
value="#{cashier.name}"
required="true"
requiredMessage="#{bundle.ReqCustomerName}">
<f:valueChangelListener
type="dukesbookstore.listeners.NameChanged" />
</h:inputText>

Chapter7 - Using JavaServer Faces Technology in Web Pages 149

Adding Components to a Page Using HTML Tags

150

The label attribute specifies a user-friendly name that will be used in the substitution
parameters of error messages displayed for this component.

The value attribute refers to the name property of a managed bean named CashierBean. This
property holds the data for the name component. After the user submits the form, the value of
the name property in CashierBean will be set to the text entered in the field corresponding to
this tag.

The required attribute causes the page to reload, displaying errors, if the user does not enter a
value in the name text field. The JavaServer Faces implementation checks whether the value of
the component is null or is an empty string.

If your component must have a non-null value or a String value at least one character in length,
you should add a required attribute to your tag and set its value to true. If your tag has a
required attribute that is set to true and the value is null or a zero-length string, no other
validators that are registered on the tag are called. If your tag does not have a required attribute
set to true, other validators that are registered on the tag are called, but those validators must
handle the possibility of a null or zero-length string. See “Validating Null and Empty Strings”
on page 207 for more information.

Rendering a Password Field with the h:inputSecret Tag

The h: inputSecret tag renders an <input type="password"> HTML tag. When the user types
a string into this field, a row of asterisks is displayed instead of the text typed by the user. Here is
an example:

<h:inputSecret redisplay="false"
value="#{LoginBean.password}" />

In this example, the redisplay attribute is set to false. This will prevent the password from
being displayed in a query string or in the source file of the resulting HTML page.

Rendering a Label with the h:outputLabel Tag

The h:outputLabel tagis used to attach a label to a specified input field for the purpose of
making it accessible. The following page uses an h: outputLabel tag to render the label of a
check box:

<h:selectBooleanCheckbox id="fanClub"
binding="#{cashier.specialOffer}" />
<h:outputLabel for="fanClub"
binding="#{cashier.specialOfferText}" >
<h:outputText id="fanClubLabel"
value="#{bundle.DukeFanClub}" />
</h:outputLabel>

The Java EE 6 Tutorial « January 2013

Adding Components to a Page Using HTML Tags

The for attribute of the h:outputLabel tag maps to the id of the input field to which the label is
attached. The h:outputText tag nested inside the h: outputLabel tag represents the label
component. The value attribute on the h: outputText tag indicates the text that is displayed
next to the input field.

Instead of using an h:outputText tag for the text displayed as a label, you can simply use the
h:outputLabel tag’s value attribute. The following code snippet shows what the previous code
snippet would look like if it used the value attribute of the h: outputLabel tag to specify the text
of the label:

<h:selectBooleanCheckbox id="fanClub"
binding="#{cashier.specialOffer}" />
<h:outputLabel for="fanClub"
binding="#{cashier.specialOfferText}"
value="#{bundle.DukeFanClub}" />

Rendering a Hyperlink with the h:outputLink Tag

The h:outputLink tagis used to render a hyperlink that, when clicked, loads another page but
does not generate an action event. You should use this tag instead of the h: commandLink tag if
you always want the URL specified by the h:outputLink tag’s value attribute to open and do
not want any processing to be performed when the user clicks the link. Here is an example:

<h:outputLink value="javadocs">
Documentation for this demo
</h:outputLink>

The text in the body of the h: outputLink tag identifies the text that the user clicks to get to the
next page.

Displaying a Formatted Message with the h:outputFormat Tag

The h:outputFormat tagallows display of concatenated messages as a MessageFormat pattern,
as described in the APT documentation for java. text.MessageFormat. Here is an example of
an h:outputFormat tag:

<h:outputFormat value="Hello, {0}!">
<f:param value="#{hello.name}"/>
</h:outputFormat>

The value attribute specifies the MessageFormat pattern. The f:param tag specifies the
substitution parameters for the message. The value of the parameter replaces the {0} in the
sentence. If the value of "#{hello.name}" is “Bill”, the message displayed in the page is as
follows:

Hello, Bill!

Chapter7 - Using JavaServer Faces Technology in Web Pages 151

Adding Components to a Page Using HTML Tags

152

An h:outputFormat tag can include more than one f: param tag for those messages that have
more than one parameter that must be concatenated into the message. If you have more than
one parameter for one message, make sure that you put the f: paramtags in the proper order so
that the data is inserted in the correct place in the message. Here is the preceding example
modified with an additional parameter:

<h:outputFormat value="Hello, {@}! You are visitor number {1} to the page.">
<f:param value="#{hello.name}" />
<f:param value="#{bean.numVisitor}"/>

</h:outputFormat>

The value of {1} is replaced by the second parameter. The parameter is an EL expression,
bean.numVisitor, where the property numvisitor of the managed bean bean keeps track of
visitors to the page. This is an example of a value-expression-enabled tag attribute accepting an
EL expression. The message displayed in the page is now as follows:

Hello, Bill! You are visitor number 10 to the page.

Using Command Component Tags for Performing
Actions and Navigation

In JavaServer Faces applications, the button and hyperlink component tags are used to perform
actions, such as submitting a form, and for navigating to another page. These tags are called
command component tags because they perform an action when activated.

The h: commandButton tagis rendered as a button. The h: commandLink tag is rendered as a
hyperlink.

In addition to the tag attributes listed in “Common Component Tag Attributes” on page 142,
the h: commandButton and h: commandLink tags can use the following attributes:

® action, which is either a logical outcome String or a method expression pointing to a bean
method that returns a logical outcome String. In either case, the logical outcome String is
used to determine what page to access when the command component tag is activated.

= actionListener, which isa method expression pointing to a bean method that processes an
action event fired by the command component tag.

See “Referencing a Method That Performs Navigation” on page 187 for more information on
using the action attribute. See “Referencing a Method That Handles an Action Event” on
page 187 for details on using the actionListener attribute.

Rendering a Button with the h.commandButton Tag

If you are using an h: commandButton component tag, the data from the current page is
processed when a user clicks the button, and the next page is opened. Here is an example of the
h:commandButton tag:

The Java EE 6 Tutorial « January 2013

Adding Components to a Page Using HTML Tags

<h:commandButton value="Submit"

action="#{cashierBean.submit}"/>
Clicking the button will cause the submit method of CashierBean to be invoked because the
action attribute references this method. The submit method performs some processing and
returns a logical outcome.

The value attribute of the example h: commandButton tag references the button’s label. For
information on how to use the action attribute, see “Referencing a Method That Performs
Navigation” on page 187.

Rendering a Hyperlink with the h:commandLink Tag

The h: commandLink tag represents an HTML hyperlink and is rendered as an HTML <a>
element.

A h:commandLink tag must include a nested h: outputText tag, which represents the text that
the user clicks to generate the event. Here is an example:

<h:commandLink id="Duke" action="bookstore"s>
<f:actionListener
type="dukesbookstore.listeners.LinkBookChangeListener" />
<h:outputText value="#{bundle.Book201}"/>
/h:commandLink>

This tag will render the following HTML.:

<a id=" idt16:Duke" href="#"
onclick="mojarra.jsfcljs(document.getElementById(’'j idt1l6’),
{’j idt16:Duke’:’j idt16:Duke’},’’);
return false;">My Early Years: Growing Up on Star7, by Duke

Note - The h: commandLink tag will render JavaScript scripting language. If you use this tag,
make sure that your browser is enabled for JavaScript technology.

Adding Graphics and Images with the h:graphicimage
Tag
In a JavaServer Faces application, use the h: graphicImage tag to render an image on a page:

<h:graphicImage id="mapImage" url="/resources/images/book all.jpg"/>

In this example, the url attribute specifies the path to the image. The URL of the example tag
begins with a slash (/), which adds the relative context path of the web application to the
beginning of the path to the image.

Alternatively, you can use the facility described in “Web Resources” on page 123 to point to the
image location. Here are two examples:

Chapter7 - Using JavaServer Faces Technology in Web Pages 153

Adding Components to a Page Using HTML Tags

154

<h:graphicImage id="mapImage"
name="book_all.jpg"
library="images"
alt="#{bundle.ChooseBook}"
usemap="#bookMap" />

<h:graphicImage value="#{resource[’images:wave.med.gif’']}"/>

You can use similar syntax to refer to an image in a style sheet. The following syntax in a style
sheet specifies that the image is to be found at resources/img/top-background. jpg:

header {
position: relative;
height: 150px;
background: #fff url(#{resource[’img:top-background.jpg’]l}) repeat-x;

Laying Out Components with the h:panelGrid and
h:panelGroup Tags

In a JavaServer Faces application, you use a panel as a layout container for a set of other
components. A panel is rendered as an HTML table. Table 7-6 lists the tags used to create
panels.

TABLE7-6 Panel Component Tags

Tag Attributes Function

h:panelGrid columns, columnClasses, footerClass, Displays a table
headerClass, panelClass, rowClasses

h:panelGroup layout Groups a set of components under one
parent

The h:panelGrid tagis used to represent an entire table. The h: panelGroup tag is used to
represent rows in a table. Other tags are used to represent individual cells in the rows.

The columns attribute defines how to group the data in the table and therefore is required if you
want your table to have more than one column. The h: panelGrid tag also has a set of optional
attributes that specify CSS classes: columnClasses, footerClass, headerClass, panelClass,
and rowClasses.

If the headerClass attribute value is specified, the h: panelGrid tag must have a header as its
first child. Similarly, if a footerClass attribute value is specified, the h: panelGrid tag must
have a footer as its last child.

Here is an example:

The Java EE 6 Tutorial « January 2013

Adding Components to a Page Using HTML Tags

<h:panelGrid columns="2"

headerClass="list-header"
styleClass="list-background"
rowClasses="list-row-even, list-row-odd"
summary="#{bundle.CustomerInfo}"
title="#{bundle.Checkout}">

<f:facet name="header">

<h:outputText value="#{bundle.Checkout}"/>
</f:facet>

<h:outputLabel for="name" value="#{bundle.Name}" />
<h:inputText id="name"
size="30"
value="#{cashier.name}"
required="true"
requiredMessage="#{bundle.ReqCustomerName}">
<f:valueChangelListener
type="dukesbookstore.listeners.NameChanged" />
</h:inputText>
<h:message styleClass="error-message" for="name"/>

<h:outputLabel for="ccno" value="#{bundle.CCNumber}"/>
<h:inputText id="ccno"
size="19"
value="#{cashier.creditCardNumber}"
required="true"
requiredMessage="#{bundle.ReqCreditCard}" >
<f:converter converterId="ccno"/>
<f:validateRegex
pattern="\d{16} |\d{4} \d{4} \d{4} \d{4}|\d{4}-\d{4}-\d{4}-\d{4}" />
</h:inputText>
<h:message styleClass="error-message" for="ccno"/>

</h:panelGrid>

The preceding h: panelGrid tag is rendered as a table that contains components in which a
customer inputs personal information. This h: panelGrid tag uses style sheet classes to format
the table. The following code shows the 1ist-header definition:

.list-header {
background-color: #ffffff;
color: #000000;
text-align: center;

}

Because the h:panelGrid tag specifies a headerClass, the h: panelGrid tag must contain a
header. The example h: panelGrid tag uses an f: facet tag for the header. Facets can have only
one child, so an h: panelGroup tag is needed if you want to group more than one component
within an f: facet. The example h:panelGrid tag has only one cell of data, so an h: panelGroup
tag is not needed. (For more information about facets, see “Using Data-Bound Table
Components” on page 161.)

The h:panelGroup tag has an attribute, layout, in addition to those listed in “Common
Component Tag Attributes” on page 142. If the layout attribute has the value block, an HTML
div element is rendered to enclose the row; otherwise, an HTML span element is rendered to

Chapter7 - Using JavaServer Faces Technology in Web Pages 155

Adding Components to a Page Using HTML Tags

156

enclose the row. If you are specifying styles for the h: panelGroup tag, you should set the layout
attribute to block in order for the styles to be applied to the components within the
h:panelGroup tag. You should do this because styles, such as those that set width and height,
are not applied to inline elements, which is how content enclosed by the span element is
defined.

An h:panelGroup tag can also be used to encapsulate a nested tree of components so that the
tree of components appears as a single component to the parent component.

Data, represented by the nested tags, is grouped into rows according to the value of the columns
attribute of the h:panelGrid tag. The columns attribute in the example is set to 2, and therefore
the table will have two columns. The column in which each component is displayed is
determined by the order in which the component is listed on the page modulo 2. So, ifa
component is the fifth one in the list of components, that component will be in the 5 modulo 2
column, or column 1.

Displaying Components for Selecting One Value

Another commonly used component is one that allows a user to select one value, whether it is
the only value available or one of a set of choices. The most common tags for this kind of
component are as follows:

= Anh:selectBooleanCheckbox tag, displayed as a check box, which represents a Boolean
state

® Anh:selectOneRadio tag, displayed as a set of radio buttons
= Anh:selectOneMenu tag, displayed as a drop-down menu, with a scrollable list

= Anh:selectOnelListbox tag, displayed as a list box, with an unscrollable list

Figure 7-3 shows examples of these components.

The Java EE 6 Tutorial « January 2013

Adding Components to a Page Using HTML Tags

FIGURE 7-3 Example Components for Selecting One Item

Genre: O Fiction Language: | Chinese A Format: | Hardcover
o Dutch & Paperback
Radio @ Non-fiction English Large-print
Buttons O Reference French - Cassette
] German DVD
O Biography Spanish | lllustrated
Swahili v
Availability: In print \/ ‘
‘ ‘ List Box
Check Box Drop-Down Menu

Displaying a Check Box Using the h:selectBooleanCheckbox Tag

The h:selectBooleanCheckbox tag is the only tag that JavaServer Faces technology provides
for representing a Boolean state.

Here is an example that shows how to use the h: selectBooleanCheckbox tag:

<h:selectBooleanCheckbox id="fanClub"
binding="#{cashier.specialOffer}" />
<h:outputLabel for="fanClub"
binding="#{cashier.specialOfferText}"
value="#{bundle.DukeFanClub}" />

This example tag displays a check box to allow users to indicate whether they want to join the
Duke Fan Club. The label for the check box is rendered by the h: outputLabel tag. The text is
represented by the value attribute.

Displaying a Menu Using the h:selectOneMenu Tag

A component that allows the user to select one value from a set of values can be rendered as a list
box, a set of radio buttons, or a menu. This section describes the h: selectOneMenu tag. The
h:selectOneRadio and h:selectOneListbox tags are used in a similar way. The
h:selectOneListbox tagis similar to the h: selectOneMenu tag except that
h:selectOneListbox defines a size attribute that determines how many of the items are
displayed at once.

The h:selectOneMenu tag represents a component that contains a list of items from which a
user can choose one item. This menu component is also commonly known as a drop-down list
or a combo box. The following code snippet shows how the h: selectOneMenu tag is used to
allow the user to select a shipping method:

<h:selectOneMenu id="shippingOption"
required="true"
value="#{cashier.shippingOption}">
<f:selectItem itemValue="2"
itemLabel="#{bundle.QuickShip}"/>

Chapter7 - Using JavaServer Faces Technology in Web Pages 157

Adding Components to a Page Using HTML Tags

158

<f:selectItem itemValue="5
itemLabel="#{bundle.NormalShip}"/>
<f:selectItem itemValue="7"
itemLabel="#{bundle.SaverShip}"/>
</h:selectOneMenu>

The value attribute of the h: selectOneMenu tag maps to the property that holds the currently
selected item’s value. You are not required to provide a value for the currently selected item. If
you don’t provide a value, the first item in the list is selected by default.

Like the h: selectOneRadio tag, the h: selectOneMenu tag must contain either an
f:selectItems tagorasetof f:selectItemtags for representing the items in the list. “Using
the f:selectItemand f:selectItems Tags” on page 159 describes these tags.

Displaying Components for Selecting Multiple Values

In some cases, you need to allow your users to select multiple values rather than just one value
from a list of choices. You can do this using one of the following component tags:

= Anh:selectManyCheckbox tag, displayed as a set of check boxes
= Anh:selectManyMenu tag, displayed as a drop-down menu
= Anh:selectManyListbox tag, displayed as a list box

Figure 7-4 shows examples of these components.

FIGURE 7-4 Example Components for Selecting Multiple Values

Genre: Fiction Language: | Chinese 7} Format: | Hardcover
o Dutch (Paperback
Check Non-fiction English Large-print
Boxes |:| Reference French) Cassette
) German DVD
I:l Biography Spanish lllustrated
Swahili E}

‘ List Box
Drop-Down Menu

These tags allow the user to select zero or more values from a set of values. This section explains
the h:selectManyCheckbox tag. The h:selectManyListbox and h:selectManyMenu tags are
used in a similar way.

Unlike a menu, a list box displays a subset of items in a box; a menu displays only one item ata
time when the user is not selecting the menu. The size attribute of the h: selectManyListbox
tag determines the number of items displayed at one time. The list box includes a scroll bar for
scrolling through any remaining items in the list.

The Java EE 6 Tutorial « January 2013

Adding Components to a Page Using HTML Tags

The h:selectManyCheckbox tag renders a set of check boxes, with each check box representing
one value that can be selected:

<h:selectManyCheckbox id="newslettercheckbox"
layout="pageDirection"
value="#{cashier.newsletters}">
<f:selectItems value="#{cashier.newsletterItems}"/>
</h:selectManyCheckbox>

The value attribute of the h: selectManyCheckbox tag identifies the newsletters property of
the CashierBean managed bean. This property holds the values of the currently selected items
from the set of check boxes. You are not required to provide a value for the currently selected
items. If you don’t provide a value, the first item in the list is selected by default. In the
CashierBean managed bean, this value is instantiated to 0, so no items are selected by default.

The layout attribute indicates how the set of check boxes is arranged on the page. Because
layout is set to pageDirection, the check boxes are arranged vertically. The default is
lineDirection, which aligns the check boxes horizontally.

The h:selectManyCheckbox tag must also contain a tag or set of tags representing the set of
check boxes. To represent a set of items, you use the f:selectItems tag. To represent each item
individually, you use the f: selectItemtag. The following section explains these tags in more
detail.

Using the f:selectitem and f:selectitems Tags

The f:selectItemand f:selectItems tags represent components that can be nested inside a
component that allows you to select one or multiple items. An f:selectItemtag contains the
value, label, and description of a single item. An f: selectItems tag contains the values, labels,
and descriptions of the entire list of items.

You can use either a set of f:selectItem tags or asingle f:selectItems tag within your
component tag.

The advantages of using the f:selectItems tagare as follows.

= [tems can be represented by using different data structures, including Array, Map, and
Collection. The value of the f:selectItems tag can represent even a generic collection of
POJOs.

= Different lists can be concatenated into a single component, and the lists can be grouped
within the component.

= Values can be generated dynamically at runtime.

Chapter7 - Using JavaServer Faces Technology in Web Pages 159

Adding Components to a Page Using HTML Tags

160

The advantages of using f: selectItemare as follows:

= Jtems in the list can be defined from the page.
= Less codeis needed in the bean for the f:selectItem properties.

The rest of this section shows you how to use the f:selectItems and f:selectItem tags.

Using the f:selectltems Tag

The following example from “Displaying Components for Selecting Multiple Values” on
page 158 shows how to use the h: selectManyCheckbox tag:

<h:selectManyCheckbox id="newslettercheckbox"
layout="pageDirection"
value="#{cashier.newsletters}">
<f:selectItems value="#{cashier.newsletterItems}"/>
</h:selectManyCheckbox>

The value attribute of the f:selectItems tagis bound to the managed bean property
cashier.newsletterItems. Theindividual SelectItem objects are created programmatically
in the managed bean.

See “UISelectItems Properties” on page 198 for information on how to write a managed bean
property for one of these tags.

Using the f:selectitem Tag

The f:selectItem tag represents a single item in a list of items. Here is the example from
“Displaying a Menu Using the h: selectOneMenu Tag” on page 157 once again:

<h:selectOneMenu id="shippingOption"
required="true"
value="#{cashier.shippingOption}">
<f:selectItem itemValue="2"
itemLabel="#{bundle.QuickShip}"/>
<f:selectItem itemValue="5"
itemLabel="#{bundle.NormalShip}"/>
<f:selectItem itemValue="7"
itemLabel="#{bundle.SaverShip}"/>
</h:selectOneMenu>

The itemValue attribute represents the value for the f:selectItemtag. The itemLabel
attribute represents the String that appears in the drop-down menu component on the page.

The itemValue and itemLabel attributes are value-binding-enabled, meaning that they can use
value-binding expressions to refer to values in external objects. These attributes can also define
literal values, as shown in the example h: selectOneMenu tag.

The Java EE 6 Tutorial « January 2013

Adding Components to a Page Using HTML Tags

Displaying the Results from Selection Components

If you display components that allow a user to select values, you may also want to display the
result of the selection.

For example, you might want to thank a user who selected the checkbox to join the Duke Fan
Club, as described in “Displaying a Check Box Using the h: selectBooleanCheckbox Tag” on
page 157. Because the checkbox is bound to the specialOffer property of CashierBean, a
javax.faces.component.UISelectBoolean value, you can call the isSelected method of the
property to determine whether to render a thank-you message:

<h:outputText value="#{bundle.DukeFanClubThanks}"
rendered="#{cashier.specialOffer.isSelected()}"/>

Similarly, you might want to acknowledge that a user subscribed to newsletters using the
h:selectManyCheckbox tag, as described in “Displaying Components for Selecting Multiple
Values” on page 158. To do so, you can retrieve the value of the newsletters property, the
String array that holds the selected items:

<h:outputText value="#{bundle.NewsletterThanks}"
rendered="#{!empty cashier.newsletters}"/>

<ui:repeat value="#{cashier.newsletters}" var="nli">
<h:outputText value="#{nli}" />
</ui:repeat>

An introductory thank-you message is displayed only if the newsletters array is not empty.
Then a ui:repeat tag, a simple way to show values in a loop, displays the contents of the
selected items in an itemized list. (This tag is listed in Table 5-2.)

Using Data-Bound Table Components

Data-bound table components display relational data in a tabular format. In a JavaServer Faces
application, the h: dataTable component tag supports binding to a collection of data objects
and displays the data as an HTML table. The h: column tag represents a column of data within
the table, iterating over each record in the data source, which is displayed as a row. Here is an
example:

<h:dataTable id="items"
captionStyle="font-weight:bold"
columnClasses="list-column-center, list-column-left,
list-column-right, list-column-center"
footerClass="list-footer"
headerClass="list-header"
rowClasses="list-row-even, list-row-odd"
styleClass="list-background"
summary="#{bundle.ShoppingCart}"

Chapter7 - Using JavaServer Faces Technology in Web Pages 161

Adding Components to a Page Using HTML Tags

162

value="#{cart.items}"

border="1"
var="item">
<h:column>

<f:facet name="header">
<h:outputText value="#{bundle.ItemQuantity}" />
</f:facet>
<h:inputText id="quantity"
size="4"
value="#{item.quantity}"
title="#{bundle.ItemQuantity}">
<f:validatelLongRange minimum="1"/>
</h:inputText>
<h:message for="quantity"/>
</h:column>
<h:column>
<f:facet name="header">
<h:outputText value="#{bundle.ItemTitle}"/>
</f:facet>
<h:commandLink action="#{showcart.details}">
<h:outputText value="#{item.item.title}"/>
</h:commandLink>
</h:column>

<f:facet name="footer"
<h:panelGroup>
<h:outputText value="#{bundle.Subtotal}"/>
<h:outputText value="#{cart.total}" />
<f:convertNumber currencySymbol="$" type="currency" />
</h:outputText>
</h:panelGroup>
</f:facet>
<f:facet name="caption">
<h:outputText value="#{bundle.Caption}"/>
</f:facet>
</h:dataTable>

The example h: dataTable tag displays the books in the shopping cart, as well as the quantity of
each book in the shopping cart, the prices, and a set of buttons the user can click to remove
books from the shopping cart.

The h: column tags represent columns of data in a data component. While the data component
is iterating over the rows of data, it processes the column component associated with each
h:column tag for each row in the table.

The h:dataTable tag shown in the preceding code example iterates through the list of books
(cart.items) in the shopping cart and displays their titles, authors, and prices. Each time the
h:dataTable tagiterates through the list of books, it renders one cell in each column.

The h:dataTable and h: column tags use facets to represent parts of the table that are not
repeated or updated. These parts include headers, footers, and captions.

In the preceding example, h: column tags include f: facet tags for representing column headers
or footers. The h: column tag allows you to control the styles of these headers and footers by

The Java EE 6 Tutorial « January 2013

Adding Components to a Page Using HTML Tags

supporting the headerClass and footerClass attributes. These attributes accept
space-separated lists of CSS classes, which will be applied to the header and footer cells of the
corresponding column in the rendered table.

Facets can have only one child, so an h: panelGroup tag is needed if you want to group more
than one component within an f: facet. Because the facet tag representing the footer includes
more than one tag, the h: panelGroup tag is needed to group those tags. Finally, this
h:dataTable tagincludes an f: facet tag with its name attribute set to caption, causing a table
caption to be rendered above the table.

This table is a classic use case for a data component because the number of books might not be
known to the application developer or the page author when that application is developed. The
data component can dynamically adjust the number of rows of the table to accommodate the
underlying data.

The value attribute of an h: dataTable tag references the data to be included in the table. This
data can take the form of any of the following:

Alist of beans

An array of beans

A single bean

A javax.faces.model.DataModel object

A java.sql.ResultSet object

A javax.servlet.jsp.jstl.sql.Result object
A javax.sql.RowSet object

All data sources for data components have a javax. faces.model.DataModel wrapper. Unless
you explicitly construct a DataModel wrapper, the JavaServer Faces implementation will create
one around data of any of the other acceptable types. See “Writing Bean Properties” on page 192
for more information on how to write properties for use with a data component.

The var attribute specifies a name that is used by the components within the h: dataTable tag
as an alias to the data referenced in the value attribute of h:dataTable.

In the example h:dataTable tag, the value attribute points to a list of books. The var attribute
points to a single book in that list. As the h:dataTable tag iterates through the list, each
reference to item points to the current book in the list.

The h:dataTable tag also has the ability to display only a subset of the underlying data. This
feature is not shown in the preceding example. To display a subset of the data, you use the
optional first and rows attributes.

The first attribute specifies the first row to be displayed. The rows attribute specifies the
number of rows, starting with the first row, to be displayed. For example, if you wanted to
display records 2 through 10 of the underlying data, you would set first to 2 and rows to 9.
When you display a subset of the data in your pages, you might want to consider including a
link or button that causes subsequent rows to display when clicked. By default, both first and
rows are set to zero, and this causes all the rows of the underlying data to display.

Chapter7 - Using JavaServer Faces Technology in Web Pages 163

Adding Components to a Page Using HTML Tags

164

Table 7-7 shows the optional attributes for the h: dataTable tag.

TABLE7-7 Optional Attributes for the h:dataTable Tag

Attribute Defines Styles for
captionClass Table caption
columnClasses All the columns
footerClass Footer
headerClass Header
rowClasses Rows
styleClass The entire table

Each of the attributes in Table 7-7 can specify more than one style. If columnClasses or
rowClasses specifies more than one style, the styles are applied to the columns or rows in the
order that the styles are listed in the attribute. For example, if columnClasses specifies styles
list-column-centerand list-column-right and if the table has two columns, the first
column will have style list-column-center, and the second column will have style
list-column-right.

If the style attribute specifies more styles than there are columns or rows, the remaining styles
will be assigned to columns or rows starting from the first column or row. Similarly, if the style
attribute specifies fewer styles than there are columns or rows, the remaining columns or rows
will be assigned styles starting from the first style.

Displaying Error Messages with the h:message and
h:messages Tags

The h:message and h:messages tags are used to display error messages when conversion or
validation fails. The h:message tag displays error messages related to a specific input
component, whereas the h:messages tag displays the error messages for the entire page.

Here is an example h:message tag from the guessnumber application:

<p>
<h:inputText id="userNo"
title="Type a number from 0 to 10:"
value="#{userNumberBean.userNumber}">
<f:validateLongRange minimum="#{userNumberBean.minimum}"
maximum="#{userNumberBean.maximum}"/>
</h:inputText>
<h:commandButton id="submit" value="Submit"
action="response"/>

The Java EE 6 Tutorial « January 2013

Adding Components to a Page Using HTML Tags

</p>

<h:message showSummary="true" showDetail="false"
style="color: #d20005;
font-family: ’'New Century Schoolbook’, serif;
font-style: oblique;
text-decoration: overline"
id="errorsl"
for="userNo"/>

The for attribute refers to the ID of the component that generated the error message. The error
message is displayed at the same location that the h:message tag appears in the page. In this
case, the error message will appear after the Submit button.

The style attribute allows you to specify the style of the text of the message. In the example in
this section, the text will be a shade of red, New Century Schoolbook, serif font family, and
oblique style, and a line will appear over the text. The message and messages tags support many
other attributes for defining styles. For more information on these attributes, refer to the
documentation at http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/
vdldocs/facelets/.

Another attribute supported by the h:messages tag is the layout attribute. Its default value is
list, which indicates that the messages are displayed in a bullet list using the HTML ul and 1i
elements. If you set the attribute value to table, the messages will be rendered in a table using
the HTML tab'le element.

The preceding example shows a standard validator that is registered on the input component.
The message tag displays the error message that is associated with this validator when the
validator cannot validate the input component’s value. In general, when you register a converter
or validator on a component, you are queueing the error messages associated with the converter
or validator on the component. The h:message and h:messages tags display the appropriate
error messages that are queued on the component when the validators or converters registered
on that component fail to convert or validate the component’s value.

Standard error messages are provided with standard converters and standard validators. An
application architect can override these standard messages and supply error messages for
custom converters and validators by registering custom error messages with the application.

Creating Bookmarkable URLs with the h:button and
h:link Tags

The ability to create bookmarkable URLs refers to the ability to generate hyperlinks based on a
specified navigation outcome and on component parameters.

In HTTP, most browsers by default send GET requests for URL retrieval and POST requests for
data processing. The GET requests can have query parameters and can be cached, which is not
advised for POST requests, which send data to servers for processing. The other JavaServer

Chapter7 - Using JavaServer Faces Technology in Web Pages 165

http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/vdldocs/facelets/
http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/vdldocs/facelets/

Adding Components to a Page Using HTML Tags

166

Faces tags capable of generating hyperlinks use either simple GET requests, as in the case of
h:outputLink, or POST requests, as in the case of h: commandLink or h: commandButton tags.
GET requests with query parameters provide finer granularity to URL strings. These URLs are
created with one or more name=value parameters appended to the simple URL aftera ?
character and separated by either &; or & strings.

To create a bookmarkable URL, use an h: link or h:button tag. Both of these tags can generate
a hyperlink based on the outcome attribute of the component. For example:

<h:link outcome="somepage" value="Message" />

The h: link tag will generate a URL link that points to the somepage. xhtml file on the same
server. The following sample HTML is generated from the preceding tag, assuming that the
application name is simplebookmark:

Message

This is a simple GET request that cannot pass any data from page to page. To create more
complex GET requests and utilize the complete functionality of the h: link tag, use view
parameters.

Using View Parameters to Configure Bookmarkable
URLs

To pass a parameter from one page to another, use the includeViewParams attribute in your
h:link tag and, in addition, use an f : param tag to specify the name and value to be passed. Here
the h: link tag specifies the outcome page as personal.xhtml and provides a parameter named
Result whose value is a managed bean property:

<h:body>
<h:form>
<h:graphicImage url="duke.waving.gif" alt="Duke waving his hand"/>
<h2>Hello, #{hello.name}!'!</h2>
<p>I've made your
<h:link outcome="personal" value="personal greeting page!"
includeViewParams="true">
<f:param name="Result" value="#{hello.name}"/>
</h:1link>
</p>
<h:commandButton id="back" value="Back" action="index" />
</h:form>
</h:body>

If the includeViewParanms attribute is set on the component, the view parameters are added to
the hyperlink. Therefore, the resulting URL will look something like this if the value of
hello.name is Timmy:

http://localhost:8080/bookmarks/faces/personal.xhtml?Result=Timmy

The Java EE 6 Tutorial « January 2013

Adding Components to a Page Using HTML Tags

On the outcome page, specify the core tags f:metadata and f:viewparamas the source of
parameters for configuring the URLs. View parameters are declared as part of f :metadata fora
page, as shown in the following example:

<f:metadata>
<f:viewParam name="Result" value="#{hello.name}" />
</f:metadata>

This allows you to specify the bean property value on the page:

<h:outputText value="Howdy, #{hello.name}!" />

As a view parameter, the name also appears in the page’s URL. If you edit the URL, you change
the output on the page.

Because the URL can be the result of various parameter values, the order of the URL creation
has been predefined. The order in which the various parameter values are read is as follows:

1. Component
2. Navigation-case parameters
3. View parameters

The bookmarks Example Application

The bookmarks example application modifies the hellol application described in “Web
Modules: The hellol Example” on page 84 to use a bookmarkable URL that uses view
parameters.

Like hellol, the application includes the Hello. java managed bean, an index.xhtml page,
and a response.xhtml page. In addition, it includes a personal.xhtml page, to which a
bookmarkable URL and view parameters are passed from the response.xhtml page, as
described in “Using View Parameters to Configure Bookmarkable URLs” on page 166.

Building, Packaging, Deploying, and Running the bookmarks Example

You can use either NetBeans IDE or Ant to build, package, deploy, and run the bookmarks
example. The source code for this example is available in the
tut-install/examples/web/bookmarks/ directory.

To Build, Package, and Deploy the bookmarks Example Using NetBeans
IDE

From the File menu, choose Open Project.

In the Open Project dialog, navigate to:

tut-install/examples/web/

Chapter7 - Using JavaServer Faces Technology in Web Pages 167

Adding Components to a Page Using HTML Tags

168

Select the bookmarks folder.
Select the Open as Main Project check box.
Click Open Project.

In the Projects tab, right-click the bookmarks project and select Deploy.

This option builds and deploys the example application to your GlassFish Server instance.

To Build, Package, and Deploy the bookmarks Example Using Ant

In a terminal window, go to:

tut-install/examples/web/bookmarks/

Type the following command:

ant

This command calls the default target, which builds and packages the application into a WAR
file, bookmarks .war, that is located in the dist directory.

Make sure that the GlassFish Server is started.

To deploy the application, type the following command:
ant deploy

To Run the bookmarks Example

Open aweb browser.

Type the following URL in your web browser:
http://localhost:8080/bookmarks

In the text field, type a name and click Submit.

On the response page, move your mouse over the “personal greeting page” link to view the URL
with the view parameter, then click the link.

The personal.xhtml page opens, displaying a greeting to the name you typed.

In the URL field, modify the Result parameter value and press Enter.

The name in the greeting changes to what you typed.

The Java EE 6 Tutorial « January 2013

Adding Components to a Page Using HTML Tags

Resource Relocation Using h:outputScript and
h:outputStylesheet Tags

Resource relocation refers to the ability of a JavaServer Faces application to specify the location
where a resource can be rendered. Resource relocation can be defined with the following HTML
tags:

= h:outputScript
® h:outputStylesheet

These tags have name and target attributes, which can be used to define the render location. For
a complete list of attributes for these tags, see the documentation at http://docs.oracle.com/
javaee/6/javaserverfaces/2.1/docs/vdldocs/facelets/.

For the h:outputScript tag, the name and target attributes define where the output of a
resource may appear. Here is an example:

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">
<h:head id="head">
<title>Resource Relocation</title>
</h:head>
<h:body id="body">
<h:form id="form">
<h:outputScript name="hello.js"/>
<h:outputStylesheet name="hello.css"/>
</h:form>
</h:body>
</html>

Since the target attribute is not defined in the tags, the style sheet hello. css is rendered in the
head element of the page, and the hello. js script is rendered in the body of the page.

Here is the HTML generated by the preceding code:

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Resource Relocation</title>
<link type="text/css" rel="stylesheet"
href="/context-root/faces/javax.faces.resource/hello.css"/>
</head>
<body>
<form id="form" name="form" method="post" action="...
<script type="text/javascript"
src="/context-root/faces/javax.faces.resource/hello.js">
</script>
</form>
</body>
</html>

enctype="...">

Chapter7 - Using JavaServer Faces Technology in Web Pages 169

http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/vdldocs/facelets/
http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/vdldocs/facelets/

Adding Components to a Page Using HTML Tags

170

If you set the target attribute for the h:outputScript tag, the incoming GET request provides
the location parameter. Here is an example:

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">
<h:head id="head">
<title>Resource Relocation</title>
</h:head>
<h:body id="body">
<h:form id="form">
<h:outputScript name="hello.js" target="#{param.location}"/>
<h:outputStylesheet name="hello.css"/>
</h:form>
</h:body>
</html>

In this case, if the incoming request does not provide a location parameter, the default locations
will still apply: The style sheet is rendered in the head, and the script is rendered inline.
However, if the incoming request specifies the location parameter as the head, both the style
sheet and the script will be rendered in the head element.

The HTML generated by the preceding code is as follows:

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Resource Relocation</title>
<link type="text/css" rel="stylesheet"
href="/context-root/faces/javax.faces.resource/hello.css"/>
<script type="text/javascript"
src="/context-root/faces/javax.faces.resource/hello.js">
</script>
</head>
<body>
<form id="form" name="form" method="post" action="..." enctype="...">
</form>
</body>
</html>

Similarly, if the incoming request provides the location parameter as the body, the script will be
rendered in the body element.

The preceding section describes simple uses for resource relocation. That feature can add even
more functionality for the components and pages. A page author does not have to know the
location of a resource or its placement.

By using a @ResourceDependency annotation for the components, component authors can
define the resources for the component, such as a style sheet and script. This allows the page
authors freedom from defining resource locations.

The Java EE 6 Tutorial « January 2013

Using Core Tags

Using Core Tags

The tags included in the JavaServer Faces core tag library are used to perform core actions that

are not performed by HTML tags.

Table 7-8 lists the event handling core tags.

TABLE7-8 Event Handling Core Tags

Tag

Function

f:actionListener
f:phaseListener

f:setPropertyActionListener

f:valueChangelListener

Adds an action listener to a parent component
Adds aPhaseListener toapage

Registers a special action listener whose sole purpose
is to push a value into a managed bean when a form is
submitted

Adds a value-change listener to a parent component

Table 7-9 lists the data conversion core tags.

TABLE7-9 Data Conversion Core Tags

Tag

Function

f:converter

f:convertDateTime

f:convertNumber

Adds an arbitrary converter to the parent component

AddsaDateTimeConverter instance to the parent
component

Adds a NumberConverter instance to the parent
component

Table 7-10 lists the facet core tags.

TABLE7-10 Facet Core Tags

Tag Function

f:facet Adds a nested component that has a special
relationship to its enclosing tag

f:metadata Registers a facet on a parent component

Table 7-11 lists the core tags that represent items in a list.

Chapter7 - Using JavaServer Faces Technology in Web Pages

171

Using Core Tags

TABLE7-11 Core Tags that Represent Items in a List

Tag

Function

f:selectItem

f:selectItems

Represents one item in a list of items

Represents a set of items

Table 7-12 lists the validator core tags.

TABLE7-12 Validator Core Tags

Tag

Function

f:validateDoubleRange
f:validatelLength
f:validateLongRange
f:validator
f:validateRegEx

f:validateBean

f:validateRequired

AddsaDoubleRangeValidator to a component
AddsaLengthValidator to a component

Adds a LongRangeValidator to a component
Adds a custom validator to a component

Adds aRegExValidator to acomponent

Delegates the validation of a local value to a
BeanValidator

Enforces the presence of a value in a component

Table 7-13 lists the core tags that fall into other categories.

TABLE7-13 Miscellaneous Core Tags

Tag Category Tag Function

Attribute configuration f:attribute Adds configurable attributes to a
parent component

Localization f:loadBundle Specifies a ResourceBundle that is
exposed as a Map

Parameter substitution f:param Substitutes parameters into a
MessageFormat instance and adds
query string name-value pairs to a
URL

Ajax frajax Associates an Ajax action with a

single component or a group of
components based on placement

172 The Java EE 6 Tutorial « January 2013

Using Core Tags

TABLE7-13 Miscellaneous Core Tags (Continued)
Tag Category Tag Function
Event frevent Allows installing a

ComponentSystemEventListener
on a component

These tags, which are used in conjunction with component tags, are explained in other sections
of this tutorial. Table 7-14 lists the sections that explain how to use specific core tags.

TABLE7-14 Where the Core Tags Are Explained

Tags

Where Explained

Event handling tags
Data conversion tags

f:facet

f:loadBundle
f:metadata
f:param

f:selectItemand
f:selectItems

Validator tags

f:ajax

“Registering Listeners on Components” on page 180
“Using the Standard Converters” on page 175

“Using Data-Bound Table Components” on page 161 and “Laying Out Components
with the h:panelGrid and h:panelGroup Tags” on page 154

“Setting the Resource Bundle” on page 357
“Using View Parameters to Configure Bookmarkable URLs” on page 166
“Displaying a Formatted Message with the h:outputFormat Tag” on page 151

“Using the f:selectItemand f:selectItems Tags” on page 159

“Using the Standard Validators” on page 183

Chapter 11, “Using Ajax with JavaServer Faces Technology”

Chapter7 - Using JavaServer Faces Technology in Web Pages 173

174

L K R 4 CHAPTER 8

Using Converters, Listeners, and Validators

The previous chapter described components and explained how to add them to a web page.
This chapter provides information on adding more functionality to the components through
converters, listeners, and validators.

= Converters are used to convert data that is received from the input components.

= Listeners are used to listen to the events happening in the page and perform actions as
defined.

= Validators are used to validate the data that is received from the input components.

The following topics are addressed here:

“Using the Standard Converters” on page 175
“Registering Listeners on Components” on page 180
“Using the Standard Validators” on page 183
“Referencing a Managed Bean Method” on page 186

Using the Standard Converters

The JavaServer Faces implementation provides a set of Converter implementations that you
can use to convert component data. For more information on the conceptual details of the
conversion model, see “Conversion Model” on page 220. The standard Converter
implementations, located in the javax. faces.convert package, are as follows:

BigDecimalConverter
BigIntegerConverter
BooleanConverter
ByteConverter
CharacterConverter
DateTimeConverter
DoubleConverter
EnumConverter

175

Using the Standard Converters

176

FloatConverter
IntegerConverter
LongConverter
NumberConverter
ShortConverter

A standard error message is associated with each of these converters. If you have registered one
of these converters onto a component on your page, and the converter is not able to convert the
component’s value, the converter’s error message will display on the page. For example, the
following error message appears if BigIntegerConverter fails to convert a value:

{0} must be a number consisting of one or more digits

In this case, the {0} substitution parameter will be replaced with the name of the input
component on which the converter is registered.

Two of the standard converters (DateTimeConverter and NumberConverter) have their own
tags, which allow you to configure the format of the component data using the tag attributes.
For more information about using DateTimeConverter, see “Using DateTimeConverter” on
page 177. For more information about using NumberConverter, see “Using NumberConverter”
on page 179. The following section explains how to convert a component’s value, including how
to register other standard converters with a component.

Converting a Component’s Value

To use a particular converter to convert a component’s value, you need to register the converter
onto the component. You can register any of the standard converters in one of the following
ways:

= Nest one of the standard converter tags inside the component’s tag. These tags are
convertDateTime and convertNumber, which are described in “Using DateTimeConverter”
on page 177 and “Using NumberConverter” on page 179, respectively.

= Bind the value of the component to a managed bean property of the same type as the
converter.

= Refer to the converter from the component tag’s converter attribute.
= Nesta converter tag inside of the component tag, and use either the converter tag’s

converterId attribute or its binding attribute to refer to the converter.

As an example of the second technique, if you want a component’s data to be converted to an
Integer, you can simply bind the component’s value to a managed bean property. Here is an
example:

Integer age = 0;
public Integer getAge(){ return age;}
public void setAge(Integer age) {this.age = age;}

The Java EE 6 Tutorial « January 2013

Using the Standard Converters

If the component is not bound to a bean property, you can use the third technique by using the
converter attribute directly on the component tag:

<h:inputText
converter="javax.faces.convert.IntegerConverter" />

This example shows the converter attribute referring to the fully qualified class name of the
converter. The converter attribute can also take the ID of the component.

The data from the inputText tag in the this example will be converted to a java.lang.Integer
value. The Integer type is a supported type of NumberConverter. If you don’t need to specify
any formatting instructions using the convertNumber tag attributes, and if one of the standard
converters will suffice, you can simply reference that converter by using the component tag’s
converter attribute.

Finally, you can nesta converter tag within the component tag and use either the converter
tag’s converterId attribute or its binding attribute to reference the converter.

The converterId attribute must reference the converter’s ID. Here is an example:

<h:inputText value="#{loginBean.age}" />
<f:converter converterId="Integer" />
</h:inputText>

Instead of using the converterId attribute, the converter tag can use the binding attribute.
The binding attribute must resolve to a bean property that accepts and returns an appropriate
Converter instance.

Using DateTimeConverter

You can convert a component’s data to a java.util.Date by nesting the convertDateTime tag
inside the component tag. The convertDateTime tag has several attributes that allow you to
specify the format and type of the data. Table 8-1 lists the attributes.

Here is a simple example of a convertDateTime tag:

<h:outputText value="#{cashier.shipDate}">
<f:convertDateTime type="date" dateStyle="full" />
</h:outputText>

When binding the DateTimeConverter to a component, ensure that the managed bean
property to which the component is bound is of type java.util.Date. In the preceding
example, cashier.shipDate must be of type java.util.Date.

The example tag can display the following output:

Saturday, September 25, 2011

Chapter8 - Using Converters, Listeners, and Validators 177

Using the Standard Converters

You can also display the same date and time by using the following tag where the date format is
specified:

<h:outputText value="#{cashier.shipDate}">
<f:convertDateTime
pattern="EEEEEEEE, MMM dd, yyyy" />
</h:outputText>

If you want to display the example date in Spanish, you can use the locale attribute:

<h:outputText value="#{cashier.shipDate}">
<f:convertDateTime dateStyle="full"
locale="es"
timeStyle="long" type="both" />
</h:outputText>

This tag would display the following output:

jueves 27 de octubre de 2011 15:07:04 GMT

Refer to the “Customizing Formats” lesson of the Java Tutorial at http://docs.oracle.com/
javase/tutorial/il8n/format/simpleDateFormat.html for more information on how to
format the output using the pattern attribute of the convertDateTime tag.

TABLE8-1 Attributes for the convertDateTime Tag

Attribute Type Description
binding DateTimeConverter Used to bind a converter to a managed bean property.
dateStyle String Defines the format, as specified by java. text.DateFormat, of a date

or the date part of a date string. Applied only if type is date or both
and if pattern is not defined. Valid values: default, short, medium,
long, and full. If no value is specified, default is used.

for String Used with composite components. Refers to one of the objects within
the composite component inside which this tag is nested.

locale StringorLocale Locale whose predefined styles for dates and times are used during
formatting or parsing. If not specified, the Locale returned by
javax.faces.context.FacesContext.getLocale will be used.

pattern String Custom formatting pattern that determines how the date/time string
should be formatted and parsed. If this attribute is specified,
dateStyle, timeStyle, and type attributes are ignored.

timeStyle String Defines the format, as specified by java.text.DateFormat, of a time
or the time part of a date string. Applied only if type is time and
patternis not defined. Valid values: default, short, medium, long,
and full.If no value is specified, default is used.

178 The Java EE 6 Tutorial « January 2013

http://docs.oracle.com/javase/tutorial/i18n/format/simpleDateFormat.html
http://docs.oracle.com/javase/tutorial/i18n/format/simpleDateFormat.html

Using the Standard Converters

TABLE8-1 Attributes for the convertDateTime Tag (Continued)
Attribute Type Description
timeZone Stringor TimeZone Time zone in which to interpret any time information in the date
string.
type String Specifies whether the string value will contain a date, a time, or both.
Valid values are date, time, or both. If no value is specified, date is
used.

Using NumberConverter

You can convert a component’s data to a java. lang.Number by nesting the convertNumber tag
inside the component tag. The convertNumber tag has several attributes that allow you to
specify the format and type of the data. Table 8-2 lists the attributes.

The following example uses a convertNumber tag to display the total prices of the contents of a
shopping cart:

<h:outputText value="#{cart.total}" >
<f:convertNumber currencySymbol="$" type="currency"/>
</h:outputText>

When binding the NumberConverter to a component, ensure that the managed bean property
to which the component is bound is of a primitive type or has a type of java. lang.Number. In
the preceding example, cart.total is of type double.

Here is an example of a number that this tag can display:

$934

This result can also be displayed by using the following tag, where the currency pattern is
specified:

<h:outputText id="cartTotal"
value="#{cart.Total}" >
<f:convertNumber pattern="¢$####" />
</h:outputText>

See the “Customizing Formats” lesson of the Java Tutorial athttp://docs.oracle. com/
javase/tutorial/il8n/format/decimalFormat.html for more information on how to
format the output by using the pattern attribute of the convertNumber tag.

TABLE8-2 Attributes for the convertNumber Tag

Attribute Type Description

binding NumberConverter Used to bind a converter to a managed bean property.

Chapter8 - Using Converters, Listeners, and Validators 179

http://docs.oracle.com/javase/tutorial/i18n/format/decimalFormat.html
http://docs.oracle.com/javase/tutorial/i18n/format/decimalFormat.html

Registering Listeners on Components

TABLE8-2 Attributes for the convertNumber Tag (Continued)

Attribute Type Description

currencyCode String ISO 4217 currency code, used only when formatting
currencies.

currencySymbol String Currency symbol, applied only when formatting currencies.

for String Used with composite components. Refers to one of the
objects within the composite component inside which this
tag is nested.

groupingUsed Boolean Specifies whether formatted output contains grouping
separators.

integerOnly Boolean Specifies whether only the integer part of the value will be
parsed.

locale StringorLocale Locale whose number styles are used to format or parse data.

maxFractionDigits int Maximum number of digits formatted in the fractional part
of the output.

maxIntegerDigits int Maximum number of digits formatted in the integer part of
the output.

minFractionDigits int Minimum number of digits formatted in the fractional part
of the output.

minIntegerDigits int Minimum number of digits formatted in the integer part of
the output.

pattern String Custom formatting pattern that determines how the number
string is formatted and parsed.

type String Specifies whether the string value is parsed and formatted as

anumber, currency, or percentage. If not specified, number
isused.

Registering Listeners on Components

180

An application developer can implement listeners as classes or as managed bean methods. Ifa
listener is a managed bean method, the page author references the method from either the
component’s valueChangeListener attribute or its actionListener attribute. If the listener is
a class, the page author can reference the listener from either an f:valueChangeListener tagor
an f:actionListener tag and nest the tag inside the component tag to register the listener on

the component.

The Java EE 6 Tutorial « January 2013

Registering Listeners on Components

“Referencing a Method That Handles an Action Event” on page 187 and “Referencing a Method
That Handles a Value-Change Event” on page 188 explain how a page author uses the
valueChangelListener and actionListener attributes to reference managed bean methods
that handle events.

This section explains how to register a NameChanged value-change listener and a BookChange
action listener implementation on components. The Duke’s Bookstore case study includes both
of these listeners.

Registering a Value-Change Listener on a Component

A page author can register a ValueChangelListener implementation on a component that
implements EditableValueHolder by nesting an f:valueChangelListener tag within the
component’s tag on the page. The f:valueChangeListener tag supports the attributes shown
in Table 8-3, one of which must be used.

TABLE8-3 Attributes for the fivalueChangeListener Tag

Attribute Description

type References the fully qualified class name of a ValueChangeListener implementation.
Can accept a literal or a value expression.

binding References an object that implements ValueChangeListener. Can accept only a value
expression, which must point to a managed bean property that accepts and returns a
ValueChangelListener implementation.

The following example shows a value-change listener registered on a component:

<h:inputText id="name"
size="30"
value="#{cashier.name}"
required="true"
requiredMessage="#{bundle.ReqCustomerName}" >
<f:valueChangelListener
type="dukesbookstore.listeners.NameChanged" />
</h:inputText>

In the example, the core tag type attribute specifies the custom NameChanged listener as the
javax.faces.event.ValueChangeListener implementation registered on the name
component.

After this component tag is processed and local values have been validated, its corresponding
component instance will queue the javax. faces.event.ValueChangeEvent associated with
the specified ValueChangeListener to the component.

Chapter8 - Using Converters, Listeners, and Validators 181

Registering Listeners on Components

182

The binding attribute is used to bind a ValueChangeListener implementation to a managed
bean property. This attribute works in a similar way to the binding attribute supported by the
standard converter tags. See “Binding Component Values and Instances to Managed Bean
Properties” on page 288 for more information.

Registering an Action Listener on a Component

A page author can register an javax.faces.event.ActionListener implementation ona
command component by nesting an f:actionListener tag within the component’s tag on the
page. Similarly to the f:valueChangeListener tag, the f:actionListener tag supports both
the type and binding attributes. One of these attributes must be used to reference the action
listener.

Here is an example of an h: commandLink tag that references an ActionListener
implementation:

<h:commandLink id="Duke" action="bookstore">
<f:actionListener
type="dukesbookstore.listeners.LinkBookChangelListener" />
<h:outputText value="#{bundle.Book201}"/>
</h:commandLink>

The type attribute of the f:actionListener tag specifies the fully qualified class name of the
ActionListener implementation. Similarly to the f:valueChangeListener tag, the
f:actionListener tagalso supports the binding attribute. See “Binding Converters, Listeners,
and Validators to Managed Bean Properties” on page 293 for more information about binding
listeners to managed bean properties.

In addition to the actionListener tag that allows you register a custom listener onto a
component, the core tag library includes the f: setPropertyActionListener tag. You use this
tag to register a special action listener onto the ActionSource instance associated with a
component. When the component is activated, the listener will store the object referenced by
the tag’s value attribute into the object referenced by the tag’s target attribute.

The bookcatalog.xhtml page of the Duke’s Bookstore application uses
f:setPropertyActionListener with two components: the h: commandLink component used to
link to the bookdetails.xhtml page and the h: commandButton component used to add a book
to the cart:

<h:dataTable id="books"
value="#{bookRequestBean.books}"
var="book"
headerClass="list-header"
styleClass="list-background"
rowClasses="list-row-even, list-row-odd"
border="1"
summary="#{bundle.BookCatalog}" >

The Java EE 6 Tutorial « January 2013

Using the Standard Validators

<h:column>
<f:facet name="header">
<h:outputText value="#{bundle.ItemTitle}"/>
</f:facet>
<h:commandLink action="#{catalog.details}"
value="#{book.title}">
<f:setPropertyActionListener target="#{requestScope.book}"
value="#{book}"/>
</h:commandLink>
</h:column>

<h:column>
<f:facet name="header">
<h:outputText value="#{bundle.CartAdd}"/>
</f:facet>
<h:commandButton id="add"
action="#{catalog.add}"
value="#{bundle.CartAdd}">
<f:setPropertyActionListener target="#{requestScope.book}"
value="#{book}"/>
</h:commandButton>
</h:column>

The h: commandLink and h: commandButton tags are within an h: dataTable tag, which iterates
over the list of books. The var attribute refers to a single book in the list of books.

The object referenced by the var attribute of an h: dataTable tag is in page scope. However, in
this case, you need to put this object into request scope so that when the user activates the
commandLink component to go to bookdetails.xhtml or activates the commandButton
component to go to bookcatalog. xhtml, the book data is available to those pages. Therefore,
the f:setPropertyActionListener tagis used to set the current book object into request scope
when the commandLink or commandButton component is activated.

In the preceding example, the f: setPropertyActionListener tag’s value attribute references
the book object. The f:setPropertyActionListener tag’s target attribute references the value
expression requestScope.book, which is where the book object referenced by the value
attribute is stored when the commandLink or the commandButton component is activated.

Using the Standard Validators

JavaServer Faces technology provides a set of standard classes and associated tags that page
authors and application developers can use to validate a component’s data. Table 8-4 lists all the
standard javax.faces.validator classes and the tags that allow you to use the validators from
the page.

Chapter8 - Using Converters, Listeners, and Validators 183

Using the Standard Validators

184

TABLE8-4 The Validator Classes

Validator Class Tag Function
BeanValidator validateBean Registers a bean validator for the component.
DoubleRangeValidator validateDoubleRange Checks whether the local value of a

component is within a certain range. The
value must be floating-point or convertible to
floating-point.

LengthValidator validatelLength Checks whether the length of a component’s
local value is within a certain range. The value
mustbea java.lang.String.

LongRangeValidator validatelLongRange Checks whether the local value of a
component is within a certain range. The
value must be any numeric type or String
that can be converted to a long.

RegexValidator validateRegEx Checks whether the local value of a
component is a match against a regular
expression from the java.util.regex
package.

RequiredValidator validateRequired Ensures that the local value is not empty on an
javax.faces.component.EditableValueHolder
component.

All these validator classes implement the javax. faces.validator.Validator interface.
Component writers and application developers can also implement this interface to define their
own set of constraints for a component’s value.

Similar to the standard converters, each of these validators has one or more standard error
messages associated with it. If you have registered one of these validators onto a component on
your page, and the validator is unable to validate the component’s value, the validator’s error
message will display on the page. For example, the error message that displays when the
component’s value exceeds the maximum value allowed by LongRangeValidator is as follows:

{1}: validation Error: Value is greater than allowable maximum of "{@}"

In this case, the {1} substitution parameter is replaced by the component’s label or id, and the
{0} substitution parameter is replaced with the maximum value allowed by the validator.

See “Displaying Error Messages with the h:message and h:messages Tags” on page 164 for
information on how to display validation error messages on the page when validation fails.

Instead of using the standard validators, you can use Bean Validation to validate data. See
“Using Bean Validation” on page 204 for more information.

The Java EE 6 Tutorial « January 2013

Using the Standard Validators

Validating a Component’s Value

To validate a component’s value using a particular validator, you need to register that validator
on the component. You can do this in one of the following ways:

= Nest the validator’s corresponding tag (shown in Table 8-4) inside the component’s tag.
“Using LongRangeValidator” on page 185 explains how to use the validateLongRange tag.
You can use the other standard tags in the same way.

= Refer to a method that performs the validation from the component tag’s validator
attribute.

= Nesta validator tag inside the component tag, and use either the validator tag’s validatorId
attribute or its binding attribute to refer to the validator.

See “Referencing a Method That Performs Validation” on page 187 for more information on
using the validator attribute.

The validatorId attribute works similarly to the converterId attribute of the converter tag,
as described in “Converting a Component’s Value” on page 176.

Keep in mind that validation can be performed only on components that implement
EditableValueHolder, because these components accept values that can be validated.

Using LongRangeValidator

The following example shows how to use the validateLongRange validator on an input
component named quantity:

<h:inputText id="quantity" size="4"
value="#{item.quantity}" >
<f:validateLongRange minimum="1"/>
</h:inputText>
<h:message for="quantity"/>

This tag requires the user to enter a number that is at least 1. The validateLongRange tag also
has a maximum attribute, which sets a maximum value for the input.

The attributes of all the standard validator tags accept EL value expressions. This means that the
attributes can reference managed bean properties rather than specify literal values. For
example, the validateLongRange tag in the preceding example can reference managed bean
properties called minimum and maximum to get the minimum and maximum values acceptable to
the validator implementation, as shown in this snippet from the guessnumber example:

<h:inputText
id="userNo"
title="Type a number from @ to 10:"
value="#{userNumberBean.userNumber}">

Chapter8 - Using Converters, Listeners, and Validators 185

Referencing a Managed Bean Method

<f:validatelLongRange
minimum="#{userNumberBean.minimum}"
maximum="#{userNumberBean.maximum}"/>
</h:inputText>

Referencing a Managed Bean Method

186

A component tag has a set of attributes for referencing managed bean methods that can
perform certain functions for the component associated with the tag. These attributes are
summarized in Table 8-5.

TABLE8-5 Component Tag Attributes That Reference Managed Bean Methods

Attribute Function

action Refers to a managed bean method that performs navigation processing for the
component and returns a logical outcome String

actionListener Refers to a managed bean method that handles action events
validator Refers to a managed bean method that performs validation on the component’s
value

valueChangeListener Refersto a managed bean method that handles value-change events

Only components that implement javax.faces.component.ActionSource can use theaction
and actionListener attributes. Only components that implement
javax.faces.component.EditableValueHolder can use the validator or
valueChangeListener attributes.

The component tag refers to a managed bean method using a method expression as a value of
one of the attributes. The method referenced by an attribute must follow a particular signature,
which is defined by the tag attribute’s definition in the documentation at
http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/vdldocs/facelets/. For
example, the definition of the validator attribute of the inputText tagis the following:

void validate(javax.faces.context.FacesContext,
javax.faces.component.UIComponent, java.lang.Object)

The following sections give examples of how to use the attributes.

The Java EE 6 Tutorial « January 2013

http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/vdldocs/facelets/

Referencing a Managed Bean Method

Referencing a Method That Performs Navigation

If your page includes a component, such as a button or a hyperlink, that causes the application
to navigate to another page when the component is activated, the tag corresponding to this
component must include an action attribute. This attribute does one of the following:

= Specifies alogical outcome String that tells the application which page to access next
= References a managed bean method that performs some processing and returns a logical
outcome String

The following example shows how to reference a navigation method:

<h:commandButton
value="#{bundle.Submit}"
action="#{cashier.submit}" />

See “Writing a Method to Handle Navigation” on page 201 for information on how to write such
amethod.

Referencing a Method That Handles an Action Event

If a component on your page generates an action event, and if that event is handled by a
managed bean method, you refer to the method by using the component’s actionListener
attribute.

The following example shows how such a method could be referenced:

<h:commandLink id="Duke" action="bookstore"
actionListener="#{actionBean.chooseBookFromLink}">

The actionListener attribute of this component tag references the chooseBookFromLink
method using a method expression. The chooseBookF romLink method handles the event when
the user clicks the hyperlink rendered by this component. See “Writing a Method to Handle an
Action Event” on page 202 for information on how to write such a method.

Referencing a Method That Performs Validation

If the input of one of the components on your page is validated by a managed bean method,
refer to the method from the component’s tag by using the validator attribute.

The following example from “The guessnumber CDI Example” on page 531 shows how to
reference a method that performs validation on inputGuess, an input component:

<h:inputText id="inputGuess"
value="#{userNumberBean.userNumber}"
required="true" size="3"

Chapter8 - Using Converters, Listeners, and Validators 187

Referencing a Managed Bean Method

188

disabled="#{userNumberBean.number eq userNumberBean.userNumber}"
validator="#{userNumberBean.validateNumberRange}">
</h:inputText>

The managed bean method validateNumberRange verifies that the input value is within the
valid range, which changes each time another guess is made. See “Writing a Method to Perform
Validation” on page 202 for information on how to write such a method.

Referencing a Method That Handles a Value-Change
Event

If you want a component on your page to generate a value-change event and you want that
event to be handled by a managed bean method instead of a
javax.faces.event.ValueChangeListener implementation, you refer to the method by using
the component’s valueChangeListener attribute:

<h:inputText id="name"
size="30"
value="#{cashier.name}"
required="true"
valueChangelListener="#{cashier.processValueChange}" />
</h:inputText>

The valueChangeListener attribute of this component tag references the
processValueChange method of CashierBean by using a method expression. The
processValueChange method handles the event of a user entering a name in the input field
rendered by this component.

“Writing a Method to Handle a Value-Change Event” on page 203 describes how to implement a
method that handles a javax. faces.event.ValueChangeEvent.

The Java EE 6 Tutorial « January 2013

L K R 4 CHAPTER 9

Developing with JavaServer Faces Technology

This chapter provides an overview of managed beans and explains how to write methods and
properties of managed beans that are used by a JavaServer Faces application. This chapter also
introduces the Bean Validation feature.

Chapter 7, “Using JavaServer Faces Technology in Web Pages,” and Chapter 8, “Using
Converters, Listeners, and Validators,” showed how to add components to a page and connect
them to server-side objects by using component tags and core tags, as well as how to provide
additional functionality to the components through converters, listeners, and validators.
Developing a JavaServer Faces application also involves the task of programming the
server-side objects: managed beans, converters, event handlers, and validators.

The following topics are addressed here:

= “Managed Beans in JavaServer Faces Technology” on page 189
= “Writing Bean Properties” on page 192

= “Writing Managed Bean Methods” on page 200

= “Using Bean Validation” on page 204

Managed Beans in JavaServer Faces Technology

A typical JavaServer Faces application includes one or more managed beans, each of which can
be associated with the components used in a particular page. This section introduces the basic
concepts of creating, configuring, and using managed beans in an application.

189

Managed Beans in JavaServer Faces Technology

Creating a Managed Bean

A managed bean is created with a constructor with no arguments, a set of properties, and a set
of methods that perform functions for a component. Each of the managed bean properties can
be bound to one of the following:

= A component value

= A component instance
= A converter instance

= Alistener instance

® A validator instance

The most common functions that managed bean methods perform include the following:

= Validating a component’s data
= Handlingan event fired by a component

= Performing processing to determine the next page to which the application must navigate

As with all JavaBeans components, a property consists of a private data field and a set of
accessor methods, as shown by this code:

private Integer userNumber = null;

public void setUserNumber(Integer user number) {
userNumber = user_number;

}
public Integer getUserNumber() {
return userNumber;

}

When bound to a component’s value, a bean property can be any of the basic primitive and
numeric types or any Java object type for which the application has access to an appropriate
converter. For example, a property can be of type java.util.Date if the application has access
to a converter that can convert the Date type to a String and back again. See “Writing Bean
Properties” on page 192 for information on which types are accepted by which component tags.

When a bean property is bound to a component instance, the property’s type must be the same
as the component object. For example, if a javax. faces.component.UISelectBoolean
component is bound to the property, the property must accept and return a UISelectBoolean
object. Likewise, if the property is bound to a converter, validator, or listener instance, the
property must be of the appropriate converter, validator, or listener type.

For more information on writing beans and their properties, see “Writing Bean Properties” on
page 192.

190 The Java EE 6 Tutorial « January 2013

Managed Beans in JavaServer Faces Technology

Using the EL to Reference Managed Beans

To bind component values and objects to managed bean properties or to reference managed
bean methods from component tags, page authors use the Expression Language syntax. As
explained in “Overview of the EL” on page 125, the following are some of the features that EL
offers:

= Deferred evaluation of expressions
= The ability to use a value expression to both read and write data
= Method expressions

Deferred evaluation of expressions is important because the JavaServer Faces lifecycle is split
into several phases in which component event handling, data conversion and validation, and
data propagation to external objects are all performed in an orderly fashion. The
implementation must be able to delay the evaluation of expressions until the proper phase of
the lifecycle has been reached. Therefore, the implementation’s tag attributes always use
deferred-evaluation syntax, which is distinguished by the #{} delimiter.

To store data in external objects, almost all JavaServer Faces tag attributes use lvalue
expressions, which are expressions that allow both getting and setting data on external objects.

Finally, some component tag attributes accept method expressions that reference methods that
handle component events or validate or convert component data.

To illustrate a JavaServer Faces tag using the EL, the following tag references a method that
validates user input:

<h:inputText id="inputGuess"
value="#{userNumberBean.userNumber}"
required="true" size="3"
disabled="#{userNumberBean.number eq userNumberBean.userNumber}"
validator="#{userNumberBean.validateNumberRange}">
</h:inputText>

This tag binds the inputGuess component’s value to the UserNumberBean.userNumber
managed bean property by using an Ivalue expression. The tag uses a method expression to
refer to the UserNumberBean . validateNumberRange method, which performs validation of the
component’s local value. The local value is whatever the user types into the field corresponding
to this tag. This method is invoked when the expression is evaluated.

Nearly all JavaServer Faces tag attributes accept value expressions. In addition to referencing
bean properties, value expressions can reference lists, maps, arrays, implicit objects, and
resource bundles.

Another use of value expressions is to bind a component instance to a managed bean property.
A page author does this by referencing the property from the binding attribute:

<h:outputLabel for="fanClub"
rendered="false"
binding="#{cashier.specialOfferText}">

Chapter9 - Developing with JavaServer Faces Technology 191

Writing Bean Properties

<h:outputText id="fanClubLabel"
value="#{bundle.DukeFanClub}"/>
</h:outputLabel>

In addition to using expressions with the standard component tags, you can configure your
custom component properties to accept expressions by creating javax.el.ValueExpression
or javax.el.MethodExpression instances for them.

For information on the EL, see Chapter 6, “Expression Language”

For information on referencing managed bean methods from component tags, see “Referencing
a Managed Bean Method” on page 186.

Writing Bean Properties

192

As explained in “Managed Beans in JavaServer Faces Technology” on page 189, a managed bean
property can be bound to one of the following items:

A component value

A component instance

A converter implementation
A listener implementation
A validator implementation

These properties follow the conventions of JavaBeans components (also called beans). For more
information on JavaBeans components, see the JavaBeans Tutorial at http://
docs.oracle.com/javase/tutorial/javabeans/index.html.

The component’s tag binds the component’s value to a managed bean property by using its
value attribute and binds the component’s instance to a managed bean property by using its
binding attribute. Likewise, all the converter, listener, and validator tags use their binding
attributes to bind their associated implementations to managed bean properties. See “Binding
Component Values and Instances to Managed Bean Properties” on page 288 and “Binding
Converters, Listeners, and Validators to Managed Bean Properties” on page 293 for more
information.

To bind a component’s value to a managed bean property, the type of the property must match
the type of the component’s value to which it is bound. For example, if a managed bean property
is bound to a UISelectBoolean component’s value, the property should accept and return a
boolean value or a Boolean wrapper Object instance.

To bind a component instance to a managed bean property, the property must match the type
of component. For example, if a managed bean property is bound to a UISelectBoolean
instance, the property should accept and return a UISelectBoolean value.

Similarly, to bind a converter, listener, or validator implementation to a managed bean
property, the property must accept and return the same type of converter, listener, or validator

The Java EE 6 Tutorial « January 2013

http://docs.oracle.com/javase/tutorial/javabeans/index.html
http://docs.oracle.com/javase/tutorial/javabeans/index.html

Writing Bean Properties

object. For example, if you are using the convertDateTime tag to bind a
javax.faces.convert.DateTimeConverter to a property, that property must accept and
return a DateTimeConverter instance.

The rest of this section explains how to write properties that can be bound to component values,
to component instances for the component objects described in “Adding Components to a Page
Using HTML Tags” on page 140, and to converter, listener, and validator implementations.

Writing Properties Bound to Component Values

To write a managed bean property that is bound to a component’s value, you must match the
property type to the component’s value.

Table 9-1 lists the javax. faces . component classes and the acceptable types of their values.

TABLE9-1 Acceptable Types of Component Values

Component Class Acceptable Types of Component Values
UIInput,UIOutput, Any of the basic primitive and numeric types or any Java programming
UISelectItem,UISelectOne language object type for which an appropriate

javax.faces.convert.Converter implementation is available

UIData array of beans, List of beans, single bean, java.sql.ResultSet,
javax.servlet.jsp.jstl.sql.Result, javax.sql.RowSet

UISelectBoolean boolean or Boolean

UISelectItems java.lang.String, Collection, Array, Map

UISelectMany array or List, though elements of the array or List can be any of the
standard types

When they bind components to properties by using the value attributes of the component tags,
page authors need to ensure that the corresponding properties match the types of the
components’ values.

UIInputandUIOutput Properties

The UIInput and UIOutput component classes are represented by the component tags that
begin with h:input and h:output, respectively (for example, h: inputText and h:outputText).

In the following example, an h: inputText tag binds the name component to the name property
of a managed bean called CashierBean.

<h:inputText id="name"
size="30"

Chapter9 - Developing with JavaServer Faces Technology 193

Writing Bean Properties

194

value="#{cashier.name}"
>

</h:inputText>

The following code snippet from the managed bean CashierBean shows the bean property type
bound by the preceding component tag:

private String name = null;

public void setName(String name) {
this.name = name;

}
public String getName() {
return this.name;

}

As described in “Using the Standard Converters” on page 175, to convert the value of an input
or output component, you can either apply a converter or create the bean property bound to the
component with the matching type. Here is the example tag, from “Using DateTimeConverter”
on page 177, that displays the date when items will be shipped.

<h:outputText value="#{cashier.shipDate}">
<f:convertDateTime type="date" dateStyle="full" />
</h:outputText>

The bean property represented by this tag must have a type of java.util.Date. The following
code snippet shows the shipDate property, from the managed bean CashierBean, that is bound
by the tag’s value in the preceding example:

private Date shipDate;

public Date getShipDate() {
return this.shipDate;

public void setShipDate(Date shipDate) {

this.shipDate = shipDate;
}

UIData Properties

The UIData component class is represented by the h:dataTable component tag.

UIData components must be bound to one of the managed bean property types listed in
Table 9-1. Data components are discussed in “Using Data-Bound Table Components” on
page 161. Here is part of the start tag of dataTable from that section:
<h:dataTable id="items"

Qéiue="#{cart.items}"

var="iten"
The value expression points to the items property of a shopping cart bean named cart. The
cart bean maintains a map of ShoppingCartItembeans.

The Java EE 6 Tutorial « January 2013

Writing Bean Properties

The getItems method from the cart bean populates a List with ShoppingCartIteminstances
that are saved in the items map when the customer adds books to the cart, as shown in the
following code segment:

public synchronized List<ShoppingCartItem> getItems() {
List<ShoppingCartItem> results = new ArrayList<ShoppingCartItem>();
results.addAll(this.items.values());
return results;

}

All the components contained in the UIData component are bound to the properties of the cart
bean that is bound to the entire UIData component. For example, here is the h: outputText tag
that displays the book title in the table:

<h:commandLink action="#{showcart.details}">
<h:outputText value="#{item.item.title}"/>
</h:commandLink>

The title is actually a hyperlink to the bookdetails.xhtml page. The h: outputText tag uses the
value expression #{item.item.title} to bind its UIOutput component to the title property
of the Book entity. The first item in the expression is the ShoppingCartItem instance that the
h:dataTable tag is referencing while rendering the current row. The second item in expression
refers to the item property of ShoppingCartItem, which returns an Object (in this case, a Book.
The title part of the expression refers to the title property of Book. The value of the
UIOutput component corresponding to this tag is bound to the title property of the Book
entity:

private String title;

public String getTitle() {
return title;
}

public void setTitle(String title) {
this.title = title;
}

UISelectBoolean Properties

The UISelectBoolean component class is represented by the component tag
h:selectBooleanCheckbox.

Managed bean properties that hold a UISelectBoolean component’s data must be of boolean
or Boolean type. The example selectBooleanCheckbox tag from the section “Displaying
Components for Selecting One Value” on page 156 binds a component to a property. The
following example shows a tag that binds a component value to a boolean property:

<h:selectBooleanCheckbox title="#{bundle.receiveEmails}"
value="#{custFormBean.receiveEmails}" >

</h:selectBooleanCheckbox>

<h:outputText value="#{bundle.receiveEmails}">

Chapter9 - Developing with JavaServer Faces Technology 195

Writing Bean Properties

196

Here is an example property that can be bound to the component represented by the example
tag:

private boolean receiveEmails = false;

public void setReceiveEmails(boolean receiveEmails) {
this.receiveEmails = receiveEmails;

public boolean getReceiveEmails() {
return receiveEmails;
}

UISelectMany Properties

The UISelectMany component class is represented by the component tags that begin with
h:selectMany (for example, h: selectManyRadio and h:selectManyListbox).

Because a UISelectMany component allows a user to select one or more items from a list of
items, this component must map to a bean property of type List or array. This bean property
represents the set of currently selected items from the list of available items.

The following example of the selectManyCheckbox tag comes from “Displaying Components
for Selecting Multiple Values” on page 158:

<h:selectManyCheckbox id="newslettercheckbox"
layout="pageDirection"
value="#{cashier.newsletters}">
<f:selectItems value="#{cashier.newsletterItems}"/>
</h:selectManyCheckbox>

Here is the bean property that maps to the value of the selectManyCheckbox tag from the
preceding example:

private String newsletters[] = new String[0];

public void setNewsletters(String newsletters[]) {
this.newsletters = newsletters;

}
public String[] getNewsletters() {
return this.newsletters;

}

The UISelectItemand UISelectItems components are used to represent all the valuesina
UISelectMany component. See “UISelectItem Properties” on page 197 and “UISelectItems
Properties” on page 198 for information on writing the bean properties for the UISelectItem
and UISelectItems components.

UISelectOne Properties

The UISelectOne component class is represented by the component tags that begin with
h:selectOne (for example, h:selectOneRadio and h:selectOneListbox).

The Java EE 6 Tutorial « January 2013

Writing Bean Properties

UISelectOne properties accept the same types as UIInput and UIOutput properties, because a
UISelectOne component represents the single selected item from a set of items. This item can
be any of the primitive types and anything else for which you can apply a converter.

Here is an example of the h: selectOneMenu tag from “Displaying a Menu Using the
h:selectOneMenu Tag” on page 157:

<h:selectOneMenu id="shippingOption"
required="true"
value="#{cashier.shippingOption}">
<f:selectItem itemValue="2"
itemLabel="#{bundle.QuickShip}"/>
<f:selectItem itemValue="5"
itemLabel="#{bundle.NormalShip}"/>
<f:selectItem itemValue="7"
itemLabel="#{bundle.SaverShip}"/>
</h:selectOneMenu>

Here is the bean property corresponding to this tag:

private String shippingOption = "2"

public void setShippingOption(String shippingOption) {
this.shippingOption = shippingOption;

}
public String getShippingOption() {
return this.shippingOption;

}

Note that shippingOption represents the currently selected item from the list of items in the
UISelectOne component.

The UISelectItemand UISelectItems components are used to represent all the valuesina
UISelectOne component. This is explained in the section “Displaying a Menu Using the
h:selectOneMenu Tag” on page 157.

For information on how to write the managed bean properties for the UISelectItemand
UISelectItems components, see “UISelectItem Properties” on page 197 and “UISelectItems
Properties” on page 198.

UISelectItemProperties

A UISelectItem component represents a single value in a set of values in a UISelectMany ora
UISelectOne component. A UISelectItem component must be bound to a managed bean
property of type javax. faces.model.SelectItem. A SelectItem objectis composed of an
Object representing the value, along with two String values representing the label and
description of the UISelectItem object.

The example selectOneMenu tag from “UISelectOne Properties” on page 196 contains
selectItem tags that set the values of the list of items in the page. Here is an example of a bean
property that can set the values for this list in the bean:

Chapter9 - Developing with JavaServer Faces Technology 197

Writing Bean Properties

198

SelectItem itemOne = null;

SelectItem getItemOne(){
return itemOne;
}

void setItemOne(SelectItem item) {
itemOne = item;
}

UISelectItems Properties

UISelectItems components are children of UISelectMany and UISelectOne components.
Each UISelectItems component is composed of a set of either UISelectItem instances or any
collection of objects, such as an array, a list, or even POJOs.

The following code snippet from CashierBean shows how to write the properties for
selectItems tags containing SelectIteminstances.

private String[] newsletters = new String[0];

private static SelectItem[] newsletterItems = {
new SelectItem('Duke’s Quarterly"),
new SelectItem("Innovator’s Almanac")
new SelectItem('Duke’s Diet and Exercise Journal")
new SelectItem("Random Ramblings")

}s

public void setNewsletters(String[] newsletters) {
this.newsletters = newsletters;
}

public String[] getNewsletters() {
return this.newsletters;

}

public SelectItem[] getNewsletterItems() {
return newsletterItems;
}

Here, the newsletters property represents the SelectItems object, while the
newsletterItems property represents a static array of SelectItemobjects. The SelectItem
class has several constructors; in this example, the argument is an Object that represents both
the value of the item and the label that appears in the UISelectMany component on the page.

Writing Properties Bound to Component Instances

A property bound to a component instance returns and accepts a component instance rather
than a component value. The following components bind a component instance to a managed
bean property:

<h:selectBooleanCheckbox id="fanClub"
rendered="false"
binding="#{cashier.specialOffer}" />

The Java EE 6 Tutorial « January 2013

Writing Bean Properties

<h:outputLabel for="fanClub"
rendered="false"
binding="#{cashier.specialOfferText}"
value="#{bundle.DukeFanClub}" />

The selectBooleanCheckbox tag renders a check box and binds the fanClub UISelectBoolean
component to the specialOffer property of CashierBean. The outputLabel tag binds the
value of the value attribute, which represents the check box’s label, to the specialOfferText
property of CashierBean. If the user orders more than $100 worth of books and clicks the
Submit button, the submit method of CashierBean sets both components’ rendered properties
to true, causing the check box and label to display when the page is rerendered.

Because the components corresponding to the example tags are bound to the managed bean
properties, these properties must match the components’ types. This means that the
specialOfferText property must be of type UIOutput, and the specialOffer property must
be of type UISelectBoolean:

UIOutput specialOfferText = null;

public UIOutput getSpecialOfferText() {
return this.specialOfferText;

}

public void setSpecialOfferText (UIOutput specialOfferText) {
this.specialOfferText = specialOfferText;

}

UISelectBoolean specialOffer = null;

public UISelectBoolean getSpecialOffer() {
return this.specialOffer;

public void setSpecialOffer(UISelectBoolean specialOffer) {
this.specialOffer = specialOffer;
}

For more general information on component binding, see “Managed Beans in JavaServer Faces
Technology” on page 189.

For information on how to reference a managed bean method that performs navigation when a
button is clicked, see “Referencing a Method That Performs Navigation” on page 187.

For more information on writing managed bean methods that handle navigation, see “Writing
a Method to Handle Navigation” on page 201.

Writing Properties Bound to Converters, Listeners, or
Validators

All the standard converter, listener, and validator tags included with JavaServer Faces
technology support binding attributes that allow you to bind converter, listener, or validator
implementations to managed bean properties.

Chapter9 - Developing with JavaServer Faces Technology 199

Writing Managed Bean Methods

The following example shows a standard convertDateTime tag using a value expression with its
binding attribute to bind the javax. faces.convert.DateTimeConverter instance to the
convertDate property of LoginBean:

<h:inputText value="#{LoginBean.birthDate}">
<f:convertDateTime binding="#{LoginBean.convertDate}" />
</h:inputText>
The convertDate property must therefore accept and return a DateTimeConverter object, as
shown here:

private DateTimeConverter convertDate;
public DateTimeConverter getConvertDate() {

return convertDate;

public void setConvertDate(DateTimeConverter convertDate) {
convertDate.setPattern("EEEEEEEE, MMM dd, yyyy");
this.convertDate = convertDate;

}

Because the converter is bound to a managed bean property, the managed bean property can
modify the attributes of the converter or add new functionality to it. In the case of the preceding
example, the property sets the date pattern that the converter uses to parse the user’s input into a
Date object.

The managed bean properties that are bound to validator or listener implementations are
written in the same way and have the same general purpose.

Writing Managed Bean Methods

200

Methods of a managed bean can perform several application-specific functions for components
on the page. These functions include

Performing processing associated with navigation
Handling action events

Performing validation on the component’s value
Handling value-change events

By using a managed bean to perform these functions, you eliminate the need to implement the
javax.faces.validator.Validator interface to handle the validation or one of the listener
interfaces to handle events. Also, by using a managed bean instead of a Validator
implementation to perform validation, you eliminate the need to create a custom tag for the
Validator implementation.

In general, it is good practice to include these methods in the same managed bean that defines
the properties for the components referencing these methods. The reason for doing so is that
the methods might need to access the component’s data to determine how to handle the event
or to perform the validation associated with the component.

The Java EE 6 Tutorial « January 2013

Writing Managed Bean Methods

The following sections explain how to write various types of managed bean methods.

Writing a Method to Handle Navigation

An action method, a managed bean method that handles navigation processing, must be a
public method that takes no parameters and returns an Object, which is the logical outcome
that the navigation system uses to determine the page to display next. This method is referenced
using the component tag’s action attribute.

The following action method is from the managed bean CashierBean, which is invoked when a
user clicks the Submit button on the page. If the user has ordered more than $100 worth of
books, this method sets the rendered properties of the fanClub and specialOffer components
to true, causing them to be displayed on the page the next time that page is rendered.

After setting the components’ rendered properties to true, this method returns the logical
outcome null. This causes the JavaServer Faces implementation to rerender the page without
creating a new view of the page, retaining the customer’s input. If this method were to return
purchase, which is the logical outcome to use to advance to a payment page, the page would
rerender without retaining the customer’s input. In this case, you want to rerender the page
without clearing the data.

If the user does not purchase more than $100 worth of books, or if the thankYou component has
already been rendered, the method returns bookreceipt. The JavaServer Faces implementation
loads the bookreceipt.xhtml page after this method returns:

public String submit() {

if ((cart.getTotal() > 100.00) && !specialOffer.isRendered()) {
specialOfferText.setRendered(true);
specialOffer.setRendered(true);
return null;

} else if (specialOffer.isRendered() && !thankYou.isRendered()) {
thankYou.setRendered(true);
return null;

} else {

cart.clear();
return ("bookreceipt");

}

Typically, an action method will return a String outcome, as shown in the previous example.
Alternatively, you can define an Enum class that encapsulates all possible outcome strings and
then make an action method return an enum constant, which represents a particular String
outcome defined by the Enum class.

The following example uses an Enum class to encapsulate all logical outcomes:

Chapter9 - Developing with JavaServer Faces Technology 201

Writing Managed Bean Methods

202

public enum Navigation {
main, accountHist, accountList, atm, atmAck, transferFunds,
transferAck, error

}

When it returns an outcome, an action method uses the dot notation to reference the outcome
from the Enum class:

public Object submit(){

return Navigation.accountHist;

}

The section “Referencing a Method That Performs Navigation” on page 187 explains how a
component tag references this method. The section “Writing Properties Bound to Component
Instances” on page 198 explains how to write the bean properties to which the components are
bound.

Writing a Method to Handle an Action Event

A managed bean method that handles an action event must be a public method that accepts an
action event and returns void. This method is referenced using the component tag’s
actionListener attribute. Only components that implement
javax.faces.component.ActionSource can refer to this method.

In the following example, a method from a managed bean named ActionBean processes the
event of a user clicking one of the hyperlinks on the page:

public void chooseBookFromLink(ActionEvent event) {
String current = event.getComponent().getId();
FacesContext context = FacesContext.getCurrentInstance();
String bookId = books.get(current);
context.getExternalContext().getSessionMap().put("bookId", bookId);
}

This method gets the component that generated the event from the event object; then it gets the
component’s ID, which is a code for the book. The method matches the code against a HashMap
object that contains the book codes and corresponding book ID values. Finally, the method sets
the book ID by using the selected value from the HashMap object.

“Referencing a Method That Handles an Action Event” on page 187 explains how a component
tag references this method.

Writing a Method to Perform Validation

Instead of implementing the javax. faces.validator.Validator interface to perform
validation for a component, you can include a method in a managed bean to take care of
validating input for the component. A managed bean method that performs validation must

The Java EE 6 Tutorial « January 2013

Writing Managed Bean Methods

accepta javax. faces.context.FacesContext, the component whose data must be validated,
and the data to be validated, just as the validate method of the Validator interface does. A
component refers to the managed bean method by using its validator attribute. Only values of
UIInput components or values of components that extend UIInput can be validated.

Here is an example of a managed bean method that validates user input, from “The
guessnumber CDI Example” on page 531:

public void validateNumberRange(FacesContext context,
UIComponent toValidate,
Object value) {
if (remainingGuesses <= 0) {
FacesMessage message = new FacesMessage("No guesses left!");
context.addMessage(toValidate.getClientId(context), message);
((UIInput) toValidate).setValid(false);

return;
}
int input = (Integer) value;
if (input < minimum || input > maximum) {
((UIInput) toValidate).setValid(false);
FacesMessage message = new FacesMessage("Invalid guess");
context.addMessage(toValidate.getClientId(context), message);
}

}

The validateNumberRange method performs two different validations:

1. Ifthe user has run out of guesses, the method sets the valid property of the UIInput
component to false. Then it queues a message onto the FacesContext instance, associating
the message with the component ID, and returns.

2. Ifthe user has some remaining guesses, the method then retrieves the local value of the
component. If the input value is outside the allowable range, the method again sets the
valid property of the UIInput component to false, queues a different message on the
FacesContext instance, and returns.

See “Referencing a Method That Performs Validation” on page 187 for information on how a
component tag references this method.

Writing a Method to Handle a Value-Change Event

A managed bean that handles a value-change event must use a public method that accepts a
value-change event and returns void. This method is referenced using the component’s
valueChangelListener attribute. This section explains how to write a managed bean method to
replace the javax. faces.event.ValueChangelListener implementation.

The following example tag comes from “Registering a Value-Change Listener on a
Component” on page 181, where the h: inputText tag with the id of name hasa
ValueChangeListener instance registered on it. This ValueChangeListener instance handles

Chapter9 - Developing with JavaServer Faces Technology 203

Using Bean Validation

the event of entering a value in the field corresponding to the component. When the user enters
avalue, a value-change event is generated, and the processValueChange (ValueChangeEvent)
method of the ValueChangeListener class is invoked:

<h:inputText id="name"
size="30"
value="#{cashier.name}"
required="true"
requiredMessage="#{bundle.ReqCustomerName}">
<f:valueChangelListener
type="dukesbookstore.listeners.NameChanged" />
</h:inputText>

Instead of implementing ValueChangeListener, you can write a managed bean method to
handle this event. To do this, you move the processValueChange (ValueChangeEvent) method
from the ValueChangeListener class, called NameChanged, to your managed bean.

Here is the managed bean method that processes the event of entering a value in the name field
on the page:

public void processValueChange(ValueChangeEvent event)
throws AbortProcessingException {
if (null != event.getNewValue()) {
FacesContext.getCurrentInstance().getExternalContext().
getSessionMap().put("name", event.getNewValue());

}

To make this method handle the javax. faces.event.ValueChangeEvent generated by an
input component, reference this method from the component tag’s valueChangeListener
attribute. See “Referencing a Method That Handles a Value-Change Event” on page 188 for
more information.

Using Bean Validation

204

Validating input received from the user to maintain data integrity is an important part of
application logic. Validation of data can take place at different layers in even the simplest of
applications, as shown in “Developing a Simple Facelets Application” on page 113. The
guessnumber example application validates the user input (in the h: inputText tag) for
numerical data at the presentation layer and for a valid range of numbers at the business layer.

JavaBeans Validation (Bean Validation) is a new validation model available as part of Java EE 6
platform. The Bean Validation model is supported by constraints in the form of annotations
placed on a field, method, or class of a JavaBeans component, such as a managed bean.

Constraints can be built in or user defined. User-defined constraints are called custom
constraints. Several built-in constraints are available in the javax.validation.constraints
package. Table 9-2 lists all the built-in constraints.

The Java EE 6 Tutorial « January 2013

Using Bean Validation

TABLE9-2 Built-In Bean Validation Constraints

Constraint Description Example

@AssertFalse The value of the field or property @AssertFalse
must be false. boolean isUnsupported;

@AssertTrue The value of the field or property @AssertTrue
must be true. boolean isActive;

@ecimalMax The value of the field or property @DecimalMax("30.00")
must be a decimal value lower BigDecimal discount;
than or equal to the number in
the value element.

@ecimalMin The value of the field or property @DecimalMin("5.00")
must be a decimal value greater BigDecimal discount;
than or equal to the number in
the value element.

@igits The value of the field or property @Digits(integer=6, fraction=2)
must be a number within a BigDecimal price;
specified range. The integer
element specifies the maximum
integral digits for the number,
and the fraction element
specifies the maximum fractional
digits for the number.

@Future The value of the field or property @Future
must be a date in the future. Date eventDate;

@Max The value of the field or property @Max(10)
must be an integer value lower int quantity;
than or equal to the number in
the value element.

@in The value of the field or property @Min(5)
must be an integer value greater ~ int quantity;
than or equal to the number in
the value element.

@NotNull The value of the field or property ~@NotNull
must not be null. String username;

@Null The value of the field or property ~ @Null
must be null. String unusedString;

@Past The value of the field or property @Past

must be a date in the past.

Date birthday;

Chapter9 - Developing with JavaServer Faces Technology

205

Using Bean Validation

TABLE9-2 Built-In Bean Validation Constraints (Continued)
Constraint Description Example
@Pattern The value of the field or property @Pattern(regexp="\\ (\\d{3}\\)\\d{3}-\\d{4}")
must match the regular String phoneNumber;
expression defined in the regexp
element.
@Size The size of the field or propertyis @Size(min=2, max=240)
evaluated and must match the String briefMessage;

specified boundaries. If the field
or property is a String, the size
of the string is evaluated. If the
field or propertyisa Collection,
the size of the Collection is
evaluated. If the field or property
is a Map, the size of the Map is
evaluated. If the field or property
is an array, the size of the array is
evaluated. Use one of the
optional max or min elements to
specify the boundaries.

In the following example, a constraint is placed on a field using the built-in @otNull
constraint:

public class Name {
@NotNull
private String firstname;

@NotNull
private String lastname;

}

You can also place more than one constraint on a single JavaBeans component object. For
example, you can place an additional constraint for size of field on the firstname and the
lastname fields:

public class Name {
@NotNull
@Size(min=1, max=16)
private String firstname;

@NotNull
@Size(min=1, max=16)
private String lastname;

}

The following example shows a method with a user-defined constraint that checks for a
predefined email address pattern such as a corporate email account:

206 The Java EE 6 Tutorial « January 2013

Using Bean Validation

@ValidEmail
public String getEmailAddress() {
return emailAddress;

}

For a built-in constraint, a default implementation is available. A user-defined or custom
constraint needs a validation implementation. In the above example, the @ValidEmail custom
constraint needs an implementation class.

Any validation failures are gracefully handled and can be displayed by the h:messages tag.

Any managed bean that contains Bean Validation annotations automatically gets validation
constraints placed on the fields on a JavaServer Faces application’s web pages.

See “Validating Persistent Fields and Properties” on page 583 for more information on using
validation constraints.

Validating Null and Empty Strings

The Java programming language distinguishes between null and empty strings. An empty string
is a string instance of zero length, whereas a null string has no value at all.

An empty string is represented as "". It is a character sequence of zero characters. A null string is
represented by null. It can be described as the absence of a string instance.

Managed bean elements represented as a JavaServer Faces text component such as inputText
are initialized with the value of the empty string by the JavaServer Faces implementation.
Validating these strings can be an issue when user input for such fields is not required. Consider
the following example, where the string testString is a bean variable that will be set using
input typed by the user. In this case, the user input for the field is not required.

if (testString==null) {
doSomething();

} else {
doAnotherThing();

}

By default, the doAnotherThing method is called even when the user enters no data, because the
testString element has been initialized with the value of an empty string.

In order for the Bean Validation model to work as intended, you must set the context parameter
javax.faces.INTERPRET EMPTY STRING SUBMITTED VALUES AS NULL to true in the web
deployment descriptor file, web . xml:

<context-param>
<param-name>
javax.faces.INTERPRET_EMPTY_ STRING SUBMITTED VALUES AS NULL
</param-name>
<param-value>true</param-value>
</context-param>

Chapter9 - Developing with JavaServer Faces Technology 207

Using Bean Validation

208

This parameter enables the JavaServer Faces implementation to treat empty strings as null.

Suppose, on the other hand, that you have a @otNull constraint on an element, meaning that
input is required. In this case, an empty string will pass this validation constraint. However, if
you set the context parameter

javax.faces.INTERPRET EMPTY STRING SUBMITTED VALUES AS NULL to true, the value of the
managed bean attribute is passed to the Bean Validation runtime as a null value, causing the
@NotNull constraint to fail.

The Java EE 6 Tutorial « January 2013

CHAPTER 10

JavaServer Faces Technology: Advanced
Concepts

Previous chapters have introduced JavaServer Faces technology and Facelets, the preferred
presentation layer for the Java EE platform. This chapter describes the JavaServer Faces lifecycle
in detail. Some of the complex JavaServer Faces applications use the well-defined lifecycle
phases to customize application behavior.

The following chapters introduce additional advanced concepts in this area:

= Chapter 11, “Using Ajax with JavaServer Faces Technology,” introduces Ajax concepts and
the use of Ajax in JavaServer Faces applications.

= Chapter 12, “Composite Components: Advanced Topics and Example,” introduces
advanced features of composite components.

= Chapter 13, “Creating Custom UI Components and Other Custom Objects,” describes the
process of creating new components, renderers, converters, listeners, and validators from
scratch.

= Chapter 14, “Configuring JavaServer Faces Applications,” introduces the process of creating
and deploying JavaServer Faces applications, the use of various configuration files, and the
deployment structure.

The following topics are addressed here:

“The Lifecycle of a JavaServer Faces Application” on page 210
“Partial Processing and Partial Rendering” on page 216

“The Lifecycle of a Facelets Application” on page 216

“User Interface Component Model” on page 217

209

The Lifecycle of a JavaServer Faces Application

The Lifecycle of a JavaServer Faces Application

210

The lifecycle of an application refers to the various stages of processing of that application, from
its initiation to its conclusion. All applications have lifecycles. During a web application
lifecycle, common tasks such as the following are performed:

Handling incoming requests
Decoding parameters

Modifying and saving state
Rendering web pages to the browser

The JavaServer Faces web application framework manages lifecycle phases automatically for
simple applications or allows you to manage them manually for more complex applications as
required.

JavaServer Faces applications that use advanced features may require interaction with the
lifecycle at certain phases. For example, Ajax applications use partial processing features of the
lifecycle. A clearer understanding of the lifecycle phases is key to creating well-designed
components.

A simplified view of the JavaServer faces lifecycle, consisting of the two main phases of a
JavaServer Faces web application, is introduced in “The Lifecycle of the hello Application” on
page 108. This section examines the JavaServer Faces lifecycle in more detail.

Overview of the JavaServer Faces Lifecycle

The lifecycle of a JavaServer Faces application begins when the client makes an HTTP request
for a page and ends when the server responds with the page, translated to HTML.

The lifecycle can be divided into two main phases, execute and render. The execute phase is
further divided into subphases to support the sophisticated component tree. This structure
requires that component data be converted and validated, component events be handled, and
component data be propagated to beans in an orderly fashion.

A JavaServer Faces page is represented by a tree of components, called a view. During the
lifecycle, the JavaServer Faces implementation must build the view while considering the state
saved from a previous submission of the page. When the client requests a page, the JavaServer
Faces implementation performs several tasks, such as validating the data input of components
in the view and converting input data to types specified on the server side.

The JavaServer Faces implementation performs all these tasks as a series of steps in the
JavaServer Faces request-response lifecycle. Figure 10-1 illustrates these steps.

The Java EE 6 Tutorial « January 2013

The Lifecycle of a JavaServer Faces Application

FIGURE 10-1 JavaServer Faces Standard Request-Response Lifecycle

Faces
Request

l

Restore
View

Apply
Requests
—
Render Response

Response Process Complete
Events —————>

L

Process
Validations

Response
Process Complete
Events

Validation/
— Conversion Errors/
Render Response

Update
Model
Values

Response
Process Complete
Events

e

Invoke
Application

Conversion Errors/

Render Response Response
Process Complete
Events

—_—

L | Render
Response

e

Faces
Response

A

Chapter 10 - JavaServer Faces Technology: Advanced Concepts 211

The Lifecycle of a JavaServer Faces Application

212

The request-response lifecycle handles two kinds of requests: initial requests and postbacks. An
initial request occurs when a user makes a request for a page for the first time. A postback
request occurs when a user submits the form contained on a page that was previously loaded
into the browser as a result of executing an initial request.

When the lifecycle handles an initial request, it executes only the Restore View and Render
Response phases, because there is no user input or action to process. Conversely, when the
lifecycle handles a postback, it executes all of the phases.

Usually, the first request for a JavaServer Faces page comes in from a client, as a result of
clicking a link or button component on a JavaServer Faces page. To render a response that is
another JavaServer Faces page, the application creates a new view and stores it in the
javax.faces.context.FacesContext instance, which represents all of the information
associated with processing an incoming request and creating a response. The application then
acquires object references needed by the view and calls the FacesContext. renderResponse
method, which forces immediate rendering of the view by skipping to the Render Response
phase of the lifecycle, as is shown by the arrows labelled Render Response in the diagram.

Sometimes, an application might need to redirect to a different web application resource, such
as a web service, or generate a response that does not contain JavaServer Faces components. In
these situations, the developer must skip the Render Response phase by calling the
FacesContext.responseComplete method. This situation is also shown in the diagram, with
the arrows labelled Response Complete.

The most common situation is that a JavaServer Faces component submits a request for another
JavaServer Faces page. In this case, the JavaServer Faces implementation handles the request
and automatically goes through the phases in the lifecycle to perform any necessary
conversions, validations, and model updates, and to generate the response.

There is one exception to the lifecycle described in this section. When a component's
immediate attribute is set to true, the validation, conversion, and events associated with these
components are processed during the Apply Request Values phase rather than in a later phase.

The details of the lifecycle explained in the following sections are primarily intended for
developers who need to know information such as when validations, conversions, and events
are usually handled and ways to change how and when they are handled. For more information
on each of the lifecycle phases, download the latest JavaServer Faces Specification
documentation from http://jcp.org/en/jsr/detail?id=314.

The JavaServer Faces application lifecycle execute phase contains the following subphases:

“Restore View Phase” on page 213

“Apply Request Values Phase” on page 213
“Process Validations Phase” on page 214
“Update Model Values Phase” on page 214
“Invoke Application Phase” on page 215
“Render Response Phase” on page 215

The Java EE 6 Tutorial « January 2013

http://jcp.org/en/jsr/detail?id=314

The Lifecycle of a JavaServer Faces Application

Restore View Phase

When a request for a JavaServer Faces page is made, usually by an action such as when a link or
abutton component is clicked, the JavaServer Faces implementation begins the Restore View
phase.

During this phase, the JavaServer Faces implementation builds the view of the page, wires event
handlers and validators to components in the view, and saves the view in the FacesContext
instance, which contains all the information needed to process a single request. All the
application’s components, event handlers, converters, and validators have access to the
FacesContext instance.

If the request for the page is an initial request, the JavaServer Faces implementation creates an
empty view during this phase and the lifecycle advances to the Render Response phase, during
which the empty view is populated with the components referenced by the tags in the page.

If the request for the page is a postback, a view corresponding to this page already exists in the
FacesContext instance. During this phase, the JavaServer Faces implementation restores the
view by using the state information saved on the client or the server.

Apply Request Values Phase

After the component tree is restored during a postback request, each component in the tree
extracts its new value from the request parameters by using its decode (processDecodes())
method. The value is then stored locally on each component.

If any decode methods or event listeners have called the renderResponse method on the
current FacesContext instance, the JavaServer Faces implementation skips to the Render
Response phase.

If any events have been queued during this phase, the JavaServer Faces implementation
broadcasts the events to interested listeners.

If some components on the page have their immediate attributes (see “The immediate
Attribute” on page 143) set to true, then the validations, conversions, and events associated
with these components will be processed during this phase. If any conversion fails, an error
message associated with the component is generated and queued on FacesContext. This
message will be displayed during the Render Response phase, along with any validation errors
resulting from the Process Validations phase.

At this point, if the application needs to redirect to a different web application resource or
generate a response that does not contain any JavaServer Faces components, it can call the
FacesContext.responseComplete method.

At the end of this phase, the components are set to their new values, and messages and events
have been queued.

Chapter 10 - JavaServer Faces Technology: Advanced Concepts 213

The Lifecycle of a JavaServer Faces Application

214

If the current request is identified as a partial request, the partial context is retrieved from the
FacesContext, and the partial processing method is applied.

Process Validations Phase

During this phase, the JavaServer Faces implementation processes all validators registered on
the components in the tree, by using its validate (processValidators) method. It examines
the component attributes that specify the rules for the validation and compares these rules to
the local value stored for the component. The JavaServer Faces implementation also completes
conversions for input components that do not have the immediate attribute set to true.

If the local value is invalid, or if any conversion fails, the JavaServer Faces implementation adds
an error message to the FacesContext instance, and the lifecycle advances directly to the
Render Response phase so that the page is rendered again with the error messages displayed. If
there were conversion errors from the Apply Request Values phase, the messages for these
errors are also displayed.

If any validate methods or event listeners have called the renderResponse method on the
current FacesContext, the JavaServer Faces implementation skips to the Render Response
phase.

At this point, if the application needs to redirect to a different web application resource or
generate a response that does not contain any JavaServer Faces components, it can call the
FacesContext.responseComplete method.

If events have been queued during this phase, the JavaServer Faces implementation broadcasts
them to interested listeners.

If the current request is identified as a partial request, the partial context is retrieved from the
Faces Context, and the partial processing method is applied.

Update Model Values Phase

After the JavaServer Faces implementation determines that the data is valid, it traverses the
component tree and sets the corresponding server-side object properties to the components’
local values. The JavaServer Faces implementation updates only the bean properties pointed at
by an input component’s value attribute. If the local data cannot be converted to the types
specified by the bean properties, the lifecycle advances directly to the Render Response phase so
that the page is re-rendered with errors displayed. This is similar to what happens with
validation errors.

If any updateModels methods or any listeners have called the renderResponse method on the
current FacesContext instance, the JavaServer Faces implementation skips to the Render
Response phase.

The Java EE 6 Tutorial « January 2013

The Lifecycle of a JavaServer Faces Application

At this point, if the application needs to redirect to a different web application resource or
generate a response that does not contain any JavaServer Faces components, it can call the
FacesContext.responseComplete method.

If any events have been queued during this phase, the JavaServer Faces implementation
broadcasts them to interested listeners.

If the current request is identified as a partial request, the partial context is retrieved from the
FacesContext, and the partial processing method is applied.

Invoke Application Phase

During this phase, the JavaServer Faces implementation handles any application-level events,
such as submitting a form or linking to another page.

At this point, if the application needs to redirect to a different web application resource or
generate a response that does not contain any JavaServer Faces components, it can call the
FacesContext.responseComplete method.

If the view being processed was reconstructed from state information from a previous request
and if a component has fired an event, these events are broadcast to interested listeners.

Finally, the JavaServer Faces implementation transfers control to the Render Response phase.

Render Response Phase

During this phase, JavaServer Faces builds the view and delegates authority to the appropriate
resource for rendering the pages.

If this is an initial request, the components that are represented on the page will be added to the
component tree. If this is not an initial request, the components are already added to the tree, so
they need not be added again.

If the request is a postback and errors were encountered during the Apply Request Values
phase, Process Validations phase, or Update Model Values phase, the original page is rendered
again during this phase. If the pages contain h:message or h:messages tags, any queued error
messages are displayed on the page.

After the content of the view is rendered, the state of the response is saved so that subsequent
requests can access it. The saved state is available to the Restore View phase.

Chapter 10 - JavaServer Faces Technology: Advanced Concepts 215

Partial Processing and Partial Rendering

Partial Processing and Partial Rendering

The JavaServer Faces lifecycle spans all of the execute and render processes of an application. It
is also possible to process and render only parts of an application, such as a single component.
For example, the JavaServer Faces Ajax framework can generate requests containing
information on which particular component may be processed and which particular
component may be rendered back to the client.

Once such a partial request enters the JavaServer Faces lifecycle, the information is identified
and processed by a javax. faces. context.PartialViewContext object. The JavaServer Faces
lifecycle is still aware of such Ajax requests and modifies the component tree accordingly.

The execute and render attributes of the f:ajax tag are used to identify which components may
be executed and rendered. For more information on these attributes, see Chapter 11, “Using
Ajax with JavaServer Faces Technology”

The Lifecycle of a Facelets Application

216

The JavaServer Faces specification defines the lifecycle of a JavaServer Faces application. For
more information on this lifecycle, see “The Lifecycle of a JavaServer Faces Application” on
page 210. The following steps describe that process as applied to a Facelets-based application.

1. When a client, such as a browser, makes a new request to a page that is created using
Facelets, a new component tree or javax. faces.component.UIViewRoot is created and
placed in the FacesContext.

2. TheUIViewRoot is applied to the Facelets, and the view is populated with components for
rendering.

3. The newly built view is rendered back as a response to the client.

4. Onrendering, the state of this view is stored for the next request. The state of input
components and form data is stored.

5. The client may interact with the view and request another view or change from the
JavaServer Faces application. At this time the saved view is restored from the stored state.

6. The restored view is once again passed through the JavaServer Faces lifecycle, which
eventually will either generate a new view or re-render the current view if there were no
validation problems and no action was triggered.

7. Ifthe same view is requested, the stored view is rendered once again.
8. Ifanew view isrequested, then the process described in Step 2 is continued.

9. The new view is then rendered back as a response to the client.

The Java EE 6 Tutorial « January 2013

User Interface Component Model

User Interface Component Model

In addition to the lifecycle description, an overview of JavaServer Faces architecture provides
better understanding of the technology.

JavaServer Faces components are the building blocks of a JavaServer Faces view. A component
can be a user interface (UI) component or a non-UI component.

JavaServer Faces Ul components are configurable, reusable elements that compose the user
interfaces of JavaServer Faces applications. A component can be simple, such as a button, or can
be compound, such as a table, composed of multiple components.

JavaServer Faces technology provides a rich, flexible component architecture that includes the

following:

= Asetof javax. faces.component.UIComponent classes for specifying the state and behavior
of UI components

= Arendering model that defines how to render the components in various ways

= A conversion model that defines how to register data converters onto a component
= Anevent and listener model that defines how to handle component events

= Avalidation model that defines how to register validators onto a component

= A navigation model that defines page navigation and the sequence in which pages are loaded

This section briefly describes each of these pieces of the component architecture.

User Interface Component Classes

JavaServer Faces technology provides a set of Ul component classes and associated behavioral
interfaces that specify all the UI component functionality, such as holding component state,
maintaining a reference to objects, and driving event handling and rendering for a set of
standard components.

The component classes are completely extensible, allowing component writers to create their
own custom components. See Chapter 13, “Creating Custom UI Components and Other
Custom Objects,” for more information.

The abstract base class for all components is javax. faces.component.UIComponent.
JavaServer Faces UI component classes extend the UIComponentBase class (a subclass of
UIComponent), which defines the default state and behavior of a component. The following set
of component classes is included with JavaServer Faces technology:

= UIColumn:Represents a single column of data in a UIData component.
= UICommand: Representsa control that fires actions when activated.

= UIData: Representsa data binding to a collection of data represented by a
javax.faces.model.DataModel instance.

Chapter 10 - JavaServer Faces Technology: Advanced Concepts 217

User Interface Component Model

218

UIForm: Represents an input form to be presented to the user. Its child components
represent (among other things) the input fields to be included when the form is submitted.
This component is analogous to the form tagin HTML.

UIGraphic: Displays an image.

UIInput: Takes datainputfrom a user. This classis a subclass of UIOutput.
UIMessage: Displays alocalized error message.

UIMessages: Displays a set of localized error messages.

UIOutcomeTarget: Displays a hyperlink in the form of a link or a button.
UIOutput: Displays data output on a page.

UIPanel: Manages the layout of its child components.

UIParameter: Represents substitution parameters.

UISelectBoolean: Allows a user to seta boolean value on a control by selecting or
deselecting it. This class is a subclass of the UIInput class.

UISelectItem: Represents a single item in a set of items.
UISelectItems: Represents an entire set of items.

UISelectMany: Allows a user to select multiple items from a group of items. This class is a
subclass of the UIInput class.

UISelectOne: Allows a user to select one item from a group of items. This class is a subclass
of the UTInput class.

UIViewParameter: Represents the query parameters in a request. This class is a subclass of
the UIInput class.

UIViewRoot: Represents the root of the component tree.

In addition to extending UIComponentBase, the component classes also implement one or more
behavioral interfaces, each of which defines certain behavior for a set of components whose
classes implement the interface.

These behavioral interfaces, all defined in the javax. faces. component package unless
otherwise stated, are as follows:

ActionSource: Indicates that the component can fire an action event. This interface is
intended for use with components based on JavaServer Faces technology 1.1_01 and earlier
versions. This interface is deprecated in JavaServer Faces 2.

ActionSource2: Extends ActionSource, and therefore provides the same functionality.
However, it allows components to use the Expression Language (EL) when they are
referencing methods that handle action events.

EditableValueHolder: Extends ValueHolder and specifies additional features for editable
components, such as validation and emitting value-change events.

NamingContainer: Mandates that each component rooted at this component have a unique
ID.

The Java EE 6 Tutorial « January 2013

User Interface Component Model

= StateHolder: Denotes thata component has state that must be saved between requests.

= ValueHolder: Indicates that the component maintains a local value as well as the option of
accessing data in the model tier.

®= javax.faces.event.SystemEventListenerHolder: Maintains a list of
javax.faces.event.SystemEventListener instances for each type of
javax.faces.event.SystemEvent defined by that class.

= javax.faces.component.behavior.ClientBehaviorHolder: Adds the ability to attach
javax.faces.component.behavior.ClientBehavior instances such as a reusable script.

UICommand implements ActionSource2 and StateHolder. UIOutput and component classes
that extend UIOutput implement StateHolder and ValueHolder. UIInput and component
classes that extend UIInput implement EditableValueHolder, StateHolder, and
ValueHolder. UIComponentBase implements StateHolder.

Only component writers will need to use the component classes and behavioral interfaces
directly. Page authors and application developers will use a standard component by including a
tag that represents it on a page. Most of the components can be rendered in different ways on a
page. For example, a UICommand component can be rendered as a button or a hyperlink.

The next section explains how the rendering model works and how page authors can choose to
render the components by selecting the appropriate tags.

Component Rendering Model

The JavaServer Faces component architecture is designed such that the functionality of the
components is defined by the component classes, whereas the component rendering can be
defined by a separate renderer class. This design has several benefits, including the following:

= Component writers can define the behavior of a component once but create multiple
renderers, each of which defines a different way to render the component to the same client
or to different clients.

= Page authors and application developers can change the appearance of a component on the
page by selecting the tag that represents the appropriate combination of component and
renderer.

A render kit defines how component classes map to component tags that are appropriate for a
particular client. The JavaServer Faces implementation includes a standard HTML render kit
for rendering to an HTML client.

The render kit defines a set of javax. faces. render.Renderer classes for each component that
it supports. Each Renderer class defines a different way to render the particular component to
the output defined by the render kit. For example, a UISelectOne component has three
different renderers. One of them renders the component as a set of radio buttons. Another
renders the component as a combo box. The third one renders the component as a list box.

Chapter 10 - JavaServer Faces Technology: Advanced Concepts 219

User Interface Component Model

220

Similarly, a UTCommand component can be rendered as a button or a hyperlink, using the
h:commandButton or h: commandLink tag. The command part of each tag corresponds to the
UICommand class, specifying the functionality, which is to fire an action. The Button or Link part
of each tag corresponds to a separate Renderer class that defines how the component appears
on the page.

Each custom tag defined in the standard HTML render kit is composed of the component
functionality (defined in the UIComponent class) and the rendering attributes (defined by the
Renderer class).

The section “Adding Components to a Page Using HTML Tags” on page 140 lists all supported
component tags and illustrates how to use the tags in an example.

The JavaServer Faces implementation provides a custom tag library for rendering components
in HTML.

Conversion Model

A JavaServer Faces application can optionally associate a component with server-side object
data. This object is a JavaBeans component, such as a managed bean. An application gets and
sets the object data for a component by calling the appropriate object properties for that
component.

When a component is bound to an object, the application has two views of the component’s
data:

= The model view, in which data is represented as data types, such as int or long.

= The presentation view, in which data is represented in a manner that can be read or
modified by the user. For example, a java.util.Date might be represented as a text string
in the format mm/dd/yy or as a set of three text strings.

The JavaServer Faces implementation automatically converts component data between these
two views when the bean property associated with the component is of one of the types
supported by the component’s data. For example, if a UISelectBoolean component is
associated with a bean property of type java.lang.Boolean, the JavaServer Faces
implementation will automatically convert the component’s data from String to Boolean. In
addition, some component data must be bound to properties of a particular type. For example, a
UISelectBoolean component must be bound to a property of type boolean or
java.lang.Boolean.

Sometimes you might want to convert a component’s data to a type other than a standard type,
or you might want to convert the format of the data. To facilitate this, JavaServer Faces
technology allows you to register a javax. faces.convert.Converter implementation on
UIOutput components and components whose classes subclass UIOutput. If you register the
Converter implementation on a component, the Converter implementation converts the
component’s data between the two views.

The Java EE 6 Tutorial « January 2013

User Interface Component Model

You can either use the standard converters supplied with the JavaServer Faces implementation
or create your own custom converter. Custom converter creation is covered in Chapter 13,
“Creating Custom UI Components and Other Custom Objects”

Event and Listener Model

The JavaServer Faces event and listener model is similar to the JavaBeans event model in that it
has strongly typed event classes and listener interfaces that an application can use to handle
events generated by components.

The JavaServer Faces specification defines three types of events: application events, system
events, and data-model events.

Application events are tied to a particular application and are generated by a ULComponent.
They represent the standard events available in previous versions of JavaServer Faces
technology.

An event object identifies the component that generated the event and stores information about
the event. To be notified of an event, an application must provide an implementation of the
listener class and must register it on the component that generates the event. When the user
activates a component, such as by clicking a button, an event is fired. This causes the JavaServer
Faces implementation to invoke the listener method that processes the event.

JavaServer Faces supports two kinds of application events: action events and value-change
events.

An action event (class javax.faces.event.ActionEvent) occurs when the user activates a
component that implements javax. faces. component.ActionSource. These components
include buttons and hyperlinks.

A value-change event (class javax.faces.event.ValueChangeEvent) occurs when the user
changes the value of a component represented by UIInput or one of its subclasses. An example
is selecting a check box, an action that results in the component’s value changing to true. The
component types that can generate these types of events are the UIInput, UISelectOne,
UISelectMany, and UISelectBoolean components. Value-change events are fired only if no
validation errors are detected.

Depending on the value of the immediate property (see “The immediate Attribute” on
page 143) of the component emitting the event, action events can be processed during the
invoke application phase or the apply request values phase, and value-change events can be
processed during the process validations phase or the apply request values phase.

System events are generated by an Object rather than a UIComponent. They are generated
during the execution of an application at predefined times. They are applicable to the entire
application rather than to a specific component.

Chapter 10 - JavaServer Faces Technology: Advanced Concepts 221

User Interface Component Model

222

A data-model event occurs when a new row of a UIData component is selected.

There are two ways to cause your application to react to action events or value-change events
that are emitted by a standard component:

= Implement an event listener class to handle the event and register the listener on the
component by nesting either an f:valueChangeListener tagoran f:actionListener tag
inside the component tag.

= Implementa method of a managed bean to handle the event and refer to the method with a
method expression from the appropriate attribute of the component’s tag.

See “Implementing an Event Listener” on page 273 for information on how to implement an
event listener. See “Registering Listeners on Components” on page 180 for information on how
to register the listener on a component.

See “Writing a Method to Handle an Action Event” on page 202 and “Writing a Method to
Handle a Value-Change Event” on page 203 for information on how to implement managed
bean methods that handle these events.

See “Referencing a Managed Bean Method” on page 186 for information on how to refer to the
managed bean method from the component tag.

When emitting events from custom components, you must implement the appropriate event
class and manually queue the event on the component in addition to implementing an event
listener class or a managed bean method that handles the event. “Handling Events for Custom
Components” on page 275 explains how to do this.

Validation Model

JavaServer Faces technology supports a mechanism for validating the local data of editable
components (such as text fields). This validation occurs before the corresponding model data is
updated to match the local value.

Like the conversion model, the validation model defines a set of standard classes for performing
common data validation checks. The JavaServer Faces core tag library also defines a set of tags
that correspond to the standard javax. faces.validator.Validator implementations. See
“Using the Standard Validators” on page 183 for a list of all the standard validation classes and
corresponding tags.

Most of the tags have a set of attributes for configuring the validator’s properties, such as the
minimum and maximum allowable values for the component’s data. The page author registers
the validator on a component by nesting the validator’s tag within the component’s tag.

In addition to validators that are registered on the component, you can declare a default
validator which is registered on all UIInput components in the application. For more
information on default validators, see “Using Default Validators” on page 311.

The Java EE 6 Tutorial « January 2013

User Interface Component Model

The validation model also allows you to create your own custom validator and corresponding
tag to perform custom validation. The validation model provides two ways to implement
custom validation:

= ImplementaValidator interface that performs the validation.
= Implementa managed bean method that performs the validation.

If you are implementing a Validator interface, you must also:

= Register the Validator implementation with the application.

= Create a custom tag or use an f:validator tag to register the validator on the component.

In the previously described standard validation model, the validator is defined for each input
component on a page. The Bean Validation model allows the validator to be applied to all fields
in a page. See “Using Bean Validation” on page 204 and Chapter 49, “Bean Validation:
Advanced Topics,” for more information on Bean Validation.

Navigation Model

The JavaServer Faces navigation model makes it easy to define page navigation and to handle
any additional processing that is needed to choose the sequence in which pages are loaded.

In JavaServer Faces technology, navigation is a set of rules for choosing the next page or view to
be displayed after an application action, such as when a button or hyperlink is clicked.

Navigation can be implicit or user-defined. Implicit navigation comes into play when
user-defined navigation rules are not available. For more information on implicit navigation,
see “Implicit Navigation Rules” on page 316.

User-defined navigation rules are declared in zero or more application configuration resource
files, such as faces-config.xml, by using a set of XML elements. The default structure of a
navigation rule is as follows:

<navigation-rule>
<description></description
<from-view-id></from-view-id>
<navigation-case>
<from-action></from-action>
<from-outcome></from-outcome>
<if></if>
<to-view-id></to-view-id>
</navigation-case>
</navigation-rule>

Chapter 10 - JavaServer Faces Technology: Advanced Concepts 223

User Interface Component Model

224

User-defined navigation is handled as follows:

= Define the rules in the application configuration resource file.

= Refer to an outcome String from the button or hyperlink component’s action attribute.
This outcome String is used by the JavaServer Faces implementation to select the
navigation rule.

Here is an example navigation rule:

<navigation-rule>
<from-view-id>/greeting.xhtml</from-view-id>
<navigation-case>
<from-outcome>success</from-outcome>
<to-view-id>/response.xhtml</to-view-id>
</navigation-case>
</navigation-rule>

This rule states that when a command component (such as an h: commandButton or an
h:commandLink) on greeting.xhtml is activated, the application will navigate from the
greeting.xhtml page to the response.xhtml page if the outcome referenced by the button
component’s tag is success. Here is the h: commandButton tag from greeting.xhtml that
specifies a logical outcome of success:

<h:commandButton id="submit" action="success"
value="Submit" />

As the example demonstrates, each navigation- rule element defines how to get from one page
(specified in the from-view-id element) to the other pages of the application. The
navigation-rule elements can contain any number of navigation-case elements, each of
which defines the page to open next (defined by to-view-id) based on alogical outcome
(defined by from-outcome).

In more complicated applications, the logical outcome can also come from the return value of
an action method in a managed bean. This method performs some processing to determine the
outcome. For example, the method can check whether the password the user entered on the
page matches the one on file. If it does, the method might return success; otherwise, it might
return failure. An outcome of failure might result in the logon page being reloaded. An
outcome of success might cause the page displaying the user’s credit card activity to open. If
you want the outcome to be returned by a method on a bean, you must refer to the method
using a method expression, with the action attribute, as shown by this example:

<h:commandButton id="submit"
action="#{userNumberBean.getOrderStatus}" value="Submit" />

When the user clicks the button represented by this tag, the corresponding component
generates an action event. This event is handled by the default
javax.faces.event.ActionListener instance, which calls the action method referenced by
the component that triggered the event. The action method returns a logical outcome to the
action listener.

The Java EE 6 Tutorial « January 2013

User Interface Component Model

The listener passes the logical outcome and a reference to the action method that produced the
outcome to the default javax. faces.application.NavigationHandler. The
NavigationHandler selects the page to display next by matching the outcome or the action
method reference against the navigation rules in the application configuration resource file by
the following process:

1. TheNavigationHandler selects the navigation rule that matches the page currently
displayed.

2. Tt matches the outcome or the action method reference that it received from the default
javax.faces.event.ActionListener with those defined by the navigation cases.

3. Ittries to match both the method reference and the outcome against the same navigation
case.

4. Ifthe previous step fails, the navigation handler attempts to match the outcome.

Finally, the navigation handler attempts to match the action method reference if the
previous two attempts failed.

6. Ifno navigation case is matched, it displays the same view again.

When the NavigationHandler achieves a match, the render response phase begins. During this
phase, the page selected by the NavigationHandler will be rendered.

The Duke's Tutoring case study example application uses navigation rules in the business
methods that handle creating, editing, and deleting the users of the application. For example,
the form for creating a student has the following h: commandButton tag:

<h:commandButton id="submit"
action="#{adminBean.createStudent (studentManager.newStudent)}"
value="#{bundle[’action.submit’]}"/>

The action event calls the dukestutoring.ejb.AdminBean.createStudent method:

public String createStudent(Student student) {
em.persist(student);
return "createdStudent"

}

The return value of createdStudent has a corresponding navigation case in the
faces-config.xml configuration file:

<navigation-rule>
<from-view-id>/admin/student/createStudent.xhtml</from-view-id>
<navigation-case>
<from-outcome>createdStudent</from-outcome>
<to-view-id>/admin/index.xhtml</to-view-id>
</navigation-case>
</navigation-rule>

After the student is created, the user is returned to the Administration index page.

Chapter 10 - JavaServer Faces Technology: Advanced Concepts 225

User Interface Component Model

For more information on how to define navigation rules, see “Configuring Navigation Rules”
on page 313.

For more information on how to implement action methods to handle navigation, see “Writing
a Method to Handle an Action Event” on page 202.

For more information on how to reference outcomes or action methods from component tags,
see “Referencing a Method That Performs Navigation” on page 187.

226 The Java EE 6 Tutorial « January 2013

CHAPTER 11

Using Ajax with JavaServer Faces Technology

Ajax is an acronym for Asynchronous JavaScript and XML, a group of web technologies that
enable creation of dynamic and highly responsive web applications. Using Ajax, web
applications can retrieve content from the server without interfering with the display on the
client. In the Java EE 6 platform, JavaServer Faces provides built-in support for Ajax.

Early web applications were created mostly as static web pages. When a static web page is
updated by a client, the entire page has to reload to reflect the update. In effect, every update
needs a page reload to reflect the change. Repetitive page reloads can result in excessive network
access and can impact application performance. Technologies such as Ajax were created to
overcome these deficiencies.

This chapter describes using Ajax functionality in JavaServer Faces web applications.

The following topics are addressed here:

“Overview of Ajax” on page 228

“Using Ajax Functionality with JavaServer Faces Technology” on page 228
“Using Ajax with Facelets” on page 229

“Sending an Ajax Request” on page 231

“Monitoring Events on the Client” on page 233

“Handling Errors” on page 234

“Receiving an Ajax Response” on page 234

“Ajax Request Lifecycle” on page 235

“Grouping of Components” on page 236

“Loading JavaScript as a Resource” on page 236

“The ajaxguessnumber Example Application” on page 238

“Further Information about Ajax in JavaServer Faces Technology” on page 242

227

Overview of Ajax

Overview of Ajax

Ajax refers to JavaScript and XML, technologies that are widely used for creating dynamic and
asynchronous web content. While Ajax is not limited to JavaScript and XML technologies,
more often than not they are used together by web applications. The focus of this tutorial is on
using JavaScript based Ajax functionality in JavaServer Faces web applications.

JavaScript is a dynamic scripting language for web applications. It allows users to add enhanced
functionality to user interfaces and allows web pages to interact with clients asynchronously.
JavaScript runs mainly on the client side (as in a browser) and thereby reduces server access by
clients.

When a JavaScript function sends an asynchronous request from the client to the server, the
server sends back a response that is used to update the page’s Document Object Model (DOM).
This response is often in the format of an XML document. The term Ajax refers to this
interaction between the client and server.

The server response need not be in XML only; it can also be in other formats, such as JSON.
This tutorial does not focus on the response formats.

Ajax enables asynchronous and partial updating of web applications. Such functionality allows
for highly responsive web pages that are rendered in near real time. Ajax-based web
applications can access server and process information and can also retrieve data without
interfering with the display and rendering of the current web page on a client (such asa
browser).

Some of the advantages of using Ajax are as follows:
= Form data validation in real time, eliminating the need to submit the form for verification
= Enhanced functionality for web pages, such as user name and password prompts

= Partial update of the web content, avoiding complete page reloads

Using Ajax Functionality with JavaServer Faces Technology

228

Ajax functionality can be added to a JavaServer Faces application in one of the following ways:

= Adding the required JavaScript code to an application
= Using the built-in Ajax resource library

In earlier releases of the Java EE platform, JavaServer Faces applications provided Ajax
functionality by adding the necessary JavaScript to the web page. In the Java EE 6 platform,
standard Ajax support is provided by a built-in JavaScript resource library.

With the support of this JavaScript resource library, JavaServer Faces standard UI components,
such as buttons, labels, or text fields, can be enabled for Ajax functionality. You can also load

The Java EE 6 Tutorial « January 2013

http://www.json.org/

Using Ajax with Facelets

this resource library and use its methods directly from within the managed bean code. The next
sections of the tutorial describe the use of the built-in Ajax resource library.

In addition, because the JavaServer Faces technology component model can be extended,
custom components can be created with Ajax functionality.

An Ajax version of the guessnumber application, ajaxguessnumber, is available in the example
repository. See “The ajaxguessnumber Example Application” on page 238 for more
information.

The Ajax specific f:ajax tag and its attributes are explained in the next sections.

Using Ajax with Facelets

As mentioned in the previous section, JavaServer Faces technology supports Ajax by using a
built-in JavaScript resource library that is provided as part of the JavaServer Faces core libraries.
This built-in Ajax resource can be used in JavaServer Faces web applications in one of the
following ways:

= By using the f:ajax tagalong with another standard component in a Facelets application.
This method adds Ajax functionality to any UI component without additional coding and
configuration.

= By using the JavaScript API method jsf.ajax.request() directly within the Facelets
application. This method provides direct access to Ajax methods, and allows customized
control of component behavior.

Using the f:ajax Tag

The f:ajax tagis a JavaServer Faces core tag that provides Ajax functionality to any regular UI
component when used in conjunction with that component. In the following example, Ajax
behavior is added to an input component by including the f:ajax core tag:

<h:inputText value="#{bean.message}">
<f:ajax />
</h:inputText>

In this example, although Ajax is enabled, the other attributes of the f:ajax tag are not defined.
If an event is not defined, the default action for the component is performed. For the inputText
component, when no event attribute is specified, the default event is valueChange. Table 11-1
lists the attributes of the f:ajax tag and their default actions.

Chapter 11 - Using Ajax with JavaServer Faces Technology 229

Using Ajax with Facelets

TABLE 11-1

Attributes of the f:ajax Tag

Name

Type

Description

disabled

event

execute

immediate

listener

onevent

onerror

render

javax.el.ValueExpression that
evaluates to a Boolean

javax.el.ValueExpression that
evaluates toa String

javax.el.ValueExpression that
evaluates to an Object

javax.el.ValueExpression that
evaluates to a Boolean

javax.el.MethodExpression

javax.el.ValueExpression that
evaluatestoaString

javax.el.ValueExpression that
evaluates toa String

javax.el.ValueExpression that
evaluates to an Object

A Boolean value that identifies the tag status. A value of
true indicates that the Ajax behavior should not be
rendered. A value of false indicates that the Ajax
behavior should be rendered. The default value is false.

A string thatidentifies the type of event to which the
Ajax action will apply. If specified, it must be one of the
events supported by the component. If not specified, the
default event (the event that triggers the Ajax request) is
determined for the component. The default event is
action for javax.faces.component.ActionSource
components and valueChange for
javax.faces.component.EditableValueHolder
components.

A Collection that identifies a list of components to be
executed on the server. If a literal is specified, it must be
a space-delimited String of component identifiers
and/or one of the keywords. If a ValueExpression is
specified, it must refer to a property that returns a
Collection of String objects. If not specified, the
default value is @this.

A Boolean value that indicates whether inputs are to be
processed early in the lifecycle. If true, behavior events
generated from this behavior are broadcast during the
Apply Request Values phase. Otherwise, the events will
be broadcast during the Invoke Applications phase.

The name of the listener method that is called when a
javax.faces.event.AjaxBehaviorEvent hasbeen
broadcast for the listener.

The name of the JavaScript function that handles UI
events.

The name of the JavaScript function that handles errors.

A Collection that identifies a list of components to be
rendered on the client. If a literal is specified, it must be
a space-delimited String of component identifiers
and/or one of the keywords. If a ValueExpression is
specified, it must refer to a property that returns a
Collection of String objects. If not specified, the
default value is @none.

230 The Java EE 6 Tutorial « January 2013

Sending an Ajax Request

The keywords listed in Table 11-2 can be used with the execute and render attributes of the
f:ajaxtag.

TABLE11-2 Execute and Render Keywords

Keyword Description

@all All component identifiers

@form The form that encloses the component
@none No component identifiers

@this The element that triggered the request

Note that when you use the f:ajax tag in a Facelets page, the JavaScript resource library is
loaded implicitly. This resource library can also be loaded explicitly as described in “Loading
JavaScript as a Resource” on page 236.

Sending an Ajax Request

To activate Ajax functionality, the web application must create an Ajax request and send it to
the server. The server then processes the request.

The application uses the attributes of the f:ajax taglisted in Table 11-1 to create the Ajax
request. The following sections explain the process of creating and sending an Ajax request
using some of these attributes.

Note - Behind the scenes, the jsf.ajax. request() method of the JavaScript resource library
collects the data provided by the f:ajax tag and posts the request to the JavaServer Faces
lifecycle.

Using the event Attribute

The event attribute defines the event that triggers the Ajax action. Some of the possible values
for this attribute are click, keyup, mouseover, focus,and blur.

If not specified, a default event based on the parent component will be applied. The default
eventisaction for javax.faces.component.ActionSource components such asa
commandButton, and valueChange for javax. faces.component.EditableValueHolder
components such as inputText. In the following example, an Ajax tag is associated with the
button component, and the event that triggers the Ajax action is a mouse click:

Chapter 11 - Using Ajax with JavaServer Faces Technology 231

Sending an Ajax Request

232

<h:commandButton id="submit" value="Submit">
<f:ajax event="click" />
</h:commandButton>
<h:outputText id="result" value="#{userNumberBean.response}" />

Note - You may have noticed that the listed events are very similar to JavaScript events. In fact,
they are based on JavaScript events, but do not have the on prefix.

For a command button, the default event is click, so that you do not actually need to specify
event="click" to obtain the desired behavior.

Using the execute Attribute

The execute attribute defines the component or components to be executed on the server. The
component is identified by its id attribute. You can specify more than one executable
component. If more than one component is to be executed, specify a space-delimited list of
components.

When a component is executed, it participates in all phases of the request processing lifecycle
except the Render Response phase.

The execute attribute can also be a keyword, such as @al1, @none, @this, or @form. The default
value is @this, which refers to the component within which the f:ajax tagis nested.

The following code specifies that the h: inputText component with the id value of userNo
should be executed when the button is clicked:

<h:inputText id="userNo"
title="Type a number from 0 to 10:"
value="#{userNumberBean.userNumber}">

</h:inputText>

<h:commandButton id="submit" value="Submit">
<f:ajax event="click" execute="userNo" />

</h:commandButton>

Using the immediate Attribute

The immediate attribute indicates whether user inputs are to be processed early in the
application lifecycle or later. If the attribute is set to true, events generated from this
component are broadcast during the Apply Request Values phase. Otherwise, the events will be
broadcast during the Invoke Applications phase.

If not defined, the default value of this attribute is false.

The Java EE 6 Tutorial « January 2013

Monitoring Events on the Client

Using the listener Attribute

The listener attribute refers to a method expression that is executed on the server side in
response to an Ajax action on the client. The listener’s
javax.faces.event.AjaxBehaviorListener.processAjaxBehavior method is called once
during the Invoke Application phase of the lifecycle. In the following example, a listener
attribute is defined by an f:ajax tag, which refers to a method from the bean.

<f:ajax listener="#{mybean.someaction}" render="somecomponent" />

The following code represents the someaction method in mybean.

public void someaction(AjaxBehaviorEvent event) {
dosomething;

}

Monitoring Events on the Client

The ongoing Ajax requests can be monitored by using the onevent attribute of the f:ajax tag.
The value of this attribute is the name of a JavaScript function. JavaServer Faces calls the
onevent function at each stage of the processing of an Ajax request: begin, complete, and
success.

When calling the JavaScript function assigned to the onevent property, JavaServer Faces passes
a data object to it. The data object contains the properties listed in Table 11-3.

TABLE11-3 Properties of the onEvent Data Object

Property Description

responseXML The response to the Ajax call in XML format

responseText The response to the Ajax call in text format

responseCode The response to the Ajax call in numeric code

source The source of the current Ajax event: the DOM element

status The status of the current Ajax call: begin, complete, or success
type The type of the Ajax call: event

By using the status property of the data object, you can identify the current status of the Ajax
request and monitor its progress. In the following example, monitormyajaxevent is a JavaScript
function that monitors the Ajax request sent by the event:

<f:ajax event="click" render="errormessage" onevent="monitormyajaxevent"/>

Chapter 11 - Using Ajax with JavaServer Faces Technology 233

Handling Errors

Handling Errors

JavaServer Faces handles Ajax errors through use of the onerror attribute of the f:ajax tag.
The value of this attribute is the name of a JavaScript function.

When there is an error in processing a Ajax request, JavaServer Faces calls the defined onerror
JavaScript function and passes a data object to it. The data object contains all the properties
available for the onevent attribute, and in addition, the following properties:

m description
m errorName
® errorMessage

The typeiserror. The status property of the data object contains one of the valid error values
listed in Table 11-4.

TABLE11-4 Valid Error Values for the Data Object status Property

Values Description
emptyResponse No Ajax response from server.
httpError One of the valid HTTP errors: request.status==null or

request.status==undefined or request.status <200 or request.status >= 300
malformedXML The Ajax response is not well formed.

serverError The Ajax response contains an error element.

In the following example, any errors that occurred in processing the Ajax request are handled
by the handlemyajaxerror JavaScript function:

<f:ajax event="click" render="test" onerror="handlemyajaxerror"/>

Receiving an Ajax Response

234

After the application sends an Ajax request, it is processed on the server side, and a response is
sent back to the client. As described earlier, Ajax allows for partial updating of web pages. To
enable such partial updating, JavaServer Faces technology allows for partial processing of the
view. The handling of the response is defined by the render attribute of the f:ajax tag.

Similar to the execute attribute, the render attribute defines which sections of the page will be
updated. The value of a render attribute can be one or more component id values, one of the
keywords @this, @all, @none, and @form, or an EL expression. In the following example, the
render attribute simply identifies an output component to be displayed when the Ajax action
has successfully completed.

The Java EE 6 Tutorial « January 2013

Ajax Request Lifecycle

<h:commandButton id="submit" value="Submit">

<f:ajax execute="userNo" render="result" />
</h:commandButton>
<h:outputText id="result" value="#{userNumberBean.response}" />

However, more often than not, the render attribute is likely to be associated with an event
attribute. In the following example, an output component is displayed when the button
component is clicked.

<h:commandButton id="submit" value="Submit">

<f:ajax event="click" execute="userNo" render="result"/>
</h:commandButton>
<h:outputText id="result" value="#{userNumberBean.response}"/>

Note - Behind the scenes, once again the jsf.ajax. request () method handles the response. It
registers a response-handling callback when the original request is created. When the response
is sent back to the client, the callback is invoked. This callback automatically updates the
client-side DOM to reflect the rendered response.

Ajax Request Lifecycle

An Ajax request varies from other typical JavaServer Faces requests, and its processing is also
handled differently by the JavaServer Faces lifecycle.

As described in “Partial Processing and Partial Rendering” on page 216, when an Ajax request is
received, the state associated with that request is captured by the
javax.faces.context.PartialViewContext. This object provides access to information such
as which components are targeted for processing/rendering. The processPartial method of
PartialViewContext uses this information to perform partial component tree processing and
rendering.

The execute attribute of the f:ajax tagidentifies which segments of the server side component
tree should be processed. Because components can be uniquely identified in the JavaServer
Faces component tree, it is easy to identify and process a single component, a few components,
or a whole tree. This is made possible by the visitTree method of the
javax.faces.component.UIComponent class. The identified components then run through the
JavaServer Faces request lifecycle phases.

Similar to the execute attribute, the render attribute identifies which segments of the
JavaServer Faces component tree need to be rendered during the render response phase.

During the render response phase, the render attribute is examined. The identified
components are found and asked to render themselves and their children. The components are
then packaged up and sent back to the client as a response.

Chapter 11 - Using Ajax with JavaServer Faces Technology 235

Grouping of Components

Grouping of Components

The previous sections describe how to associate a single UI component with Ajax functionality.
You can also associate Ajax with more than one component at a time by grouping them
together on a page. The following example shows how a number of components can be grouped
by using the f:ajax tag.

<f:ajax>
<h:form>
<h:inputText id="inputl"/>
<h:commandButton id="Submit"/>
</h:form>
</frajax>

In the example, neither component is associated with any Ajax event or render attributes yet.
Therefore, no action will take place in case of user input. You can associate the above
components with an event and a render attribute as follows:

<f:ajax event="click" render="@gall">
<h:form>
<h:inputText id="inputl" value="#{user.name}"/>
<h:commandButton id="Submit"/>
</h:form>
</f:ajax>

In the updated example, when the user clicks either component, the updated results will be
displayed for all components. You can further fine tune the Ajax action by adding specific
events to each of the components, in which case Ajax functionality becomes cumulative.
Consider the following example:

<f:ajax event="click" render="@all">
<h:commandButton id="Submit">
<f:ajax event="mouseover"/>
</h:commandButton>
</frajax>
Now the button component will fire an Ajax action in case of a mouseover event as well as a
mouse click event.

Loading JavaScript as a Resource

The JavaScript resource file bundled with JavaServer Faces technology is named jsf. js and is
available in the javax. faces library. This resource library supports Ajax functionality in
JavaServer Faces applications.

236 The Java EE 6 Tutorial « January 2013

Loading JavaScript as a Resource

In order to use this resource directly with a component or a bean class, you need to explicitly
load the resource library. The resource can be loaded in one of the following ways:

= By using the resource API directly in a Facelets page

= Byusing the javax.faces.application.ResourceDependency annotation and the
resource API in a bean class

Using JavaScript APl in a Facelets Application

To use the bundled JavaScript resource API directly in a web application, such as a Facelets
page, you need to first identify the default JavaScript resource for the page with the help of the
h:outputScript tag. For example, consider the following section of a Facelets page:

<h:form>
<h:outputScript name="jsf.js" library="javax.faces" target="head"/>
</h:form>

Specifying the target as head causes the script resource to be rendered within the head element
on the HTML page.

In the next step, identify the component to which you would like to attach the Ajax
functionality. Add the Ajax functionality to the component by using the JavaScript API. For
example, consider the following:

<h:form>
<h:outputScript name="jsf.js" library="javax.faces" target="head">
<h:inputText id="inputname" value="#{userBean.name}"/>
<h:outputText id="outputname" value="#{userBean.name}"/>
<h:commandButton id="submit" value="Submit"
onclick="jsf.ajax.request(this, event,
{execute:’inputname’, render:’outputname’});
return false;" />
</h:form>

The jsf.ajax. request method takes up to three parameters that specify source, event, and
options. The source parameter identifies the DOM element that triggered the Ajax request,
typically this. The optional event parameter identifies the DOM event that triggered this
request. The optional options parameter contains a set of name/value pairs from Table 11-5.

TABLE11-5 Possible Values for the Options Parameter

Name Value

execute A space-delimited list of client identifiers or one of the keywords listed in Table 11-2. The
identifiers reference the components that will be processed during the execute phase of the
lifecycle.

Chapter 11 - Using Ajax with JavaServer Faces Technology 237

The ajaxguessnumber Example Application

TABLE11-5 Possible Values for the Options Parameter (Continued)

Name Value

render A space-delimited list of client identifiers or one of the keywords listed in Table 11-2. The
identifiers reference the components that will be processed during the render phase of the
lifecycle.

onevent A String thatis the name of the JavaScript function to call when an event occurs.

onerror A String that is the name of the JavaScript function to call when an error occurs.

params An object that may include additional parameters to include in the request.

If no identifier is specified, the default assumed keyword for the execute attribute is @his, and
for the render attribute it is @none.

You can also place the JavaScript method in a file and include it as a resource.

Using the @ResourceDependency Annotationin a Bean
Class

Use the javax.faces.application.ResourceDependency annotation to cause the bean class
to load the default jsf. js library.

To load the Ajax resource from the server side, use the jsf.ajax. request method within the
bean class. This method is usually used when creating a custom component or a custom
renderer for a component.

The following example shows how the resource is loaded in a bean class:

@ResourceDependency (name="jsf.js" library="javax.faces" target="head")

The ajaxguessnumber Example Application

238

To demonstrate the advantages of using Ajax, revisit the guessnumber example from Chapter 5,
“Introduction to Facelets.” If you modify this example to use Ajax, the response need not be
displayed in the response.xhtml page. Instead, an asynchronous call is made to the bean on the
server side, and the response is displayed in the originating page by executing just the input
component rather than by form submission.

The source code for this application is in the tut-install/examples/web/ajaxguessnumber/
directory.

The Java EE 6 Tutorial « January 2013

The ajaxguessnumber Example Application

The ajaxguessnumber Source Files

The changes to the guessnumber application occur in two source files, as well as with the
addition of a JavaScript file.

The ajaxgreeting.xhtml Facelets Page

The Facelets page for ajaxguessnumber, web/ajaxgreeting.xhtml, is almost the same as the
greeting.xhtml page for the guessnumber application:

<h:head>
<h:outputStylesheet library="css" name="default.css"/>
<title>Ajax Guess Number Facelets Application</title>
</h:head>
<h:body>
<h:form id="AjaxGuess">
<h:outputScript name="ui.js" target="head"/>
<h:graphicImage library="images" name="wave.med.gif"
alt="Duke waving his hand"/>
<h2>
Hi, my name is Duke. I am thinking of a number from
#{userNumberBean.minimum} to #{userNumberBean.maximum}.
Can you guess it?
</h2>
<p>
<h:inputText
id="userNo"
title="Type a number from @ to 10:"
value="#{userNumberBean.userNumber}">
<f:validateLongRange
minimum="#{userNumberBean.minimum}"
maximum="#{userNumberBean.maximum}"/>
</h:inputText>

<h:commandButton id="submit" value="Submit" >
<!--<f:ajax execute="userNo" render="result errorsl" />-->
<f:ajax execute="userNo" render="result errorsl"
onevent="msg"/>
</h:commandButton>
</p>
<p><h:outputText id="result" style="color:blue"
value="#{userNumberBean.response}"/>
</p>
<h:message id="errorsl" showSummary="true" showDetail="false"
style="color: #d20005;
font-family: ’'New Century Schoolbook’, serif;
font-style: oblique;
text-decoration: overline"
for="userNo"/>
</h:form>
</h:body>

The most important change is in the h: commandButton tag. The action attribute is removed
from the tag, and f:ajax tag is added.

Chapter 11 - Using Ajax with JavaServer Faces Technology 239

The ajaxguessnumber Example Application

240

The f:ajax tag specifies that when the button is clicked, the h: inputText component with the
id value userNo is executed. The components with the id values result and errors1 are then
rendered. If that was all you did (as in the commented-out version of the tag), you would see the
output from both the result and errors1 components, although only one output is valid; ifa
validation error occurs, the managed bean is not executed, so the result output is stale.

To solve this problem, the tag also calls the JavaScript function named msg, in the file ui. js, as
described in the next section. The h:outputScript tagat the top of the form calls in this script.

Theui. js JavaScriptFile

The ui. js file specified in the h: outputScript tag of the ajaxgreeting. xhtml file is located in
the web/resources directory of the application. The file contains just one function, msg:

var msg = function msg(data) {
var resultArea = document.getElementById("AjaxGuess:result")
var errorArea = document.getElementById("AjaxGuess:errorsl")
if (errorArea.innerHTML !== null && errorArea.innerHTML !== "") {

resultArea.innerHTML="";
}
+
The msg function obtains a handle to both the result and errors1 elements. If the errorsl
element has any content, the function erases the content of the result element, so the stale
output does not appear in the page.

The UserNumberBean Managed Bean

A small change is also made in the UserNumberBean code so that the output component does
not display any message for the default (null) value of the property response. Here is the
modified bean code:

public String getResponse() {
if ((userNumber != null) && (userNumber.compareTo(randomInt) == 0)) {
return "Yay! You got it!"

if (userNumber == null) {
return null;
} else {

return "Sorry, " + userNumber + " is incorrect."

}

Running the ajaxguessnumber Example

You can use either NetBeans IDE or Ant to build, package, deploy, and run the
ajaxguessnumber example.

The Java EE 6 Tutorial « January 2013

The ajaxguessnumber Example Application

V¥ To Build, Package, and Deploy the ajaxguessnumber Example Using
NetBeans IDE

This procedure builds the application into the
tut-install/examples/web/ajaxguessnumber/build/web/ directory. The contents of this
directory are deployed to the GlassFish Server.

1 From the File menu, choose Open Project.

2 Inthe Open Project dialog, navigate to:

tut-install/examples/web/

3 Selectthe ajaxguessnumber folder.
4 Select the Open as Main Project check box.
5 Click Open Project.

6 Inthe Projects tab, right-click the ajaxguessnumber project and select Deploy.

V¥ ToBuild, Package, and Deploy the ajaxguessnumber Example Using Ant

1 Inaterminal window, go to:

tut-install/examples/web/ajaxguessnumber/

2 Typethefollowing command:

ant

This command calls the default target, which builds and packages the application intoa WAR
file, ajaxguessnumber.war, located in the dist directory.

3 Typethefollowing command:
ant deploy

Typing this command deploys ajaxguessnumber.war to the GlassFish Server.

¥ To Run the ajaxguessnumber Example

1 Inaweb browser, type the following URL:
http://localhost:8080/ajaxguessnumber

2 Typeavalueintheinputfield and click Submit.

If the value is in the range 0 to 10, a message states whether the guess is correct or incorrect. If
the value is outside that range, or if the value is not a number, an error message appears in red.

Chapter 11 - Using Ajax with JavaServer Faces Technology 241

Further Information about Ajax in JavaServer Faces Technology

To see what would happen if the JavaScript function were not included, remove the comment
marks from the first f:ajax tag in ajaxgreeting.xhtml and place them around the second tag,
as follows:

<f:ajax execute="userNo" render="result errorsl" />

<l--<f:ajax execute="userNo" render="result errorsl" onevent="msg"/>-->

If you then redeploy the application, you can see that stale output from valid guesses continues
to appear if you subsequently type erroneous input.

Further Information about Ajax in JavaServer Faces
Technology

242

For more information on Ajax in JavaServer Faces Technology, see

= JavaServer Faces project web site:
http://javaserverfaces.java.net/
= JavaServer Faces JavaScript Library APIs:

http://javaserverfaces.java.net/nonav/docs/2.1/jsdocs/symbols/jsf.ajax.html

The Java EE 6 Tutorial « January 2013

http://javaserverfaces.java.net/
http://javaserverfaces.java.net/nonav/docs/2.1/jsdocs/symbols/jsf.ajax.html

L R 2 4 CHAPTER 12

Composite Components: Advanced Topics and
Example

This chapter describes the advanced features of composite components in JavaServer Faces
technology.

A composite component is a special type of JavaServer Faces template that acts as a component.
If you are new to composite components, see “Composite Components” on page 121 before you
proceed with this chapter.

The following topics are addressed here:

= “Attributes of a Composite Component” on page 243

= “Invoking a Managed Bean” on page 244

= “Validating Composite Component Values” on page 245

= “The compositecomponentlogin Example Application” on page 245

Attributes of a Composite Component

You define an attribute of a composite component by using the composite:attribute tag.
Table 12-1 lists the commonly used attributes of this tag.

TABLE 12-1 Commonly Used Attributes of the composite:attribute Tag

Attribute Description

name Specifies the name of the composite component attribute to be used in the using
page. Alternatively, the name attribute can specify standard event handlers such as
action, actionListener, and managed bean.

default Specifies the default value of the composite component attribute.

required Specifies whether it is mandatory to provide a value for the attribute.

243

Invoking a Managed Bean

TABLE 12-1 Commonly Used Attributes of the composite:attribute Tag (Continued)

Attribute Description

method-signature Specifies a subclass of java.lang.0Object as the type of the composite
component’s attribute. The method- signature element declares that the
composite component attribute is a method expression. The type attribute and
the method-signature attribute are mutually exclusive. If you specify both,
method-signature is ignored. The default type of an attribute is
java.lang.Object.

Note - Method expressions are similar to value expressions, but rather than
supporting the dynamic retrieval and setting of properties, method expressions
support the invocation of a method of an arbitrary object, passing a specified set of
parameters and returning the result from the called method (if any).

type Specifies a fully qualified class name as the type of the attribute. The type attribute
and the method-signature attribute are mutually exclusive. If you specify both,
method-signature isignored. The default type of an attribute is
java.lang.Object.

The following code snippet defines a composite component attribute and assigns it a default
value:

<composite:attribute name="username" default="admin"/>

The following code snippet uses the method-signature element:

<composite:attribute name="myaction"
method-signature="java.lang.String action()"/>

The following code snippet uses the type element:

<composite:attribute name="dateofjoining" type="java.util.Date"/>

Invoking a Managed Bean

244

To enable a composite component to handle server-side data, you can invoke a managed bean
in one of the following ways:

m Pass the reference of the managed bean to the composite component.
= Directly use the properties of the managed bean.

The example application described in “The compositecomponentlogin Example Application”
on page 245 shows how to use a managed bean with a composite component by passing the
reference of the managed bean to the component.

The Java EE 6 Tutorial « January 2013

The compositecomponentlogin Example Application

Validating Composite Component Values

JavaServer Faces provides the following tags for validating values of input components. These
tags can be used with the composite:valueHolder or the composite:editableValueHolder
tag.

Table 12-2 lists commonly used validator tags.

TABLE12-2 Validator Tags

Tag Name Description
f:validateBean Delegates the validation of the local value to the Bean Validation API.
f:validateRegex Uses the pattern attribute to validate the wrapping component. The entire

pattern is matched against the String value of the component. If it
matches, it is valid.

f:validateRequired Enforces the presence of a value. Has the same effect as setting the
required element of a composite component’s attribute to true.

The compositecomponentlogin Example Application

The compositecomponentlogin application creates a composite component that accepts a user
name and a password. The component interacts with a managed bean. The component stores
the user name and password in the managed bean, retrieves the values from the bean, and
displays these values on the Login page.

The compositecomponentlogin application has a composite component file, a using page, and
amanaged bean.

The source code for this application is in the
tut-install/examples/web/compositecomponentlogin/ directory.

The Composite Component File

The composite component file is an XHTML file,
/web/resources/ezcomp/LoginPanel.xhtml. Ithasa composite:interface section that
declares the labels for the user name, password, and login button. It also declares a managed
bean, which defines properties for the user name and password.

<composite:interface>
<composite:attribute name="namePrompt" default="User Name: "/>
<composite:attribute name="passwordPrompt" default="Password: "/>

<composite:attribute name="loginButtonText" default="Log In"/>

Chapter 12 « Composite Components: Advanced Topics and Example 245

The compositecomponentlogin Example Application

246

<composite:attribute name="loginAction"
method-signature="java.lang.String action()"/>
<composite:attribute name="myLoginBean"/>
<composite:editableValueHolder name="vals" targets="form:name"/>
<composite:editableValueHolder name="passwordVal" targets="form:password"/>
</composite:interface>

The composite component implementation accepts input values for the user name and
password properties of the managed bean.

<composite:implementation>
<h:form id="form">
<table columns="2" role="presentation">
<tr>
<td><h:outputLabel for="name"
value="#{cc.attrs.namePrompt}"/></td>
<td><h:inputText id="name"
value="#{cc.attrs.myLoginBean.name}"
required="true"/></td>
</tr>
<tr>
<td><h:outputLabel for="password"
value="#{cc.attrs.passwordPrompt}"/></td>
<td><h:inputSecret id="password"
value="#{cc.attrs.myLoginBean.password}"
required="true"/></td>
</tr>
</table>
<p>
<h:commandButton id="loginButton"
value="#{cc.attrs.loginButtonText}"
action="#{cc.attrs.loginAction}"/>
</p>
</h:form>

</composite:implementation>

The Using Page

The using page in this example application, web/index . xhtml, is an XHTML file that invokes
the login composite component file along with the managed bean. It validates the user’s input.

<div id="compositecomponent">
<ez:LoginPanel mylLoginBean="#{myLoginBean}"
loginAction="#{myLoginBean.login}">
<f:validateLength maximum="10" minimum="4" for="vals" />
<f:validateRegex pattern="((?=.*\d)(?=.*[a-z])(?=.*[A-Z]).{4,10})"
for="passwordval"/>
</ez:LoginPanel>
</div>

The f:validateLength tag requires the user name to have from 4 to 10 characters.
The f:validateRegex tag requires the password to have from 4 to 10 characters and to contain

at least one digit, one lowercase letter, and one uppercase letter.

The Java EE 6 Tutorial « January 2013

The compositecomponentlogin Example Application

The Managed Bean

The managed bean, src/java/compositecomponentlogin/MyLoginBean. java, definesa
method called login, which retrieves the values of the user name and password.

@ManagedBean
@RequestScoped
public class MyLoginBean {

private String name;
private String password;

public MyLoginBean() {
H

public myloginBean(String name, String password) {
this.name = name;
this.password = password;

}

public String getPassword() {
return password;

}

public void setPassword(String newValue) {
password = newValue;

}

public String getName() {
return name;

}

public void setName(String newValue) {
name = newValue;

}

public String login() {
if (getName().equals('javaee")) {
String msg = "Success. Your user name is " + getName()

+ ", and your password is " + getPassword();
FacesMessage facesMsg = new FacesMessage(msg, msg);
FacesContext.getCurrentInstance().addMessage(null, facesMsgq);
return "index";

} else {
String msg = "Failure. Your user name is " + getName()

+ ", and your password is " + getPassword();
FacesMessage facesMsg =

new FacesMessage(FacesMessage.SEVERITY ERROR, msg, msg);
FacesContext.getCurrentInstance().addMessage(null, facesMsg);
return "index";

Chapter 12 « Composite Components: Advanced Topics and Example 247

The compositecomponentlogin Example Application

Running the compositecomponentlogin Example

You can use either NetBeans IDE or Ant to build, package, deploy, and run the
compositecomponentlogin example.

¥ ToBuild, Package, and Deploy the compositecomponentlogin Example
Using NetBeans IDE

1 From the File menu, choose Open Project.

2 Inthe Open Project dialog, navigate to:

tut-install/examples/web/

3 Selectthe compositecomponentlogin folder.
4 Select the Open as Main Project checkbox.
5 Click Open Project.

6 Inthe Projects tab, right-click compositecomponentlogin and select Deploy.

¥ ToBuild, Package, and Deploy the compositecomponentlogin Example
Using Ant

1 Inaterminal window, go to:

tut-install/examples/web/compositecomponentlogin/

2 Typethefollowing command:

ant

3 Typethefollowing command:
ant deploy

¥ To Run the compositecomponentlogin Example

1 Inaweb browser, type the following URL:
http://localhost:8080/compositecomponentlogin/

The Login Component page opens.

2 Typevaluesin the User Name and Password fields, then click the Log In button.

Because of the way the login method is coded, the login succeeds only if the user name is
javaee.

248 The Java EE 6 Tutorial « January 2013

The compositecomponentlogin Example Application

Because of the f:validatelLength tag, if the user name has fewer than 4 characters or more
than 10 characters, a validation error message appears.

Because of the f:validateRegex tag, if the password has fewer than 4 characters or more than
10 characters or does not contain at least one digit, one lowercase letter, and one uppercase
letter, a “Regex Pattern not matched” error message appears.

Chapter 12 « Composite Components: Advanced Topics and Example 249

250

CHAPTER 13

Creating Custom Ul Components and Other
Custom Objects

JavaServer Faces technology offers a basic set of standard, reusable UI components that enable
quick and easy construction of user interfaces for web applications. These components mostly
map one-to-one to the elements in HTML 4. However, an application often requires a
component that has additional functionality or requires a completely new component.
JavaServer Faces technology allows extension of standard components to enhance their
functionality or to create custom components. A rich ecosystem of third party component
libraries is built on this extension capability, but it is beyond the scope of this tutorial to
examine them. A web search for “JSF Component Libraries” is a good starting point to learn
more about this important aspect of using JavaServer Faces technology.

In addition to extending the functionality of standard components, a component writer might
want to give a page author the ability to change the appearance of the component on the page or
to alter listener behavior. Alternatively, the component writer might want to render a
component to a different kind of client device type, such as a smartphone or a tablet instead of a
desktop computer. Enabled by the flexible JavaServer Faces architecture, a component writer
can separate the definition of the component behavior from its appearance by delegating the
rendering of the component to a separate renderer. In this way, a component writer can define
the behavior of a custom component once but create multiple renderers, each of which defines a
different way to render the component to a particular kind of client device.

A javax.faces.component.UIComponent isa Java class that is responsible for representing a
self-contained piece of the user interface during the request processing lifecycle. It is intended
to represent the meaning of the component; the visual representation of the component is the
responsibility of the javax. faces. render.Renderer. There can be multiple instances of the
same UIComponent class in any given JavaServer Faces view, just as there can be multiple
instances of any Java class in any given Java program.

JavaServer Faces technology provides the ability to create custom components by extending the
UIComponent class, the base class for all standard UT components. A custom component can be
used anywhere an ordinary component can be used, such as within a composite component. A

UIComponent is identified by two names: component - family specifies the purpose of the

251

Creating Custom Ul Components and Other Custom Objects

252

component (input or output, for instance), while component - type indicates the specific
purpose of a component, such as a text input field or a command button.

A Renderer is a helper to the UIComponent that deals with how that specific UIComponent class
should appear in a specific kind of client device. Like components, renderers are identified by
two names: render-kit-idand renderer-type. A render kit is just a bucket into which a
particular group of renderers is placed, and the render-kit-id identifies the group. Most
JavaServer Faces component libraries provide their own render kits.

A javax.faces.view.facelets.Tag objectisa helper to the UIComponent and Renderer that
allows the page author to include an instance of a UIComponent in a JavaServer Faces view. A tag
represents a specific combination of component - type and renderer-type.

See “Component, Renderer, and Tag Combinations” on page 255 for information on how
components, renderers, and tags interact.

This chapter uses the image map component from the Duke's Bookstore case study example to
explain how you can create simple custom components, custom renderers, and associated
custom tags, and take care of all the other details associated with using the components and
renderers in an application. See Chapter 51, “Duke’s Bookstore Case Study Example,” for more
information about this example.

The chapter also describes how to create other custom objects: custom converters, custom
listeners, and custom validators. It also describes how to bind component values and instances
to data objects and how to bind custom objects to managed bean properties.

The following topics are addressed here:

= “Determining Whether You Need a Custom Component or Renderer” on page 253

= “Understanding the Image Map Example” on page 256

= “Steps for Creating a Custom Component” on page 261

“Creating Custom Component Classes” on page 262

“Delegating Rendering to a Renderer” on page 270

“Implementing an Event Listener” on page 273

“Handling Events for Custom Components” on page 275

“Defining the Custom Component Tag in a Tag Library Descriptor” on page 276
“Using a Custom Component” on page 277

“Creating and Using a Custom Converter” on page 279

“Creating and Using a Custom Validator” on page 283

= “Binding Component Values and Instances to Managed Bean Properties” on page 288
= “Binding Converters, Listeners, and Validators to Managed Bean Properties” on page 293

The Java EE 6 Tutorial « January 2013

Determining Whether You Need a Custom Component or Renderer

Determining Whether You Need a Custom Component or

Renderer

The JavaServer Faces implementation supports a very basic set of components and associated
renderers. This section helps you to decide whether you can use standard components and
renderers in your application or need a custom component or custom renderer.

When to Use a Custom Component

A component class defines the state and behavior of a Ul component. This behavior includes
converting the value of a component to the appropriate markup, queuing events on
components, performing validation, and any other behavior related to how the component
interacts with the browser and the request processing lifecycle.

You need to create a custom component in the following situations:

You need to add new behavior to a standard component, such as generating an additional
type of event (for example, notifying another part of the page that something changed in this
component as a result of user interaction).

You need to take a different action in the request processing of the value of a component
from what is available in any of the existing standard components.

You want to take advantage of an HTML capability offered by your target browser, but none
of the standard JavaServer Faces components take advantage of the capability in the way you
want, if at all. The current release does not contain standard components for complex
HTML components, such as frames; however, because of the extensibility of the component
architecture, you can use JavaServer Faces technology to create components like these. The
Duke's Bookstore case study creates custom components that correspond to the HTML map
and area tags.

You need to render to a non-HTML client that requires extra components not supported by
HTML. Eventually, the standard HTML render kit will provide support for all standard
HTML components. However, if you are rendering to a different client, such as a phone, you
might need to create custom components to represent the controls uniquely supported by
the client. For example, some component architectures for wireless clients include support
for tickers and progress bars, which are not available on an HTML client. In this case, you
might also need a custom renderer along with the component; or you might need only a
custom renderer.

Chapter 13 « Creating Custom Ul Components and Other Custom Objects 253

Determining Whether You Need a Custom Component or Renderer

254

You do not need to create a custom component in these cases:

= Youneed to aggregate components to create a new component that has its own unique
behavior. In this situation, you can use a composite component to combine existing
standard components. For more information on composite components, see “Composite
Components” on page 121 and Chapter 12, “Composite Components: Advanced Topics
and Example”

= Yousimply need to manipulate data on the component or add application-specific
functionality to it. In this situation, you should create a managed bean for this purpose and
bind it to the standard component rather than create a custom component. See “Managed
Beans in JavaServer Faces Technology” on page 189 for more information on managed
beans.

= Youneed to converta component’s data to a type not supported by its renderer. See “Using
the Standard Converters” on page 175 for more information about converting a
component’s data.

= Youneed to perform validation on the component data. Standard validators and custom
validators can be added to a component by using the validator tags from the page. See
“Using the Standard Validators” on page 183 and “Creating and Using a Custom Validator”
on page 283 for more information about validating a component’s data.

= Youneed to register event listeners on components. You can either register event listeners
on components using the f:valueChangeListenerand f:actionListener tags, or you can
point at an event-processing method on a managed bean using the component’s
actionListener orvalueChangeListener attributes. See “Implementing an Event
Listener” on page 273 and “Writing Managed Bean Methods” on page 200 for more
information.

When to Use a Custom Renderer

A renderer, which generates the markup to display a component on a web page, allows you to
separate the semantics of a component from its appearance. By keeping this separation, you can
support different kinds of client devices with the same kind of authoring experience. You can
think of a renderer as a “client adapter”” It produces output suitable for consumption and
display by the client, and accepts input from the client when the user interacts with that
component.

If you are creating a custom component, you need to ensure, among other things, that your
component class performs these operations that are central to rendering the component:

= Decoding: Converting the incoming request parameters to the local value of the component

= Encoding: Converting the current local value of the component into the corresponding
markup that represents it in the response

The Java EE 6 Tutorial « January 2013

Determining Whether You Need a Custom Component or Renderer

The JavaServer Faces specification supports two programming models for handling encoding
and decoding:

= Direct implementation: The component class itself implements the decoding and
encoding.

= Delegated implementation: The component class delegates the implementation of
encoding and decoding to a separate renderer.

By delegating the operations to the renderer, you have the option of associating your custom
component with different renderers so that you can render the component on different clients.
If you don’t plan to render a particular component on different clients, it may be simpler to let
the component class handle the rendering. However, a separate renderer enables you to
preserve the separation of semantics from appearance. The Duke's Bookstore application
separates the renderers from the components, although it renders only to HTML 4 web
browsers.

If you aren’t sure whether you will need the flexibility offered by separate renderers but you
want to use the simpler direct-implementation approach, you can actually use both models.
Your component class can include some default rendering code, but it can delegate rendering to
arenderer if there is one.

Component, Renderer, and Tag Combinations

When you create a custom component, you can create a custom renderer to go with it. To
associate the component with the renderer and to reference the component from the page, you
will also need a custom tag.

Although you need to write the custom component and renderer, there is no need to write code
for a custom tag (called a tag handler). If you specify the component and renderer combination,
Facelets creates the tag handler automatically.

In rare situations, you might use a custom renderer with a standard component rather than a
custom component. Or you might use a custom tag without a renderer or a component. This
section gives examples of these situations and summarizes what’s required for a custom
component, renderer, and tag.

You would use a custom renderer without a custom component if you wanted to add some
client-side validation on a standard component. You would implement the validation code with
a client-side scripting language, such as JavaScript, and then render the JavaScript with the
custom renderer. In this situation, you need a custom tag to go with the renderer so that its tag
handler can register the renderer on the standard component.

Custom components as well as custom renderers need custom tags associated with them.
However, you can have a custom tag without a custom renderer or custom component. For
example, suppose that you need to create a custom validator that requires extra attributes on the

Chapter 13 « Creating Custom Ul Components and Other Custom Objects 255

Understanding the Image Map Example

validator tag. In this case, the custom tag corresponds to a custom validator and not to a custom
component or custom renderer. In any case, you still need to associate the custom tag with a
server-side object.

Table 13-1 summarizes what you must or can associate with a custom component, custom
renderer, or custom tag.

TABLE13-1 Requirements for Custom Components, Custom Renderers, and Custom Tags

Custom Item Must Have Can Have

Custom component ~ Custom tag Custom renderer or standard renderer

Custom renderer Custom tag Custom component or standard
component

Custom JavaServer ~ Some server-side object, like a component, Custom component or standard
Faces tag a custom renderer, or custom validator component associated with a custom
renderer

Understanding the Image Map Example

256

Duke's Bookstore includes a custom image map component on the index . xhtml page. This
image map displays a selection of six book titles. When the user clicks one of the book titles in
the image map, the application goes to a page that displays the title of the selected book as well
as information about a featured book. The page allows the user to add either book (or none) to
the shopping cart.

Why Use JavaServer Faces Technology to Implement
an Image Map?

JavaServer Faces technology is an ideal framework to use for implementing this kind of image
map because it can perform the work that must be done on the server without requiring you to
create a server-side image map.

In general, client-side image maps are preferred over server-side image maps for several
reasons. One reason is that the client-side image map allows the browser to provide immediate
feedback when a user positions the mouse over a hotspot. Another reason is that client-side
image maps perform better because they don’t require round-trips to the server. However, in
some situations, your image map might need to access the server to retrieve data or to change
the appearance of non-form controls, tasks that a client-side image map cannot do.

The Java EE 6 Tutorial « January 2013

Understanding the Image Map Example

Because the image map custom component uses JavaServer Faces technology, it has the best of
both styles of image maps: It can handle the parts of the application that need to be performed
on the server, while allowing the other parts of the application to be performed on the client
side.

Understanding the Rendered HTML

Here is an abbreviated version of the form part of the HTML page that the application needs to
render:

<form id="j idt13" name="j idt13" method="post"
action="/dukesbookstore/faces/index.xhtml" ... >

<img id="j idt13:mapImage"
src="/dukesbookstore/faces/javax.faces.resource/book all.jpg?ln=images"
alt="Choose a Book from our Catalog"
usemap="#bookMap" />

<map name="bookMap">
<area alt="Duke"
coords="67,23,212,268"

shape="rect"
onmouseout=
"document.forms[@][’'j idtl3:mapImage’].src="resources/images/book all.jpg™
onmouseovers=
"document.forms[@][’'j idtl3:mapImage’].src='resources/images/book 201.jpg’"
onclick=
"document.forms[0]['bookMap current’].value='Duke’; document.forms[@].submit()"
/>
<input type="hidden" name="bookMap current"s
</map>
</form>

The img tag associates an image (book_all. jpg) with the image map referenced in the usemap
attribute value.

The map tag specifies the image map and contains a set of area tags.

Each area tag specifies a region of the image map. The onmouseover, onmouseout, and onclick
attributes define which JavaScript code is executed when these events occur. When the user
moves the mouse over a region, the onmouseover function associated with the region displays
the map with that region highlighted. When the user moves the mouse out of a region, the
onmouseout function redisplays the original image. If the user clicks on a region, the onclick
function sets the value of the input tag to the ID of the selected area and submits the page.

The input tag represents a hidden control that stores the value of the currently selected area
between client-server exchanges so that the server-side component classes can retrieve the
value.

Chapter 13 « Creating Custom Ul Components and Other Custom Objects 257

Understanding the Image Map Example

258

The server-side objects retrieve the value of bookMap_current and set the locale in the
javax.faces.context.FacesContext instance according to the region that was selected.

Understanding the Facelets Page

Here is an abbreviated form of the Facelets page that the image map component uses to generate
the HTML page shown in the preceding section. It uses custom bookstore:map and
bookstore:area tags to represent the custom components:

<h:form>

<h:graphicImage id="mapImage"
name="book_all.jpg"
library="images"
alt="#{bundle.ChooseBook}"
usemap="#bookMap" />
<bookstore:map id="bookMap"
current="map1"
immediate="true"
action="bookstore">
<f:actionListener
type="dukesbookstore.listeners.MapBookChangelListener" />
<bookstore:area id="mapl" value="#{Book201}"
onmouseover="resources/images/book 201.jpg"
onmouseout="resources/images/book_all.jpg"
targetImage="mapImage" />
<bookstore:area id="map2" value="#{Book202}"
onmouseover="resources/images/book 202.jpg"
onmouseout="resources/images/book all.jpg"
targetImage="mapImage"/>

</boékétore:map>
</h:%6;m>
The alt attribute of the h:graphicImage tag maps to the localized string "Choose a Book from
our Catalog".

The f:actionListener tag within the bookstore:map tag points to a listener class for an action
event. The processAction method of the listener places the book ID for the selected map area
into the session map. The way this event is handled is explained more in “Handling Events for
Custom Components” on page 275.

The action attribute of the bookstore:map tag specifies a logical outcome String,
"bookstore”, which by implicit navigation rules sends the application to the page
bookstore.xhtml. For more information on navigation, see the section “Configuring
Navigation Rules” on page 313.

The immediate attribute of the bookstore:map tag is set to true, which indicates that the
default javax. faces.event.ActionListener implementation should execute during the
Apply Request Values phase of the request-processing lifecycle, instead of waiting for the

The Java EE 6 Tutorial « January 2013

Understanding the Image Map Example

Invoke Application phase. Because the request resulting from clicking the map does not require
any validation, data conversion, or server-side object updates, it makes sense to skip directly to
the Invoke Application phase.

The current attribute of the bookstore:map tagis set to the default area, which is map1 (the
book My Early Years: Growing Up on Star7, by Duke).

Notice that the bookstore:area tags do not contain any of the JavaScript, coordinate, or shape
data that is displayed on the HTML page. The JavaScript is generated by the

dukesbookstore. renderers.AreaRenderer class. The onmouseover and onmouseout attribute
values indicate the image to be loaded when these events occur. How the JavaScript is generated
is explained more in “Performing Encoding” on page 265.

The coordinate, shape, and alternate text data are obtained through the value attribute, whose
value refers to an attribute in application scope. The value of this attribute is a bean, which
stores the coords, shape, and alt data. How these beans are stored in the application scope is
explained more in the next section.

Configuring Model Data

In a JavaServer Faces application, data such as the coordinates of a hotspot of an image map is
retrieved from the value attribute through a bean. However, the shape and coordinates of a
hotspot should be defined together because the coordinates are interpreted differently
depending on what shape the hotspot is. Because a component’s value can be bound only to one
property, the value attribute cannot refer to both the shape and the coordinates.

To solve this problem, the application encapsulates all of this information in a set of ImageArea
objects. These objects are initialized into application scope by the managed bean creation
facility (see “Managed Beans in JavaServer Faces Technology” on page 189). Here is part of the
managed bean declaration for the ImageArea bean corresponding to the South America
hotspot:

<managed-bean eager="true">

<managed-bean-name> Book201 </managed-bean-name>

<managed-bean-class> dukesbookstore.model.ImageArea /managed-bean-class>
<managed-bean-scope> application </managed-bean-scope>
<managed-property>

<property-name>shape</property-name>
<value>rect</value>
</managed-property>
<managed-property>

<property-name>alt</property-name>
<value>Duke</value>
</managed-property>
<managed-property>

Chapter 13 « Creating Custom Ul Components and Other Custom Objects 259

Understanding the Image Map Example

260

<property-name>coords</property-name>
<value>67,23,212,268</value>
</managed-property>
</managed-bean>

For more information on initializing managed beans with the managed bean creation facility,
see the section “Application Configuration Resource File” on page 297.

The value attributes of the bookstore:area tags refer to the beans in the application scope, as
shown in this bookstore:area tag from index.xhtml:

<bookstore:area id="mapl" value="#{Book201}"
onmouseover="resources/images/book 201.jpg"
onmouseout="resources/images/book all.jpg"
targetImage="mapImage" />

To reference the InageArea model object bean values from the component class, you
implement a getValue method in the component class. This method calls super.getValue.
The superclass of tut-install/examples/case-studies/dukes-bookstore/
src/java/dukesbookstore/components/AreaComponent.java, UIOutput, hasa getValue
method that does the work of finding the ImageArea object associated with AreaComponent.
The AreaRenderer class, which needs to render the alt, shape, and coords values from the
ImageArea object, calls the getValue method of AreaComponent to retrieve the ImageArea
object.

ImageArea iarea = (ImageArea) area.getValue();

ImageArea is a simple bean, so you can access the shape, coordinates, and alternative text values
by calling the appropriate accessor methods of ImageArea. “Creating the Renderer Class” on
page 270 explains how to do this in the AreaRenderer class.

Summary of the Image Map Application Classes

Table 13-2 summarizes all the classes needed to implement the image map component.

TABLE 13-2 Image Map Classes

Class Function

AreaSelectedEvent The javax. faces.event.ActionEvent indicating that an AreaComponent from
the MapComponent has been selected.

AreaComponent The class that defines AreaComponent, which corresponds to the bookstore:area
custom tag.

MapComponent The class that defines MapComponent, which corresponds to the bookstore:map
custom tag.

The Java EE 6 Tutorial « January 2013

Steps for Creating a Custom Component

TABLE 13-2 Image Map Classes (Continued)
Class Function
AreaRenderer This javax. faces.render.Renderer performs the delegated rendering for
AreaComponent.
ImageArea The bean that stores the shape and coordinates of the hotspots.

MapBookChangeListener Theaction listener for the MapComponent.

The Duke's Bookstore source directory, called bookstore-dir, is
tut-install/examples/case-studies/dukes-bookstore/src/java/dukesbookstore/. The
event and listener classes are located in bookstore-dir/listeners/. The component classes are
located in bookstore-dir/components/. The renderer classes are located in
bookstore-dir/renderers/. ImageArea is located in bookstore-dir/model/.

Steps for Creating a Custom Component

You can apply the following steps while developing your own custom component.

1. Create a custom component class that does the following:

a. Overrides the getFamily method to return the component family, which is used to look
up renderers that can render the component.

b. Includes the rendering code or delegates it to a renderer (explained in step 2).
c. Enables component attributes to accept expressions.

d. Queues an event on the component if the component generates events.

e. Saves and restores the component state.

2. Delegate rendering to a renderer if your component does not handle the rendering. To do
this:

a. Create a custom renderer class by extending javax. faces.render.Renderer.
b. Register the renderer to a render kit.

3. Register the component.

4. Create an event handler if your component generates events.

5. Create a taglibrary descriptor (TLD) that defines the custom tag.

See “Registering a Custom Component” on page 319 and “Registering a Custom Renderer with
aRender Kit” on page 317 for information on registering the custom component and the

renderer. The section “Using a Custom Component” on page 277 discusses how to use the
custom component in a JavaServer Faces page.

Chapter 13 « Creating Custom Ul Components and Other Custom Objects 261

Creating Custom Component Classes

Creating Custom Component Classes

262

As explained in “When to Use a Custom Component” on page 253, a component class defines
the state and behavior of a UI component. The state information includes the component’s type,
identifier, and local value. The behavior defined by the component class includes the following:

= Decoding (converting the request parameter to the component’s local value)
= Encoding (converting the local value into the corresponding markup)

= Saving the state of the component

= Updating the bean value with the local value

= Processing validation on the local value

= Queueing events

The javax.faces.component.UIComponentBase class defines the default behavior of a
component class. All the classes representing the standard components extend from
UIComponentBase. These classes add their own behavior definitions, as your custom
component class will do.

Your custom component class must either extend UIComponentBase directly or extend a class
representing one of the standard components. These classes are located in the
javax.faces.component package and their names begin with UI.

If your custom component serves the same purpose as a standard component, you should
extend that standard component rather than directly extend UIComponentBase. For example,
suppose you want to create an editable menu component. It makes sense to have this
component extend UISelectOne rather than UIComponentBase because you can reuse the
behavior already defined in UISelectOne. The only new functionality you need to define is to
make the menu editable.

Whether you decide to have your component extend UIComponentBase or a standard
component, you might also want your component to implement one or more of these
behavioral interfaces defined in the javax. faces. component package:

= ActionSource: Indicates that the component can fire a javax. faces.event.ActionEvent.

= ActionSource2: Extends ActionSource and allows component properties referencing
methods that handle action events to use method expressions as defined by the unified EL.

® EditableValueHolder: Extends ValueHolder and specifies additional features for editable
components, such as validation and emitting value-change events.

® NamingContainer: Mandates that each component rooted at this component have a unique
ID.

= StateHolder: Denotes that a component has state that must be saved between requests.

= ValueHolder: Indicates that the component maintains a local value as well as the option of
accessing data in the model tier.

The Java EE 6 Tutorial « January 2013

Creating Custom Component Classes

If your component extends UIComponentBase, it automatically implements only StateHolder.
Because all components directly or indirectly extend UIComponentBase, they all implement
StateHolder. Any component that implements StateHolder also implements the
StateHelper interface, which extends StateHolder and defines a Map-like contract that makes
it easy for components to save and restore a partial view state.

If your component extends one of the other standard components, it might also implement
other behavioral interfaces in addition to StateHolder. If your component extends UICommand,
itautomatically implements ActionSource2. If your component extends UIOutput or one of
the component classes that extend UIOutput, it automatically implements ValueHolder. If your
component extends UIInput, it automatically implements EditableValueHolder and
ValueHolder. See the JavaServer Faces API documentation to find out what the other
component classes implement.

You can also make your component explicitly implement a behavioral interface that it doesn’t
already by virtue of extending a particular standard component. For example, if you have a
component that extends UIInput and you want it to fire action events, you must make it
explicitly implement ActionSource2 because a UIInput component doesn’t automatically
implement this interface.

The Duke's Bookstore image map example has two component classes: AreaComponent and
MapComponent. The MapComponent class extends UICommand and therefore implements
ActionSource2, which means it can fire action events when a user clicks on the map. The
AreaComponent class extends the standard component UIOutput. The @FacesComponent
annotation registers the components with the JavaServer Faces implementation:

@FacesComponent ("DemoMap")
public class MapComponent extends UICommand {...}

@FacesComponent ("DemoArea")
public class AreaComponent extends UIOQutput {...}

The MapComponent class represents the component corresponding to the bookstore: map tag:

<bookstore:map id="bookMap"
current="map1"
immediate="true"
action="bookstore">

</bookstore:map>

Chapter 13 « Creating Custom Ul Components and Other Custom Objects 263

Creating Custom Component Classes

264

The AreaComponent class represents the component corresponding to the bookstore:area tag:

<bookstore:area id="mapl" value="#{Book201}"
onmouseover="resources/images/book 201.jpg"
onmouseout="resources/images/book_all.jpg"
targetImage="mapImage"/>

MapComponent has one or more AreaComponent instances as children. Its behavior consists of
the following actions:

Retrieving the value of the currently selected area

Defining the properties corresponding to the component's values
Generating an event when the user clicks on the image map
Queuing the event

Saving its state

Rendering the HTML map tag and the HTML input tag

MapComponent delegates the rendering of the HTML map and input tags to the MapRenderer
class.

AreaComponent is bound to a bean that stores the shape and coordinates of the region of the
image map. You will see how all this data is accessed through the value expression in “Creating
the Renderer Class” on page 270. The behavior of AreaComponent consists of the following:

= Retrieving the shape and coordinate data from the bean
= Setting the value of the hidden tag to the id of this component
= Rendering the area tag, including the JavaScript for the onmouseover, onmouseout, and

onclick functions

Although these tasks are actually performed by AreaRenderer, AreaComponent must delegate
the tasks to AreaRenderer. See “Delegating Rendering to a Renderer” on page 270 for more
information.

The rest of this section describes the tasks that MapComponent performs as well as the encoding
and decoding that it delegates to MapRenderer. “Handling Events for Custom Components” on
page 275 details how MapComponent handles events.

Specifying the Component Family

If your custom component class delegates rendering, it needs to override the getFamily
method of UIComponent to return the identifier of a component family, which is used to refer to
a component or set of components that can be rendered by a renderer or set of renderers.

The component family is used along with the renderer type to look up renderers that can render
the component:

The Java EE 6 Tutorial « January 2013

Creating Custom Component Classes

public String getFamily() {
return ("Map");

}

The component family identifier, Map, must match that defined by the component- family
elements included in the component and renderer configurations in the application
configuration resource file. “Registering a Custom Renderer with a Render Kit” on page 317
explains how to define the component family in the renderer configuration. “Registering a
Custom Component” on page 319 explains how to define the component family in the
component configuration.

Performing Encoding

During the Render Response phase, the JavaServer Faces implementation processes the
encoding methods of all components and their associated renderers in the view. The encoding
methods convert the current local value of the component into the corresponding markup that
represents it in the response.

The UIComponentBase class defines a set of methods for rendering markup: encodeBegin,
encodeChildren, and encodeEnd. If the component has child components, you might need to
use more than one of these methods to render the component; otherwise, all rendering should
be done in encodeEnd. Alternatively, you can use the encodeALL method, which encompasses
all the methods.

Because MapComponent is a parent component of AreaComponent, the area tags must be
rendered after the beginning map tag and before the ending map tag. To accomplish this, the
MapRenderer class renders the beginning map tag in encodeBegin and the rest of the map tag in
encodeEnd.

The JavaServer Faces implementation automatically invokes the encodeEnd method of
AreaComponent's renderer after it invokes MapRenderer's encodeBegin method and before it
invokes MapRenderer's encodeEnd method. If a component needs to perform the rendering for
its children, it does this in the encodeChildren method.

Here are the encodeBegin and encodeEnd methods of MapRenderer:

@Override
public void encodeBegin(FacesContext context, UIComponent component)
throws IOException {
if ((context == null)|| (component == null)){
throw new NullPointerException();
}
MapComponent map = (MapComponent) component;
ResponseWriter writer = context.getResponseWriter();
writer.startElement("map", map);
writer.writeAttribute("name", map.getId(), "id")

Chapter 13 « Creating Custom Ul Components and Other Custom Objects 265

Creating Custom Component Classes

266

@Override
public void encodeEnd(FacesContext context, UIComponent component)
throws IOException {
if ((context == null) || (component == null)){
throw new NullPointerException();
}
MapComponent map = (MapComponent) component;
ResponseWriter writer = context.getResponseWriter();
writer.startElement("input", map);
writer.writeAttribute("type", "hidden", null);
writer.writeAttribute("name", getName(context,map), "clientId");(
writer.endElement ("input");
writer.endElement ("map");

}

Notice that encodeBegin renders only the beginning map tag. The encodeEnd method renders
the input tag and the ending map tag.

The encoding methods accept a UIComponent argument and a
javax.faces.context.FacesContext argument. The FacesContext instance contains all the
information associated with the current request. The UIComponent argument is the component
that needs to be rendered.

The rest of the method renders the markup to the javax. faces.context.ResponseWriter
instance, which writes out the markup to the current response. This basically involves passing
the HTML tag names and attribute names to the ResponseWriter instance as strings, retrieving
the values of the component attributes, and passing these values to the ResponseWriter
instance.

The startElement method takes a String (the name of the tag) and the component to which
the tag corresponds (in this case, map). (Passing this information to the ResponseWriter
instance helps design-time tools know which portions of the generated markup are related to
which components.)

After calling startElement, you can call writeAttribute to render the tag's attributes. The
writeAttribute method takes the name of the attribute, its value, and the name of a property
or attribute of the containing component corresponding to the attribute. The last parameter can
be null, and it won't be rendered.

The name attribute value of the map tag is retrieved using the getId method of UIComponent,
which returns the component's unique identifier. The name attribute value of the input tag is
retrieved using the getName (FacesContext, UIComponent) method of MapRenderer.

The Java EE 6 Tutorial « January 2013

Creating Custom Component Classes

If you want your component to perform its own rendering but delegate to a renderer if there is
one, include the following lines in the encoding method to check whether there is a renderer
associated with this component:

if (getRendererType() != null) {
super.encodeEnd(context);
return;

}

If there is a renderer available, this method invokes the superclass's encodeEnd method, which
does the work of finding the renderer. The MapComponent class delegates all rendering to
MapRenderer, so it does not need to check for available renderers.

In some custom component classes that extend standard components, you might need to
implement other methods in addition to encodeEnd. For example, if you need to retrieve the
component’s value from the request parameters, you must also implement the decode method.

Performing Decoding

During the Apply Request Values phase, the JavaServer Faces implementation processes the
decode methods of all components in the tree. The decode method extracts a component's local
value from incoming request parameters and uses a javax. faces.convert.Converter
implementation to convert the value to a type that is acceptable to the component class.

A custom component class or its renderer must implement the decode method only if it must
retrieve the local value or if it needs to queue events. The component queues the event by calling
queueEvent.

Here is the decode method of MapRenderer:

@Override
public void decode(FacesContext context, UIComponent component) {
if ((context == null) || (component == null)) {
throw new NullPointerException();
}
MapComponent map = (MapComponent) component;
String key = getName(context, map);
String value = (String) context.getExternalContext().
getRequestParameterMap().get(key);
if (value != null)
map.setCurrent(value);
}

}

The decode method first gets the name of the hidden input field by calling

getName (FacesContext, UIComponent). It then uses that name as the key to the request
parameter map to retrieve the current value of the input field. This value represents the
currently selected area. Finally, it sets the value of the MapComponent class's current attribute to
the value of the input field.

Chapter 13 « Creating Custom Ul Components and Other Custom Objects 267

Creating Custom Component Classes

268

Enabling Component Properties to Accept
Expressions

Nearly all the attributes of the standard JavaServer Faces tags can accept expressions, whether
they are value expressions or method expressions. It is recommended that you also enable your
component attributes to accept expressions because it gives you much more flexibility when
you write Facelets pages.

To enable the attributes to accept expressions, the component class must implement getter and
setter methods for the component properties. These methods can use the facilities offered by
the StateHelper interface to store and retrieve not only the values for these properties, but also
the state of the components across multiple requests.

Because MapComponent extends UICommand, the UICommand class already does the work of
getting the ValueExpression and MethodExpression instances associated with each of the
attributes that it supports. Similarly, the UIOutput class that AreaComponent extends already
obtains the ValueExpression instances for its supported attributes. For both components, the
simple getter and setter methods store and retrieve the key values and state for the attributes, as
shown in this code fragment from AreaComponent:

enum PropertyKeys {
alt, coords, shape, targetImage;
}

public String getAlt() {
return (String) getStateHelper().eval(PropertyKeys.alt, null);
}

public void setAlt(String alt) {
getStateHelper().put(PropertyKeys.alt, alt);
}

However, if you have a custom component class that extends UIComponentBase, you will need
to implement the methods that get the ValueExpression and MethodExpression instances
associated with those attributes that are enabled to accept expressions. For example, you could
include a method that gets the ValueExpression instance for the immediate attribute:

public boolean isImmediate() {
if (this.immediateSet) {
return (this.immediate);
}
ValueExpression ve = getValueExpression("immediate")
if (ve !'= null) {
Boolean value = (Boolean) ve.getValue(
getFacesContext().getELContext());
return (value.booleanValue());
} else {
return (this.immediate);
}

The Java EE 6 Tutorial « January 2013

Creating Custom Component Classes

The properties corresponding to the component attributes that accept method expressions
must accept and return a MethodExpression object. For example, if MapComponent extended
UIComponentBase instead of UICommand, it would need to provide an action property that
returns and accepts a MethodExpression object:

public MethodExpression getAction() {
return (this.action);

public void setAction(MethodExpression action) {
this.action = action;

}

Saving and Restoring State

As described in “Enabling Component Properties to Accept Expressions” on page 268, use of
the StateHelper interface facilities allows you to save the component's state at the same time
you set and retrieve property values. The StateHelper implementation allows partial state
saving: it saves only the changes in the state since the initial request, not the entire state, because
the full state can be restored during the Restore View phase.

Component classes that implement StateHolder may prefer to implement the
saveState(FacesContext) and restoreState(FacesContext, Object) methods to help the
JavaServer Faces implementation save and restore the full state of components across multiple
requests.

To save a set of values, you can implement the saveState (FacesContext) method. This
method is called during the Render Response phase, during which the state of the response is
saved for processing on subsequent requests. Here is a hypothetical method from
MapComponent, which has only one attribute, current:

@Override

public Object saveState(FacesContext context) {
Object values[] = new Object[2];
values[0] = super.saveState(context);
values[1l] = current;
return (values);

}

This method initializes an array, which will hold the saved state. It next saves all of the state
associated with the component.

A component that implements StateHolder may also provide an implementation for
restoreState(FacesContext, Object), which restores the state of the component to that
saved with the saveState (FacesContext) method. The restoreState(FacesContext,
Object) method is called during the Restore View phase, during which the JavaServer Faces
implementation checks whether there is any state that was saved during the last Render
Response phase and needs to be restored in preparation for the next postback.

Chapter 13 « Creating Custom Ul Components and Other Custom Objects 269

Delegating Rendering to a Renderer

Here is a hypothetical restoreState(FacesContext, Object) method from MapComponent:

public void restoreState(FacesContext context, Object state) {

Object values[] = (Object[]) state;
super.restoreState(context, values[0]);
current = (String) values[1l];

}

This method takes a FacesContext and an Object instance, representing the array that is
holding the state for the component. This method sets the component’s properties to the values
saved in the Object array.

Whether or not you implement these methods in a component class, you can use the
javax.faces.STATE_SAVING_METHOD context parameter to specify in the deployment
descriptor where you want the state to be saved: either client or server. If state is saved on the
client, the state of the entire view is rendered to a hidden field on the page. By default, the state is
saved on the server.

The web applications in the Duke's Forest case study save their view state on the client.

Saving state on the client uses more bandwidth as well as more client resources, while saving it
on the server uses more server resources. You may also want to save state on the client if you
expect your users to disable cookies.

Delegating Rendering to a Renderer

270

Both MapComponent and AreaComponent delegate all of their rendering to a separate renderer.
The section “Performing Encoding” on page 265 explains how MapRenderer performs the
encoding for MapComponent. This section explains in detail the process of delegating rendering
to arenderer using AreaRenderer, which performs the rendering for AreaComponent.

To delegate rendering, you perform these tasks:

m Create the Renderer class.

= Register the renderer with a render kit by using the @FacesRenderer annotation (or by
using the application configuration resource file, as explained in “Registering a Custom
Renderer with a Render Kit” on page 317).

= Identify the renderer type in the @FacesRenderer annotation.

Creating the Renderer Class

When delegating rendering to a renderer, you can delegate all encoding and decoding to the
renderer, or you can choose to do part of it in the component class. The AreaComponent class
delegates encoding to the AreaRenderer class.

The Java EE 6 Tutorial « January 2013

Delegating Rendering to a Renderer

The renderer class begins with a @FacesRenderer annotation:

@FacesRenderer(componentFamily = "Area"

rendererType = "dukesbookstore.renderers.AreaRenderer")

public class AreaRenderer extends Renderer {

The @FacesRenderer annotation registers the renderer class with the JavaServer Faces
implementation as a renderer class. The annotation identifies the component family as well as
the renderer type.

To perform the rendering for AreaComponent, AreaRenderer must implement an encodeEnd
method. The encodeEnd method of AreaRenderer retrieves the shape, coordinates, and
alternative text values stored in the ImageArea bean that is bound to AreaComponent. Suppose
that the area tag currently being rendered has a value attribute value of "book203". The
following line from encodeEnd gets the value of the attribute "book203" from the FacesContext
instance.

ImageArea ia = (ImageArea)area.getValue();

The attribute value is the ImageArea bean instance, which contains the shape, coords,and alt
values associated with the book203 AreaComponent instance. “Configuring Model Data” on
page 259 describes how the application stores these values.

After retrieving the ImageArea object, the method renders the values for shape, coords, and
alt by simply calling the associated accessor methods and passing the returned values to the
javax.faces.context.ResponseWriter instance, as shown by these lines of code, which write
out the shape and coordinates:

writer.startElement("area", area);
writer.writeAttribute("alt", iarea.getAlt(), "alt");
writer.writeAttribute("coords", iarea.getCoords(), "coords");
writer.writeAttribute("shape", iarea.getShape(), "shape");

The encodeEnd method also renders the JavaScript for the onmouseout, onmouseover, and

onclick attributes. The Facelets page need only provide the path to the images that are to be
loaded during an onmouseover or onmouseout action:

<bookstore:area id="map3" value="#{Book203}"
onmouseover="resources/images/book 203.jpg"
onmouseout="resources/images/book all.jpg"
targetImage="mapImage"/>
The AreaRenderer class takes care of generating the JavaScript for these actions, as shown in the
following code from encodeEnd. The JavaScript that AreaRenderer generates for the onclick
action sets the value of the hidden field to the value of the current area's component ID and
submits the page.

sb = new StringBuffer("document.forms[0@]['").append(targetImageld).
append("'].src="");
sb.append(

Chapter 13 « Creating Custom Ul Components and Other Custom Objects 271

Delegating Rendering to a Renderer

272

getURI(context,

(String) area.getAttributes().get("onmouseout")));
sb.append("'");
writer.writeAttribute("onmouseout", sb.toString(), "onmouseout");
sb = new StringBuffer("document.forms[@]['").append(targetImageld).

append("’1.src="");
sb.append(

getURI(context,

(String) area.getAttributes().get("onmouseover")));
sb.append("'");
writer.writeAttribute("onmouseover", sb.toString(), "onmouseover")
sb = new StringBuffer("document.forms[0]['");
sb.append(getName(context, area));
sb.append("’].value="");
sb.append(iarea.getAlt());
sb.append("’; document.forms[@].submit()");
writer.writeAttribute("onclick", sb.toString(), "value");
writer.endElement("area");

By submitting the page, this code causes the JavaServer Faces lifecycle to return back to the
Restore View phase. This phase saves any state information, including the value of the hidden
field, so that a new request component tree is constructed. This value is retrieved by the decode
method of the MapComponent class. This decode method is called by the JavaServer Faces
implementation during the Apply Request Values phase, which follows the Restore View phase.

In addition to the encodeEnd method, AreaRenderer contains an empty constructor. This is
used to create an instance of AreaRenderer so that it can be added to the render kit.

The @FacesRenderer annotation registers the renderer class with the JavaServer Faces
implementation as a renderer class. The annotation identifies the component family as well as
the renderer type.

Identifying the Renderer Type

During the Render Response phase, the JavaServer Faces implementation calls the
getRendererType method of the component's tag handler to determine which renderer to
invoke, if there is one.

You identify the type associated with the renderer in the rendererType element of the
@FacesRenderer annotation for AreaRenderer as well as in the renderer-type element of the
tag library descriptor file.

The Java EE 6 Tutorial « January 2013

Implementing an Event Listener

Implementing an Event Listener

The JavaServer Faces technology supports action events and value-change events for
components.

Action events occur when the user activates a component that implements
javax.faces.component.ActionSource. These events are represented by the class
javax.faces.event.ActionEvent.

Value-change events occur when the user changes the value of a component that implements
javax.faces.component.EditableValueHolder. These events are represented by the class
javax.faces.event.ValueChangeEvent.

One way to handle events is to implement the appropriate listener classes. Listener classes that
handle the action events in an application must implement the interface
javax.faces.event.ActionListener. Similarly, listeners that handle the value-change events
must implement the interface javax. faces.event.ValueChangeListener.

This section explains how to implement the two listener classes.

To handle events generated by custom components, you must implement an event listener and
an event handler and manually queue the event on the component. See “Handling Events for
Custom Components” on page 275 for more information.

Note - You do not need to create an ActionListener implementation to handle an event that
results solely in navigating to a page and does not perform any other application-specific
processing. See “Writing a Method to Handle Navigation” on page 201 for information on how
to manage page navigation.

Implementing Value-Change Listeners

A javax.faces.event.ValueChangeListener implementation must include a
processValueChange (ValueChangeEvent) method. This method processes the specified
value-change event and is invoked by the JavaServer Faces implementation when the
value-change event occurs. The ValueChangeEvent instance stores the old and the new values
of the component that fired the event.

In the Duke's Bookstore case study, the NameChanged listener implementation is registered on
the name UIInput component on the bookcashier.xhtml page. This listener stores into session
scope the name the user entered in the text field corresponding to the name component.

The bookreceipt.xhtml subsequently retrieves the name from the session scope:

Chapter 13 « Creating Custom Ul Components and Other Custom Objects 273

Implementing an Event Listener

274

<h:outputFormat title="thanks"
value="#{bundle.ThankYouParam}">
<f:param value="#{sessionScope.name}"/>
</h:outputFormat>

When the bookreceipt.xhtml page is loaded, it displays the name inside the message:

"Thank you, {0}, for purchasing your books from us."

Here is part of the NameChanged listener implementation:

public class NameChanged extends Object implements ValueChangeListener {

@Override
public void processValueChange(ValueChangeEvent event)
throws AbortProcessingException {

if (null != event.getNewValue()) {
FacesContext.getCurrentInstance().getExternalContext().
getSessionMap().put("name", event.getNewValue());

}

When the user enters the name in the text field, a value-change event is generated, and the
processValueChange (ValueChangeEvent) method of the NameChanged listener
implementation is invoked. This method first gets the ID of the component that fired the event
from the ValueChangeEvent object, and it puts the value, along with an attribute name, into the
session map of the FacesContext instance.

“Registering a Value-Change Listener on a Component” on page 181 explains how to register
this listener onto a component.

Implementing Action Listeners

A javax.faces.event.ActionListener implementation mustinclude a
processAction(ActionEvent) method. The processAction(ActionEvent) method processes
the specified action event. The JavaServer Faces implementation invokes the
processAction(ActionEvent) method when the ActionEvent occurs.

The Duke's Bookstore case study uses two ActionListener implementations,
LinkBookChangeListener and MapBookChangeListener. See “Handling Events for Custom
Components” on page 275 for details on MapBookChangeListener.

“Registering an Action Listener on a Component” on page 182 explains how to register this
listener onto a component.

The Java EE 6 Tutorial « January 2013

Handling Events for Custom Components

Handling Events for Custom Components

As explained in “Implementing an Event Listener” on page 273, events are automatically
queued on standard components that fire events. A custom component, on the other hand,
must manually queue events from its decode method if it fires events.

“Performing Decoding” on page 267 explains how to queue an event on MapComponent using its
decode method. This section explains how to write the class that represents the event of clicking
on the map and how to write the method that processes this event.

As explained in “Understanding the Facelets Page” on page 258, the actionListener attribute
of the bookstore:map tag points to the MapBookChangeListener class. The listener class's
processAction method processes the event of clicking the image map. Here is the
processAction method:

@Override
public void processAction(ActionEvent actionEvent)
throws AbortProcessingException {

AreaSelectedEvent event = (AreaSelectedEvent) actionEvent;

String current = event.getMapComponent().getCurrent();

FacesContext context = FacesContext.getCurrentInstance();

String bookId = books.get(current);

context.getExternalContext().getSessionMap().put("bookId", bookId);
}

When the JavaServer Faces implementation calls this method, it passes in an ActionEvent
object that represents the event generated by clicking on the image map. Next, it casts it to an
AreaSelectedEvent object (see
tut-install/examples/case-studies/dukes-bookstore/src/java/dukesbookstore/
listeners/AreaSelectedEvent.java). Then this method gets the MapComponent associated
with the event. It then gets the value of the MapComponent object's current attribute, which
indicates the currently selected area. The method then uses the value of the current attribute to
get the book's ID value from a HashMap object, which is constructed elsewhere in the
MapBookChangeListener class. Finally the method places the ID obtained from the HashMap
object into the session map for the application.

In addition to the method that processes the event, you need the event class itself. This class is
very simple to write: You have it extend ActionEvent and provide a constructor that takes the
component on which the event is queued and a method that returns the component.

Chapter 13 « Creating Custom Ul Components and Other Custom Objects 275

Defining the Custom Component Tag in a Tag Library Descriptor

Here is the AreaSelectedEvent class used with the image map:

public class AreaSelectedEvent extends ActionEvent {
public AreaSelectedEvent(MapComponent map) {
super(map) ;
}
public MapComponent getMapComponent() {
return ((MapComponent) getComponent());
}
}

As explained in the section “Creating Custom Component Classes” on page 262, in order for
MapComponent to fire events in the first place, it must implement ActionSource. Because
MapComponent extends UICommand, it also implements ActionSource.

Defining the Custom Component Tag in a Tag Library

Descriptor

276

To use a custom tag, you declare it in a Tag Library Descriptor (TLD). The TLD file defines how
the custom tag is used in a JavaServer Faces page. The web container uses the TLD to validate
the tag. The set of tags that are part of the HTML render kit are defined in the HTML_BASIC
TLD, available at http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/
renderkitdocs/.

The TLD file name must end with taglib.xml. In the Duke's Bookstore case study, the custom
tags area and map are defined in the file web/WEB- INF/bookstore. taglib.xml.

All tag definitions must be nested inside the facelet-taglib element in the TLD. Each tag is
defined by a tag element that specifies a particular combination of a component type and a
renderer type. Here are the tag definitions for the area and map components:

<facelet-taglib xmlns="http://java.sun.com/xml/ns/javaee"
. >
<namespace>http://dukesbookstore</namespace>
<tag>
<tag-name>area</tag-name>
<component>
<component-type>DemoArea</component-type>
<renderer-type>DemoArea</renderer-type>
</component>
</tag>
<tag>
<tag-name>map</tag-name>
<component>
<component -type>DemoMap</component-type>
<renderer-type>DemoMap</renderer-type>
</component>
</tag>
</facelet-taglib>

The Java EE 6 Tutorial « January 2013

http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/renderkitdocs/
http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/renderkitdocs/

Using a Custom Component

The component - type element specifies the name defined in the @FacesComponent annotation,
while the renderer-type element specifies the rendererType defined in the @FacesRenderer
annotation.

The facelet-taglib element must also include a namespace element, which defines the
namespace to be specified in pages that use the custom component. See “Using a Custom
Component” on page 277 for information on specifying the namespace in pages.

The TLD file is located in the WEB- INF directory. In addition, an entry is included in the web
deployment descriptor (web.xml) to identify the custom tag library descriptor file, as follows:

<context-param>
<param-name>javax.faces.FACELETS LIBRARIES</param-name>
<param-value>/WEB-INF/bookstore.taglib.xml</param-value>
</context-param>

Using a Custom Component

To use a custom component in a page, you add the custom tag associated with the component
to the page.

As explained in “Defining the Custom Component Tag in a Tag Library Descriptor” on

page 276, you must ensure that the TLD that defines any custom tags is packaged in the
application if you intend to use the tags in your pages. TLD files are stored in the WEB- INF/
directory or subdirectory of the WAR file or in the META- INF/ directory or subdirectory of a tag
library packaged in a JAR file.

You also need to include a namespace declaration in the page so that the page has access to the
tags. The custom tags for the Duke's Bookstore case study are defined in
bookstore.taglib.xml. The ui:composition tagon the index.xhtml page declares the
namespace defined in the tag library:

<ui:composition xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:bookstore="http://dukesbookstore"
template="./bookstoreTemplate.xhtml">

Finally, to use a custom component in a page, you add the component's tag to the page.

Chapter 13 « Creating Custom Ul Components and Other Custom Objects 277

Using a Custom Component

278

The Duke's Bookstore case study includes a custom image map component on the index.xhtml
page. This component allows you to select a book by clicking on a region of the image map:

<h:graphicImage id="mapImage"
name="book_all.jpg"
library="images
alt="#{bundle.chooselLocale}"
usemap="#bookMap" />
<bookstore:map id="bookMap"
current="mapl"
immediate="true"
action="bookstore">
<f:actionListener
type="dukesbookstore.listeners.MapBookChangeListener" />
<bookstore:area id="mapl" value="#{Book201}"
onmouseover="resources/images/book 201.jpg"
onmouseout="resources/images/book _all.jpg"
targetImage="mapImage" />

<bookstore:area id="map6" value="#{Book207}"
onmouseover="resources/images/book 207.jpg"
onmouseout="resources/images//book_all.jpg"
targetImage="mapImage" />
</bookstore:map>

The standard h:graphicImage tag associates an image (book_all. jpg) with an image map that
is referenced in the usemap attribute value.

The custom bookstore:map tag that represents the custom component, MapComponent,
specifies the image map, and contains a set of area tags. Each custom bookstore:area tag
represents a custom AreaComponent and specifies a region of the image map.

On the page, the onmouseover and onmouseout attributes specify the image that is displayed
when the user performs the actions described by the attributes. The custom renderer also
renders an onclick attribute.

In the rendered HTML page, the onmouseover, onmouseout, and onclick attributes define
which JavaScript code is executed when these events occur. When the user moves the mouse
over a region, the onmouseover function associated with the region displays the map with that
region highlighted. When the user moves the mouse out of a region, the onmouseout function
redisplays the original image. When the user clicks a region, the onclick function sets the value
of ahidden input tag to the ID of the selected area and submits the page.

When the custom renderer renders these attributes in HTML, it also renders the JavaScript
code. The custom renderer also renders the entire onclick attribute rather than let the page
author set it.

The custom renderer that renders the HTML map tag also renders a hidden input component
that holds the current area. The server-side objects retrieve the value of the hidden input field
and set the locale in the FacesContext instance according to which region was selected.

The Java EE 6 Tutorial « January 2013

Creating and Using a Custom Converter

Creating and Using a Custom Converter

A JavaServer Faces converter class converts strings to objects and objects to strings as required.
Several standard converters are provided by JavaServer Faces for this purpose. See for more
information on these included converters.

As explained in “Conversion Model” on page 220, if the standard converters included with
JavaServer Faces cannot perform the data conversion that you need, you can create a custom
converter to perform this specialized conversion. This implementation, at a minimum, must
define how to convert data both ways between the two views of the data described in
“Conversion Model” on page 220.

All custom converters must implement the javax. faces.convert.Converter interface. This
section explains how to implement this interface to perform a custom data conversion.

The Duke's Bookstore case study uses a custom Converter implementation, located in
tut-install/examples/case-studies/dukes-bookstore/src/java/dukesbookstore/
converters/CreditCardConverter. java, to convert the data entered in the Credit Card
Number field on the bookcashier.xhtml page. It strips blanks and hyphens from the text string
and formats it so that a blank space separates every four characters.

Another common use case for a custom converter is in a drop-down menu for a nonstandard
object type. In the Duke's Tutoring case study, the Student and Guardian entities require a
custom converter so they can be converted to and from a UISelectItems input component.

Creating a Custom Converter

The CreditCardConverter custom converter class is created as follows:

@FacesConverter("ccno")
public class CreditCardConverter implements Converter {

}

The @FacesConverter annotation registers the custom converter class as a converter with the
name of ccno with the JavaServer Faces implementation. Alternatively, you can register the
converter with entries in the application configuration resource file, as shown in “Registering a
Custom Converter” on page 313.

To define how the data is converted from the presentation view to the model view, the
Converter implementation must implement the getAsObject (FacesContext, UIComponent,
String) method from the Converter interface. Here is the implementation of this method
from CreditCardConverter:

@Override
public Object getAsObject(FacesContext context,
UIComponent component, String newValue)

Chapter 13 « Creating Custom Ul Components and Other Custom Objects 279

Creating and Using a Custom Converter

280

throws ConverterException {

String convertedValue = null;
if (newValue == null) {
return newValue;
}
// Since this is only a String to String conversion,
// this conversion does not throw ConverterException.

convertedValue = newValue.trim();
if ((convertedValue.contains("-")) ||
(convertedValue.contains(" "))) {
char[] input = convertedValue.toCharArray();
StringBuilder builder = new StringBuilder(input.length);
for (int i = 0; i < input.length; ++i) {

if (input[i] =="-" || input[i] =="") {
continue;
} else {

builder.append(input[il);
}
}
convertedValue = builder.toString();
}
return convertedValue;

}

During the Apply Request Values phase, when the components’ decode methods are processed,
the JavaServer Faces implementation looks up the component’s local value in the request and
calls the getAsObject method. When calling this method, the JavaServer Faces implementation
passes in the current FacesContext instance, the component whose data needs conversion, and
thelocal value as a String. The method then writes the local value to a character array, trims the
hyphens and blanks, adds the rest of the characters to a String, and returns the String.

To define how the data is converted from the model view to the presentation view, the
Converter implementation must implement the getAsString(FacesContext, UIComponent,
Object) method from the Converter interface. Here is an implementation of this method:

@Override

public String getAsString(FacesContext context,
UIComponent component, Object value)
throws ConverterException {

String inputVal = null;
if (value == null) {
return null;

}
// value must be of a type that can be cast to a String.
try {

inputVal = (String)value;
} catch (ClassCastException ce) {
FacesMessage errMsg = new FacesMessage(CONVERSION ERROR MESSAGE ID);
FacesContext.getCurrentInstance().addMessage(null, errMsg);
throw new ConverterException(errMsg.getSummary());
}

// insert spaces after every four characters for better

The Java EE 6 Tutorial « January 2013

Creating and Using a Custom Converter

// readability if they are not already present.
char[] input = inputVal.toCharArray();
StringBuilder builder = new StringBuilder(input.length + 3);
for (int i = 0; i < input.length; ++i) {
if ((1%4) ==004&8%1 !=0) {
if (input[il !'= "7 || input[i] '= '-"){
builder.append(" ");
// if there are any S
} else if (input[i] == "-") {
builder.append(" ");

convert them to blanks.

}
}
builder.append(input[i]);
}
String convertedValue = builder.toString();
return convertedValue;

}

During the Render Response phase, in which the components' encode methods are called, the
JavaServer Faces implementation calls the getAsString method in order to generate the
appropriate output. When the JavaServer Faces implementation calls this method, it passes in
the current FacesContext, the UIComponent whose value needs to be converted, and the bean
value to be converted. Because this converter does a String-to-String conversion, this method
can cast the bean value toa String.

If the value cannot be converted to a String, the method throws an exception, passing an error
message from the resource bundle that is registered with the application. “Registering
Application Messages” on page 308 explains how to register custom error messages with the
application.

If the value can be converted to a String, the method reads the String to a character array and
loops through the array, adding a space after every four characters.

You can also create a custom converter with a @FacesConverter annotation that specifies the
forClass attribute, as shown in the following example from the Duke's Tutoring case study:

@FacesConverter(forClass=Guardian.class)
public class GuardianConverter implements Converter { ...

The forClass attribute registers the converter as the default converter for the Guardian class.
Therefore, whenever that class is specified by a value attribute of an input component, the
converter is invoked automatically.

A converter class can be a separate Java POJO class, as in the Duke's Bookstore and Duke's
Tutoring case studies. If it needs to access objects defined in a managed bean class, however, it
can be a subclass of a JavaServer Faces managed bean, as in the address - book persistence
example and the Duke's Forest case study, where the converters use an enterprise bean that is
injected into the managed bean class.

Chapter 13 « Creating Custom Ul Components and Other Custom Objects 281

Creating and Using a Custom Converter

282

Using a Custom Converter

To apply the data conversion performed by a custom converter to a particular component's
value, you must do one of the following:

= Reference the converter from the component tag's converter attribute.

= Nestan f:converter taginside the component’s tag and reference the custom converter
from one of the f: converter tag’s attributes.

If you are using the component tag’s converter attribute, this attribute must reference the
Converter implementation’s identifier or the fully-qualified class name of the converter.
“Creating and Using a Custom Converter” on page 279 explains how to implement a custom
converter.

The identifier for the credit card converter class is ccno, the value specified in the
@FacesConverter annotation:

@FacesConverter("ccno")
public class CreditCardConverter implements Converter {

Therefore, the CreditCardConverter instance can be registered on the ccno component as
shown in the following example:

<h:inputText id="ccno"
size="19"
converter="ccno"
value="#{cashier.creditCardNumber}"
required="true"
requiredMessage="#{bundle.ReqCreditCard}">

</h:inputText>

By setting the converter attribute of a component’s tag to the converter’s identifier or its class
name, you cause that component’s local value to be automatically converted according to the
rules specified in the Converter implementation.

Instead of referencing the converter from the component tag’s converter attribute, you can
reference the converter from an f: converter tag nested inside the component’s tag. To
reference the custom converter using the f: converter tag, you do one of the following:

= Setthe f:converter tags converterId attribute to the Converter implementation’s
identifier defined in the @FacesConverter annotation or in the application configuration
resource file. This method is shown in bookcashier.xhtml:

<h:inputText id="ccno"
size="19"
value="#{cashier.creditCardNumber}"
required="true"
requiredMessage="#{bundle.ReqCreditCard}" >
<f:converter converterId="ccno"/>

The Java EE 6 Tutorial « January 2013

Creating and Using a Custom Validator

<f:validateRegex
pattern="\d{16}|\d{4} \d{4} \d{4} \d{4}|\d{4}-\d{4}-\d{4}-\d{4}" />
</h:inputText>
= Bind the Converter implementation to a managed bean property using the f: converter
tag’s binding attribute, as described in “Binding Converters, Listeners, and Validators to
Managed Bean Properties” on page 293.

The JavaServer Faces implementation calls the converter's getAsObject method to strip spaces
and hyphens from the input value. The getAsString method is called when the
bookcashier.xhtml page is redisplayed; this happens if the user orders more than $100 worth
of books.

In the Duke's Tutoring case study, each converter is registered as the converter for a particular
class. The converter is automatically invoked whenever that class is specified by a value
attribute of an input component. In the following example, the itemValue attribute
(highlighted in bold) calls the converter for the Guardian class:

<h:selectManylListbox id="selectGuardiansMenu"
value="#{guardianManager.selectedGuardians}"

<f:selectItems value="#{guardianManager.allGuardians}"
var="selectedGuardian"
itemLabel="#{selectedGuardian.name}"
itemValue="#{selectedGuardian}" />
</h:selectManyListbox>

Creating and Using a Custom Validator

If the standard validators or Bean Validation don’t perform the validation checking you need,
you can create a custom validator to validate user input. As explained in “Validation Model” on
page 222, there are two ways to implement validation code:

= Implement a managed bean method that performs the validation.

= Provide an implementation of the javax. faces.validator.Validator interface to
perform the validation.

“Writing a Method to Perform Validation” on page 202 explains how to implement a managed
bean method to perform validation. The rest of this section explains how to implement the
Validator interface.

If you choose to implement the Validator interface and you want to allow the page author to
configure the validator’s attributes from the page, you also must specify a custom tag for
registering the validator on a component.

If you prefer to configure the attributes in the Validator implementation, you can forgo
specifying a custom tag and instead let the page author register the validator on a component
using the f:validator tag, as described in “Using a Custom Validator” on page 287.

Chapter 13 « Creating Custom Ul Components and Other Custom Objects 283

Creating and Using a Custom Validator

You can also create a managed bean property that accepts and returns the Validator
implementation you create, as described in “Writing Properties Bound to Converters,
Listeners, or Validators” on page 199. You can use the f:validator tag’s binding attribute to
bind the Validator implementation to the managed bean property.

Usually, you will want to display an error message when data fails validation. You need to store
these error messages in a resource bundle.

After creating the resource bundle, you have two ways to make the messages available to the
application. You can queue the error messages onto the FacesContext programmatically, or
you can register the error messages in the application configuration resource file, as explained
in “Registering Application Messages” on page 308.

For example, an e-commerce application might use a general-purpose custom validator called
FormatValidator.java to validate input data against a format pattern that is specified in the
custom validator tag. This validator would be used with a Credit Card Number field on a
Facelets page. Here is the custom validator tag:

<mystore:formatValidator
formatPatterns="9999999999999999|9999 9999 9999 9999|9999-9999-9999-9999"/>

According to this validator, the data entered in the field must be one of the following:

= A 16-digit number with no spaces
= A 16-digit number with a space between every four digits
= A 16-digit number with hyphens between every four digits

The f:validateRegex tag makes a custom validator unnecessary in this situation. However, the
rest of this section describes how this validator would be implemented and how to specify a
custom tag so that the page author could register the validator on a component.

Implementing the Validator Interface

Avalidator implementation must contain a constructor, a set of accessor methods for any
attributes on the tag, and a validate method, which overrides the validate method of the
Validator interface.

The hypothetical FormatVvalidator class also defines accessor methods for setting the
formatPatterns attribute, which specifies the acceptable format patterns for input into the
fields. The setter method calls the parseFormatPatterns method, which separates the
components of the pattern string into a string array, formatPatternsList.

public String getFormatPatterns() {
return (this.formatPatterns);

public void setFormatPatterns(String formatPatterns) {

this.formatPatterns = formatPatterns;
parseFormatPatterns();

284 The Java EE 6 Tutorial « January 2013

Creating and Using a Custom Validator

In addition to defining accessor methods for the attributes, the class overrides the validate
method of the Validator interface. This method validates the input and also accesses the
custom error messages to be displayed when the String is invalid.

The validate method performs the actual validation of the data. It takes the FacesContext
instance, the component whose data needs to be validated, and the value that needs to be
validated. A validator can validate only data of a component that implements
javax.faces.component.EditableValueHolder.

Here is an implementation of the validate method:

@FacesValidator
public class FormatValidator implements Validator, StateHolder {

public void validate(FacesContext context, UIComponent component,
Object toValidate) {

boolean valid = false;

String value = null;

if ((context == null) || (component == null)) {
throw new NullPointerException();

if (!(component instanceof UIInput)) {
return;

if (null == formatPatternsList || null == toValidate) {
return;

}
value = toValidate.toString();
// validate the value against the list of valid patterns.
Iterator patternIt = formatPatternsList.iterator();
while (patternIt.hasNext()) {
valid = isFormatValid(
((String)patternIt.next()), value);
if (valid) {
break;
}

}
if (tvalid) {
FacesMessage errMsg =
new FacesMessage(FORMAT_ INVALID MESSAGE_ID);
FacesContext.getCurrentInstance().addMessage(null, errMsg);
throw new ValidatorException(errMsg);

}

The @FacesValidator annotation registers the FormatValidator class as a validator with the
JavaServer Faces implementation. The validate method gets the local value of the component
and converts it to a String. It then iterates over the formatPatternsList list, which is the list of
acceptable patterns that was parsed from the formatPatterns attribute of the custom validator
tag.

While iterating over the list, this method checks the pattern of the component’s local value
against the patterns in the list. If the pattern of the local value does not match any pattern in the

Chapter 13 « Creating Custom Ul Components and Other Custom Objects 285

Creating and Using a Custom Validator

286

list, this method generates an error message. It then creates a
javax.faces.application.FacesMessage and queues it on the FacesContext for display
during the Render Response phase, using a String that represents the key in the Properties
file:

public static final String FORMAT INVALID MESSAGE ID =
"FormatInvalid"

}

Finally, the method passes the message to the constructor of
javax.faces.validator.ValidatorException.

When the error message is displayed, the format pattern will be substituted for the {0} in the
error message, which, in English, is as follows:

Input must match one of the following patterns: {0}

You may wish to save and restore state for your validator, although state saving is not usually
necessary. To do so, you will need to implement the StateHolder interface in addition to the
Validator interface. To implement StateHolder, you would need to implement its four
methods: saveState (FacesContext), restoreState(FacesContext, Object), isTransient,
and setTransient(boolean). See “Saving and Restoring State” on page 269 for more
information.

Specifying a Custom Tag

If you implemented a Validator interface rather than implementing a managed bean method
that performs the validation, you need to do one of the following:

= Allow the page author to specify the Validator implementation to use with the
fivalidator tag. In this case, the Validator implementation must define its own
properties. “Using a Custom Validator” on page 287 explains how to use the f:validator
tag.

= Specify a custom tag that provides attributes for configuring the properties of the validator
from the page.

To specify a custom tag, you need to add the tag to the tag library descriptor for the application,
bookstore.taglib.xml.

<tag>
<tag-name>formatValidator</tag-name>
<validator>
<validator-id>formatValidator</validator-id>
<validator-class>dukesbookstore.validators.FormatValidator</validator-class>
</validator>
</tag>

The Java EE 6 Tutorial « January 2013

Creating and Using a Custom Validator

The tag-name element defines the name of the tag as it must be used in a Facelets page. The
validator-id element identifies the custom validator. The validator-class element wires
the custom tag to its implementation class.

“Using a Custom Validator” on page 287 explains how to use the custom validator tag on the
page.

Using a Custom Validator

To register a custom validator on a component, you must do one of the following:

= Nest the validator’s custom tag inside the tag of the component whose value you want to be
validated.

= Nest the standard f:validator tag within the tag of the component and reference the
custom Validator implementation from the f:validator tag.

Here is a hypothetical custom formatValidator tag for the Credit Card Number field, nested
within the h:inputText tag:

<h:inputText id="ccno" size="19"

required="true">
<mystore:formatValidator
formatPatterns="9999999999999999|9999 9999 9999 9999|9999-9999-9999-9999" />
</h:inputText>
<h:message styleClass="validationMessage" for="ccno"/>

This tag validates the input of the ccno field against the patterns defined by the page author in
the formatPatterns attribute.

You can use the same custom validator for any similar component by simply nesting the custom
validator tag within the component tag.

If the application developer who created the custom validator prefers to configure the attributes
in the Validator implementation rather than allow the page author to configure the attributes
from the page, the developer will not create a custom tag for use with the validator.

In this case, the page author must nest the f:validator tag inside the tag of the component
whose data needs to be validated. Then the page author needs to do one of the following:

= Setthe f:validator tags validatorlId attribute to the ID of the validator that is defined in
the application configuration resource file.

= Bind the custom Validator implementation to a managed bean property using the
f:validator tag’s binding attribute, as described in “Binding Converters, Listeners, and
Validators to Managed Bean Properties” on page 293.

Chapter 13 « Creating Custom Ul Components and Other Custom Objects 287

Binding Component Values and Instances to Managed Bean Properties

The following tag registers a hypothetical validator on a component using a validator tagand
references the ID of the validator:

<h:inputText id="name" value="#{CustomerBean.name}"
size="10" ... >
<f:validator validatorId="customvalidator" />

</h:inputText>

Binding Component Values and Instances to Managed Bean
Properties

288

A component tag can wire its data to a managed bean by one of the following methods:

= Binding its component’s value to a bean property
= Binding its component’s instance to a bean property

To bind a component’s value to a managed bean property, a component tag’s value attribute
uses a EL value expression. To bind a component instance to a bean property, a component tag’s
binding attribute uses a value expression.

When a component instance is bound to a managed bean property, the property holds the
component’s local value. Conversely, when a component’s value is bound to a managed bean
property, the property holds the value stored in the managed bean. This value is updated with
the local value during the Update Model Values phase of the lifecycle. There are advantages to
both of these methods.

Binding a component instance to a bean property has these advantages:

= The managed bean can programmatically modify component attributes.

= The managed bean can instantiate components rather than let the page author do so.

Binding a component’s value to a bean property has these advantages:

= The page author has more control over the component attributes.

= The managed bean has no dependencies on the JavaServer Faces API (such as the
component classes), allowing for greater separation of the presentation layer from the
model layer.

= The JavaServer Faces implementation can perform conversions on the data based on the
type of the bean property without the developer needing to apply a converter.

In most situations, you will bind a component’s value rather than its instance to a bean property.
You’'ll need to use a component binding only when you need to change one of the component’s
attributes dynamically. For example, if an application renders a component only under certain
conditions, it can set the component’s rendered property accordingly by accessing the property
to which the component is bound.

The Java EE 6 Tutorial « January 2013

Binding Component Values and Instances to Managed Bean Properties

When referencing the property using the component tag’s value attribute, you need to use the
proper syntax. For example, suppose a managed bean called MyBean has this int property:

protected int currentOption = null;
public int getCurrentOption(){...}
public void setCurrentOption(int option){...}

The value attribute that references this property must have this value-binding expression:

#{myBean.currentOption}

In addition to binding a component’s value to a bean property, the value attribute can specify a
literal value or can map the component’s data to any primitive (such as int), structure (such as

an array), or collection (such as a list), independent of a JavaBeans component. Table 13-3 lists
some example value-binding expressions that you can use with the value attribute.

TABLE 13-3 Examples of Value-Binding Expressions

Value Expression

A Boolean cart.numberOfItems > 0
A property initialized from a context initialization initParam.quantity
parameter

A bean property cashierBean.name
Value in an array books [3]

Value in a collection books["fiction"]
Property of an object in an array of objects books[3].price

The next two sections explain how to use the value attribute to bind a component’s value to a
bean property or other data objects, and how to use the binding attribute to bind a component
instance to a bean property.

Binding a Component Value to a Property

To bind a component’s value to a managed bean property, you specify the name of the bean and
the property using the value attribute.

This means that the first part of the EL value expression must match the name of the managed
bean up to the first period (.) and the part of the value expression after the period must match
the property of the managed bean.

For example, in the Duke's Bookstore case study, the h:dataTable tag in bookcatalog.xhtml
sets the value of the component to the value of the books property of the stateless session bean
BookRequestBean:

Chapter 13 « Creating Custom Ul Components and Other Custom Objects 289

Binding Component Values and Instances to Managed Bean Properties

290

<h:dataTable id="books"
value="#{bookRequestBean.books}"
var="book"
headerClass="list-header"
styleClass="list-background"
rowClasses="list-row-even, list-row-odd"
border="1"
summary="#{bundle.BookCatalog}" >

The value is obtained by calling the bean's getBooks method.

If you use the application configuration resource file to configure managed beans instead of
defining them in managed bean classes, the name of the bean in the value expression must
match the managed-bean-name element of the managed bean declaration up to the first period
(.) in the expression. Similarly, the part of the value expression after the period must match the
name specified in the corresponding property-name element in the application configuration
resource file.

For example, consider this managed bean configuration, which configures the ImageArea bean
corresponding to the top left book in the image map on the index. html page of the Duke's
Bookstore case study:

<managed-bean eager="true">

<managed-bean-name> Book201 </managed-bean-name>

<managed-bean-class> dukesbookstore.model.ImageArea </managed-bean-class>
<managed-bean-scope> application </managed-bean-scope>

<managed-property>

<property-name>shape</property-name>
<value>rect</value>
</managed-property>
<managed-property>

<property-name>alt</property-name>

<value>Duke</value>
</managed-property>

This example configures a bean called Book201, which has several properties, one of which is
called shape.

The Java EE 6 Tutorial « January 2013

Binding Component Values and Instances to Managed Bean Properties

Although the bookstore:area tags on the index.xhtml page do not bind to an ImageArea
property (they bind to the bean itself), you could refer to the property using a value expression
from the value attribute of the component's tag:

<h:outputText value="#{Book201l.shape}" />

See “Configuring Managed Beans” on page 300 for information on how to configure beans in
the application configuration resource file.

Binding a Component Value to an Implicit Object

One external data source that a value attribute can refer to is an implicit object.

The bookreceipt.xhtml page of the Duke's Bookstore case study has a reference to an implicit
object:

<h:outputFormat title="thanks"
value="#{bundle.ThankYouParam}">
<f:param value="#{sessionScope.name}"/>
</h:outputFormat>

This tag gets the name of the customer from the session scope and inserts it into the
parameterized message at the key ThankYouParam from the resource bundle. For example, if the
name of the customer is Gwen Canigetit, this tag will render:

Thank you, Gwen Canigetit, for purchasing your books from us.

Retrieving values from other implicit objects is done in a similar way to the example shown in
this section. Table 13-4 lists the implicit objects to which a value attribute can refer. All of the
implicit objects, except for the scope objects, are read-only and therefore should not be used as a
value for a UIInput component.

TABLE13-4 Implicit Objects

Implicit Object Whatltls

applicationScope A Map of the application scope attribute values, keyed by attribute name

cookie A Map of the cookie values for the current request, keyed by cookie name

facesContext The FacesContext instance for the current request

header A Map of HTTP header values for the current request, keyed by header name

headerValues A Map of String arrays containing all the header values for HTTP headers in the
current request, keyed by header name

initParam A Map of the context initialization parameters for this web application

param A Map of the request parameters for this request, keyed by parameter name

Chapter 13 « Creating Custom Ul Components and Other Custom Objects 291

Binding Component Values and Instances to Managed Bean Properties

292

TABLE 13-4 Implicit Objects (Continued)
Implicit Object What Itls
paramValues A Map of String arrays containing all the parameter values for request parameters in

the current request, keyed by parameter name

requestScope A Map of the request attributes for this request, keyed by attribute name

sessionScope A Map of the session attributes for this request, keyed by attribute name

view The root UIComponent in the current component tree stored in the FacesRequest for
this request

Binding a Component Instance to a Bean Property

A component instance can be bound to a bean property using a value expression with the
binding attribute of the component’s tag. You usually bind a component instance rather than
its value to a bean property if the bean must dynamically change the component’s attributes.

Here are two tags from the bookcashier.xhtml page that bind components to bean properties:

<h:selectBooleanCheckbox id="fanClub"
rendered="false"
binding="#{cashier.specialOffer}" />
<h:outputLabel for="fanClub"
rendered="false"
binding="#{cashier.specialOfferText}"
value="#{bundle.DukeFanClub}"/>

The h:selectBooleanCheckbox tag renders a check box and binds the fanClub
UISelectBoolean component to the specialOffer property of the cashier bean. The
h:outputLabel tag binds the component representing the check box’s label to the
specialOfferText property of the cashier bean. If the application's locale is English, the
h:outputLabel tag renders:

I'd like to join the Duke Fan Club, free with my purchase of over $100

The rendered attributes of both tags are set to false, to prevent the check box and its label from
being rendered. If the customer makes a large order and clicks the Submit button, the submit
method of CashierBean sets both components’ rendered properties to true, causing the check
box and its label to be rendered.

These tags use component bindings rather than value bindings, because the managed bean
must dynamically set the values of the components’ rendered properties.

If the tags were to use value bindings instead of component bindings, the managed bean would
not have direct access to the components, and would therefore require additional code to access
the components from the FacesContext instance to change the components’ rendered
properties.

The Java EE 6 Tutorial « January 2013

Binding Converters, Listeners, and Validators to Managed Bean Properties

“Writing Properties Bound to Component Instances” on page 198 explains how to write the
bean properties bound to the example components.

Binding Converters, Listeners, and Validators to Managed
Bean Properties

As described in “Adding Components to a Page Using HTML Tags” on page 140, a page author
can bind converter, listener, and validator implementations to managed bean properties using
the binding attributes of the tags that are used to register the implementations on components.

This technique has similar advantages to binding component instances to managed bean
properties, as described in “Binding Component Values and Instances to Managed Bean
Properties” on page 288. In particular, binding a converter, listener, or validator
implementation to a managed bean property yields the following benefits:

= The managed bean can instantiate the implementation instead of allowing the page author
to do so.

= The managed bean can programmatically modify the attributes of the implementation. In
the case of a custom implementation, the only other way to modify the attributes outside of
the implementation class would be to create a custom tag for it and require the page author
to set the attribute values from the page.

Whether you are binding a converter, listener, or validator to a managed bean property, the
process is the same for any of the implementations:

= Nest the converter, listener, or validator tag within an appropriate component tag.

= Make sure that the managed bean has a property that accepts and returns the converter,
listener, or validator implementation class that you want to bind to the property.

= Reference the managed bean property using a value expression from the binding attribute
of the converter, listener, or validator tag.

For example, say that you want to bind the standard DateTime converter to a managed bean
property because you want to set the formatting pattern of the user’s input in the managed bean
rather than on the Facelets page. First, the page registers the converter onto the component by
nesting the f: convertDateTime tag within the component tag.

Chapter 13 « Creating Custom Ul Components and Other Custom Objects 293

Binding Converters, Listeners, and Validators to Managed Bean Properties

Then, the page references the property with the binding attribute of the f: convertDateTime
tag:

<h:inputText value="#{loginBean.birthDate}">
<f:convertDateTime binding="#{loginBean.convertDate}" />
</h:inputText>

The convertDate property would look something like this:

private DateTimeConverter convertDate;
public DateTimeConverter getConvertDate() {

return convertDate;

public void setConvertDate(DateTimeConverter convertDate) {
convertDate.setPattern("EEEEEEEE, MMM dd, yyyy");
this.convertDate = convertDate;

}

See “Writing Properties Bound to Converters, Listeners, or Validators” on page 199 for more
information on writing managed bean properties for converter, listener, and validator
implementations.

294 The Java EE 6 Tutorial « January 2013

CHAPTER 14

Configuring JavaServer Faces Applications

The process of building and deploying simple JavaServer Faces applications is described in
earlier chapters of this tutorial. When you create large and complex applications, however,
various additional configuration tasks are required. These tasks include the following:

= Registering managed beans with the application so that all parts of the application have
access to them

= Configuring managed beans and model beans so that they are instantiated with the proper
values when a page makes reference to them

= Defining navigation rules for each of the pages in the application so that the application has
a smooth page flow, if non-default navigation is needed

= Packaging the application to include all the pages, resources, and other files so that the
application can be deployed on any compliant container

The following topics are addressed here:

“Using Annotations to Configure Managed Beans” on page 296
“Application Configuration Resource File” on page 297
“Configuring Managed Beans” on page 300

“Registering Application Messages” on page 308

“Using Default Validators” on page 311

“Registering a Custom Validator” on page 312

“Registering a Custom Converter” on page 313

“Configuring Navigation Rules” on page 313

“Registering a Custom Renderer with a Render Kit” on page 317
“Registering a Custom Component” on page 319

“Basic Requirements of a JavaServer Faces Application” on page 320

295

Using Annotations to Configure Managed Beans

Using Annotations to Configure Managed Beans

JavaServer Faces support for bean annotations is introduced in Chapter 4, “JavaServer Faces
Technology.” Bean annotations can be used for configuring JavaServer Faces applications.

The @ManagedBean (javax. faces.bean.ManagedBean) annotation in a class automatically
registers that class as a resource with the JavaServer Faces implementation. Such a registered
managed bean does not need managed-bean configuration entries in the application
configuration resource file.

An example of using the @anagedBean annotation in a class is as follows:

@anagedBean
@SessionScoped
public class DukesBday{

}

The above code snippet shows a bean that is managed by the JavaServer Faces implementation
and is available for the length of the session. You do not need to configure the managed bean
instance in the faces-config.xml file. In effect, this is an alternative to the application
configuration resource file approach and reduces the task of configuring managed beans.

You can also define the scope of the managed bean within the class file, as shown in the above
example. You can annotate beans with request, session, application, or view scope.

All classes will be scanned for annotations at startup unless the faces-config element in the
faces-config.xml file has the metadata-complete attribute set to true.

Annotations are also available for other artifacts, such as components, converters, validators,
and renderers, to be used in place of application configuration resource file entries. These are
discussed, along with registration of custom listeners, custom validators, and custom
converters, in Chapter 13, “Creating Custom UI Components and Other Custom Objects”

Using Managed Bean Scopes

You can use annotations to define the scope in which the bean will be stored. You can specify
one of the following scopes for a bean class:

m Application (@ApplicationScoped): Application scope persists across all users’ interactions
with a web application.

= Session (@SessionScoped): Session scope persists across multiple HTTP requests in a web
application.

= View (@ViewScoped): View scope persists during a user’s interaction with a single page
(view) of a web application.

= Request (@RequestScoped): Request scope persists during a single HTTP request in a web
application.

296 The Java EE 6 Tutorial « January 2013

Application Configuration Resource File

= None (@NoneScoped): Indicates a scope is not defined for the application.

= Custom (@CustomScoped): A user-defined, nonstandard scope. Its value must be configured
asa java.util.Map. Custom scopes are used infrequently.

You may want to use @NoneScoped when a managed bean references another managed bean.
The second bean should not be in a scope (@NoneScoped) if it is supposed to be created only
when it is referenced. If you define a bean as @oneScoped, the bean is instantiated anew each
time it is referenced, so it does not get saved in any scope.

If your managed bean is referenced by the binding attribute of a component tag, you should
define the bean with a request scope. If you placed the bean in session or application scope
instead, the bean would need to take precautions to ensure thread safety, because

javax.faces.component.UIComponent instances each depend on running inside of a single
thread.

If you are configuring a bean that allows attributes to be associated with the view, you can use
the view scope. The attributes persist until the user has navigated to the next view.

Eager Application-Scoped Beans
Managed beans are lazily instantiated. That is, that they are instantiated when a request is made
from the application.

To force an application-scoped bean to be instantiated and placed in the application scope as
soon as the application is started and before any request is made, the eager attribute of the
managed bean should be set to true as shown in the following example:

@ManagedBean (eager=true)
@ApplicationScoped

Application Configuration Resource File

JavaServer Faces technology provides a portable configuration format (as an XML document)
for configuring application resources. One or more XML documents, called application
configuration resource files, may use this format to register and configure objects and resources,
and to define navigation rules for applications. An application configuration resource file is
usually named faces-config.xml.

You need an application configuration resource file in the following cases:

= To specify configuration elements for your application that are not available through
managed bean annotations, such as localized messages and navigation rules

= To override managed bean annotations when the application is deployed

The application configuration resource file must be valid against the XML schema located at
http://java.sun.com/xml/ns/javaee/web-facesconfig 2 0.xsd.

Chapter 14 - Configuring JavaServer Faces Applications 297

http://java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd

Application Configuration Resource File

298

In addition, each file must include the following information, in the following order:
= The XML version number, usually with an encoding attribute:

<?xml version="1.0" encoding="UTF-8’'?>

= A faces-config tag enclosingall the other declarations:

<faces-config version="2.0" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-facesconfig 2 0.xsd">

</faces-config>

You can have more than one application configuration resource file for an application. The
JavaServer Faces implementation finds the configuration file or files by looking for the
following:

= Aresource named /META-INF/faces-config.xml in any of the JAR files in the web
application’s /WEB- INF/1ib/ directory and in parent class loaders. If a resource with this
name exists, it is loaded as a configuration resource. This method is practical for a packaged
library containing some components and renderers. In addition, any file with a name that
ends in faces-config.xml is also considered a configuration resource and is loaded as such.

= A context initialization parameter, javax. faces.application.CONFIG_FILES, in your web
deployment descriptor file that specifies one or more (comma-delimited) paths to multiple
configuration files for your web application. This method is most often used for
enterprise-scale applications that delegate to separate groups the responsibility for
maintaining the file for each portion of a big application.

= Aresource named faces-config.xml in the /WEB-INF/ directory of your application.
Simple web applications make their configuration files available in this way.

To access the resources registered with the application, an application developer can use an
instance of the javax. faces.application.Application class, which is automatically created
for each application. The Application instance acts as a centralized factory for resources that
are defined in the XML file.

When an application starts up, the JavaServer Faces implementation creates a single instance of
the Application class and configures it with the information you provided in the application
configuration resource file.

Ordering of Application Configuration Resource Files

Because JavaServer Faces technology allows the use of multiple application configuration
resource files stored in different locations, the order in which they are loaded by the
implementation becomes important in certain situations (for example, when using
application-level objects). This order can be defined through an ordering element and its
subelements in the application configuration resource file itself. The ordering of application
configuration resource files can be absolute or relative.

The Java EE 6 Tutorial « January 2013

Application Configuration Resource File

Absolute ordering is defined by an absolute-ordering element in the file. With absolute
ordering, the user specifies the order in which application configuration resource files will be
loaded. The following example shows an entry for absolute ordering:

File my-faces-config.xml:

<faces-config>
<name>myJSF</name>
<absolute-ordering>
<name>A</name>
<name>B</name>
<name>C</name>
</absolute-ordering>
</faces-config>

In this example, A, B, and C are different application configuration resource files and are to be
loaded in the listed order.

If thereis an absolute-ordering element in the file, only the files listed by the subelement name
are processed. To process any other application configuration resource files, an others
subelement is required. In the absence of the others subelement, all other unlisted files will be
ignored at load time.

Relative ordering is defined by an ordering element and its subelements before and after.
With relative ordering, the order in which application configuration resource files will be
loaded is calculated by considering ordering entries from the different files. The following
example shows some of these considerations. In the following example, config-A, config-B,
and config-C are different application configuration resource files.

File config-A contains the following elements:

<faces-config>
<name>config-A</name>
<ordering>
<before>
<name>config-B</name>
</before>
</ordering>
</faces-config>

File config-B (not shown here) does not contain any ordering elements.

File config-C contains the following elements:

<faces-config>
<name>config-C</name>
<ordering>
<after>
<name>config-B</name>
</after>
</ordering>
</faces-config>

Chapter 14 - Configuring JavaServer Faces Applications 299

Configuring Managed Beans

Based on the before subelement entry, file config-A will be loaded before the config-B file.
Based on the after subelement entry, file config-C will be loaded after the config-B file.

In addition, a subelement others can also be nested within the before and after subelements.
If the others element is present, the specified file may receive highest or lowest preference
among both listed and unlisted configuration files.

If an ordering element is not present in an application configuration file, then that file will be
loaded after all the files that contain ordering elements.

Configuring Managed Beans

300

When a page references a managed bean for the first time, the JavaServer Faces implementation
initializes it based on a @ManagedBean annotation in the bean class (or a @Named annotation for
CDImanaged beans) or according to its configuration in the application configuration resource
file. For information on using annotations to initialize beans, see “Using Annotations to
Configure Managed Beans” on page 296.

You can use either annotations or the application configuration resource file to instantiate
managed beans that are used in a JavaServer Faces application and to store them in scope. The
managed bean creation facility is configured in the application configuration resource file using
managed-bean XML elements to define each bean. This file is processed at application startup
time. For information on using this facility, see “Using the managed-bean Element” on page 300.

With the managed bean creation facility, you can:

= Create beans in one centralized file that is available to the entire application, rather than
conditionally instantiate beans throughout the application

= Customize a bean’s properties without any additional code

= Customize a bean’s property values directly from within the configuration file so that it is
initialized with these values when it is created

= Using value elements, set a property of one managed bean to be the result of evaluating
another value expression

This section shows you how to initialize beans using the managed bean creation facility. See
“Writing Bean Properties” on page 192 and “Writing Managed Bean Methods” on page 200 for
information on programming managed beans.

Using the managed-bean Element

A managed bean is initiated in the application configuration resource file using a managed- bean
element, which represents an instance of a bean class that must exist in the application. At
runtime, the JavaServer Faces implementation processes the managed-bean element. If a page

The Java EE 6 Tutorial « January 2013

Configuring Managed Beans

references the bean, and if no bean instance exists, the JavaServer Faces implementation
instantiates the bean as specified by the element configuration.

Here is an example managed bean configuration from the Duke’s Bookstore case study:

<managed-bean eager="true">
<managed-bean-name> Book201 </managed-bean-name>
<managed-bean-class> dukesbookstore.model.ImageArea </managed-bean-class>
<managed-bean-scope> application </managed-bean-scope>
<managed-property>
<property-name>shape</property-name>
<value>rect</value>
</managed-property>
<managed-property>
<property-name>alt</property-name>
<value>Duke</value>
</managed-property>
<managed-property>
<property-name>coords</property-name>
<value>67,23,212,268</value>
</managed-property>
</managed-bean>

Using NetBeans IDE, you can add a managed bean declaration by doing the following:

1. After opening your project in NetBeans IDE, expand the project node in the Projects pane.
2. Expand the Web Pages and WEB-INF nodes of the project node.
3. Ifthereisno faces-config.xml in the project, create one as follows:

a. From the File menu, choose New File.

b. Inthe New File wizard, select the JavaServer Faces category, then select JSF Faces
Configuration and click Next.

¢. Onthe Name and Location page, change the name and location of the file if necessary.
The default file name is faces-config.xml.

d. Click Finish.
4. Double-click faces-config.xml if the file is not already open.

After faces-config.xml opens in the editor pane, select XML from the sub-tab panel
options.

6. Right-clickin the editor pane.
7. From the Insert menu, choose Managed Bean.
8. Inthe Add Managed Bean dialog box:

a. Type the display name of the bean in the Bean Name field.
b. Click Browse to locate the bean’s class.

9. Inthe Browse Class dialog box:

a. Start typing the name of the class you are looking for in the Class Name field. While you
are typing, the dialog will show the matching classes.

Chapter 14 - Configuring JavaServer Faces Applications 301

Configuring Managed Beans

b. Select the class from the Matching Classes box.
c. Click OK.
10. In the Add Managed Bean dialog box:

a. Select the bean’s scope from the Scope menu.
b. Click Add.

The preceding steps will add the managed - bean element and three elements inside of that
element: amanaged-bean-name element, a managed-bean-class element, and a
managed-bean-scope element. You will need to edit the XML of the configuration file directly
to further configure this managed bean.

The managed-bean-name element defines the key under which the bean will be stored in a scope.
For a component’s value to map to this bean, the component tag’s value attribute must match
the managed-bean-name up to the first period.

The managed-bean-class element defines the fully qualified name of the JavaBeans component
class used to instantiate the bean.

The managed - bean element can contain zero or more managed-property elements, each
corresponding to a property defined in the bean class. These elements are used to initialize the
values of the bean properties. If you don’t want a particular property initialized with a value
when the bean is instantiated, do not include a managed-property definition for it in your
application configuration resource file.

If a managed-bean element does not contain other managed-bean elements, it can contain one
map-entries elementor list-entries element. The map-entries element configures a set of
beans that are instances of Map. The list-entries element configures a set of beans that are
instances of List.

In the following example, the newsletters managed bean, representing a UISelectItems
component, is configured as an ArrayList that represents a set of SelectItem objects. Each
SelectItemobjectisin turn configured as a managed bean with properties:

<managed-bean>
<managed-bean-name>newsletters</managed-bean-name>
<managed-bean-class>java.util.ArraylList</managed-bean-class>
<managed-bean-scope>application</managed-bean-scope>
<list-entries>
<value-class>javax.faces.model.SelectItem</value-class>
<value>#{newsletter@}</value>
<value>#{newsletterl}</value>
<value>#{newsletter2}</value>
<value>#{newsletter3}</value>
</list-entries>
</managed-bean>
<managed-bean>
<managed-bean-name>newsletter@</managed-bean-name>
<managed-bean-class>javax.faces.model.SelectItem</managed-bean-class>

302 The Java EE 6 Tutorial « January 2013

Configuring Managed Beans

<managed-bean-scope>none</managed-bean-scope>

<managed-property>
<property-name>label</property-name>
<value>Duke’s Quarterly</value>

</managed-property>

<managed-property>
<property-name>value</property-name>
<value>200</value>

</managed-property>

</managed-bean>

This approach may be useful for quick-and-dirty creation of selection item lists, before a
development team has had time to create such lists from the database. Note that each of the
individual newsletter beans has a managed-bean-scope setting of none, so that they will not
themselves be placed into any scope.

See “Initializing Array and List Properties” on page 306 for more information on configuring
collections as beans.

To map to a property defined by a managed-property element, you must ensure that the part of
acomponent tag’s value expression after the period matches the managed-property element’s
property-name element. In the earlier example, the maximum property is initialized with the
value 10. The following section, “Initializing Properties Using the managed-property Element”
on page 303, explains in more detail how to use the managed-property element. See “Initializing
Managed Bean Properties” on page 307 for an example of initializing a managed bean property.

Initializing Properties Using the managed-property
Element

A managed-property element must contain a property-name element, which must match the
name of the corresponding property in the bean. A managed-property element must also
contain one of a set of elements that defines the value of the property. This value must be of the
same type as that defined for the property in the corresponding bean. Which element you use to
define the value depends on the type of the property defined in the bean. Table 14-1 lists all the
elements that are used to initialize a value.

TABLE 14-1 Subelements of managed-property Elements That Define Property Values

Element Value It Defines

list-entries Defines the values in a list

map-entries Defines the values of a map

null-value Explicitly sets the property to null

value Defines a single value, such as a String, int, or JavaServer Faces EL expression

Chapter 14 - Configuring JavaServer Faces Applications 303

Configuring Managed Beans

304

“Using the managed-bean Element” on page 300 includes an example of initializing an int
property (a primitive type) using the value subelement. You also use the value subelement to
initialize String and other reference types. The rest of this section describes how to use the
value subelement and other subelements to initialize properties of Java Enum types, Map, array,
and Collection, as well as initialization parameters.

Referencing a Java Enum Type

A managed bean property can also be a Java Enum type (see http://docs.oracle.com/javase/
6/docs/api/java/lang/Enum.html). In this case, the value element of the managed-property
element must be a String that matches one of the String constants of the Enum. In other words,
the String must be one of the valid values that can be returned if you were to call

valueOf (Class, String) on enum, where Class is the Enum class and String is the contents of
the value subelement. For example, suppose the managed bean property is the following:

public enum Suit { Hearts, Spades, Diamonds, Clubs}
public Suit getSuit() { ... return Suit.Hearts; }

Assuming you want to configure this property in the application configuration resource file, the
corresponding managed-property element looks like this:

<managed-property>

<property-name>Suit</property-name>

<value>Hearts</value>
</managed-property>
When the system encounters this property, it iterates over each of the members of the enum and
calls toString () on each member until it finds one that is exactly equal to the value from the
value element.

Referencing a Context Initialization Parameter

Another powerful feature of the managed bean creation facility is the ability to reference
implicit objects from a managed bean property.

Suppose you have a page that accepts data from a customer, including the customer’s address.
Suppose also that most of your customers live in a particular area code. You can make the area
code component render this area code by saving it in an implicit object and referencing it when
the page is rendered.

You can save the area code as an initial default value in the context initParam implicit object by
adding a context parameter to your web application and setting its value in the deployment
descriptor. For example, to set a context parameter called defaultAreaCode to 650, add a
context-paramelement to the deployment descriptor, and give the parameter the name
defaultAreaCode and the value 650.

Next, you write a managed - bean declaration that configures a property that references the
parameter:

The Java EE 6 Tutorial « January 2013

http://docs.oracle.com/javase/6/docs/api/java/lang/Enum.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Enum.html

Configuring Managed Beans

<managed-bean>
<managed-bean-name>customer</managed-bean-name>

<managed-bean-class>CustomerBean</managed-bean-class>

<managed-bean-scope>request</managed-bean-scope>

<managed-property>
<property-name>areaCode</property-name>

<value>#{initParam.defaultAreaCode}</value>

</managed-property>

</managed-bean>

To access the area code at the time the page is rendered, refer to the property from the area
component tag’s value attribute:

<h:inputText id=area value="#{customer.areaCode}"

Values are retrieved from other implicit objects in a similar way.

Initializing Map Properties

The map-entries element is used to initialize the values of a bean property with a type of
java.util.Map if the map-entries element is used within a managed-property element. A
map-entries element contains an optional key - class element, an optional value-class
element, and zero or more map-entry elements.

Each of the map-entry elements must contain a key element and either a null-value or value
element. Here is an example that uses the map-entries element:

<managed-bean>

<managed-property>
<property-name>prices</property-name>
<map-entries>
<map-entry>
<key>My Early Years: Growing Up on *7</key>
<value>30.75</value>
</map-entry>
<map-entry>
<key>Web Servers for Fun and Profit</key>
<value>40.75</value>
</map-entry>
</map-entries>
</managed-property>
</managed-bean>

The map created from this map-entries tag contains two entries. By default, all the keys and
values are converted to String. If you want to specify a different type for the keys in the map,
embed the key-class element just inside the map-entries element:

<map-entries>
<key-class>java.math.BigDecimal</key-class>

</map-entries>

Chapter 14 - Configuring JavaServer Faces Applications 305

Configuring Managed Beans

306

This declaration will convert all the keys into java.math.BigDecimal. Of course, you must
make sure the keys can be converted to the type you specify. The key from the example in this
section cannot be converted to a BigDecimal, because itisa String.

If you want to specify a different type for all the values in the map, include the value-class
element after the key-class element:

<map-entries>
<key-class>int</key-class>
<value-class>java.math.BigDecimal</value-class>

</map-entries>

Note that this tag sets only the type of all the value subelements.

Each map-entry in the preceding example includes a value subelement. The value subelement
defines a single value, which will be converted to the type specified in the bean.

Instead of using amap-entries element, it is also possible to assign the entire map using a
value element that specifies a map-typed expression.

Initializing Array and List Properties

The list-entries element is used to initialize the values of an array or List property. Each
individual value of the array or List is initialized using a value or null-value element. Here is
an example:

<managed-bean>

<managed-property>
<property-name>books</property-name>
<list-entries>
<value-class>java.lang.String</value-class>
<value>Web Servers for Fun and Profit</value>
<value>#{myBooks.bookId[3]}</value>
<null-value/>
</list-entries>
</managed-property>
</managed-bean>

This example initializes an array or a List. The type of the corresponding property in the bean
determines which data structure is created. The list-entries element defines the list of values
inthe array or List. The value element specifies a single value in the array or List and can
reference a property in another bean. The null-value element will cause the setBooks method
to be called with an argument of null. A null property cannot be specified for a property whose
data type is a Java primitive, such as int or boolean.

The Java EE 6 Tutorial « January 2013

Configuring Managed Beans

Initializing Managed Bean Properties

Sometimes you might want to create a bean that also references other managed beans so you

can construct a graph or a tree of beans. For example, suppose you want to create a bean
representing a customer’s information, including the mailing address and street address, each of
which is also a bean. The following managed - bean declarations create a CustomerBean instance
that has two AddressBean properties: one representing the mailing address, and the other
representing the street address. This declaration results in a tree of beans with CustomerBean as
its root and the two AddressBean objects as children.

<managed-bean>
<managed-bean-name>customer</managed-bean-name>
<managed-bean-class>
com.example.mybeans.CustomerBean
</managed-bean-class>
<managed-bean-scope> request </managed-bean-scope>
<managed-property>
<property-name>mailingAddress</property-name>
<value>#{addressBean}</value>
</managed-property>
<managed-property>
<property-name>streetAddress</property-name>
<value>#{addressBean}</value>
</managed-property>
<managed-property>
<property-name>customerType</property-name>
<value>New</value>
</managed-property>
</managed-bean>
<managed-bean>
<managed-bean-name>addressBean</managed-bean-name>
<managed-bean-class>
com.example.mybeans.AddressBean
</managed-bean-class>
<managed-bean-scope> none </managed-bean-scope>
<managed-property>
<property-name>street</property-name>
<null-value/>
<managed-property>

</managed-bean>

The first CustomerBean declaration (with the managed-bean-name of customer) creates a
CustomerBean in request scope. This bean has two properties, mailingAddress and
streetAddress. These properties use the value element to reference a bean named
addressBean.

The second managed bean declaration defines an AddressBean, but does not create it, because
its managed-bean-scope element defines a scope of none. Recall that a scope of none means that
the bean is created only when something else references it. Because both the mailingAddress
and the streetAddress properties reference addressBean using the value element, two
instances of AddressBean are created when CustomerBean is created.

Chapter 14 - Configuring JavaServer Faces Applications 307

Registering Application Messages

When you create an object that points to other objects, do not try to point to an object with a
shorter life span, because it might be impossible to recover that scope’s resources when it goes
away. A session-scoped object, for example, cannot point to a request-scoped object. And
objects with none scope have no effective life span managed by the framework, so they can point
only to other none-scoped objects. Table 14-2 outlines all of the allowed connections.

TABLE14-2 Allowable Connections Between Scoped Objects

An Object of This Scope May Point to an Object of This Scope

none none

application none, application

session none, application, session

request none, application, session, request,view
view none, application, session, view

Be sure not to allow cyclical references between objects. For example, neither of the
AddressBean objects in the preceding example should point back to the CustomerBean object,
because CustomerBean already points to the AddressBean objects.

Initializing Maps and Lists

In addition to configuring Map and List properties, you can also configure aMap and a List
directly so that you can reference them from a tag rather than referencing a property that wraps
aMaporalist.

Registering Application Messages

308

Application messages can include any strings displayed to the user, as well as custom error
messages (which are displayed by the message and messages tags) for your custom converters
or validators. To make messages available at application startup time, do one of the following:

= Queue an individual message onto the javax. faces.context.FacesContext instance
programmatically, as described in “Using FacesMessage to Create a Message” on page 310

= Register all the messages with your application using the application configuration resource
file

The Java EE 6 Tutorial « January 2013

Registering Application Messages

Here is the section of the faces-config.xml file that registers the messages for the Duke’s
Bookstore case study application:

<application>
<resource-bundle>
<base-name>dukesbookstore.web.messages.Messages</base-name>
<var>bundle</var>
</resource-bundle>
<locale-config>
<default-locale>en</default-locale>
<supported-locale>es</supported-locale>
<supported-locale>de</supported-locale>
<supported-locale>fr</supported-locale>
</locale-config>
</application>

This set of elements causes the application to be populated with the messages that are contained
in the specified resource bundle.

The resource-bundle element represents a set of localized messages. It must contain the fully
qualified path to the resource bundle containing the localized messages (in this case,
dukestutoring.web.messages.Messages). The var element defines the EL name by which
page authors refer to the resource bundle.

The locale-config element lists the default locale and the other supported locales. The
locale-config element enables the system to find the correct locale based on the browser’s
language settings.

The supported-locale and default-locale tags accept the lowercase, two-character codes
defined by ISO 639 (see http://ftp.ics.uci.edu/pub/ietf/http/related/is0639. txt).
Make sure your resource bundle actually contains the messages for the locales you specify with
these tags.

To access the localized message, the application developer merely references the key of the
message from the resource bundle.

You can pull localized text into an alt tag for a graphic image, as in the following example:

<h:graphicImage id="mapImage"
name="book all.jpg"
library="images"
alt="#{bundle.ChooseBook}"
usemap="#bookMap" />

The alt attribute can accept value expressions. In this case, the alt attribute refers to localized
text that will be included in the alternative text of the image rendered by this tag.

Chapter 14 - Configuring JavaServer Faces Applications 309

http://ftp.ics.uci.edu/pub/ietf/http/related/iso639.txt

Registering Application Messages

310

Using FacesMessage to Create a Message

Instead of registering messages in the application configuration resource file, you can access the
java.util.ResourceBundle directly from managed bean code. The code snippet below locates
an email error message:

String message = " ;

message = ExampleBean.loadErrorMessage(context,
ExampleBean.EX RESOURCE_BUNDLE NAME,
"EMailError");
context.addMessage(toValidate.getClientId(context),
new FacesMessage(message));

These lines call the bean’s LoadErrorMessage method to get the message from the
ResourceBundle. Here is the loadErrorMessage method:

public static String loadErrorMessage(FacesContext context,
String basename, String key) {
if (bundle == null) {
try {
bundle = ResourceBundle.getBundle(basename,
context.getViewRoot().getlLocale());
} catch (Exception e) {
return null;
}

}
return bundle.getString(key);

Referencing Error Messages

ATJavaServer Faces page uses the message or messages tags to access error messages, as
explained in “Displaying Error Messages with the h:message and h:messages Tags” on
page 164.

The error messages these tags access include:

= The standard error messages that accompany the standard converters and validators that
ship with the API. See Section 2.5.2.4 of the JavaServer Faces specification for a complete list
of standard error messages.

= Custom error messages contained in resource bundles registered with the application by the
application architect using the resource-bundle element in the configuration file.

When a converter or validator is registered on an input component, the appropriate error
message is automatically queued on the component.

The Java EE 6 Tutorial « January 2013

Using Default Validators

A page author can override the error messages queued on a component by using the following
attributes of the component’s tag:

= converterMessage: References the error message to display when the data on the enclosing
component can not be converted by the converter registered on this component.

= requiredMessage: References the error message to display when no value has been entered
into the enclosing component.

= validatorMessage: References the error message to display when the data on the enclosing
component cannot be validated by the validator registered on this component.

All three attributes are enabled to take literal values and value expressions. If an attribute uses a
value expression, this expression references the error message in a resource bundle. This
resource bundle must be made available to the application in one of the following ways:

= By theapplication architect using the resource-bundle element in the configuration file

= By the page author using the f:loadBundle tag

Conversely, the resource-bundle element must be used to make available to the application
those resource bundles containing custom error messages that are queued on the component as
aresult of a custom converter or validator being registered on the component.

The following tags show how to specify the requiredMessage attribute using a value expression
to reference an error message:

<h:inputText id="ccno" size="19"
required="true"
requiredMessage="#{customMessages.RegMessage}" >

</h:inputText>
<h:message styleClass="error-message" for="ccno"/>

The value expression used by requiredMessage in this example references the error message
with the RegMessage key in the resource bundle, customMessages.

This message replaces the corresponding message queued on the component and will display
wherever the message or messages tag is placed on the page.

Using Default Validators

In addition to the validators you declare on the components, you can also specify zero or more
default validators in the application configuration resource file. The default validator applies to
all javax. faces.component.UIInput instancesin a view or component tree and is appended
after the local defined validators. Here is an example of a default validator registered in the
application configuration resource file:

<faces-config>
<application>

Chapter 14 - Configuring JavaServer Faces Applications 311

Registering a Custom Validator

<default-validators>
<validator-id>javax.faces.Bean</validator-id>
</default-validators>
<application/>
</faces-config>

Registering a Custom Validator

312

If the application developer provides an implementation of the
javax.faces.validator.Validator interface to perform validation, you must register this
custom validator either by using the @FacesValidator annotation, as described in
“Implementing the Validator Interface” on page 284, or by using the validator XML element
in the application configuration resource file:

<validator>

<validator-id>FormatValidator</validator-id>

<validator-class>
myapplication.validators.FormatValidator

</validator-class>

<attribute>

<attribute-name>formatPatterns</attribute-name>
<attribute-class>java.lang.String</attribute-class>
</attribute>
</validator>

Attributes specified in a validator tag override any settings in the @FacesValidator
annotation.

The validator-id and validator-class elements are required subelements. The
validator-id element represents the identifier under which the validator class should be
registered. This ID is used by the tag class corresponding to the custom validator tag.

The validator-class element represents the fully qualified class name of the Validator class.

The attribute element identifies an attribute associated with the Validator implementation.
Ithasrequired attribute-name and attribute-class subelements. The attribute-name
element refers to the name of the attribute as it appears in the validator tag. The
attribute-class element identifies the Java type of the value associated with the attribute.

“Creating and Using a Custom Validator” on page 283 explains how to implement the
Validator interface.

“Using a Custom Validator” on page 287 explains how to reference the validator from the page.

The Java EE 6 Tutorial « January 2013

Configuring Navigation Rules

Registering a Custom Converter

As is the case with a custom validator, if the application developer creates a custom converter,
you must register it with the application either by using the @FacesConverter annotation, as
described in “Creating a Custom Converter” on page 279, or by using the converter XML
element in the application configuration resource file. Here is a hypothetical converter
configuration for CreditCardConverter from the Duke’s Bookstore case study:

<converter>
<description>
Converter for credit card numbers that normalizes
the input to a standard format
</description>
<converter-id>CreditCardConverter</converter-id>
<converter-class>
dukesbookstore.converters.CreditCardConverter
</converter-class>
</converter>

Attributes specified in a converter tag override any settings in the @FacesConverter
annotation.

The converter element represents a javax . faces.convert.Converter implementation and
contains required converter-id and converter-class elements.

The converter-id element identifies an ID that is used by the converter attribute of a UI
component tag to apply the converter to the component’s data. “Using a Custom Converter” on
page 282 includes an example of referencing the custom converter from a component tag.

The converter-class element identifies the Converter implementation.

“Creating and Using a Custom Converter” on page 279 explains how to create a custom
converter.

Configuring Navigation Rules

Navigation between different pages of a JavaServer Faces application, such as choosing the next
page to be displayed after a button or hyperlink component is clicked, is defined by a set of rules.
Navigation rules can be implicit, or they can be explicitly defined in the application
configuration resource file. For more information on implicit navigation rules, see “Implicit
Navigation Rules” on page 316.

Each navigation rule specifies how to navigate from one page to another page or set of pages.
The JavaServer Faces implementation chooses the proper navigation rule according to which
page is currently displayed.

Chapter 14 - Configuring JavaServer Faces Applications 313

Configuring Navigation Rules

314

After the proper navigation rule is selected, the choice of which page to access next from the
current page depends on two factors:

= Theaction method invoked when the component was clicked

= Thelogical outcome referenced by the component’s tag or returned from the action method

The outcome can be anything the developer chooses, but Table 14-3 lists some outcomes
commonly used in web applications.

TABLE 14-3 Common Outcome Strings

Outcome What It Means

success Everything worked. Go on to the next page.

failure Something is wrong. Go on to an error page.

login The user needs to log in first. Go on to the login page.

no results The search did not find anything. Go to the search page again.

Usually, the action method performs some processing on the form data of the current page. For
example, the method might check whether the user name and password entered in the form
match the user name and password on file. If they match, the method returns the outcome
success. Otherwise, it returns the outcome failure. As this example demonstrates, both the
method used to process the action and the outcome returned are necessary to determine the
correct page to access.

Here is a navigation rule that could be used with the example just described:

<navigation-rule>
<from-view-id>/login.xhtml</from-view-id>
<navigation-case>
<from-action>#{LoginForm.login}</from-action>
<from-outcome>success</from-outcome>
<to-view-id>/storefront.xhtml</to-view-id>
</navigation-case>
<navigation-case>
<from-action>#{LoginForm.logon}</from-action>
<from-outcome>failure</from-outcome>
<to-view-id>/logon.xhtml</to-view-id>
</navigation-case>
</navigation-rule>

This navigation rule defines the possible ways to navigate from login.xhtml. Each
navigation-case element defines one possible navigation path from login.xhtml. The first
navigation-case says that if LoginForm. login returns an outcome of success, then
storefront.xhtml will be accessed. The second navigation-case says that login.xhtml will
be re-rendered if LoginForm. login returns failure.

The Java EE 6 Tutorial « January 2013

Configuring Navigation Rules

The configuration of an application’s page flow consists of a set of navigation rules. Each rule is
defined by the navigation-rule element in the faces-config.xml file.

Each navigation- rule element corresponds to one component tree identifier defined by the
optional from-view-id element. This means that each rule defines all the possible ways to
navigate from one particular page in the application. If there is no from-view-id element, the
navigation rules defined in the navigation- rule element apply to all the pages in the
application. The from-view-1id element also allows wildcard matching patterns. For example,
this from-view-id element says that the navigation rule applies to all the pages in the books
directory:

<from-view-id>/books/*</from-view-id>

A navigation-rule element can contain zero or more navigation-case elements. The
navigation-case element defines a set of matching criteria. When these criteria are satisfied,
the application will navigate to the page defined by the to-view-id element contained in the
same navigation-case element.

The navigation criteria are defined by optional from-outcome and from-action elements. The
from-outcome element defines a logical outcome, such as success. The from-action element
uses a method expression to refer to an action method that returns a String, which is the logical
outcome. The method performs some logic to determine the outcome and returns the outcome.

The navigation-case elements are checked against the outcome and the method expression in
this order:

1. Cases specifying both a from-outcome value and a from-action value. Both of these
elements can be used if the action method returns different outcomes depending on the
result of the processing it performs.

2. Cases specifying only a from-outcome value. The from-outcome element must match either
the outcome defined by the action attribute of the javax. faces.component.UICommand
component or the outcome returned by the method referred to by the UICommand
component.

3. Cases specifying only a from-action value. This value must match the action expression
specified by the component tag.

When any of these cases is matched, the component tree defined by the to-view-id element
will be selected for rendering.

To Configure a Navigation Rule

Using NetBeans IDE, you can configure a navigation rule by doing the following.
After opening your project in NetBeans IDE, expand the project node in the Projects pane.

Expand the Web Pages and WEB-INF nodes of the project node.

Chapter 14 - Configuring JavaServer Faces Applications 315

Configuring Navigation Rules

316

SeeAlso

Double-click faces-config.xml.

After faces-config.xml opens in the editor pane, right-click in the editor pane.

From the Insert menu, choose Navigation Rule.

In the Add Navigation Rule dialog:

a. Enter or browse for the page that represents the starting view for this navigation rule.
b. Click Add.

Right-click again in the editor pane.

From the Insert menu, choose Navigation Case.

In the Add Navigation Case dialog box:

a. From the From View menu, choose the page that represents the starting view for the
navigation rule (from Step 6 a).

b. (optional) In the From Action field, type the action method invoked when the component
that triggered navigation is activated.

c. (optional) In the From Outcome field, enter the logical outcome string that the activated
component references from its action attribute.

d. From the ToView menu, choose or browse for the page that will be opened if this navigation
case is selected by the navigation system.

e. Click Add.

“Referencing a Method That Performs Navigation” on page 187 explains how to use a
component tag’s action attribute to point to an action method. “Writing a Method to Handle
Navigation” on page 201 explains how to write an action method.

Implicit Navigation Rules

JavaServer Faces technology supports implicit navigation rules for Facelets applications.
Implicit navigation applies when navigation- rules are not configured in the application
configuration resource files.

The Java EE 6 Tutorial « January 2013

Registering a Custom Renderer with a Render Kit

When you add a component such as a commandButton in a page, and assign another page as the
value for its action property, the default navigation handler will try to match a suitable page
within the application implicitly.

<h:commandButton value="submit" action="response">

In the above example, the default navigation handler will try to locate a page named
response.xhtml within the application and navigate to it.

Registering a Custom Renderer with a Render Kit

When the application developer creates a custom renderer, as described in “Delegating
Rendering to a Renderer” on page 270, you must register it using the appropriate render kit.
Because the image map application implements an HTML image map, the AreaRenderer and
MapRenderer classes in the Duke’s Bookstore case study should be registered using the HTML
render kit.

You register the renderer either by using the @FacesRenderer annotation, as described in
“Creating the Renderer Class” on page 270, or by using the render-kit element of the
application configuration resource file. Here is a hypothetical configuration of AreaRenderer:

<render-kit>
<renderer>
<component-family>Area</component-family>
<renderer-type>DemoArea</renderer-type>
<renderer-class>
dukesbookstore.renderers.AreaRenderer
</renderer-class>
<attribute>
<attribute-name>onmouseout</attribute-name>
<attribute-class>java.lang.String</attribute-class>
</attribute>
<attribute>
<attribute-name>onmouseover</attribute-name>
<attribute-class>java.lang.String</attribute-class>
</attribute>
<attribute>
<attribute-name>styleClass</attribute-name>
<attribute-class>java.lang.String</attribute-class>
</attribute>
</renderer>

Attributes specified in a renderer tag override any settings in the @FacesRenderer annotation.

The render-kit element represents a javax. faces. render.RenderKit implementation. If no
render-kit-id is specified, the default HTML render kit is assumed. The renderer element
represents a javax.faces.render.Renderer implementation. By nesting the renderer
element inside the render-kit element, you are registering the renderer with the RenderKit
implementation associated with the render-kit element.

Chapter 14 - Configuring JavaServer Faces Applications 317

Registering a Custom Renderer with a Render Kit

318

The renderer-class is the fully qualified class name of the Renderer.

The component-family and renderer-type elements are used by a component to find
renderers that can render it. The component - family identifier must match that returned by the
component class’s getFamily method. The component family represents a component or set of
components that a particular renderer can render. The renderer-type must match that
returned by the getRendererType method of the tag handler class.

By using the component family and renderer type to look up renderers for components, the
JavaServer Faces implementation allows a component to be rendered by multiple renderers and
allows a renderer to render multiple components.

Each of the attribute tags specifies a render-dependent attribute and its type. The attribute
element doesn’t affect the runtime execution of your application. Rather, it provides
information to tools about the attributes the Renderer supports.

The object responsible for rendering a component (be it the component itself or a renderer to
which the component delegates the rendering) can use facets to aid in the rendering process.
These facets allow the custom component developer to control some aspects of rendering the
component. Consider this custom component tag example:

<d:dataScroller>
<f:facet name="header">
<h:panelGroup>
<h:outputText value="Account Id"/>
<h:outputText value="Customer Name"/>
<h:outputText value="Total Sales"/>
</h:panelGroup>
</f:facet>
<f:facet name="next">
<h:panelGroup>
<h:outputText value="Next"/>
<h:graphicImage url="/images/arrow-right.gif" />
</h:panelGroup>
</f:facet>

</d:dataScroller>

The dataScroller component tag includes a component that will render the header and a
component that will render the Next button. If the renderer associated with this component
renders the facets, you can include the following facet elements in the renderer element:

<facet>
<description>This facet renders as the header of the table. It should be
a panelGroup with the same number of columns as the data
</description>
<display-name>header</display-name>
<facet-name>header</facet-name>
</facet>
<facet>
<description>This facet renders as the content of the "next" button in
the scroller. It should be a panelGroup that includes an outputText

The Java EE 6 Tutorial « January 2013

Registering a Custom Component

tag that has the text "Next" and a right arrow icon.
</description>
<display-name>Next</display-name>
<facet-name>next</facet-name>
</facet>

If a component that supports facets provides its own rendering and you want to include facet
elements in the application configuration resource file, you need to put them in the
component’s configuration rather than the renderer’s configuration.

Registering a Custom Component

In addition to registering custom renderers (as explained in the preceding section), you also
must register the custom components that are usually associated with the custom renderers.
You use either a @FacesComponent annotation, as described in “Creating Custom Component
Classes” on page 262, or the component element of the application configuration resource file.

Here is a hypothetical component element from the application configuration resource file that
registers AreaComponent:

<component>
<component -type>DemoArea</component-type>
<component-class>
dukesbookstore.components.AreaComponent
</component-class>
<property>
<property-name>alt</property-name>
<property-class>java.lang.String</property-class>
</property>
<property>
<property-name>coords</property-name>
<property-class>java.lang.String</property-class>
</property>
<property>
<property-name>shape</property-name>
<property-class>java.lang.String</property-class>
</property>
</component>

Attributes specified in a component tag override any settings in the @FacesComponent
annotation.

The component - type element indicates the name under which the component should be
registered. Other objects referring to this component use this name. For example, the
component - type element in the configuration for AreaComponent defines a value of DemoArea,
which matches the value returned by the AreaTag class’s getComponentType method.

The component - class element indicates the fully qualified class name of the component. The
property elements specify the component properties and their types.

Chapter 14 - Configuring JavaServer Faces Applications 319

Basic Requirements of a JavaServer Faces Application

If the custom component can include facets, you can configure the facets in the component
configuration using facet elements, which are allowed after the component-class elements.
See “Registering a Custom Renderer with a Render Kit” on page 317 for further details on
configuring facets.

Basic Requirements of a JavaServer Faces Application

320

In addition to configuring your application, you must satisfy other requirements of JavaServer
Faces applications, including properly packaging all the necessary files and providing a
deployment descriptor. This section describes how to perform these administrative tasks.

JavaServer Faces applications can be packaged in a WAR file, which must conform to specific
requirements to execute across different containers. At a minimum, a WAR file for a JavaServer
Faces application must contain the following:

= A web application deployment descriptor, called web . xm1, to configure resources required
by a web application

= A specific set of JAR files containing essential classes

= A setof application classes, JavaServer Faces pages, and other required resources, such as
image files

A WAR file may also contain:

= Anapplication configuration resource file, which configures application resources

= A set of taglibrary descriptor files

For example, a Java Server Faces web application WAR file using Facelets typically has the
following directory structure:

$PROJECT DIR

[Web Pages]

+- /[xhtml documents]

+- /resources

+- /WEB-INF
+- /classes
+- /lib
+- /web.xml
+- /faces-config.xml (optional)
+- /*.taglib.xml (optional)
+- /glassfish-web.xml

The web. xml file (or web deployment descriptor), the set of JAR files, and the set of application
files must be contained in the WEB- INF directory of the WAR file.

The Java EE 6 Tutorial « January 2013

Basic Requirements of a JavaServer Faces Application

Configuring an Application with a Web Deployment
Descriptor

Web applications are commonly configured using elements contained in the web application
deployment descriptor, web. xml. The deployment descriptor for a JavaServer Faces application
must specify certain configurations, including the following:

= The servlet used to process JavaServer Faces requests
= The servlet mapping for the processing servlet

= The path to the configuration resource file, if it exists and is not located in a default location

The deployment descriptor can also include other, optional configurations, such as:

Specifying where component state is saved

Encrypting state saved on the client

Compressing state saved on the client

Restricting access to pages containing JavaServer Faces tags
Turning on XML validation

Specifying the Project Stage

Verifying custom objects

This section gives more details on these configurations. Where appropriate, it also describes
how you can make these configurations using NetBeans IDE.

Identifying the Servlet for Lifecycle Processing

A requirement of a JavaServer Faces application is that all requests to the application that
reference previously saved JavaServer Faces components must go through
javax.faces.webapp.FacesServlet. A FacesServlet instance manages the request
processing lifecycle for web applications and initializes the resources required by JavaServer
Faces technology.

Before a JavaServer Faces application can launch its first web page, the web container must
invoke the FacesServlet instance in order for the application lifecycle process to start. See
“The Lifecycle of a JavaServer Faces Application” on page 210 for more information.

The following example shows the default configuration of the FacesServlet:

<servlet>
<servlet-name>FacesServlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
</servliet>

You provide a mapping configuration entry to make sure the FacesServlet instance is
invoked. The mapping to FacesServlet can be a prefix mapping, such as / faces/*, or an

Chapter 14 - Configuring JavaServer Faces Applications 321

Basic Requirements of a JavaServer Faces Application

322

extension mapping, such as *. xhtml. The mapping is used to identify a page as having
JavaServer Faces content. Because of this, the URL to the first page of the application must
include the URL pattern mapping.

The following elements, commonly used in the tutorial examples, specify a prefix mapping:

<servlet-mapping>
<servlet-name>FacesServlet</servlet-name>
<url-pattern>/faces/* </url-pattern>
</servlet-mapping>

<welcome-file-list>
<welcome-file>faces/greeting.xhtml</welcome-file>
</welcome-file-list>
The following elements, also commonly used in the tutorial examples, specify an extension

mapping:

<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>*.xhtml</url-pattern>
</servlet-mapping>

<welcome-file-list>
<welcome-file>index.xhtml</welcome-file>
</welcome-file-list>

When you use this mechanism, users access the application as shown in the following example:

http://localhost:8080/guessNumber

In the case of extension mapping, if a request comes to the server for a page with an . xhtmtl
extension, the container will send the request to the FacesServlet instance, which will expect a
corresponding page of the same name containing the content to exist.

If you are using NetBeans IDE to create your application, a web deployment descriptor is
automatically created for you with default configurations. If you created your application
without an IDE, you can create a web deployment descriptor.

To Specify a Path to an Application Configuration Resource File

As explained in “Application Configuration Resource File” on page 297, an application can have
multiple application configuration resource files. If these files are not located in the directories
that the implementation searches by default or the files are not named faces-config.xml, you
need to specify paths to these files.

To specify these paths using NetBeans IDE, do the following.
Expand the node of your project in the Projects pane.

Expand the Web Pages and WEB-INF nodes that are under the project node.

The Java EE 6 Tutorial « January 2013

Basic Requirements of a JavaServer Faces Application

Double-clickweb. xmt.

After the web . xml file appears in the editor pane, click General at the top of the editor pane.
Expand the Context Parameters node.

Click Add.

In the Add Context Parameter dialog:

a. Type javax.faces.CONFIG_FILES inthe Param Name field.

b. Type the path to your configuration file in the Param Value field.

c. Click OK.

Repeat steps 1 through 7 for each configuration file.

To Specify Where State Is Saved

For all the components in a web application, you can specify in your deployment descriptor
where you want the state to be saved, on either client or server. You do this by setting a context
parameter in your deployment descriptor. By default, state is saved on the server, so you need to
specify this context parameter only if you want to save state on the client. See “Saving and
Restoring State” on page 269 for information on the advantages and disadvantages of each
location.

To specify where state is saved using NetBeans IDE, do the following.

Expand the node of your project in the Projects pane.

Expand the Web Pages and WEB-INF nodes under the project node.

Double-clickweb . xmt.

After the web . xml file appears in the editor pane, click General at the top of the editor pane.
Expand the Context Parameters node.

In the Add Context Parameter dialog:

a. Type javax.faces.STATE_SAVING_METHOD in the Param Name field.

b. Typeclient orserverinthe Param Value field.

Chapter 14 - Configuring JavaServer Faces Applications 323

Basic Requirements of a JavaServer Faces Application

More Information

324

c. Click OK.

Implementation of State Saving

If state is saved on the client, the state of the entire view is rendered to a hidden field on the page.
The JavaServer Faces implementation saves the state on the server by default. Duke’s Forest
saves its state on the client.

Configuring Project Stage

Project Stage is a context parameter identifying the status of a JavaServer Faces application in
the software lifecycle. The stage of an application can affect the behavior of the application. For
example, error messages can be displayed during the Development stage but suppressed during
the Production stage.

The possible Project Stage values are as follows:

= Development
® UnitTest

m SystemTest
m Production

Project Stage is configured through a context parameter in the web deployment descriptor file.
Here is an example:

<context-param>
<param-name>javax.faces.PROJECT STAGE</param-name>
<param-value>Development</param-value>
</context-param>

If no Project Stage is defined, the default stage is Development. You can also add custom stages
according to your requirements.

Including the Classes, Pages, and Other Resources

When packaging web applications using the included build scripts, you’ll notice that the scripts
package resources in the following ways:

= All web pages are placed at the top level of the WAR file.

= The faces-config.xml file and the web. xml file are packaged in the WEB- INF directory.
= All packages are stored in the WEB- INF/classes/ directory.

= Allapplication JAR files are packaged in the WEB- INF/1ib/ directory.

= Allresource files are either under the root of the web application / resources directory, or
in the web application’s classpath, META- INF/resources/resourceldentifier directory. For
more information on resources, see “Web Resources” on page 123.

The Java EE 6 Tutorial « January 2013

Basic Requirements of a JavaServer Faces Application

When packaging your own applications, you can use NetBeans IDE or you can use the build
scripts such as those created for Ant. You can modify the build scripts to fit your situation.
However, you can continue to package your WAR files by using the directory structure
described in this section, because this technique complies with the commonly accepted practice
for packaging web applications.

Chapter 14 - Configuring JavaServer Faces Applications 325

326

CHAPTER 15

Java Servlet Technology

Shortly after the Web began to be used for delivering services, service providers recognized the
need for dynamic content. Applets, one of the earliest attempts toward this goal, focused on
using the client platform to deliver dynamic user experiences. At the same time, developers also
investigated using the server platform for the same purpose. Initially, Common Gateway
Interface (CGI) server-side scripts were the main technology used to generate dynamic content.
Although widely used, CGI scripting technology had many shortcomings, including platform
dependence and lack of scalability. To address these limitations, Java Servlet technology was
created as a portable way to provide dynamic, user-oriented content.

The following topics are addressed here:

“What Is a Servlet?” on page 328

“Servlet Lifecycle” on page 328

“Sharing Information” on page 330

“Creating and Initializing a Servlet” on page 331
“Writing Service Methods” on page 332
“Filtering Requests and Responses” on page 334
“Invoking Other Web Resources” on page 338
“Accessing the Web Context” on page 339
“Maintaining Client State” on page 340
“Finalizing a Servlet” on page 342

“The mood Example Application” on page 344
“Further Information about Java Servlet Technology” on page 346

327

What s a Servlet?

Whatls a Servlet?

A servlet is a Java programming language class used to extend the capabilities of servers that
host applications accessed by means of a request-response programming model. Although
servlets can respond to any type of request, they are commonly used to extend the applications
hosted by web servers. For such applications, Java Servlet technology defines HT'TP-specific
servlet classes.

The javax.servlet and javax.servlet.http packages provide interfaces and classes for
writing servlets. All servlets must implement the Servlet interface, which defines lifecycle
methods. When implementing a generic service, you can use or extend the GenericServlet
class provided with the Java Servlet APL. The HttpServlet class provides methods, such as
doGet and doPost, for handling HTTP-specific services.

Servlet Lifecycle

328

The lifecycle of a servlet is controlled by the container in which the servlet has been deployed.
When a request is mapped to a servlet, the container performs the following steps.

1. Ifaninstance of the servlet does not exist, the web container
a. Loads the servlet class.
b. Creates an instance of the servlet class.

c. Initializes the servlet instance by calling the init method. Initialization is covered in
“Creating and Initializing a Servlet” on page 331.

2. Invokes the service method, passing request and response objects. Service methods are
discussed in “Writing Service Methods” on page 332.

If it needs to remove the servlet, the container finalizes the servlet by calling the servlet’s
destroy method. For more information, see “Finalizing a Servlet” on page 342.

Handling Servlet Lifecycle Events

You can monitor and react to events in a servlet’s lifecycle by defining listener objects whose
methods get invoked when lifecycle events occur. To use these listener objects, you must define
and specify the listener class.

Defining the Listener Class

You define a listener class as an implementation of a listener interface. Table 15-1 lists the
events that can be monitored and the corresponding interface that must be implemented.
When a listener method is invoked, it is passed an event that contains information appropriate
to the event. For example, the methods in the HttpSessionListener interface are passed an
HttpSessionEvent, which contains an HttpSession.

The Java EE 6 Tutorial « January 2013

Servlet Lifecycle

TABLE 15-1 Servlet Lifecycle Events

Object Event Listener Interface and Event Class

Web context Initialization and javax.servlet.ServletContextListener and
destruction ServletContextEvent

Web context Attribute added, javax.servlet.ServletContextAttributeListener and
removed, or replaced ServletContextAttributeEvent

Session Creation, javax.servlet.http.HttpSessionListener,
invalidation, javax.servlet.http.HttpSessionActivationListener,
activation, and HttpSessionEvent
passivation, and
timeout

Session Attribute added, javax.servlet.http.HttpSessionAttributelListener and
removed, orreplaced HttpSessionBindingEvent

Request Aservletrequesthas javax.servlet.ServletRequestListener and
started being ServletRequestEvent
processed by web
components

Request Attribute added, javax.servlet.ServletRequestAttributeListener and

removed, or replaced

ServletRequestAttributeEvent

Use the @WebListener annotation to define a listener to get events for various operations on the
particular web application context. Classes annotated with @webListener must implement one
of the following interfaces:

javax.servlet.ServletContextListener
javax.servlet.ServletContextAttributelListener
javax.servlet.ServletRequestListener
javax.servlet.ServletRequestAttributelListener
javax.servlet..http.HttpSessionListener

javax.servlet..http.HttpSessionAttributeListener

For example, the following code snippet defines a listener that implements two of these
interfaces:

import javax.servlet.ServletContextAttributelListener;
import javax.servlet.ServletContextListener;
import javax.servlet.annotation.WeblListener;

@webListener()

public class SimpleServletListener implements ServletContextListener,
ServletContextAttributelListener {

Chapter 15 - Java Servlet Technology 329

Sharing Information

Handling Servlet Errors

Any number of exceptions can occur when a servlet executes. When an exception occurs, the
web container generates a default page containing the following message:

A Servlet Exception Has Occurred

But you can also specify that the container should return a specific error page for a given
exception.

Sharing Information

330

Web components, like most objects, usually work with other objects to accomplish their tasks.
Web components can do so by

= Using private helper objects (for example, JavaBeans components).
= Sharing objects that are attributes of a public scope.
= Using a database.

= Invoking other web resources. The Java Servlet technology mechanisms that allow a web
component to invoke other web resources are described in “Invoking Other Web
Resources” on page 338.

Using Scope Objects

Collaborating web components share information by means of objects that are maintained as
attributes of four scope objects. You access these attributes by using the getAttribute and
setAttribute methods of the class representing the scope. Table 15-2 lists the scope objects.

TABLE15-2 Scope Objects

Scope Object Class Accessible from

Web context javax.servlet. Web components within a web context. See “Accessing the
ServletContext Web Context” on page 339.

Session javax.servlet. Web components handling a request that belongs to the
http.HttpSession session. See “Maintaining Client State” on page 340.

Request Subtype of javax.servlet. Web components handling the request.
ServletRequest

Page javax.servlet. The JSP page that creates the object.

jsp.JspContext

The Java EE 6 Tutorial « January 2013

Creating and Initializing a Servlet

Controlling Concurrent Access to Shared Resources

In a multithreaded server, shared resources can be accessed concurrently. In addition to scope
object attributes, shared resources include in-memory data, such as instance or class variables,
and external objects, such as files, database connections, and network connections.

Concurrent access can arise in several situations:

= Multiple web components accessing objects stored in the web context.
= Multiple web components accessing objects stored in a session.

= Multiple threads within a web component accessing instance variables. A web container will
typically create a thread to handle each request. To ensure that a servlet instance handles
only one request at a time, a servlet can implement the SingleThreadModel interface. Ifa
servlet implements this interface, no two threads will execute concurrently in the servlet’s
service method. A web container can implement this guarantee by synchronizing access to a
single instance of the servlet or by maintaining a pool of web component instances and
dispatching each new request to a free instance. This interface does not prevent
synchronization problems that result from web components’ accessing shared resources,
such as static class variables or external objects.

When resources can be accessed concurrently, they can be used in an inconsistent fashion. You
prevent this by controlling the access using the synchronization techniques described in the
Threadslesson athttp://docs.oracle.com/javase/tutorial/essential/concurrency/
index.htmlin The Java Tutorial, Fourth Edition, by Sharon Zakhour et al. (Addison-Wesley,
2006).

Creating and Initializing a Servlet

Use the @WebServlet annotation to define a servlet component in a web application. This
annotation is specified on a class and contains metadata about the servlet being declared. The
annotated servlet must specify at least one URL pattern. This is done by using the urlPatterns
or value attribute on the annotation. All other attributes are optional, with default settings. Use
the value attribute when the only attribute on the annotation is the URL pattern; otherwise use
the urlPatterns attribute when other attributes are also used.

Classes annotated with @WebServlet must extend the javax.servlet.http.HttpServlet
class. For example, the following code snippet defines a servlet with the URL pattern /report:

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

@WebServlet("/report")
public class MoodServlet extends HttpServlet {

Chapter 15 - Java Servlet Technology 331

http://docs.oracle.com/javase/tutorial/essential/concurrency/index.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/index.html

Writing Service Methods

The web container initializes a servlet after loading and instantiating the servlet class and before
delivering requests from clients. To customize this process to allow the servlet to read persistent
configuration data, initialize resources, and perform any other one-time activities, you can
either override the init method of the Servlet interface or specify the initParams attribute of
the @WebServlet annotation. The initParams attribute contains a @WebInitParamannotation.
If it cannot complete its initialization process, a servlet throws an UnavailableException.

Use an initialization parameter to provide data needed by a particular servlet. By contrast, a
context parameter provides data that is available to all components of a web application.

Writing Service Methods

332

The service provided by a servlet is implemented in the service method of a GenericServlet,
in the doMethod methods (where Method can take the value Get, Delete, Options, Post, Put, or
Trace) ofan HttpServlet object, or in any other protocol-specific methods defined by a class
that implements the Servlet interface. The term service method is used for any method in a
servlet class that provides a service to a client.

The general pattern for a service method is to extract information from the request, access
external resources, and then populate the response, based on that information. For HTTP
servlets, the correct procedure for populating the response is to do the following:

1. Retrieve an output stream from the response.
2. Fillin the response headers.
3. Write any body content to the output stream.

Response headers must always be set before the response has been committed. The web
container will ignore any attempt to set or add headers after the response has been committed.
The next two sections describe how to get information from requests and generate responses.

Getting Information from Requests

A request contains data passed between a client and the servlet. All requests implement the
ServletRequest interface. This interface defines methods for accessing the following
information:

= Parameters, which are typically used to convey information between clients and servlets

= Object-valued attributes, which are typically used to pass information between the web
container and a servlet or between collaborating servlets

= Information about the protocol used to communicate the request and about the client and
server involved in the request

= Information relevant to localization

The Java EE 6 Tutorial « January 2013

Writing Service Methods

You can also retrieve an input stream from the request and manually parse the data. To read
character data, use the Buf feredReader object returned by the request’s getReader method. To
read binary data, use the ServletInputStreamreturned by getInputStream.

HTTP servlets are passed an HTTP request object, HttpServletRequest, which contains the
request URL, HTTP headers, query string, and so on. An HTTP request URL contains the
following parts:

http://[host]: [port] [request-path]? [query-string]
The request path is further composed of the following elements:

= Context path: A concatenation of a forward slash (/) with the context root of the servlet’s
web application.

= Servlet path: The path section that corresponds to the component alias that activated this
request. This path starts with a forward slash (/).

= Path info: The part of the request path that is not part of the context path or the servlet path.

You can use the getContextPath, getServletPath, and getPathInfo methods of the
HttpServletRequest interface to access this information. Except for URL encoding differences
between the request URI and the path parts, the request URI is always comprised of the context
path plus the servlet path plus the path info.

Query strings are composed of a set of parameters and values. Individual parameters are
retrieved from a request by using the getParameter method. There are two ways to generate
query strings.

= A query string can explicitly appear in a web page.

= A query string is appended to a URL when a form with a GET HTTP method is submitted.

Constructing Responses

A response contains data passed between a server and the client. All responses implement the
ServletResponse interface. This interface defines methods that allow you to

= Retrieve an output stream to use to send data to the client. To send character data, use the
PrintWriter returned by the response’s getwriter method. To send binary datain a
Multipurpose Internet Mail Extensions (MIME) body response, use the
ServletOutputStreamreturned by getOutputStream. To mix binary and text data, asina
multipart response, use a ServletOutputStream and manage the character sections
manually.

= Indicate the content type (for example, text/html) being returned by the response with the
setContentType (String) method. This method must be called before the response is
committed. A registry of content type names is kept by the Internet Assigned Numbers
Authority JANA) athttp://www.1lana.org/assignments/media-types/.

Chapter 15 - Java Servlet Technology 333

http://www.iana.org/assignments/media-types/

Filtering Requests and Responses

= Indicate whether to buffer output with the setBufferSize(int) method. By default, any
content written to the output stream is immediately sent to the client. Buffering allows
content to be written before anything is sent back to the client, thus providing the servlet
with more time to set appropriate status codes and headers or forward to another web
resource. The method must be called before any content is written or before the response is
committed.

= Setlocalization information, such as locale and character encoding. See Chapter 17,
“Internationalizing and Localizing Web Applications,” for details.

HTTP response objects, javax.servlet.http.HttpServletResponse, have fields representing
HTTP headers, such as the following:

= Status codes, which are used to indicate the reason a request is not satisfied or that a request
has been redirected.

= Cookies, which are used to store application-specific information at the client. Sometimes,
cookies are used to maintain an identifier for tracking a user’s session (see “Session
Tracking” on page 341).

Filtering Requests and Responses

334

A filter is an object that can transform the header and content (or both) of a request or response.
Filters differ from web components in that filters usually do not themselves create a response.
Instead, a filter provides functionality that can be “attached” to any kind of web resource.
Consequently, a filter should not have any dependencies on a web resource for which it is acting
as a filter; this way, it can be composed with more than one type of web resource.

The main tasks that a filter can perform are as follows:

= Query the request and act accordingly.
= Block the request-and-response pair from passing any further.

= Modify the request headers and data. You do this by providing a customized version of the
request.

= Modify the response headers and data. You do this by providing a customized version of the
response.

® Interact with external resources.

Applications of filters include authentication, logging, image conversion, data compression,
encryption, tokenizing streams, XML transformations, and so on.

You can configure a web resource to be filtered by a chain of zero, one, or more filtersin a
specific order. This chain is specified when the web application containing the component is
deployed and is instantiated when a web container loads the component.

The Java EE 6 Tutorial « January 2013

Filtering Requests and Responses

Programming Filters

The filtering API is defined by the Filter, FilterChain,and FilterConfig interfaces in the
javax.servlet package. You define a filter by implementing the Filter interface.

Use the @WebFilter annotation to define a filter in a web application. This annotation is
specified on a class and contains metadata about the filter being declared. The annotated filter
must specify at least one URL pattern. This is done by using the urlPatterns or value attribute
on the annotation. All other attributes are optional, with default settings. Use the value
attribute when the only attribute on the annotation is the URL pattern; use the urlPatterns
attribute when other attributes are also used.

Classes annotated with the @WebFilter annotation must implement the
javax.servlet.Filter interface.

To add configuration data to the filter, specify the initParams attribute of the @webFilter
annotation. The initParams attribute contains a @WebInitParamannotation. The following
code snippet defines a filter, specifying an initialization parameter:

import javax.servlet.Filter;
import javax.servlet.annotation.WebFilter;
import javax.servlet.annotation.WebInitParam;

@WebFilter(filterName = "TimeOfDayFilter"
urlPatterns = {"/*"},
initParams = {

@WebInitParam(name = "mood", value = "awake")})
public class TimeOfDayFilter implements Filter {

The most important method in the Filter interface is doFilter, which is passed request,
response, and filter chain objects. This method can perform the following actions:

= Examine the request headers.
= Customize the request object if the filter wishes to modify request headers or data.
= Customize the response object if the filter wishes to modify response headers or data.

= Invoke the next entity in the filter chain. If the current filter is the last filter in the chain that
ends with the target web component or static resource, the next entity is the resource at the
end of the chain; otherwise, it is the next filter that was configured in the WAR. The filter
invokes the next entity by calling the doFilter method on the chain object, passing in the
request and response it was called with or the wrapped versions it may have created.
Alternatively, the filter can choose to block the request by not making the call to invoke the
next entity. In the latter case, the filter is responsible for filling out the response.

= Examine response headers after invoking the next filter in the chain.

= Throw an exception to indicate an error in processing.

Chapter 15 - Java Servlet Technology 335

Filtering Requests and Responses

336

In addition to doFilter, you must implement the init and destroy methods. The init
method is called by the container when the filter is instantiated. If you wish to pass initialization
parameters to the filter, you retrieve them from the FilterConfig object passed to init.

Programming Customized Requests and Responses

There are many ways for a filter to modify a request or a response. For example, a filter can add
an attribute to the request or can insert data in the response.

A filter that modifies a response must usually capture the response before it is returned to the
client. To do this, you pass a stand-in stream to the servlet that generates the response. The
stand-in stream prevents the servlet from closing the original response stream when it
completes and allows the filter to modify the servlet’s response.

To pass this stand-in stream to the servlet, the filter creates a response wrapper that overrides
the getWriter or getOutputStream method to return this stand-in stream. The wrapper is
passed to the doFilter method of the filter chain. Wrapper methods default to calling through
to the wrapped request or response object.

To override request methods, you wrap the request in an object that extends either
ServletRequestWrapper or HttpServletRequestWrapper. To override response methods, you
wrap the response in an object that extends either ServietResponseWrapper or
HttpServletResponseWrapper.

Specifying Filter Mappings

A web container uses filter mappings to decide how to apply filters to web resources. A filter
mapping matches a filter to a web component by name or to web resources by URL pattern. The
filters are invoked in the order in which filter mappings appear in the filter mapping list of a
WAR. You specify a filter mapping list fora WAR in its deployment descriptor by either using
NetBeans IDE or coding the list by hand with XML.

If you want to log every request to a web application, you map the hit counter filter to the URL
pattern /*.

You can map a filter to one or more web resources, and you can map more than one filter to a
web resource. This is illustrated in Figure 15-1, where filter F1 is mapped to servlets S1, S2, and
S3; filter F2 is mapped to servlet S2; and filter F3 is mapped to servlets S1 and S2.

The Java EE 6 Tutorial « January 2013

Filtering Requests and Responses

FIGURE 15-1 Filter-to-Servlet Mapping

| F3 '@

Recall that a filter chain is one of the objects passed to the doFilter method of a filter. This
chain is formed indirectly by means of filter mappings. The order of the filters in the chain is the
same as the order in which filter mappings appear in the web application deployment
descriptor.

When a filter is mapped to servlet S1, the web container invokes the doFilter method of F1.
The doFilter method of each filter in S1’s filter chain is invoked by the preceding filter in the
chain by means of the chain.doFilter method. Because S1’s filter chain contains filters F1 and
F3, F1’s call to chain.doFilter invokes the doFilter method of filter F3. When F3’s doFilter
method completes, control returns to F1’s doFilter method.

To Specify Filter Mappings Using NetBeans IDE

Expand the application’s project node in the Project pane.

Expand the Web Pages and WEB-INF nodes under the project node.

Double-click web . xm1.

Click Filters at the top of the editor pane.

Expand the Servlet Filters node in the editor pane.

Click Add Filter Element to map the filter to a web resource by name or by URL pattern.
In the Add Servlet Filter dialog, enter the name of the filter in the Filter Name field.

Click Browse to locate the servlet class to which the filter applies.

You can include wildcard characters so that you can apply the filter to more than one servlet.

Chapter 15 - Java Servlet Technology 337

Invoking Other Web Resources

Click OK.

To constrain how the filter is applied to requests, follow these steps.
a. Expand the Filter Mappings node.

b. Select the filter from the list of filters.

c. ClickAdd.

d. Inthe Add Filter Mapping dialog, select one of the following dispatcher types:

® REQUEST: Only when the request comes directly from the client
= ASYNC: Only when the asynchronous request comes from the client

= FORWARD: Only when the request has been forwarded to a component (see “Transferring
Control to Another Web Component” on page 339)

= INCLUDE: Only when the request is being processed by a component that has been
included (see “Including Other Resources in the Response” on page 339)

= ERROR: Only when the request is being processed with the error page mechanism (see
“Handling Servlet Errors” on page 330)

You can direct the filter to be applied to any combination of the preceding situations by
selecting multiple dispatcher types. If no types are specified, the default option is REQUEST.

Invoking Other Web Resources

338

Web components can invoke other web resources both indirectly and directly. A web
component indirectly invokes another web resource by embedding a URL that points to
another web component in content returned to a client. While it is executing, a web component
directly invokes another resource by either including the content of another resource or
forwarding a request to another resource.

To invoke a resource available on the server that is running a web component, you must first
obtain a RequestDispatcher object by using the getRequestDispatcher("URL") method. You
can get a RequestDispatcher object from either a request or the web context; however, the two
methods have slightly different behavior. The method takes the path to the requested resource
asan argument. A request can take a relative path (that is, one that does not begin with a /), but
the web context requires an absolute path. If the resource is not available or if the server has not
implemented a RequestDispatcher object for that type of resource, getRequestDispatcher
will return null. Your servlet should be prepared to deal with this condition.

The Java EE 6 Tutorial « January 2013

Accessing the Web Context

Including Other Resources in the Response

It is often useful to include another web resource, such as banner content or copyright
information) in the response returned from a web component. To include another resource,
invoke the include method of a RequestDispatcher object:

include(request, response);

If the resource is static, the include method enables programmatic server-side includes. If the
resource is a web component, the effect of the method is to send the request to the included web
component, execute the web component, and then include the result of the execution in the
response from the containing servlet. An included web component has access to the request
object but is limited in what it can do with the response object.

= [t can write to the body of the response and commit a response.

= [t cannot set headers or call any method, such as setCookie, that affects the headers of the
response.

Transferring Control to Another Web Component

In some applications, you might want to have one web component do preliminary processing of
arequest and have another component generate the response. For example, you might want to
partially process a request and then transfer to another component, depending on the nature of
the request.

To transfer control to another web component, you invoke the forward method of a
RequestDispatcher. When a request is forwarded, the request URL is set to the path of the
forwarded page. The original URI and its constituent parts are saved as request attributes
javax.servlet.forward. [request-uri| context-path|servlet-path| path-info | query-string].

The forward method should be used to give another resource responsibility for replying to the
user. If you have already accessed a ServletOutputStreamor PrintWriter object within the
servlet, you cannot use this method; doing so throws an I1legalStateException.

Accessing the Web Context

The context in which web components execute is an object that implements the
ServletContext interface. You retrieve the web context by using the getServietContext
method. The web context provides methods for accessing

Initialization parameters

Resources associated with the web context
Object-valued attributes

Logging capabilities

Chapter 15 - Java Servlet Technology 339

Maintaining Client State

The counter’s access methods are synchronized to prevent incompatible operations by servlets
that are running concurrently. A filter retrieves the counter object by using the context’s
getAttribute method. The incremented value of the counter is recorded in the log.

Maintaining Client State

Many applications require that a series of requests from a client be associated with one another.
For example, a web application can save the state of a user’s shopping cart across requests.
Web-based applications are responsible for maintaining such state, called a session, because
HTTP is stateless. To support applications that need to maintain state, Java Servlet technology
provides an API for managing sessions and allows several mechanisms for implementing
sessions.

Accessing a Session

Sessions are represented by an HttpSession object. You access a session by calling the
getSession method of a request object. This method returns the current session associated
with this request; or, if the request does not have a session, this method creates one.

Associating Objects with a Session

You can associate object-valued attributes with a session by name. Such attributes are accessible
by any web component that belongs to the same web context and is handling a request that is
part of the same session.

Recall that your application can notify web context and session listener objects of servlet
lifecycle events (“Handling Servlet Lifecycle Events” on page 328). You can also notify objects of
certain events related to their association with a session such as the following:

= When the object is added to or removed from a session. To receive this notification, your
object must implement the javax.servlet.http.HttpSessionBindingListener interface.

= When the session to which the object is attached will be passivated or activated. A session
will be passivated or activated when it is moved between virtual machines or saved to and
restored from persistent storage. To receive this notification, your object must implement
the javax.servlet.http.HttpSessionActivationListener interface.

340 The Java EE 6 Tutorial « January 2013

Maintaining Client State

Session Management

Because an HTTP client has no way to signal that it no longer needs a session, each session has
an associated timeout so that its resources can be reclaimed. The timeout period can be accessed
by using a session’s getMaxInactiveInterval and setMaxInactiveInterval methods.

= To ensure that an active session is not timed out, you should periodically access the session
by using service methods because this resets the session’s time-to-live counter.

= When a particular client interaction is finished, you use the session’s invalidate method to
invalidate a session on the server side and remove any session data.

To Set the Timeout Period Using NetBeans IDE
To set the timeout period in the deployment descriptor using NetBeans IDE, follow these steps.

Open the project if you haven't already.

Expand the project’s node in the Projects pane.

Expand the Web Pages node and then the WEB-INF node.
Double-clickweb . xml.

Click General at the top of the editor.

In the Session Timeout field, type an integer value.

The integer value represents the number of minutes of inactivity that must pass before the
session times out.

Session Tracking

To associate a session with a user, a web container can use several methods, all of which involve
passing an identifier between the client and the server. The identifier can be maintained on the
client as a cookie, or the web component can include the identifier in every URL that is returned
to the client.

If your application uses session objects, you must ensure that session tracking is enabled by
having the application rewrite URLs whenever the client turns off cookies. You do this by
calling the response’s encodeURL (URL) method on all URLs returned by a servlet. This method
includes the session ID in the URL only if cookies are disabled; otherwise, the method returns
the URL unchanged.

Chapter 15 - Java Servlet Technology 341

Finalizing a Servlet

Finalizing a Servlet

342

The web container may determine that a servlet should be removed from service (for example,
when a container wants to reclaim memory resources or when it is being shut down). In such a
case, the container calls the destroy method of the Servlet interface. In this method, you
release any resources the servlet is using and save any persistent state. The destroy method
releases the database object created in the init method.

A servlet’s service methods should all be complete when a servlet is removed. The server tries to
ensure this by calling the destroy method only after all service requests have returned or after a
server-specific grace period, whichever comes first. If your servlet has operations that may run
longer than the server’s grace period, the operations could still be running when destroy is
called. You must make sure that any threads still handling client requests complete.

The remainder of this section explains how to do the following:

= Keep track of how many threads are currently running the service method.

= Provide a clean shutdown by having the destroy method notify long-running threads of the
shutdown and wait for them to complete.

= Have the long-running methods poll periodically to check for shutdown and, if necessary,
stop working, clean up, and return.

Tracking Service Requests

To track service requests, include in your servlet class a field that counts the number of service
methods that are running. The field should have synchronized access methods to increment,
decrement, and return its value:

public class ShutdownExample extends HttpServlet {
private int serviceCounter = 0;

// Access methods for serviceCounter
protected synchronized void enteringServiceMethod() {
serviceCounter++;

protected synchronized void leavingServiceMethod() {
serviceCounter--;

protected synchronized int numServices() {
return serviceCounter;
}
}

The service method should increment the service counter each time the method is entered and
should decrement the counter each time the method returns. This is one of the few times that
your HttpServlet subclass should override the service method. The new method should call
super.service to preserve the functionality of the original service method:

The Java EE 6 Tutorial « January 2013

Finalizing a Servlet

protected void service(HttpServletRequest req,
HttpServletResponse resp)
throws ServletException,IOException {
enteringServiceMethod();
try {
super.service(req, resp);
} finally {
leavingServiceMethod();
}

Notifying Methods to Shut Down

To ensure a clean shutdown, your destroy method should not release any shared resources
until all the service requests have completed. One part of doing this is to check the service
counter. Another part is to notify the long-running methods that it is time to shut down. For
this notification, another field is required. The field should have the usual access methods:

public class ShutdownExample extends HttpServlet {
private boolean shuttingDown;

//Access methods for shuttingDown

protected synchronized void setShuttingDown(boolean flag) {
shuttingDown = flag;

}

protected synchronized boolean isShuttingDown() {
return shuttingDown;
}

}

Here is an example of the destroy method using these fields to provide a clean shutdown:

public void destroy() {
/* Check to see whether there are still service methods /*
/* running, and if there are, tell them to stop. */
if (numServices() > 0) {
setShuttingDown(true);
}

/* Wait for the service methods to stop. */
while(numServices() > 0) {
try {
Thread.sleep(interval);
} catch (InterruptedException e) {
}

Creating Polite Long-Running Methods

The final step in providing a clean shutdown is to make any long-running methods behave
politely. Methods that might run for a long time should check the value of the field that notifies
them of shutdowns and should interrupt their work, if necessary:

Chapter 15 - Java Servlet Technology 343

The mood Example Application

public void doPost(...) {

for(i = 0; ((i < lotsOfStuffToDo) &&
lisShuttingDown()); i++) {
try {
partOfLongRunningOperation(i);
} catch (InterruptedException e) {

}

The mood Example Application

The mood example application, located in the tut-install/examples/web/mood/ directory, is a
simple example that displays Duke’s moods at different times during the day. The example
shows how to develop a simple application by using the @WebServlet, @ebFilter, and
@vebListener annotations to create a servlet, a listener, and a filter.

Components of the mood Example Application

The mood example application is comprised of three components: mood . web .MoodServlet,
mood.web.TimeOfDayFilter, and mood.web.SimpleServletListener.

MoodServlet, the presentation layer of the application, displays Duke’s mood in a graphic,
based on the time of day. The @WebServlet annotation specifies the URL pattern:

@WebServlet("/report")
public class MoodServlet extends HttpServlet {

TimeOfDayFilter sets an initialization parameter indicating that Duke is awake:

@WebFilter(filterName = "TimeOfDayFilter"
urlPatterns = {"/*"},
initParams = {

@WebInitParam(name = "mood", value = "awake")})
public class TimeOfDayFilter implements Filter {

The filter calls the doFilter method, which contains a switch statement that sets Duke’s mood
based on the current time.

SimpleServletListener logs changes in the servlet’s lifecycle. The log entries appear in the
server log.

Running the mood Example

You can use either NetBeans IDE or Ant to build, package, deploy, and run the mood example.

344 The Java EE 6 Tutorial « January 2013

The mood Example Application

To Run the mood Example Using NetBeans IDE
From the File menu, choose Open Project.

In the Open Project dialog, navigate to:

tut-install/examples/web/

Select the mood folder.

Select the Open as Main Project check box.

Click Open Project.

In the Projects tab, right-click the mood project and select Build.
Right-click the project and select Deploy.

In aweb browser, open the URL http://localhost:8080/mood/report.
The URL specifies the context root, followed by the URL pattern specified for the servlet.

A web page appears with the title “Servlet MoodServlet at /mood” a text string describing Duke’s
mood, and an illustrative graphic.

To Run the mood Example Using Ant

In a terminal window, go to:

tut-install/examples/web/mood/

Type the following command:

ant

This target builds the WAR file and copies it to the tut-install/examples/web/mood/dist/
directory.

Type ant deploy.
Ignore the URL shown in the deploy target output.

In aweb browser, openthe URL http://localhost:8080/mood/report.
The URL specifies the context root, followed by the URL pattern.

A web page appears with the title “Servlet MoodServlet at /mood” a text string describing Duke’s
mood, and an illustrative graphic.

Chapter 15 - Java Servlet Technology 345

Further Information about Java Servlet Technology

Further Information about Java Servlet Technology

For more information on Java Servlet technology, see

m Java Servlet 3.0 specification:
http://jcp.org/en/jsr/detail?id=315

® Java Servlet web site:

http://www.oracle.com/technetwork/java/index-jsp-135475.html

346 The Java EE 6 Tutorial « January 2013

http://jcp.org/en/jsr/detail?id=315
http://www.oracle.com/technetwork/java/index-jsp-135475.html

L K R 4 CHAPTER 16

Uploading Files with Java Servlet Technology

Supporting file uploads is a very basic and common requirement for many web applications.
Prior to Servlet 3.0, implementing file upload required the use of external libraries or complex
input processing. Version 3.0 of the Java Servlet specification helps to provide a viable solution
to the problem in a generic and portable way. The Servlet 3.0 specification supports file upload
out of the box, so any web container that implements the specification can parse multipart
requests and make mime attachments available through the HttpServietRequest object.

A new annotation, javax.servlet.annotation.MultipartConfig,is used to indicate that the
servlet on which it is declared expects requests to made using the multipart/form-data MIME
type. Servlets that are annotated with @ultipartConfig can retrieve the Part components of a
given multipart/form-data request by calling the request.getPart(String name) or
request.getParts() method.

The following topics are addressed here:

® “The@MultipartConfig Annotation” on page 347
= “The getParts and getPart Methods” on page 348
= “The fileupload Example Application” on page 349

The@MultipartConfig Annotation

The @MultipartConfig annotation supports the following optional attributes:

= location: Anabsolute path to a directory on the file system. The location attribute does
not support a path relative to the application context. This location is used to store files
temporarily while the parts are processed or when the size of the file exceeds the specified

fileSizeThreshold setting. The default location is "".

= fileSizeThreshold: The file size in bytes after which the file will be temporarily stored on
disk. The default size is 0 bytes.

347

The getParts and getPart Methods

= MaxFileSize: The maximum size allowed for uploaded files, in bytes. If the size of any
uploaded file is greater than this size, the web container will throw an exception
(IllegalStateException). The default size is unlimited.

= maxRequestSize: The maximum size allowed for amultipart/form-data request, in bytes.
The web container will throw an exception if the overall size of all uploaded files exceeds this
threshold. The default size is unlimited.

For, example, the @MultipartConfig annotation could be constructed as follows:

@ultipartConfig(location="/tmp", fileSizeThreshold=1024+*1024,
maxFileSize=1024*1024*5, maxRequestSize=1024*1024*5*5)

Instead of using the @ultipartConfig annotation to hard-code these attributes in your file
upload servlet, you could add the following as a child element of the servlet configuration
element in the web . xm1 file.

<multipart-config>
<location>/tmp</location>
<max-file-size>20848820</max-file-size>
<max-request-size>418018841</max-request-size>
<file-size-threshold>1048576</file-size-threshold>
</multipart-config>

The getParts and getPart Methods

348

Servlet 3.0 supports two additional HttpServietRequest methods:

m (Collection<Part> getParts()
®m Part getPart(String name)

The request.getParts() method returns collections of all Part objects. If you have more than
one input of type file, multiple Part objects are returned. Since Part objects are named, the
getPart(String name) method can be used to access a particular Part. Alternatively, the
getParts () method, which returns an Iterable<Part>, can be used to get an Iterator over all
the Part objects.

The javax.servlet.http.Part interface is a simple one, providing methods that allow
introspection of each Part. The methods do the following:

= Retrieve the name, size, and content-type of the Part
= Query the headers submitted with a Part

= DeleteaPart

= Writea Part out to disk

For example, the Part interface provides the write(String filename) method to write the file
with the specified name. The file can then be saved in the directory specified with the location
attribute of the @MultipartConfig annotation or, in the case of the fileupload example, in the
location specified by the Destination field in the form.

The Java EE 6 Tutorial « January 2013

The fileupload Example Application

The fileupload Example Application
The fileupload example illustrates how to implement and use the file upload feature.

The Duke’s Forest case study provides a more complex example that uploads an image file and
stores its content in a database.

Architecture of the fileupload Example Application

The fileupload example application consists of a single servlet and an HTML form that makes
afile upload request to the servlet.

This example includes a very simple HTML form with two fields, File and Destination. The
input type, file, enables a user to browse the local file system to select the file. When the file is
selected, it is sent to the server as a part of a POST request. During this process two mandatory
restrictions are applied to the form with input type file:

m The enctype attribute must be set to a value of multipart/form-data.
® [ts method must be POST.

When the form is specified in this manner, the entire request is sent to the server in encoded
form. The servlet then handles the request to process the incoming file data and to extract a file
from the stream. The destination is the path to the location where the file will be saved on your
computer. Pressing the Upload button at the bottom of the form posts the data to the servlet,
which saves the file in the specified destination.

The HTML form in tut-install/examples/web/fileupload/web/index.html is as follows:

<IDOCTYPE html>
<html lang="en">
<head>
<title>File Upload</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

</head>
<body>
<form method="POST" action="upload" enctype="multipart/form-data" >
File:
<input type="file" name="file" id="file" />

Destination:
<input type="text" value="/tmp" name="destination"/>
</br>
<input type="submit" value="Upload" name="upload" id="upload" />
</form>
</body>
</html>

A POST request method is used when the client needs to send data to the server as part of the
request, such as when uploading a file or submitting a completed form. In contrast, a GET
request method sends a URL and headers only to the server, whereas POST requests also

Chapter 16 - Uploading Files with Java Servlet Technology 349

The fileupload Example Application

350

include a message body. This allows arbitrary-length data of any type to be sent to the server. A
header field in the POST request usually indicates the message body’s Internet media type.

When submitting a form, the browser streams the content in, combining all parts, with each
part representing a field of a form. Parts are named after the input elements and are separated
from each other with string delimiters named boundary.

This is what submitted data from the fileupload form looks like, after selecting sample. txt as
the file that will be uploaded to the tmp directory on the local file system:

POST /fileupload/upload HTTP/1.1

Host: localhost:8080

Content-Type: multipart/form-data;
boundary=-----------c--ooiiio ot 263081694432439
Content-Length: 441

————————————————————————————— 263081694432439

Content-Disposition: form-data; name="file"; filename="sample.txt"
Content-Type: text/plain

Data from sample file
----------------------------- 263081694432439
Content-Disposition: form-data; name="destination"

----------------------------- 263081694432439
Content-Disposition: form-data; name="upload"

----------------------------- 263081694432439- -

The servlet FileUploadServlet.java can be found in the
tut-install/examples/web/fileupload/src/java/fileupload/ directory. The servlet begins
as follows:

@WebServlet(name = "FileUploadServlet", urlPatterns = {"/upload"})
@MultipartConfig
public class FileUploadServlet extends HttpServlet {

private final static Logger LOGGER =
Logger.getLogger(FileUploadServlet.class.getCanonicalName());

The @WebServlet annotation uses the urlPatterns property to define servlet mappings.

The @MultipartConfig annotation indicates that the servlet expects requests to made using the
multipart/form-data MIME type.

The processRequest method retrieves the destination and file part from the request, then calls
the getFileName method to retrieve the file name from the file part. The method then creates a
FileOutputStreamand copies the file to the specified destination. The error-handling section
of the method catches and handles some of the most common reasons why a file would not be
found. The processRequest and getFileName methods look like this:

The Java EE 6 Tutorial « January 2013

The fileupload Example Application

protected void processRequest(HttpServletRequest request,
HttpServletResponse response)

throws ServletException,

IOException {

response.setContentType("text/html;charset=UTF-8");

// Create path components to

save the file

final String path = request.getParameter('destination")
final Part filePart = request.getPart("file");
final String fileName = getFileName(filePart);

OutputStream out = null;

InputStream filecontent = null;
final PrintWriter writer = response.getWriter();

try {

out = new FileOutputStream(new File(path + File.separator

+ fileName));

filecontent = filePart.getInputStream();

int read = 0;

final byte[] bytes = new byte[1024];

while ((read = filecontent.read(bytes)) '= -1) {

out.write(bytes, 0,
}

writer.println("New file "

read);

+ fileName + ° created at " + path);

LOGGER.log(Level.INFO, "File{@}being uploaded to {1}"
new Object[]{fileName, path});
} catch (FileNotFoundException fne) {

writer.println("You either did not specify a file to upload or are
+ "trying to upload a file to a protected or nonexistent

+ "location.");

writer.printin("
 ERROR:

LOGGER. log(Level.SEVERE,

+ fne.getMessage());

"Problems during file upload. Error: {0}"

new Object[]{fne.getMessage()});

} finally {
if (out !'= null) {
out.close();

if (filecontent != null)
filecontent.close();

if (writer != null) {
writer.close();

}
¥

private String getFileName(final Part part) {
final String partHeader = part.getHeader("content-disposition")

LOGGER.log(Level.INFO, "Part

Header = {0}", partHeader);

for (String content : part.getHeader("content-disposition").split(";")) {
if (content.trim().startsWith("filename")) {
return content.substring(
content.index0f(’=") + 1).trim().replace("\"", "");

}

return null;

Chapter 16 - Uploading Files with Java Servlet Technology 351

The fileupload Example Application

352

Running the fileupload Example

You can use either NetBeans IDE or Ant to build, package, deploy, and run the fileupload
example.

To Build, Package, and Deploy the fileupload Example Using
NetBeans IDE

From the File menu, choose Open Project.

In the Open Project dialog, navigate to:

tut-install/examples/web/

Select the fileupload folder.
Select the Open as Main Project checkbox.
Click Open Project.

In the Projects tab, right-click fileupload and select Deploy.

To Build, Package, and Deploy the fileupload Example Using Ant

In a terminal window, go to:
tut-install/examples/web/fileupload/

Type the following command:

ant

Type the following command:
ant deploy
To Run the fileupload Example

In a web browser, type the following URL:
http://localhost:8080/fileupload/

The File Upload page opens.

Click Browse to display a file browser window.

The Java EE 6 Tutorial « January 2013

The fileupload Example Application

Select afile to upload and click Open.

The name of the file you selected is displayed in the File field. If you do not select a file, an
exception will be thrown.

In the Destination field, type a directory name.

The directory must have already been created and must also be writable. If you do not enter a
directory name, or if you enter the name of a nonexistent or protected directory, an exception
will be thrown.

Click Upload to upload the file you selected to the directory you specified in the Destination
field.

A message reports that the file was created in the directory you specified.

Go to the directory you specified in the Destination field and verify that the uploaded file is
present.

Chapter 16 - Uploading Files with Java Servlet Technology 353

354

CHAPTER 17

Internationalizing and Localizing Web
Applications

The process of preparing an application to support more than one language and data format is
called internationalization. Localization is the process of adapting an internationalized
application to support a specific region or locale. Examples of locale-dependent information
include messages and user interface labels, character sets and encoding, and date and currency
formats. Although all client user interfaces should be internationalized and localized, these
processes are particularly important for web applications because of the global nature of the
web.

The following topics are addressed here:

“Java Platform Localization Classes” on page 355
“Providing Localized Messages and Labels” on page 356
“Date and Number Formatting” on page 359
“Character Sets and Encodings” on page 359

Java Platform Localization Classes

In the Java platform, java.util.Locale (http://docs.oracle.com/javase/6/docs/api/
java/util/Locale.html) represents a specific geographical, political, or cultural region. The
string representation of a locale consists of the international standard two-character
abbreviation for language and country and an optional variant, separated by underscore (_)
characters. Examples of locale strings include fr (French), de_CH (Swiss German), and
en_US_POSIX (English on a POSIX-compliant platform).

Locale-sensitive data is stored ina java.util.ResourceBundle (http://docs.oracle.com/
javase/6/docs/api/java/util/ResourceBundle.html). A resource bundle contains
key-value pairs, where the key uniquely identifies a locale-specific object in the bundle. A
resource bundle can be backed by a text file (properties resource bundle) or a class (list resource
bundle) containing the pairs. You construct a resource bundle instance by appending a locale
string representation to a base name.

355

http://docs.oracle.com/javase/6/docs/api/java/util/Locale.html
http://docs.oracle.com/javase/6/docs/api/java/util/Locale.html
http://docs.oracle.com/javase/6/docs/api/java/util/ResourceBundle.html
http://docs.oracle.com/javase/6/docs/api/java/util/ResourceBundle.html

Providing Localized Messages and Labels

The Duke’s Tutoring application contains resource bundles with the base name
messages.properties for the locales pt (Portuguese), de (German), es (Spanish), and zh
(Chinese). The defaultlocale, en (English), which is specified in the faces-config.xml file, uses
the resource bundle with the base name, messages.properties.

For more details on internationalization and localization in the Java platform, see
(http://docs.oracle.com/javase/tutorial/il8n/index.html).

Providing Localized Messages and Labels

356

Messages and labels should be tailored according to the conventions of a user’s language and
region. There are two approaches to providing localized messages and labels in a web
application:

= Provide a version of the web page in each of the target locales and have a controller servlet
dispatch the request to the appropriate page depending on the requested locale. This
approach is useful if large amounts of data on a page or an entire web application need to be
internationalized.

= Isolate any locale-sensitive data on a page into resource bundles, and access the data so that
the corresponding translated message is fetched automatically and inserted into the page.
Thus, instead of creating strings directly in your code, you create a resource bundle that
contains translations and read the translations from that bundle using the corresponding
key.

The Duke’s Tutoring application follows the second approach. Here are a few lines from the
default resource bundle messages.properties:

nav.main=Main page

nav.status=View status

nav.current_session=View current tutoring session
nav.park=View students at the park
nav.admin=Administration

admin.nav.main=Administration main page
admin.nav.create student=Create new student
admin.nav.edit student=Edit student
admin.nav.create guardian=Create new guardian
admin.nav.edit guardian=Edit guardian
admin.nav.create address=Create new address
admin.nav.edit address=Edit address
admin.nav.activate student=Activate student

Establishing the Locale

To get the correct strings for a given user, a web application either retrieves the locale (set by a
browser language preference) from the request using the getLocale method, or allows the user
to explicitly select the locale.

The Java EE 6 Tutorial « January 2013

http://docs.oracle.com/javase/tutorial/i18n/index.html

Providing Localized Messages and Labels

A component can explicitly set the locale by using the fmt : setLocale tag.

The locale-config element in the configuration file registers the default locale and other
supported locales. This element in Duke’s Tutoring registers English as the default locale and
indicates that German, Spanish, Portuguese, and Chinese are supported locales.

<locale-config>
<default-locale>en</default-locale>
<supported-locale>de</supported-locale>
<supported-locale>es</supported-locale>
<supported-locale>pt</supported-locale>
<supported-locale>zh</supported-locale>
</locale-config>

The Status Manager in the Duke’s Tutoring application uses the getLocale method to retrieve
the locale and a toString method to return a localized translation of a student’s status based on
the locale.

public class StatusManager {

private FacesContext ctx = FacesContext.getCurrentInstance();
private Locale locale;

/** Creates a new instance of StatusManager */
public StatusManager() {

locale = ctx.getViewRoot().getLocale();
}

public String getLocalizedStatus(StatusType status) {
return status.toString(locale);

}

Setting the Resource Bundle

The resource bundle is set with the resource-bundle element in the configuration file. The
setting for Duke’s Tutoring looks like this:

<resource-bundle>
<base-name>dukestutoring.web.messages.Messages</base-name>
<var>bundle</var>

</resource-bundle>

After the locale is set, the controller of a web application could retrieve the resource bundle for
that locale and save it as a session attribute (see “Associating Objects with a Session” on

page 340) for use by other components or simply to return a text string appropriate for the
selected locale:

public String toString(Locale locale) {
ResourceBundle res = ResourceBundle.getBundle(

Chapter 17 - Internationalizing and Localizing Web Applications 357

Providing Localized Messages and Labels

358

"dukestutoring.web.messages.Messages", locale);
return res.getString(name() + ".string");

}

Alternatively, an application could use the f: loadBundle tag to set the resource bundle. This
tag loads the correct resource bundle according to the locale stored in FacesContext.

<f:loadBundle basename="dukestutoring.web.messages.Messages"
var="bundle"/>

Resource bundles containing messages that are explicitly referenced from a JavaServer Faces tag
attribute using a value expression must be registered using the resource-bundle element of the
configuration file.

For more information on using this element, see “Registering Application Messages” on
page 308.

Retrieving Localized Messages

A web component written in the Java programming language retrieves the resource bundle
from the session:

ResourceBundle messages = (ResourceBundle)session.getAttribute("messages");

Then it looks up the string associated with the key person. lastName as follows:

messages.getString("person.lastName");

You can only use a message or messages tag to display messages that are queued onto a
component as a result of a converter or validator being registered on the component. The
following example shows a message tag that displays the error message queued on the userNo
input component if the validator registered on the component fails to validate the value the user
enters into the component.

<h:inputText id="userNo" value="#{UserNumberBean.userNumber}">
<f:validateLongRange minimum="0" maximum="10" />

<h:message
style="color: red;
text-decoration: overline" id="errorsl" for="userNo"/>

For more information on using the message or messages tags, see “Displaying Error Messages
with the h:message and h:messages Tags” on page 164.

Messages that are not queued on a component and are therefore not loaded automatically are
referenced using a value expression. You can reference a localized message from almost any
JavaServer Faces tag attribute.

The Java EE 6 Tutorial « January 2013

Character Sets and Encodings

The value expression that references a message has the same notation whether you loaded the
resource bundle with the f: loadBundle tag or registered it with the resource-bundle element
in the configuration file.

The value expression notation is var.message, in which var matches the var attribute of the
f:loadBundle tag or the var element defined in the resource-bundle element of the
configuration file, and message matches the key of the message contained in the resource
bundle, referred to by the var attribute.

Here is an example from editAddress.xhtml in Duke’s Tutoring:

<h:outputLabel for="country" value="#{bundle['address.country’]}:" />

Notice that bundle matches the var element from the configuration file and that country
matches the key in the resource bundle.

Date and Number Formatting

Java programs use the DateFormat.getDateInstance(int, locale) to parse and format dates
in alocale-sensitive manner. Java programs use the NumberFormat.getXXXInstance(locale)
method, where XXX can be Currency, Number, or Percent, to parse and format numerical
values in a locale-sensitive manner.

An application can use date/time and number converters to format dates and numbers in a
locale-sensitive manner. For example, a shipping date could be converted as follows:

<h:outputText value="#{cashier.shipDate}">
<f:convertDateTime dateStyle="full"/>
</h:outputText>

For information on JavaServer Faces converters, see “Using the Standard Converters” on
page 175.

Character Sets and Encodings

The following sections describe character sets and character encodings.

Character Sets

A character set is a set of textual and graphic symbols, each of which is mapped to a set of
nonnegative integers.

The first character set used in computing was US-ASCIL It is limited in that it can represent
only American English. US-ASCII contains uppercase and lowercase Latin letters, numerals,
punctuation, control codes, and a few miscellaneous symbols.

Chapter 17 - Internationalizing and Localizing Web Applications 359

Character Sets and Encodings

360

Unicode defines a standardized, universal character set that can be extended to accommodate
additions. When the Java program source file encoding doesn’t support Unicode, you can
represent Unicode characters as escape sequences by using the notation \uXXXX, where XXXX
is the character’s 16-bit representation in hexadecimal. For example, the Spanish version of the
Duke’s Tutoring message file uses Unicode for non-ASCII characters:

nav.main=P\u@@elgina Principal

nav.status=Mirar el estado

nav.current_session=Ver sesi\u@0f3n actual del tutorial
nav.park=Ver estudiantes en el Parque
nav.admin=Administraci\u@0f3n

admin.nav.main=P\u@0elgina principal de administraci\u@@f3n
admin.nav.create student=Crear un nuevo estudiante
admin.nav.edit student=Editar informaci\u@0f3n del estudiante
admin.nav.create guardian=Crear un nuevo guardia
admin.nav.edit guardian=Editar guardia

admin.nav.create address=Crear una nueva direcci\u@@f3n
admin.nav.edit address=Editar direcci\u@0f3n
admin.nav.activate student=Activar estudiante

Character Encoding

A character encoding maps a character set to units of a specific width and defines byte
serialization and ordering rules. Many character sets have more than one encoding. For
example, Java programs can represent Japanese character sets using the EUC-JP or Shift-JIS
encodings, among others. Each encoding has rules for representing and serializing a character
set.

The ISO 8859 series defines 13 character encodings that can represent texts in dozens of
languages. Each ISO 8859 character encoding can have up to 256 characters. ISO-8859-1
(Latin-1) comprises the ASCII character set, characters with diacritics (accents, diaereses,
cedillas, circumflexes, and so on), and additional symbols.

UTF-8 (Unicode Transformation Format, 8-bit form) is a variable-width character encoding
that encodes 16-bit Unicode characters as one to four bytes. A byte in UTF-8 is equivalent to
7-bit ASCII if its high-order bit is zero; otherwise, the character comprises a variable number of
bytes.

UTF-8 is compatible with the majority of existing web content and provides access to the
Unicode character set. Current versions of browsers and email clients support UTF-8. In
addition, many new web standards specify UTF-8 as their character encoding. For example,
UTF-8 is one of the two required encodings for XML documents (the other is UTF-16).

Web components usually use PrintWriter to produce responses; PrintWriter automatically
encodes using ISO-8859-1. Servlets can also output binary data using OutputStream classes,
which perform no encoding. An application that uses a character set that cannot use the default
encoding must explicitly set a different encoding.

The Java EE 6 Tutorial « January 2013

PART 111

Web Services

Part III explores web services. This part contains the following chapters:

Chapter 18, “Introduction to Web Services”

Chapter 19, “Building Web Services with JAX-WS”
Chapter 20, “Building RESTful Web Services with JAX-RS”
Chapter 21, “JAX-RS: Advanced Topics and Example”

361

362

L K R 4 CHAPTER 18

Introduction to Web Services

Part ITI of the tutorial discusses Java EE 6 web services technologies. For this book, these
technologies include Java API for XML Web Services (JAX-WS) and Java API for RESTful Web
Services (JAX-RS).

The following topics are addressed here:

= “What Are Web Services?” on page 363
= “Types of Web Services” on page 363
= “Deciding Which Type of Web Service to Use” on page 366

What Are Web Services?

Web services are client and server applications that communicate over the World Wide Web’s
(WWW) HyperText Transfer Protocol (HTTP). As described by the World Wide Web
Consortium (W3C), web services provide a standard means of interoperating between software
applications running on a variety of platforms and frameworks. Web services are characterized
by their great interoperability and extensibility, as well as their machine-processable
descriptions, thanks to the use of XML. Web services can be combined in a loosely coupled way
to achieve complex operations. Programs providing simple services can interact with each other
to deliver sophisticated added-value services.

Types of Web Services

On the conceptual level, a service is a software component provided through a
network-accessible endpoint. The service consumer and provider use messages to exchange
invocation request and response information in the form of self-containing documents that
make very few assumptions about the technological capabilities of the receiver.

363

Types of Web Services

364

On a technical level, web services can be implemented in various ways. The two types of web
services discussed in this section can be distinguished as “big” web services and “RESTful” web
services.

“Big” Web Services

In Java EE 6, JAX-WS provides the functionality for “big” web services, which are described in
Chapter 19, “Building Web Services with JAX-WS.” Big web services use XML messages that
follow the Simple Object Access Protocol (SOAP) standard, an XML language defining a
message architecture and message formats. Such systems often contain a machine-readable
description of the operations offered by the service, written in the Web Services Description
Language (WSDL), an XML language for defining interfaces syntactically.

The SOAP message format and the WSDL interface definition language have gained
widespread adoption. Many development tools, such as NetBeans IDE, can reduce the
complexity of developing web service applications.

A SOAP-based design must include the following elements.

= A formal contract must be established to describe the interface that the web service offers.
WSDL can be used to describe the details of the contract, which may include messages,
operations, bindings, and the location of the web service. You may also process SOAP
messages in a JAX-WS service without publishinga WSDL.

= Thearchitecture must address complex nonfunctional requirements. Many web service
specifications address such requirements and establish a common vocabulary for them.
Examples include transactions, security, addressing, trust, coordination, and so on.

= The architecture needs to handle asynchronous processing and invocation. In such cases,
the infrastructure provided by standards, such as Web Services Reliable Messaging
(WSRM), and APIs, such as JAX-WS, with their client-side asynchronous invocation
support, can be leveraged out of the box.

RESTful Web Services

In Java EE 6, JAX-RS provides the functionality for Representational State Transfer (RESTful)
web services. REST is well suited for basic, ad hoc integration scenarios. RESTful web services,
often better integrated with HT'TP than SOAP-based services are, do not require XML messages
or WSDL service-API definitions.

Project Jersey is the production-ready reference implementation for the JAX-RS specification.
Jersey implements support for the annotations defined in the JAX-RS specification, making it
easy for developers to build RESTful web services with Java and the Java Virtual Machine
(JVM).

The Java EE 6 Tutorial « January 2013

Types of Web Services

Because RESTful web services use existing well-known W3C and Internet Engineering Task
Force (IETF) standards (HTTP, XML, URI, MIME) and have a lightweight infrastructure that
allows services to be built with minimal tooling, developing RESTful web services is inexpensive
and thus has a very low barrier for adoption. You can use a development tool such as NetBeans
IDE to further reduce the complexity of developing RESTful web services.

A RESTful design may be appropriate when the following conditions are met.

= The web services are completely stateless. A good test is to consider whether the interaction
can survive a restart of the server.

= A caching infrastructure can be leveraged for performance. If the data that the web service
returns is not dynamically generated and can be cached, the caching infrastructure that web
servers and other intermediaries inherently provide can be leveraged to improve
performance. However, the developer must take care because such caches are limited to the
HTTP GET method for most servers.

= The service producer and service consumer have a mutual understanding of the context and
content being passed along. Because there is no formal way to describe the web services
interface, both parties must agree out of band on the schemas that describe the data being
exchanged and on ways to process it meaningfully. In the real world, most commercial
applications that expose services as RESTful implementations also distribute so-called
value-added toolkits that describe the interfaces to developers in popular programming
languages.

= Bandwidth is particularly important and needs to be limited. REST is particularly useful for
limited-profile devices, such as PDAs and mobile phones, for which the overhead of headers
and additional layers of SOAP elements on the XML payload must be restricted.

= Web service delivery or aggregation into existing web sites can be enabled easily with a
RESTful style. Developers can use such technologies as JAX-RS and Asynchronous
JavaScript with XML (AJAX) and such toolkits as Direct Web Remoting (DWR) to consume
the services in their web applications. Rather than starting from scratch, services can be
exposed with XML and consumed by HTML pages without significantly refactoring the
existing web site architecture. Existing developers will be more productive because they are
adding to something they are already familiar with rather than having to start from scratch
with new technology.

RESTful web services are discussed in Chapter 20, “Building RESTful Web Services with
JAX-RS” This chapter contains information about generating the skeleton of a RESTful web
service using both NetBeans IDE and the Maven project management tool.

Chapter 18 - Introduction to Web Services 365

Deciding Which Type of Web Service to Use

Deciding Which Type of Web Service to Use

Basically, you would want to use RESTful web services for integration over the web and use big
web services in enterprise application integration scenarios that have advanced quality of
service (QoS) requirements.

= JAX-WS: addresses advanced QoS requirements commonly occurring in enterprise
computing. When compared to JAX-RS, JAX-WS makes it easier to support the WS-* set of
protocols, which provide standards for security and reliability, among other things, and
interoperate with other WS-* conforming clients and servers.

= JAX-RS: makes it easier to write web applications that apply some or all of the constraints of
the REST style to induce desirable properties in the application, such as loose coupling
(evolving the server is easier without breaking existing clients), scalability (start small and
grow), and architectural simplicity (use off-the-shelf components, such as proxies or HTTP
routers). You would choose to use JAX-RS for your web application because it is easier for
many types of clients to consume RESTful web services while enabling the server side to
evolve and scale. Clients can choose to consume some or all aspects of the service and mash
it up with other web-based services.

Note - For an article that provides more in-depth analysis of this issue, see “RESTful Web
Services vs. “Big” Web Services: Making the Right Architectural Decision,” by Cesare Pautasso,
Olaf Zimmermann, and Frank Leymann from WWW "08: Proceedings of the 17th International
Conference on the World Wide Web (2008), pp. 805-814 (http://www2008.0rg/papers/pdf/
p805-pautassoA.pdf).

366 The Java EE 6 Tutorial « January 2013

http://www2008.org/papers/pdf/p805-pautassoA.pdf
http://www2008.org/papers/pdf/p805-pautassoA.pdf
http://www2008.org/papers/pdf/p805-pautassoA.pdf

CHAPTER 19

Building Web Services with JAX-WS

Java API for XML Web Services (JAX-WS) is a technology for building web services and clients
that communicate using XML. JAX-WS allows developers to write message-oriented as well as
Remote Procedure Call-oriented (RPC-oriented) web services.

In JAX-WS, a web service operation invocation is represented by an XML-based protocol, such
as SOAP. The SOAP specification defines the envelope structure, encoding rules, and
conventions for representing web service invocations and responses. These calls and responses
are transmitted as SOAP messages (XML files) over HTTP.

Although SOAP messages are complex, the JAX-WS API hides this complexity from the
application developer. On the server side, the developer specifies the web service operations by
defining methods in an interface written in the Java programming language. The developer also
codes one or more classes that implement those methods. Client programs are also easy to code.
A client creates a proxy (a local object representing the service) and then simply invokes
methods on the proxy. With JAX-WS, the developer does not generate or parse SOAP messages.
It is the JAX-WS runtime system that converts the API calls and responses to and from SOAP
messages.

With JAX-WS, clients and web services have a big advantage: the platform independence of the
Java programming language. In addition, JAX-WS is not restrictive: A JAX-WS client can access
a web service that is not running on the Java platform, and vice versa. This flexibility is possible
because JAX-WS uses technologies defined by the W3C: HTTP, SOAP, and WSDL. WSDL
specifies an XML format for describing a service as a set of endpoints operating on messages.

Note - Several files in the JAX-WS examples depend on the port that you specified when you
installed the GlassFish Server. These tutorial examples assume that the server runs on the
default port, 8080. They do not run with a nondefault port setting.

367

Creating a Simple Web Service and Clients with JAX-WS

The following topics are addressed here:

“Creating a Simple Web Service and Clients with JAX-WS” on page 368
“Types Supported by JAX-WS” on page 377

“Web Services Interoperability and JAX-WS” on page 379

“Further Information about JAX-WS” on page 379

Creating a Simple Web Service and Clients with JAX-WS

368

This section shows how to build and deploy a simple web service and two clients: an application
client and a web client. The source code for the service is in the
tut-install/examples/jaxws/helloservice/ directory, and the clients are in the
tut-install/examples/jaxws/appclient/ and tut-install/examples/jaxws/webclient/
directories.

Figure 19-1 illustrates how JAX-WS technology manages communication between a web
service and a client.

FIGURE 19-1 Communication between a JAX-WS Web Service and a Client

Client SOAP Web Service

JAX-WS Runtime Message

-

‘ JAX-WS Runtime

The starting point for developing a JAX-WS web service is a Java class annotated with the
javax.jws.WebService annotation. The @WebService annotation defines the class as a web
service endpoint.

A service endpoint interface or service endpoint implementation (SEI) is a Java interface or class,
respectively, that declares the methods that a client can invoke on the service. An interface is not
required when building a JAX-WS endpoint. The web service implementation class implicitly
defines an SEI.

You may specify an explicit interface by adding the endpointInterface element to the
@webService annotation in the implementation class. You must then provide an interface that
defines the public methods made available in the endpoint implementation class.

The basic steps for creating a web service and client are as follows:

1. Code the implementation class.
2. Compile the implementation class.
3. Package the files into a WAR file.

The Java EE 6 Tutorial « January 2013

Creating a Simple Web Service and Clients with JAX-WS

7.
8.

Deploy the WAR file. The web service artifacts, which are used to communicate with clients,
are generated by the GlassFish Server during deployment.

Code the client class.

Use awsimport Ant task to generate and compile the web service artifacts needed to connect
to the service.

Compile the client class.

Run the client.

If you use NetBeans IDE to create a service and client, the IDE performs the wsimport task for
you.

The sections that follow cover these steps in greater detail.

Requirements of a JAX-WS Endpoint

JAX-WS endpoints must follow these requirements.

The implementing class must be annotated with either the javax.jws.WebService or the
javax.jws.WebServiceProvider annotation.

The implementing class may explicitly reference an SEI through the endpointInterface
element of the @WebService annotation but is not required to do so. If no
endpointInterface is specified in @WebService, an SEI is implicitly defined for the
implementing class.

The business methods of the implementing class must be public and must not be declared
staticor final.

Business methods that are exposed to web service clients must be annotated with
javax.jws.WebMethod.

Business methods that are exposed to web service clients must have JAXB-compatible
parameters and return types. See the list of JAXB default data type bindings at
http://docs.oracle.com/javaee/5/tutorial/doc/bnazq.html#bnazs.

The implementing class must not be declared final and must not be abstract.
The implementing class must have a default public constructor.
The implementing class must not define the finalize method.

The implementing class may use the javax.annotation.PostConstruct or the
javax.annotation.PreDestroy annotations on its methods for lifecycle event callbacks.

The @PostConstruct method is called by the container before the implementing class
begins responding to web service clients.

The @PreDestroy method is called by the container before the endpoint is removed from
operation.

Chapter 19 - Building Web Services with JAX-WS 369

http://docs.oracle.com/javaee/5/tutorial/doc/bnazq.html#bnazs

Creating a Simple Web Service and Clients with JAX-WS

370

Coding the Service Endpoint Implementation Class

In this example, the implementation class, Hello, is annotated as a web service endpoint using
the @WebService annotation. Hello declares a single method named sayHello, annotated with
the @WebMethod annotation, which exposes the annotated method to web service clients. The
sayHello method returns a greeting to the client, using the name passed to it to compose the
greeting. The implementation class also must define a default, public, no-argument
constructor.

package helloservice.endpoint;

import javax.jws.WebService;
import javax.jws.WebMethod;

@WebService
public class Hello {
private String message = new String("Hello, ");

public void Hello() {
}

@WebMethod
public String sayHello(String name) {

return message + name + ".";

}

Building, Packaging, and Deploying the Service

You can use either NetBeans IDE or Ant to build, package, and deploy the helloservice
application.

To Build, Package, and Deploy the Service Using NetBeans IDE
From the File menu, choose Open Project.

In the Open Project dialog, navigate to:

tut-install/examples/jaxws/

Select the helloservice folder.
Select the Open as Main Project check box.

Click Open Project.

The Java EE 6 Tutorial « January 2013

Creating a Simple Web Service and Clients with JAX-WS

Next Steps

Next Steps

In the Projects tab, right-click the helloservice project and select Deploy.

This command builds and packages the application into helloservice.war, located in
tut-install/examples/jaxws/helloservice/dist/, and deploys this WAR file to the GlassFish
Server.

You can view the WSDL file of the deployed service by requesting the URL
http://localhost:8080/helloservice/HelloService?wsdl in a web browser. Now you are
ready to create a client that accesses this service.

To Build, Package, and Deploy the Service Using Ant

In a terminal window, go to:

tut-install/examples/jaxws/helloservice/

Type the following command:

ant

This command calls the default target, which builds and packages the application intoa WAR
file, helloservice.war,located in the dist directory.

Make sure that the GlassFish Server is started.

Type the following:
ant deploy

You can view the WSDL file of the deployed service by requesting the URL
http://localhost:8080/helloservice/HelloService?wsdl in a web browser. Now you are
ready to create a client that accesses this service.

Testing the Methods of a Web Service Endpoint

GlassFish Server allows you to test the methods of a web service endpoint.
To Test the Service without a Client
To test the sayHello method of HelloService, follow these steps.

Open the web service test interface by typing the following URL in a web browser:
http://localhost:8080/helloservice/HelloService?Tester

Under Methods, type a name as the parameter to the sayHello method.

Chapter 19 - Building Web Services with JAX-WS 371

Creating a Simple Web Service and Clients with JAX-WS

372

3

Click the sayHello button.
This takes you to the sayHello Method invocation page.

Under Method returned, you’'ll see the response from the endpoint.

A Simple JAX-WS Application Client

The HelloAppClient class is a stand-alone application client that accesses the sayHello
method of HelloService. This call is made through a port, a local object that acts as a proxy for
the remote service. The port is created at development time by the wsimport task, which
generates JAX-WS portable artifacts based on a WSDL file.

Coding the Application Client

When invoking the remote methods on the port, the client performs these steps:

1. Usesthe generated helloservice.endpoint.HelloService class, which represents the
service at the URI of the deployed service’s WSDL file:

import helloservice.endpoint.HelloService;
import javax.xml.ws.WebServiceRef;

public class HelloAppClient {
@WebServiceRef (wsdlLocation =

"META-INF/wsdl/localhost 8080/helloservice/HelloService.wsdl")
private static HelloService service;

2. Retrieves a proxy to the service, also known as a port, by invoking getHelloPort on the
service:

helloservice.endpoint.Hello port = service.getHelloPort();
The port implements the SEI defined by the service.
3. Invokes the port’s sayHello method, passing a string to the service:

return port.sayHello(argo);

Here is the full source of HelloAppClient, which is located in the following directory:

tut-install/examples/jaxws/appclient/src/appclient/

package appclient;

import helloservice.endpoint.HelloService;
import javax.xml.ws.WebServiceRef;

public class HelloAppClient {
@WebServiceRef (wsdlLocation =
"META-INF/wsdl/localhost 8080/helloservice/HelloService.wsdl")
private static HelloService service;

The Java EE 6 Tutorial « January 2013

Creating a Simple Web Service and Clients with JAX-WS

/**
* @param args the command line arguments
*/
public static void main(String[] args) {
System.out.println(sayHello("world"));
}

private static String sayHello(java.lang.String arg0) {
helloservice.endpoint.Hello port = service.getHelloPort();
return port.sayHello(arg0);

Running the Application Client

You can use either NetBeans IDE or Ant to build, package, deploy, and run the appclient
application. To build the client, you must first have deployed helloservice, as described in
“Building, Packaging, and Deploying the Service” on page 370.

To Run the Application Client Using NetBeans IDE

From the File menu, choose Open Project.

In the Open Project dialog, navigate to:

tut-install/examples/jaxws/

Select the appclient folder.

Select the Open as Main Project check box.

Click Open Project.

In the Projects tab, right-click the appclient project and select Run.

You will see the output of the application client in the Output pane.

To Run the Application Client Using Ant

In a terminal window, go to:

tut-install/examples/jaxws/appclient/

Type the following command:

ant

This command calls the default target, which runs the wsimport task and builds and packages
the application into a JAR file, appclient. jar, located in the dist directory.

Chapter 19 - Building Web Services with JAX-WS 373

Creating a Simple Web Service and Clients with JAX-WS

3 Typethefollowing command:

ant getclient

This command deploys the appclient. jar file and retrieves the client stubs.

4 Torun the client, type the following command:

ant run

A Simple JAX-WS Web Client

HelloServlet is a servlet that, like the Java client, calls the sayHe1lo method of the web service.
Like the application client, it makes this call through a port.

Coding the Servlet

To invoke the method on the port, the client performs these steps:
1. Imports the HelloService endpoint and the WebServiceRef annotation:
import helloservice.endpoint.HelloService;

iﬁbort javax.xml.ws.WebServiceRef;
2. Defines areference to the web service by specifying the WSDL location:

@WebServiceRef (wsdlLocation =
"WEB-INF/wsdl/localhost 8080/helloservice/HelloService.wsdl")

3. Declares the web service, then defines a private method that calls the sayHello method on
the port:

private HelloService service;

private String sayHello(java.lang.String arg0) {
helloservice.endpoint.Hello port = service.getHelloPort();
return port.sayHello(arg0);

}

4. Inthe servlet, calls this private method:
out.println("<p>" + sayHello("world") + "</p>")

The significant parts of the HelloServlet code follow. The code is located in the
tut-install/examples/jaxws/src/java/webclient/ directory.

package webclient;

import helloservice.endpoint.HelloService;
import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

374 The Java EE 6 Tutorial « January 2013

Creating a Simple Web Service and Clients with JAX-WS

import javax.servlet.http.HttpServletResponse;
import javax.xml.ws.WebServiceRef;

@WebServlet (name="HelloServlet", urlPatterns={"/HelloServlet"})
public class HelloServlet extends HttpServlet {
@webServiceRef (wsdlLocation =
"WEB-INF/wsdl/localhost 8080/helloservice/HelloService.wsdl")
private HelloService service;

/**
* Processes requests for both HTTP <code>GET</code>
* and <code>P0ST</code> methods.
* @param request servlet request
* @param response servlet response
* @throws ServletException if a servlet-specific error occurs
* @throws IOException if an I/0 error occurs
*/
protected void processRequest(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try {
out.println("<html lang=\"en\">");
out.println("<head>");
out.println("<title>Servlet HelloServlet</title>");
out.println("</head>");
out.println("<body>");
out.println("<h1>Servlet HelloServlet at " +
request.getContextPath () + "</h1>");
out.println("<p>" + sayHello('world") + "</p>");
out.println("</body>");
out.println("</html>");

} finally {
out.close();
}
}

// doGet and doPost methods, which call processRequest, and
// getServletInfo method

private String sayHello(java.lang.String arg@) {

helloservice.endpoint.Hello port = service.getHelloPort();
return port.sayHello(arg0);

Running the Web Client

You can use either NetBeans IDE or Ant to build, package, deploy, and run the webclient
application. To build the client, you must first have deployed helloservice, as described in
“Building, Packaging, and Deploying the Service” on page 370.

Chapter 19 - Building Web Services with JAX-WS 375

Creating a Simple Web Service and Clients with JAX-WS

376

To Run the Web Client Using NetBeans IDE
From the File menu, choose Open Project.

In the Open Project dialog, navigate to:

tut-install/examples/jaxws/

Select the webclient folder.
Select the Open as Main Project check box.
Click Open Project.

In the Projects tab, right-click the webclient project and select Deploy.

This task runs the wsimport tasks, builds and packages the application into a WAR file,
webclient.war,located in the dist directory, and deploys it to the server.

In a web browser, navigate to the following URL:
http://localhost:8080/webclient/HelloServlet

The output of the sayHel1lo method appears in the window.

To Run the Web Client Using Ant

In a terminal window, go to:

tut-install/examples/jaxws/webclient/

Type the following command:

ant

This command calls the default target, which runs the wsimport tasks, then builds and
packages the application into a WAR file, webclient.war, located in the dist directory.

Type the following command:
ant deploy

This task deploys the WAR file to the server.

In a web browser, navigate to the following URL:
http://localhost:8080/webclient/HelloServlet

The output of the sayHe1lo method appears in the window.

The Java EE 6 Tutorial « January 2013

Types Supported by JAX-WS

Types Supported by JAX-WS

JAX-WS delegates the mapping of Java programming language types to and from XML
definitions to JAXB. Application developers don’t need to know the details of these mappings
but should be aware that not every class in the Java language can be used as a method parameter
or return type in JAX-WS.

The following sections explain the default schema-to-Java and Java-to-schema data type
bindings.

Schema-to-Java Mapping

The Java language provides a richer set of data type than XML schema. Table 19-1 lists the
mapping of XML data types to Java data types in JAXB.

TABLE19-1 JAXB Mapping of XML Schema Built-in Data Types

XML Schema Type

Java Data Type

xsd

xsd:

xsd:

xsd.

xsd:

xsd:

xsd:

xsd:

xsd:

xsd:

xsd:

xsd:

xsd:

xsd:

xsd:

xsd:

xsd:

:string
integer

int

long

short
decimal
float

double
boolean

byte

QName
dateTime
base64Binary
hexBinary
unsignedInt
unsignedShort

unsignedByte

java.lang.String
java.math.BigInteger

int

long

short
java.math.BigDecimal
float

double

boolean

byte
javax.xml.namespace.QName
javax.xml.datatype.XMLGregorianCalendar
byte[]

bytel[]

long

int

short

Chapter 19 - Building Web Services with JAX-WS 377

Types Supported by JAX-WS

TABLE 19-1

JAXB Mapping of XML Schema Built-in Data Types

(Continued)

XML Schema Type

Java DataType

xsd:

xsd:

xsd:

xsd:

xsd:

xsd:

xsd:

time

date

9
anySimpleType
anySimpleType
duration

NOTATION

javax.xml.datatype.XMLGregorianCalendar

javax.xml.datatype.XMLGregorianCalendar

javax.xml.
java.lang.
java.lang.
javax.xml.

javax.xml.

datatype.XMLGregorianCalendar

Object

String

datatype.Duration

namespace.QName

Java-to-Schema Mapping

Table 19-2 shows the default mapping of Java classes to XML data types.

TABLE19-2 JAXB Mapping of XML Data Types to Java Classes

JavaClass XML DataType
java.lang.String xs:string
java.math.BigInteger xs:integer
java.math.BigDecimal xs:decimal
java.util.Calendar xs:dateTime
java.util.Date xs:dateTime
javax.xml.namespace.QName xs :QName
java.net.URI xs:string
javax.xml.datatype.XMLGregorianCalendar xs:anySimpleType
javax.xml.datatype.Duration xs:duration
java.lang.Object xs:anyType
java.awt.Image xs:base64Binary
javax.activation.DataHandler xs:base64Binary
javax.xml.transform.Source xs:base64Binary
java.util.UUID xs:string

378

The Java EE 6 Tutorial « January 2013

Further Information about JAX-WS

Web Services Interoperability and JAX-WS

JAX-WS supports the Web Services Interoperability (WS-I) Basic Profile Version 1.1. The WS-I
Basic Profile is a document that clarifies the SOAP 1.1 and WSDL 1.1 specifications to promote
SOAP interoperability. For links related to WS-I, see “Further Information about JAX-WS” on
page 379.

To support WS-1 Basic Profile Version 1.1, the JAX-WS runtime supports doc/literal and
rpc/literal encodings for services, static ports, dynamic proxies, and the Dynamic Invocation
Interface (DII).

Further Information about JAX-WS

For more information about JAX-WS and related technologies, see

= Java API for XML Web Services 2.2 specification:
http://jcp.org/aboutJava/communityprocess/mrel/jsr224/index4.html

= JAX-WShome:
http://jax-ws.java.net/

= Simple Object Access Protocol (SOAP) 1.2 W3C Note:
http://www.w3.0rg/TR/soap/

= Web Services Description Language (WSDL) 1.1 W3C Note:
http://www.w3.0rg/TR/wsdl

= WS-IBasic Profile 1.1:

http://www.ws-1i.0rg

Chapter 19 - Building Web Services with JAX-WS 379

http://jcp.org/aboutJava/communityprocess/mrel/jsr224/index4.html
http://jax-ws.java.net/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/wsdl
http://www.ws-i.org

380

L K R 4 CHAPTER 20

Building RESTful Web Services with JAX-RS

This chapter describes the REST architecture, RESTful web services, and the Java API for
RESTful Web Services (JAX-RS, defined in JSR 311).

Jersey, the reference implementation of JAX-RS, implements support for the annotations
defined in JSR 311, making it easy for developers to build RESTful web services by using the Java
programming language.

If you are developing with GlassFish Server, you can install the Jersey samples and
documentation by using the Update Tool. Instructions for using the Update Tool can be found
in “Java EE 6 Tutorial Component” on page 70. The Jersey samples and documentation are
provided in the Available Add-ons area of the Update Tool.

The following topics are addressed here:

“What Are RESTful Web Services?” on page 381
“Creating a RESTful Root Resource Class” on page 382
“Example Applications for JAX-RS” on page 396
“Further Information about JAX-RS” on page 401

What Are RESTful Web Services?

RESTful web services are built to work best on the Web. Representational State Transfer (REST)
is an architectural style that specifies constraints, such as the uniform interface, that if applied to
aweb service induce desirable properties, such as performance, scalability, and modifiability,
that enable services to work best on the Web. In the REST architectural style, data and
functionality are considered resources and are accessed using Uniform Resource Identifiers
(URIs), typically links on the Web. The resources are acted upon by using a set of simple,
well-defined operations. The REST architectural style constrains an architecture to a
client/server architecture and is designed to use a stateless communication protocol, typically
HTTP. In the REST architecture style, clients and servers exchange representations of resources
by using a standardized interface and protocol.

381

Creating a RESTful Root Resource Class

The following principles encourage RESTful applications to be simple, lightweight, and fast:

= Resource identification through URI: A RESTful web service exposes a set of resources
that identify the targets of the interaction with its clients. Resources are identified by URIs,
which provide a global addressing space for resource and service discovery. See “The @Path
Annotation and URI Path Templates” on page 385 for more information.

= Uniform interface: Resources are manipulated using a fixed set of four create, read, update,
delete operations: PUT, GET, POST, and DELETE. PUT creates a new resource, which can be then
deleted by using DELETE. GET retrieves the current state of a resource in some representation.
POST transfers a new state onto a resource. See “Responding to HTTP Methods and
Requests” on page 387 for more information.

= Self-descriptive messages: Resources are decoupled from their representation so that their
content can be accessed in a variety of formats, such as HTML, XML, plain text, PDE JPEG,
JSON, and others. Metadata about the resource is available and used, for example, to control
caching, detect transmission errors, negotiate the appropriate representation format, and
perform authentication or access control. See “Responding to HTTP Methods and
Requests” on page 387 and “Using Entity Providers to Map HTTP Response and Request
Entity Bodies” on page 389 for more information.

= Stateful interactions through hyperlinks: Every interaction with a resource is stateless; that
is, request messages are self-contained. Stateful interactions are based on the concept of
explicit state transfer. Several techniques exist to exchange state, such as URI rewriting,
cookies, and hidden form fields. State can be embedded in response messages to point to
valid future states of the interaction. See “Using Entity Providers to Map HTTP Response
and Request Entity Bodies” on page 389 and “Building URIs” in the JAX-RS Overview
document for more information.

Creating a RESTful Root Resource Class

382

Root resource classes are POJOs that are either annotated with @Path or have at least one method
annotated with @Path or a request method designator, such as @ET, @PUT, @POST, or @DELETE.
Resource methods are methods of a resource class annotated with a request method designator.
This section explains how to use JAX-RS to annotate Java classes to create RESTful web services.

Developing RESTful Web Services with JAX-RS

JAX-RS is a Java programming language API designed to make it easy to develop applications
that use the REST architecture.

The JAX-RS API uses Java programming language annotations to simplify the development of
RESTful web services. Developers decorate Java programming language class files with JAX-RS
annotations to define resources and the actions that can be performed on those resources.
JAX-RS annotations are runtime annotations; therefore, runtime reflection will generate the

The Java EE 6 Tutorial « January 2013

Creating a RESTful Root Resource Class

helper classes and artifacts for the resource. A Java EE application archive containing JAX-RS
resource classes will have the resources configured, the helper classes and artifacts generated,
and the resource exposed to clients by deploying the archive to a Java EE server.

Table 20-1 lists some of the Java programming annotations that are defined by JAX-RS, with a
brief description of how each is used. Further information on the JAX-RS APIs can be viewed at
http://docs.oracle.com/javaee/6/api/.

TABLE20-1 Summary of JAX-RS Annotations

Annotation

Description

@Path

@GET

@POST

@PUT

@DELETE

@HEAD

@PathParam

@QueryParam

The @Path annotation’s value is a relative URI path indicating where the Java class will
be hosted: for example, /helloworld. You can also embed variables in the URIs to
make a URI path template. For example, you could ask for the name of a user and pass
it to the application as a variable in the URI: /helloworld/{username}.

The @GET annotation is a request method designator and corresponds to the similarly
named HTTP method. The Java method annotated with this request method
designator will process HTTP GET requests. The behavior of a resource is determined
by the HTTP method to which the resource is responding.

The @POST annotation is a request method designator and corresponds to the similarly
named HTTP method. The Java method annotated with this request method
designator will process HTTP POST requests. The behavior of a resource is
determined by the HTTP method to which the resource is responding.

The @PUT annotation is a request method designator and corresponds to the similarly
named HTTP method. The Java method annotated with this request method
designator will process HTTP PUT requests. The behavior of a resource is determined
by the HTTP method to which the resource is responding.

The @DELETE annotation is a request method designator and corresponds to the
similarly named HTTP method. The Java method annotated with this request method
designator will process HTTP DELETE requests. The behavior of a resource is
determined by the HTTP method to which the resource is responding.

The @HEAD annotation is a request method designator and corresponds to the similarly
named HTTP method. The Java method annotated with this request method
designator will process HTTP HEAD requests. The behavior of a resource is
determined by the HTTP method to which the resource is responding.

The @PathParam annotation is a type of parameter that you can extract for use in your
resource class. URI path parameters are extracted from the request URI, and the
parameter names correspond to the URI path template variable names specified in the
@Path class-level annotation.

The @QueryParam annotation is a type of parameter that you can extract for use in your
resource class. Query parameters are extracted from the request URI query parameters.

Chapter 20 « Building RESTful Web Services with JAX-RS 383

http://docs.oracle.com/javaee/6/api/

Creating a RESTful Root Resource Class

TABLE20-1 Summary of JAX-RS Annotations (Continued)

Annotation Description

@Consumes The @Consumes annotation is used to specify the MIME media types of representations
aresource can consume that were sent by the client.

@Produces The @Produces annotation is used to specify the MIME media types of representations
aresource can produce and send back to the client: for example, “text/plain”.

@Provider The @Provider annotation is used for anything that is of interest to the JAX-RS
runtime, such as MessageBodyReader and MessageBodyWriter. For HTTP requests,
the MessageBodyReader is used to map an HTTP request entity body to method
parameters. On the response side, a return value is mapped to an HTTP response entity
body by using a MessageBodyWriter. If the application needs to supply additional
metadata, such as HTTP headers or a different status code, a method can return a
Response that wraps the entity and that can be built using
Response.ResponseBuilder.

Overview of a JAX-RS Application

The following code sample is a very simple example of a root resource class that uses JAX-RS
annotations:

package com.sun.jersey.samples.helloworld.resources;

import javax.ws.rs.GET;
import javax.ws.rs.Produces;
import javax.ws.rs.Path;

// The Java class will be hosted at the URI path "/helloworld"
@Path("/helloworld")
public class HelloWorldResource {

// The Java method will process HTTP GET requests
@GET
// The Java method will produce content identified by the MIME Media
// type "text/plain"
@Produces ("text/plain")
public String getClichedMessage() {
// Return some cliched textual content
return "Hello World"

384 The Java EE 6 Tutorial « January 2013

Creating a RESTful Root Resource Class

The following sections describe the annotations used in this example.

= The@Path annotation’s value is a relative URI path. In the preceding example, the Java class
will be hosted at the URI path /helloworld. This is an extremely simple use of the @Path
annotation, with a static URI path. Variables can be embedded in the URIs. URI path
templates are URIs with variables embedded within the URI syntax.

= The @GET annotation is a request method designator, along with @POST, @PUT, @ELETE, and
@HEAD, defined by JAX-RS and corresponding to the similarly named HTTP methods. In the
example, the annotated Java method will process HTTP GET requests. The behavior of a
resource is determined by the HTTP method to which the resource is responding.

= The@Produces annotation is used to specify the MIME media types a resource can produce
and send back to the client. In this example, the Java method will produce representations
identified by the MIME media type "text/plain”.

= The @Consumes annotation is used to specify the MIME media types a resource can consume
that were sent by the client. The example could be modified to set the message returned by
the getClichedMessage method, as shown in this code example:

@POST

@Consumes ("text/plain")

public void postClichedMessage(String message) {
// Store the message

}

The @Path Annotation and URI Path Templates

The @Path annotation identifies the URI path template to which the resource responds and is
specified at the class or method level of a resource. The @Path annotation’s value is a partial URI
path template relative to the base URI of the server on which the resource is deployed, the
context root of the application, and the URL pattern to which the JAX-RS runtime responds.

URI path templates are URIs with variables embedded within the URI syntax. These variables
are substituted at runtime in order for a resource to respond to a request based on the
substituted URIL. Variables are denoted by braces ({ and }). For example, look at the following
@Path annotation:

@Path("/users/{username}")

In this kind of example, a user is prompted to type his or her name, and then a JAX-RS web
service configured to respond to requests to this URI path template responds. For example, if
the user types the user name “Galileo,” the web service responds to the following URL:

http://example.com/users/Galileo

To obtain the value of the user name, the @PathParam annotation may be used on the method
parameter of a request method, as shown in the following code example:

Chapter 20 « Building RESTful Web Services with JAX-RS 385

Creating a RESTful Root Resource Class

386

@Path("/users/{username}")
public class UserResource {

@GET
@Produces ("text/xml")
public String getUser(@PathParam("username") String userName) {

¥
}

By default, the URI variable must match the regular expression "[~/]+7?". This variable may be
customized by specifying a different regular expression after the variable name. For example, if
a user name must consist only of lowercase and uppercase alphanumeric characters, override
the default regular expression in the variable definition:

@Path("users/{username: [a-zA-Z][a-zA-Z 0-91*}")

In this example the username variable will match only user names that begin with one
uppercase or lowercase letter and zero or more alphanumeric characters and the underscore
character. If a user name does not match that template, a 404 (Not Found) response will be sent
to the client.

A @Path value isn’t required to have leading or trailing slashes (/). The JAX-RS runtime parses
URI path templates the same whether or not they have leading or trailing spaces.

A URI path template has one or more variables, with each variable name surrounded by braces:
{ to begin the variable name and } to end it. In the preceding example, username is the variable
name. At runtime, a resource configured to respond to the preceding URI path template will
attempt to process the URI data that corresponds to the location of {username} in the URI as
the variable data for username.

For example, if you want to deploy a resource that responds to the URI path template
http://example.com/myContextRoot/resources/{namel}/{name2}/, you must deploy the
application to a Java EE server that responds to requests to the
http://example.com/myContextRoot URI and then decorate your resource with the following
@Path annotation:

@Path("/{namel}/{name2}/")
public class SomeResource {

}
In this example, the URL pattern for the JAX-RS helper servlet, specified in web . xm1, is the
default:

<servlet-mapping>
<servlet-name>My JAX-RS Resource</servlet-name>
<url-pattern>/resources/*</url-pattern>
</servlet-mapping>

A variable name can be used more than once in the URI path template.

The Java EE 6 Tutorial « January 2013

Creating a RESTful Root Resource Class

If a character in the value of a variable would conflict with the reserved characters of a URI, the
conflicting character should be substituted with percent encoding. For example, spaces in the
value of a variable should be substituted with %20.

When defining URI path templates, be careful that the resulting URI after substitution is valid.

Table 20-2 lists some examples of URI path template variables and how the URIs are resolved
after substitution. The following variable names and values are used in the examples:

namel: james

name2:gatz

name3:
location:Main%20Street
question:why

Note - The value of the name3 variable is an empty string.

TABLE20-2 Examples of URI Path Templates

URI Path Template URI After Substitution
http://example.com/{namel}/{name2}/ http://example.com/james/gatz/
http://example.com/{question}/ http://example.com/why/why/why/

{question}/{question}/
http://example.com/maps/{location} http://example.com/maps/Main%20Street

http://example.com/{name3}/home/ http://example.com//home/

Responding to HTTP Methods and Requests

The behavior of a resource is determined by the HTTP methods (typically, GET, POST, PUT,
DELETE) to which the resource is responding.

The Request Method Designator Annotations

Request method designator annotations are runtime annotations, defined by JAX-RS, that
correspond to the similarly named HTTP methods. Within a resource class file, HTTP methods
are mapped to Java programming language methods by using the request method designator
annotations. The behavior of a resource is determined by which HTTP method the resource is
responding to. JAX-RS defines a set of request method designators for the common HTTP
methods @GET, @POST, @PUT, @DELETE, and @HEAD; you can also create your own custom request
method designators. Creating custom request method designators is outside the scope of this
document.

Chapter 20 - Building RESTful Web Services with JAX-RS 387

Creating a RESTful Root Resource Class

388

The following example, an extract from the storage service sample, shows the use of the PUT
method to create or update a storage container:

@PUT
public Response putContainer() {
System.out.println("PUT CONTAINER " + container);

URI uri = wuriInfo.getAbsolutePath();
Container ¢ = new Container(container, uri.toString());

Response r;
if (!MemoryStore.MS.hasContainer(c)) {
r = Response.created(uri).build();
} else {
r = Response.noContent().build();
}

MemoryStore.MS.createContainer(c);
return r;

}

By default, the JAX-RS runtime will automatically support the methods HEAD and OPTIONS if not
explicitly implemented. For HEAD, the runtime will invoke the implemented GET method, if
present, and ignore the response entity, if set. For OPTIONS, the Allow response header will be
set to the set of HTTP methods supported by the resource. In addition, the JAX-RS runtime will
return a Web Application Definition Language (WADL) document describing the resource; see
http://www.w3.0rg/Submission/wadl/ for more information.

Methods decorated with request method designators must return void, a Java programming
language type, ora javax.ws. rs.core.Response object. Multiple parameters may be extracted
from the URI by using the @PathParam or @ueryParam annotations as described in “Extracting
Request Parameters” on page 392. Conversion between Java types and an entity body is the
responsibility of an entity provider, such as MessageBodyReader or MessageBodyWriter.
Methods that need to provide additional metadata with a response should return an instance of
the Response class. The ResponseBuilder class provides a convenient way to create a Response
instance using a builder pattern. The HTTP PUT and POST methods expect an HTTP request
body, so you should use a MessageBodyReader for methods that respond to PUT and POST
requests.

Both @PUT and @POST can be used to create or update a resource. POST can mean anything, so
when using POST, it is up to the application to define the semantics. PUT has well-defined
semantics. When using PUT for creation, the client declares the URI for the newly created
resource.

PUT has very clear semantics for creating and updating a resource. The representation the client
sends must be the same representation that is received using a GET, given the same media type.
PUT does not allow a resource to be partially updated, a common mistake when attempting to
use the PUT method. A common application pattern is to use POST to create a resource and
return a 201 response with a location header whose value is the URI to the newly created
resource. In this pattern, the web service declares the URI for the newly created resource.

The Java EE 6 Tutorial « January 2013

http://www.w3.org/Submission/wadl/

Creating a RESTful Root Resource Class

Using Entity Providers to Map HTTP Response and Request Entity
Bodies

Entity providers supply mapping services between representations and their associated Java
types. The two types of entity providers are MessageBodyReader and MessageBodyWriter. For
HTTP requests, the MessageBodyReader is used to map an HTTP request entity body to
method parameters. On the response side, a return value is mapped to an HTTP response entity
body by using a MessageBodyWriter. If the application needs to supply additional metadata,
such as HT'TP headers or a different status code, a method can return a Response that wraps the
entity and that can be built by using Response.ResponseBuilder.

Table 20-3 shows the standard types that are supported automatically for HTTP request and
response entity bodies. You need to write an entity provider only if you are not choosing one of
these standard types.

TABLE20-3 Types Supported for HTTP Request and Response Entity Bodies

JavaType Supported Media Types

byte[] All media types (*/*)

java.lang.String All text media types (text/*)

java.io.InputStream All media types (*/*)

java.io.Reader All media types (*/*)

java.io.File All media types (*/*)

javax.activation.DataSource All media types (*/*)

javax.xml.transform.Source XML media types (text/xml, application/xml, and
application/*+xml)

javax.xml.bind.JAXBElement and XML media types (text/xml, application/xml, and

application-supplied JAXB classes application/*+xml)

MultivaluedMap<String, String> Form content

(application/x-www-form-urlencoded)

StreamingOutput All media types (*/*), MessageBodyWriter only

The following example shows how to use MessageBodyReader with the @Consumes and
@Provider annotations:

@Consumes ("application/x-www-form-urlencoded")
@Provider
public class FormReader implements MessageBodyReader<NameValuePair> {

The following example shows how to use MessageBodyWriter with the @roduces and
@Provider annotations:

Chapter 20 « Building RESTful Web Services with JAX-RS 389

Creating a RESTful Root Resource Class

390

@Produces ("text/html")

@Provider

public class FormWriter implements
MessageBodyWriter<Hashtable<String, String>> {

The following example shows how to use ResponseBuilder:

@GET
public Response getItem() {
System.out.println("GET ITEM " + container +

+ item);

Item i = MemoryStore.MS.getItem(container, item);
if (i == null)
throw new NotFoundException("Item not found");
Date lastModified = i.getlLastModified().getTime();
EntityTag et = new EntityTag(i.getDigest());
ResponseBuilder rb = request.evaluatePreconditions(lastModified, et);
if (rb !'= null)
return rb.build();

byte[] b = MemoryStore.MS.getItemData(container, item);

return Response.ok(b, i.getMimeType()).
lastModified(lastModified).tag(et).build();

Using @Consumes and @Produces to Customize
Requests and Responses

The information sent to a resource and then passed back to the client is specified asa MIME
media type in the headers of an HTTP request or response. You can specify which MIME media
types of representations a resource can respond to or produce by using the following
annotations:

® javax.ws.rs.Consumes
® javax.ws.rs.Produces

By default, a resource class can respond to and produce all MIME media types of
representations specified in the HTTP request and response headers.

The @Produces Annotation

The @Produces annotation is used to specify the MIME media types or representations a
resource can produce and send back to the client. If @Produces is applied at the class level, all
the methods in a resource can produce the specified MIME types by default. If applied at the
method level, the annotation overrides any @Produces annotations applied at the class level.

If no methods in a resource are able to produce the MIME type in a client request, the JAX-RS
runtime sends back an HTTP “406 Not Acceptable” error.

The value of @Produces is an array of String of MIME types. For example:

The Java EE 6 Tutorial « January 2013

Creating a RESTful Root Resource Class

@Produces ({"image/jpeg, image/png"})
The following example shows how to apply @Produces at both the class and method levels:

@Path("/myResource")
@Produces ("text/plain")
public class SomeResource {
@GET
public String doGetAsPlainText() {

}

@GET
@Produces ("text/html")
public String doGetAsHtml() {

}
}
The doGetAsPlainText method defaults to the MIME media type of the @Produces annotation
at the class level. The doGetAsHtml method’s @Produces annotation overrides the class-level
@Produces setting and specifies that the method can produce HTML rather than plain text.

If a resource class is capable of producing more than one MIME media type, the resource
method chosen will correspond to the most acceptable media type as declared by the client.
More specifically, the Accept header of the HT'TP request declares what is most acceptable. For
example, if the Accept header is Accept: text/plain, the doGetAsPlainText method will be
invoked. Alternatively, if the Accept header is Accept: text/plain;g=0.9, text/html, which
declares that the client can accept media types of text/plain and text/html but prefers the
latter, the doGetAsHtml method will be invoked.

More than one media type may be declared in the same @Produces declaration. The following
code example shows how this is done:

@Produces ({"application/xml", "application/json"})
public String doGetAsXmlOrJson() {

}

The doGetAsXml0rJson method will get invoked if either of the media types application/xml
and application/json is acceptable. If both are equally acceptable, the former will be chosen
because it occurs first. The preceding examples refer explicitly to MIME media types for clarity.
It is possible to refer to constant values, which may reduce typographical errors. For more
information, see the constant field values of MediaType at http://jsr311.java.net/nonav/
releases/1.0/javax/ws/rs/core/MediaType.html.

The @Consumes Annotation

The @Consumes annotation is used to specify which MIME media types of representations a
resource can accept, or consume, from the client. If @onsumes is applied at the class level, all the
response methods accept the specified MIME types by default. If applied at the method level,
@Consumes overrides any @onsumes annotations applied at the class level.

Chapter 20 - Building RESTful Web Services with JAX-RS 391

http://jsr311.java.net/nonav/releases/1.0/javax/ws/rs/core/MediaType.html
http://jsr311.java.net/nonav/releases/1.0/javax/ws/rs/core/MediaType.html

Creating a RESTful Root Resource Class

392

If a resource is unable to consume the MIME type of a client request, the JAX-RS runtime sends
back an HTTP 415 (“Unsupported Media Type”) error.

The value of @Consumes is an array of String of acceptable MIME types. For example:

@Consumes ({"text/plain, text/html"})

The following example shows how to apply @Consumes at both the class and method levels:

@Path("/myResource")
@Consumes ("multipart/related")
public class SomeResource {
@POST
public String doPost(MimeMultipart mimeMultipartData) {

}

@POST
@Consumes ("application/x-www-form-urlencoded")
public String doPost2(FormURLEncodedProperties formData) {

}
}
The doPost method defaults to the MIME media type of the @Consumes annotation at the class
level. The doPost2 method overrides the class level @onsumes annotation to specify that it can
accept URL-encoded form data.

If no resource methods can respond to the requested MIME type, an HTTP 415 (“Unsupported
Media Type”) error is returned to the client.

The HelloWorld example discussed previously in this section can be modified to set the
message by using @Consumes, as shown in the following code example:

@POST

@Consumes ("text/plain")

public void postClichedMessage(String message) {
// Store the message

}
In this example, the Java method will consume representations identified by the MIME media
type text/plain. Note that the resource method returns void. This means that no

representation is returned and that a response with a status code of HTTP 204 (“No Content”)
will be returned.

Extracting Request Parameters

Parameters of a resource method may be annotated with parameter-based annotations to
extract information from a request. A previous example presented the use of the @PathParam
parameter to extract a path parameter from the path component of the request URL that
matched the path declared in @Path.

The Java EE 6 Tutorial « January 2013

Creating a RESTful Root Resource Class

You can extract the following types of parameters for use in your resource class:

Query
URI path
Form
Cookie
Header
Matrix

Query parameters are extracted from the request URI query parameters and are specified by
using the javax.ws.rs.QueryParamannotation in the method parameter arguments. The
following example, from the sparklines sample application, demonstrates using @QueryParam
to extract query parameters from the Query component of the request URL:

@Path("smooth")

@GET

public Response smooth(
@DefaultValue("2") @QueryParam("step") int step,
@DefaultValue("true") @QueryParam('min-m") boolean hasMin,
@efaultValue("true") @QueryParam("max-m") boolean hasMax,
@DefaultValue("true") @QueryParam("last-m") boolean haslast,
@DefaultValue("blue") @QueryParam('min-color") ColorParam minColor,
@DefaultValue("green") @QueryParam("max-color") ColorParam maxColor,
@DefaultValue("red") @QueryParam("last-color") ColorParam lastColor
) { ...}

If the query parameter step exists in the query component of the request URI, the value of step
will be extracted and parsed as a 32-bit signed integer and assigned to the step method
parameter. If step does not exist, a default value of 2, as declared in the @defaultvalue
annotation, will be assigned to the step method parameter. If the step value cannot be parsed
as a 32-bit signed integer, an HTTP 400 (“Client Error”) response is returned.

User-defined Java programming language types may be used as query parameters. The
following code example shows the ColorParam class used in the preceding query parameter
example:

public class ColorParam extends Color {
public ColorParam(String s) {
super(getRGB(s));

}
private static int getRGB(String s) {
if (s.charAt(0) == "#") {
try {

Color ¢ = Color.decode("0x" + s.substring(1));
return c.getRGB();

} catch (NumberFormatException e) {
throw new WebApplicationException(400);

}
} else {

try {
Field f = Color.class.getField(s);

Chapter 20 « Building RESTful Web Services with JAX-RS 393

Creating a RESTful Root Resource Class

394

return ((Color)f.get(null)).getRGB();
} catch (Exception e) {

throw new WebApplicationException(400);
}

}

The constructor for ColorParam takes a single String parameter.
Both @QueryParamand @PathParam can be used only on the following Java types:

= All primitive types except char
= All wrapper classes of primitive types except Character
= Any class with a constructor that accepts a single String argument

= Any class with the static method named valueOf (String) that accepts a single String
argument

® | ist<T>, Set<T>, or SortedSet<T>, where T matches the already listed criteria. Sometimes,
parameters may contain more than one value for the same name. If this is the case, these
types may be used to obtain all values

If @defaultValue is not used in conjunction with @QueryParam, and the query parameter is not
present in the request, the value will be an empty collection for List, Set, or SortedSet; null for
other object types; and the default for primitive types.

URI path parameters are extracted from the request URI, and the parameter names correspond
to the URI path template variable names specified in the @Path class-level annotation. URI
parameters are specified using the javax.ws. rs.PathParamannotation in the method
parameter arguments. The following example shows how to use @Path variables and the
@PathParamannotation in a method:

@Path("/{username}")
public class MyResourceBean {

@GET
public String printUsername(@PathParam(“username") String userId) {

}
}
In the preceding snippet, the URI path template variable name username is specified as a
parameter to the printUsername method. The @PathParam annotation is set to the variable
name username. At runtime, before printUsername is called, the value of username is extracted
from the URI and cast to a String. The resulting St ring is then available to the method as the
userId variable.

If the URI path template variable cannot be cast to the specified type, the JAX-RS runtime
returns an HTTP 400 (“Bad Request”) error to the client. If the @PathParam annotation cannot
be cast to the specified type, the JAX-RS runtime returns an HTTP 404 (“Not Found”) error to
the client.

The Java EE 6 Tutorial « January 2013

Creating a RESTful Root Resource Class

The @PathParam parameter and the other parameter-based annotations (@MatrixParam,
@HeaderParam, @ookieParam, and @FormParam) obey the same rules as @ueryParam.

Cookie parameters, indicated by decorating the parameter with javax.ws.rs.CookieParam,
extract information from the cookies declared in cookie-related HTTP headers. Header
parameters, indicated by decorating the parameter with javax.ws. rs.HeaderParam, extract
information from the HTTP headers. Matrix parameters, indicated by decorating the parameter
with javax.ws.rs.MatrixParam, extract information from URL path segments.

Form parameters, indicated by decorating the parameter with javax.ws.rs.FormParam, extract
information from a request representation that is of the MIME media type
application/x-www-form-urlencoded and conforms to the encoding specified by HTML
forms, as described in http://www.w3.0org/TR/html401/interact/
forms.html#h-17.13.4.1. This parameter is very useful for extracting information sent by
POST in HTML forms.

The following example extracts the name form parameter from the POST form data:

@POST

@Consumes ("application/x-www-form-urlencoded")

public void post(@FormParam("name") String name) {
// Store the message

}

To obtain a general map of parameter names and values for query and path parameters, use the
following code:

@GET

public String get(@Context UriInfo ui) {
MultivaluedMap<String, String> queryParams = ui.getQueryParameters();
MultivaluedMap<String, String> pathParams = ui.getPathParameters();

}

The following method extracts header and cookie parameter names and values into a map:

@GET

public String get(@Context HttpHeaders hh) {
MultivaluedMap<String, String> headerParams = hh.getRequestHeaders();
Map<String, Cookie> pathParams = hh.getCookies();

}

In general, @Context can be used to obtain contextual Java types related to the request or
response.

For form parameters, it is possible to do the following:

@POST

@Consumes ("application/x-www-form-urlencoded")

public void post(MultivaluedMap<String, String> formParams) {
// Store the message

}

Chapter 20 « Building RESTful Web Services with JAX-RS 395

http://www.w3.org/TR/html401/interact/forms.html#h-17.13.4.1
http://www.w3.org/TR/html401/interact/forms.html#h-17.13.4.1

Example Applications for JAX-RS

Example Applications for JAX-RS

396

This section provides an introduction to creating, deploying, and running your own JAX-RS
applications. This section demonstrates the steps that are needed to create, build, deploy, and
test a very simple web application that uses JAX-RS annotations.

A RESTful Web Service

This section explains how to use NetBeans IDE to create a RESTful web service. NetBeans IDE
generates a skeleton for the application, and you simply need to implement the appropriate
methods. If you do not use an IDE, try using one of the example applications that ship with
Jersey as a template to modify.

You can find a version of this application at
tut-install/examples/jaxrs/HelloWorldApplication/.

To Create a RESTful Web Service Using NetBeans IDE

In NetBeans IDE, create a simple web application. This example creates a very simple “Hello,
World” web application.

a. From the File menu, choose New Project.

b. From Categories, select Java Web. From Projects, select Web Application. Click Next.

Note - For this step, you could also create a RESTful web service in a Maven web project by
selecting Maven as the category and Maven Web Project as the project. The remaining steps
would be the same.

c. Typeaproject name, HelloWorldApplication, and click Next.
d. Make sure that the Server is GlassFish Server (or similar wording).

e. ClickFinish.

The project is created. The file index. j sp appears in the Source pane.
Right-click the project and select New; then select RESTful Web Services from Patterns.
a. Select Simple Root Resource and click Next.

b. Type aResource Package name, such as helloWorld.

The Java EE 6 Tutorial « January 2013

Example Applications for JAX-RS

c. Typehelloworld in the Path field. Type HelloWorld in the Class Name field. For MIME Type,
select text/html.

d. Click Finish.
The REST Resources Configuration page appears.

e. Click OK.

A new resource, HelloWorld. java, is added to the project and appears in the Source pane.
This file provides a template for creating a RESTful web service.

In HelloWorld. java, find the getHtml () method. Replace the //TODO comment and the
exception with the following text, so that the finished product resembles the following method.

Note - Because the MIME type produced is HTML, you can use HTML tags in your return
statement.

/**

* Retrieves representation of an instance of helloWorld.HelloWorld

* @return an instance of java.lang.String

*/
@GET
@Produces ("text/html")

public String getHtml() {

return "<html lang=\"en\"><body><hl>Hello, World!!</body></h1l></html>"

}

Test the web service. To do this, right-click the project node and click Test RESTful Web Services.
This step deploys the application and brings up a test client in the browser.

When the test client appears, select the helloworld resource in the left pane, and click the Test
button in the right pane.

The words Hello, World!! appear in the Response window below.
Set the Run Properties:

a. Right-click the project node and select Properties.

b. Inthedialog, select the Run category.

c. Setthe Relative URL to the location of the RESTful web service relative to the Context Path,
which for this example is resources/helloworld.

Chapter 20 - Building RESTful Web Services with JAX-RS 397

Example Applications for JAX-RS

398

See Also

Tip - You can find the value for the Relative URL in the Test RESTful Web Services browser
window. In the top of the right pane, after Resource, is the URL for the RESTful web service
being tested. The part following the Context Path (http://localhost:8080/HelloWorldApp)
is the Relative URL that needs to be entered here.

If you don'’t set this property, the file index. j sp will appear by default when the application is
run. As this file also contains Hello World as its default value, you might not notice that your
RESTful web service isn’t running, so just be aware of this default and the need to set this
property, or update index. jsp to provide a link to the RESTful web service.

Right-click the project and select Deploy.

Right-click the project and select Run.

A browser window opens and displays the return value of Hello, World!!

For other sample applications that demonstrate deploying and running JAX-RS applications
using NetBeans IDE, see “The rsvp Example Application” on page 398 and Your First Cup: An
Introduction to the Java EE Platform athttp://docs.oracle.com/javaee/6/firstcup/doc/.
You may also look at the tutorials on the NetBeans IDE tutorial site, such as the one titled
“Getting Started with RESTful Web Services” at http://www.netbeans.org/kb/docs/websvc/
rest.html. This tutorial includes a section on creating a CRUD application from a database.
Create, read, update, and delete (CRUD) are the four basic functions of persistent storage and
relational databases.

The rsvp Example Application

The rsvp example application, located in the tut-install/examples/jaxrs/rsvp/ directory,
allows invitees to an event to indicate whether they will attend. The events, people invited to the
event, and the responses to the invite are stored in a Java DB database using the Java Persistence
API. The JAX-RS resources in rsvp are exposed in a stateless session enterprise bean.

Components of the rsvp Example Application

The three enterprise beans in the rsvp example application are rsvp.ejb.ConfigBean,
rsvp.ejb.StatusBean,and rsvp.ejb.ResponseBean.

ConfigBean is a singleton session bean that initializes the data in the database.

StatusBean exposes a JAX-RS resource for displaying the current status of all invitees to an
event. The URI path template is declared as follows:

@Path("/status/{eventId}/")

The Java EE 6 Tutorial « January 2013

http://docs.oracle.com/javaee/6/firstcup/doc/
http://www.netbeans.org/kb/docs/websvc/rest.html
http://www.netbeans.org/kb/docs/websvc/rest.html

Example Applications for JAX-RS

The URI path variable eventId is a @PathParam variable in the getResponse method, which
responds to HTTP GET requests and has been annotated with @GET. The eventId variable is
used to look up all the current responses in the database for that particular event.

ResponseBean exposes a JAX-RS resource for setting an invitee’s response to a particular event.
The URI path template for ResponseBean is declared as follows:

@Path("/{eventId}/{inviteId}")

Two URI path variables are declared in the path template: eventId and inviteId. Asin
StatusBean, eventId is the unique ID for a particular event. Each invitee to that event has a
unique ID for the invitation, and that is the inviteId. Both of these path variables are used in
two JAX-RS methods in ResponseBean: getResponse and putResponse. The getResponse
method responds to HT'TP GET requests and displays the invitee’s current response and a form
to change the response.

An invitee who wants to change his or her response selects the new response and submits the
form data, which is processed as an HT'TP PUT request by the putResponse method. One of the
parameters to the putResponse method, the userResponse string, is annotated with
@FormParam("attendeeResponse”). The HTML form created by getResponse stores the
changed response in the select list with an ID of attendeeResponse. The annotation
@FormParam("attendeeResponse”) indicates that the value of the select response is extracted
from the HTTP PUT request and stored as the userResponse string. The putResponse method
uses userResponse, eventId, and inviteId to update the invitee’s response in the database.

The events, people, and responses in rsvp are encapsulated in Java Persistence API entities. The
rsvp.entity.Event, rsvp.entity.Person,and rsvp.entity.Response entities respectively
represent events, invitees, and responses to an event.

The rsvp.util.ResponseEnum class declares an enumerated type that represents all the
possible response statuses an invitee may have.

Running the rsvp Example Application
Both NetBeans IDE and Ant can be used to deploy and run the rsvp example application.

To Run the rsvp Example Application in NetBeans IDE
From the File menu, choose Open Project.

In the Open Project dialog, navigate to:

tut-install/examples/jaxrs/

Select the rsvpfolder.

Select the Open as Main Project check box.

Chapter 20 « Building RESTful Web Services with JAX-RS 399

Example Applications for JAX-RS

5

v

Before You Begin

400

1

Click Open Project.

Right-click the rsvp project in the left pane and select Run.

The project will be compiled, assembled, and deployed to GlassFish Server. A web browser
window will open to http://localhost:8080/rsvp.

In the web browser window, click the Event Status link for the Duke’s Birthday event.

You'll see the current invitees and their responses.

Click on the name of one of the invitees, select a response, and click Submit response; then click
Back to event page.

The invitee’s new status should now be displayed in the table of invitees and their response
statuses.

To Run the rsvp Example Application Using Ant

You must have started the Java DB database before running rsvp.

In a terminal window, go to:

tut-install/examples/jaxrs/rsvp/

Type the following command:
ant all

This command builds, assembles, and deploys rsvp to GlassFish Server.
Open aweb browser window to http://localhost:8080/rsvp.

In the web browser window, click the Event Status link for the Duke’s Birthday event.

You’'ll see the current invitees and their responses.

Click on the name of one of the invitees, select a response, and click Submit response, then click
Back to event page.

The invitee’s new status should now be displayed in the table of invitees and their response
statuses.

Real-World Examples

Most blog sites use RESTful web services. These sites involve downloading XML files, in RSS or
Atom format, that contain lists of links to other resources. Other web sites and web applications
that use REST-like developer interfaces to data include Twitter and Amazon S3 (Simple Storage
Service). With Amazon S3, buckets and objects can be created, listed, and retrieved using either
a REST-style HTTP interface or a SOAP interface. The examples that ship with Jersey include a

The Java EE 6 Tutorial « January 2013

Further Information about JAX-RS

storage service example with a RESTful interface. The tutorial at http://netbeans.org/kb/
docs/websvc/twitter-swing.html uses NetBeans IDE to create a simple, graphical,
REST-based client that displays Twitter public timeline messages and lets you view and update
your Twitter status.

Further Information about JAX-RS

For more information about RESTful web services and JAX-RS, see

= “RESTful Web Services vs. 'Big’ Web Services: Making the Right Architectural Decision”:
http://www2008.0rg/papers/pdf/p805-pautassoA.pdf

= “Fielding Dissertation: Chapter 5: Representational State Transfer (REST)”:
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest arch style.htm

= RESTful Web Services, by Leonard Richardson and Sam Ruby, available from O’Reilly Media
athttp://oreilly.com/catalog/9780596529260/

= JSR311:JAX-RS: The Java API for RESTful Web Services:
http://jcp.org/en/jsr/detail?id=311

= JAX-RS project:
http://jsr31l.java.net/

® Jersey project:

http://jersey.java.net/

Chapter 20 « Building RESTful Web Services with JAX-RS 401

http://netbeans.org/kb/docs/websvc/twitter-swing.html
http://netbeans.org/kb/docs/websvc/twitter-swing.html
http://www2008.org/papers/pdf/p805-pautassoA.pdf
http://www.ics.uci.edu/|P5fielding/pubs/dissertation/rest_arch_style.htm
http://oreilly.com/catalog/9780596529260/
http://jcp.org/en/jsr/detail?id=311
http://jsr311.java.net/
http://jersey.java.net/

402

L R 2 4 CHAPTER 21

JAX-RS: Advanced Topics and Example

The Java API for RESTful Web Services (JAX-RS, defined in JSR 311) is designed to make it easy
to develop applications that use the REST architecture. This chapter describes advanced
features of JAX-RS. If you are new to JAX-RS, see Chapter 20, “Building RESTful Web Services
with JAX-RS,” before you proceed with this chapter.

JAX-RS is part of the Java EE 6 full profile. JAX-RS is integrated with Contexts and Dependency
Injection for the Java EE Platform (CDI), Enterprise JavaBeans (EJB) technology, and Java
Servlet technology.

The following topics are addressed here:

“Annotations for Field and Bean Properties of Resource Classes” on page 403
“Subresources and Runtime Resource Resolution” on page 407

“Integrating JAX-RS with EJB Technology and CDI” on page 408
“Conditional HTTP Requests” on page 409

“Runtime Content Negotiation” on page 410

“Using JAX-RS With JAXB” on page 412

“The customer Example Application” on page 418

Annotations for Field and Bean Properties of Resource Classes

JAX-RS annotations for resource classes let you extract specific parts or values from a Uniform
Resource Identifier (URI) or request header.

JAX-RS provides the annotations listed in Table 21-1.

TABLE21-1 Advanced JAX-RS Annotations

Annotation Description

@Context Injects information into a class field, bean property, or method parameter

403

Annotations for Field and Bean Properties of Resource Classes

404

TABLE 21-1 Advanced JAX-RS Annotations (Continued)

Annotation Description
@CookieParam Extracts information from cookies declared in the cookie request header
@FormParam Extracts information from a request representation whose content type is

application/x-www-form-urlencoded

@HeaderParam Extracts the value of a header

@MatrixParam Extracts the value of a URI matrix parameter
@PathParam Extracts the value of a URI template parameter
@QueryParam Extracts the value of a URI query parameter

Extracting Path Parameters

URI path templates are URIs with variables embedded within the URI syntax. The @PathParam
annotation lets you use variable URI path fragments when you call a method.

The following code snippet shows how to extract the last name of an employee when the
employee’s email address is provided:

@Path(/employees/"{firstname}.{lastname}@{domain}.com")
public class EmpResource {

@GET

@Produces ("text/xml")
public String getEmployeelastname(@PathParam("lastname") String lastName) {

}...
}

In this example, the @Path annotation defines the URI variables (or path parameters)
{firstname}, {lastname}, and {domain}. The @PathParam in the method parameter of the
request method extracts the last name from the email address.

If your HTTP request is GET /employees/john.doe@example. com, the value “doe” is injected
into {lastname}.

You can specify several path parameters in one URL

The Java EE 6 Tutorial « January 2013

Annotations for Field and Bean Properties of Resource Classes

You can declare a regular expression with a URI variable. For example, if it is required that the
last name must consist only of lower and upper case characters, you can declare the following
regular expression:

@Path(/employees/{"firstname}.{lastname[a-zA-Z]*}@{domain}.com")

If the last name does not match the regular expression, a 404 response is returned.

Extracting Query Parameters

Use the @QueryParam annotation to extract query parameters from the query component of the
request URIL.

For instance, to query all employees who have joined within a specific range of years, use a
method signature like the following:

@Path(/employees/")
@GET
public Response getEmployees(
@DefaultValue("2002") @QueryParam('minyear") int minyear,
@DefaultValue("2010") @QueryParam('maxyear") int maxyear)
{...}

This code snippet defines two query parameters, minyear and maxyear. The following HTTP
request would query for all employees who have joined between 1999 and 2009:

GET /employees?maxyear=2009&minyear=1999

The @DefaultValue annotation defines a default value, which is to be used if no values are
provided for the query parameters. By default, JAX-RS assigns a null value for Object values
and zero for primitive data types. You can use the @efaultValue annotation to eliminate null
or zero values and define your own default values for a parameter.

Extracting Form Data

Use the @FormParam annotation to extract form parameters from HTML forms. For example,
the following form accepts the name, address, and manager’s name of an employee:

<FORM action="http://example.com/employees/" method="post">

<p>

<fieldset>

Employee name: <INPUT type="text" name="empname" tabindex="1">
Employee address: <INPUT type="text" name="empaddress" tabindex="2">
Manager name: <INPUT type="text" name="managername" tabindex="3">
</fieldset>

</p>

</FORM>

Chapter21 - JAX-RS: Advanced Topics and Example 405

Annotations for Field and Bean Properties of Resource Classes

406

Use the following code snippet to extract the manager name from this HTML form:

@POST

@Consumes ("application/x-www-form-urlencoded")

public void post(@FormParam("managername") String managername) {
// Store the value

}

To obtain a map of form parameter names to values, use a code snippet like the following:

@POST

@Consumes ("application/x-www-form-urlencoded")

public void post(MultivaluedMap<String. String> formParams) {
// Store the message

}

Extracting the Java Type of a Request or Response

The javax.ws.rs.core.Context annotation retrieves the Java types related to a request or
response.

The javax.ws.rs.core.UriInfo interface provides information about the components of a
request URIL The following code snippet shows how to obtain a map of query and path
parameter names to values:

@GET

public String getParams(@Context UriInfo ui) {
MultivaluedMap<String, String> queryParams = ui.getQueryParameters();
MultivaluedMap<String, String> pathParams = ui.getPathParameters();

}

The javax.ws.rs.core.HttpHeaders interface provides information about request headers
and cookies. The following code snippet shows how to obtain a map of header and cookie
parameter names to values:

@GET

public String getHeaders(@Context HttpHeaders hh) {
MultivaluedMap<String, String> headerParams = hh.getRequestHeaders();
MultivaluedMap<String, Cookie> pathParams = hh.getCookies();

The Java EE 6 Tutorial « January 2013

Subresources and Runtime Resource Resolution

Subresources and Runtime Resource Resolution

You can use a resource class to process only a part of the URI request. A root resource can then
implement subresources that can process the remainder of the URI path.

A resource class method that is annotated with @Path is either a subresource method or a
subresource locator:

= A subresource method is used to handle requests on a subresource of the corresponding
resource.

= A subresource locator is used to locate subresources of the corresponding resource.

Subresource Methods

A subresource method handles an HTTP request directly. The method must be annotated with a
request method designator such as @GET or @POST, in addition to @Path. The method is invoked
for request URIs that match a URI template created by concatenating the URI template of the
resource class with the URI template of the method.

The following code snippet shows how a subresource method can be used to extract the last
name of an employee when the employee’s email address is provided:

@Path("/employeeinfo")
Public class EmployeeInfo {

public employeeinfo() {}
@GET
@Path("/employees/{firstname}.{lastname}@{domain}.com")
@Produces ("text/xml")
public String getEmployeelLastName(@PathParam("lastname") String lastName) {
}
}

The getEmployeelLastName method returns doe for the following GET request:

GET /employeeinfo/employees/john.doe@example.com

Subresource Locators

A subresource locator returns an object that will handle an HT'TP request. The method must not
be annotated with a request method designator. You must declare a subresource locator within
a subresource class, and only subresource locators are used for runtime resource resolution.

The following code snippet shows a subresource locator:

Chapter21 - JAX-RS: Advanced Topics and Example 407

Integrating JAX-RS with EJB Technology and CDI

// Root resource class
@Path("/employeeinfo")
public class EmployeeInfo {

// Subresource locator: obtains the subresource Employee

// from the path /employeeinfo/employees/{empid}

@Path("/employees/{empid}")

public Employee getEmployee(@PathParam("empid") String id) {
// Find the Employee based on the id path parameter
Employee emp = ...;

return emp;
}

// Subresource class
public class Employee {

// Subresource method: returns the employee’s last name
@GET

@Path("/lastname")

public String getEmployeelLastName() {

return lastName

}

In this code snippet, the getEmployee method is the subresource locator that provides the
Employee object, which services requests for lastname.

If your HTTP request is GET /employeeinfo/employees/as209/, the getEmployee method
returns an Employee object whose id is as209. At runtime, JAX-RS sends a GET
/employeeinfo/employees/as209/lastname request to the getEmployeelLastName method.
The getEmployeeLastName method retrieves and returns the last name of the employee whose
id is as209.

Integrating JAX-RS with EJB Technology and CDI

408

JAX-RS works with Enterprise JavaBeans technology (enterprise beans) and Contexts and
Dependency Injection for the Java EE Platform (CDI).

In general, for JAX-RS to work with enterprise beans, you need to annotate the class of a bean
with @Path to convert it to a root resource class. You can use the @Path annotation with stateless
session beans and singleton POJO beans.

The following code snippet shows a stateless session bean and a singleton bean that have been
converted to JAX-RS root resource classes.

@Stateless
@Path("stateless-bean")
public class StatelessResource {...}

The Java EE 6 Tutorial « January 2013

Conditional HTTP Requests

@Singleton
@Path("singleton-bean")
public class SingletonResource {...}

Session beans can also be used for subresources.

JAX-RS and CDI have slightly different component models. By default, JAX-RS root resource
classes are managed in the request scope, and no annotations are required for specifying the
scope. CDI managed beans annotated with @equestScoped or @ApplicationScoped can be
converted to JAX-RS resource classes.

The following code snippet shows a JAX-RS resource class.

@Path("/employee/{id}")
public class Employee {

public Employee(@PathParam("id") String id) {...}
}

@Path("{lastname}")
public final class EmpDetails {...}

The following code snippet shows this JAX-RS resource class converted to a CDI bean. The

beans must be proxyable, so the Employee class requires a non-private constructor with no
parameters, and the EmpDetails class must not be final.

@Path("/employee/{id}")

@RequestScoped

public class Employee {
public Employee() {...}

@Inject
public Employee(@PathParam("id") String id) {...}
}

@Path("{lastname}")

@RequestScoped
public class EmpDetails {...}

Conditional HTTP Requests

JAX-RS provides support for conditional GET and PUT HTTP requests. Conditional GET
requests help save bandwidth by improving the efficiency of client processing.

A GET request can return a Not Modified (304) response if the representation has not changed
since the previous request. For example, a web site can return 304 responses for all its static
images that have not changed since the previous request.

A PUT request can return a Precondition Failed (412) response if the representation has been
modified since the last request. The conditional PUT can help avoid the lost update problem.

Conditional HTTP requests can be used with the Last-Modified and ETag headers. The
Last-Modified header can represent dates with granularity of one second.

Chapter21 - JAX-RS: Advanced Topics and Example 409

Runtime Content Negotiation

@Path("/employee/{joiningdate}")
public class Employee {

Date joiningdate;

@GET

@Produces ("application/xml")

public Employee(@PathParam("joiningdate") Date joiningdate,
@Context Request req,
@Context UriInfo ui) {

this.joiningdate = joiningdate;

this.tag = computeEntityTag(ui.getRequestUri());
if (req.getMethod().equals("GET")) {
Response.ResponseBuilder rb = req.evaluatePreconditions(tag);
if (rb !'= null) {
throw new WebApplicationException(rb.build());
}

}

In this code snippet, the constructor of the Employee class computes the entity tag from the
request URI and calls the request.evaluatePreconditions method with that tag. If a client
request returns an If-none-match header with a value that has the same entity tag that was
computed, evaluate.Preconditions returns a pre-filled-out response with a 304 status code
and an entity tag set that may be built and returned.

Runtime Content Negotiation

410

The @Produces and @Consumes annotations handle static content negotiation in JAX-RS. These
annotations specify the content preferences of the server. HTTP headers such as Accept,
Content-Type, and Accept-Language define the content negotiation preferences of the client.

For more details on the HTTP headers for content negotiation, see HTTP /1.1 - Content
Negotiation (http://www.w3.0rg/Protocols/rfc2616/rfc2616-secl2.html).

The following code snippet shows the server content preferences:

@Produces ("text/plain")
@Path("/employee")
public class Employee {

@GET

public String getEmployeeAddressText(String address) { ... }
@Produces ("text/xml")

@GET

public String getEmployeeAddressXml(Address address) { ... }

}
The getEmployeeAddressText method is called for an HTTP request that looks as follows:

The Java EE 6 Tutorial « January 2013

http://www.w3.org/Protocols/rfc2616/rfc2616-sec12.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec12.html

Runtime Content Negotiation

GET /employee
Accept: text/plain

This will produce the following response:

500 Oracle Parkway, Redwood Shores, CA

The getEmployeeAddressXml method is called for an HTTP request that looks as follows:

GET /employee
Accept: text/xml

This will produce the following response:

<address street="500 Oracle Parkway, Redwood Shores, CA" country="USA"/>

With static content negotiation, you can also define multiple content and media types for the
client and server.

@Produces ("text/plain", "text/xml")

In addition to supporting static content negotiation, JAX-RS also supports runtime content
negotiation using the javax.ws.rs.core.Variant class and Request objects. The Variant
class specifies the resource representation of content negotiation. Each instance of the Variant
class may contain a media type, a language, and an encoding. The Variant object defines the
resource representation that is supported by the server. The Variant.variantListBuilder
class is used to build a list of representation variants.

The following code snippet shows how to create a list of resource representation variants:

List<Variant> vs =
Variant.mediatypes("application/xml", "application/json")
.languages ("en", "fr").build();

This code snippet calls the build method of the VariantListBuilder class. The
VariantListBuilder class is invoked when you call the mediatypes, languages, or encodings
methods. The build method builds a series of resource representations. The Variant list
created by the build method has all possible combinations of items specified in the
mediatypes, languages, and encodings methods.

Chapter21 - JAX-RS: Advanced Topics and Example 411

Using JAX-RS With JAXB

In this example, the size of the vs object as defined in this code snippet is 4, and the contents are
as follows:
[["application/xml","en"], ["application/json","en"l,

["application/xml","fr"1, ["application/json","fr"]]

The javax.ws.rs.core.Request.selectVariant method accepts alist of Variant objects and
chooses the Variant object that matches the HTTP request. This method compares its list of
Variant objects with the Accept, Accept-Encoding, Accept-Language, and Accept-Charset
headers of the HTTP request.

The following code snippet shows how to use the selectVariant method to select the most
acceptable Variant from the values in the client request.

@GET
public Response get(@Context Request r) {
List<Variant> vs = ...;
Variant v = r.selectVariant(vs);
if (v == null) {
return Response.notAcceptable(vs).build();
} else {
Object rep = selectRepresentation(v);
return Response.ok(rep, v);

}

The selectVariant method returns the Variant object that matches the request, or null if no
matches are found. In this code snippet, if the method returns null, a Response object for a
non-acceptable response is built. Otherwise, a Response object with an OK status and
containing a representation in the form of an Object entity and a Variant is returned.

Using JAX-RS With JAXB

412

Java Architecture for XML Binding (JAXB) is an XML-to-Java binding technology that
simplifies the development of web services by enabling transformations between schema and
Java objects and between XML instance documents and Java object instances. An XML schema
defines the data elements and structure of an XML document. You can use JAXB APIs and tools
to establish mappings between Java classes and XML schema. JAXB technology provides the
tools that enable you to convert your XML documents to and from Java objects.

By using JAXB, you can manipulate data objects in the following ways:

® You can start with an XML schema definition (XSD) and use xj c, the JAXB schema
compiler tool, to create a set of JAXB-annotated Java classes that map to the elements and
types defined in the XSD schema.

= You can start with a set of Java classes and use schemagen, the JAXB schema generator tool,
to generate an XML schema.

The Java EE 6 Tutorial « January 2013

Using JAX-RS With JAXB

= Once a mapping between the XML schema and the Java classes exists, you can use the JAXB
binding runtime to marshal and unmarshal your XML documents to and from Java objects
and use the resulting Java classes to assemble a web services application.

XML is a common media format that RESTful services consume and produce. To deserialize
and serialize XML, you can represent requests and responses by JAXB annotated objects. Your
JAX-RS application can use the JAXB objects to manipulate XML data. JAXB objects can be
used as request entity parameters and response entities. The JAX-RS runtime environment
includes standard MessageBodyReader and MessageBodyWriter provider interfaces for reading
and writing JAXB objects as entities.

With JAX-RS, you enable access to your services by publishing resources. Resources are just
simple Java classes with some additional JAX-RS annotations. These annotations express the
following:

= The path of the resource (the URL you use to access it)

= The HTTP method you use to call a certain method (for example, the GET or POST
method)

= The MIME type with which a method accepts or responds

As you define the resources for your application, consider the type of data you want to expose.
You may already have a relational database that contains information you want to expose to
users, or you may have static content that does not reside in a database but does need to be
distributed as resources. Using JAX-RS, you can distribute content from multiple sources.
RESTful web services can use various types of input/output formats for request and response.
The customer example, described in “The customer Example Application” on page 418, uses
XML.

Resources have representations. A resource representation is the content in the HT'TP message
that is sent to, or returned from, the resource using the URI. Each representation a resource
supports has a corresponding media type. For example, if a resource is going to return content
formatted as XML, you can use application/xml as the associated media type in the HTTP
message. Depending on the requirements of your application, resources can return
representations in a preferred single format or in multiple formats. JAX-RS provides @onsumes
and @Produces annotations to declare the media types that are acceptable for a resource
method to read and write.

JAX-RS also maps Java types to and from resource representations using entity providers. A
MessageBodyReader entity provider reads a request entity and deserializes the request entity
into a Java type. A MessageBodyWriter entity provider serializes from a Java type into a
response entity. For example, if a String value is used as the request entity parameter, the
MessageBodyReader entity provider deserializes the request body into a new String. If a JAXB
type is used as the return type on a resource method, the MessageBodyWriter serializes the
JAXB object into a response body.

Chapter21 - JAX-RS: Advanced Topics and Example 413

Using JAX-RS With JAXB

44

By default, the JAX-RS runtime environment attempts to create and use a default JAXBContext
class for JAXB classes. However, if the default JAXBContext class is not suitable, then you can
supply a JAXBContext class for the application using a JAX-RS ContextResolver provider
interface.

The following sections explain how to use JAXB with JAX-RS resource methods.

Using Java Objects to Model Your Data

If you do not have an XML schema definition for the data you want to expose, you can model
your data as Java classes, add JAXB annotations to these classes, and use JAXB to generate an
XML schema for your data. For example, if the data you want to expose is a collection of
products and each product has an ID, a name, a description, and a price, you can model it as a
Java class as follows:

@XmlRootElement (name="product")
@XmlAccessorType(XmlAccessType.FIELD)
public class Product {

@XmlElement (required=true)
protected int id;

@XmlElement (required=true)
protected String name;
@XmlElement (required=true)
protected String description;
@XmlElement (required=true)
protected int price;

public Product() {}

// Getter and setter methods

/] ..
}
Run the JAXB schema generator on the command line to generate the corresponding XML
schema definition:

schemagen Product.java

This command produces the XML schema as an . xsd file:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xs:schema version="1.0" xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xs:element name="product" type="product"/>

<xs:complexType name="product">
<xs:sequence>
<xs:element name="id" type="xs:int"/>
<xs:element name="name" type="xs:string"/>
<xs:element name="description" type="xs:string"/>

The Java EE 6 Tutorial « January 2013

Using JAX-RS With JAXB

<xs:element name="price" type="xs:int"/>
</xs:sequence>
<xs:complexType>
</xs:schema>

Once you have this mapping, you can create Product objects in your application, return them,
and use them as parameters in JAX-RS resource methods. The JAX-RS runtime uses JAXB to
convert the XML data from the request into a Product object and to convert a Product object
into XML data for the response. The following resource class provides a simple example:

@Path("/product")
public class ProductService {
@GET
@Path("/get")
@Produces ("application/xml")
public Product getProduct() {
Product prod = new Product();
prod.setId(1);
prod.setName("Mattress");
prod.setDescription("Queen size mattress");
prod.setPrice(500);
return prod;

}

@POST

@Path("/create")

@Consumes ("application/xml")

public Response createProduct(Product prod) {
// Process or store the product and return a response
/] ...

}

Some IDEs, such as NetBeans IDE, will run the schema generator tool automatically during the
build process if you add Java classes that have JAXB annotations to your project. For a detailed
example, see “The customer Example Application” on page 418. The customer example
contains a more complex relationship between the Java classes that model the data, which
results in a more hierarchical XML representation.

Starting from an Existing XML Schema Definition

If you already have an XML schema definition in an . xsd file for the data you want to expose,
use the JAXB schema compiler tool. Consider this simple example of an . xsd file:

<?xml version="1.0"?>

<xs:schema targetNamespace="http://xml.product”
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified"
xmlns:myco="http://xml.product">

<xs:element name="product" type="myco:Product"/>

Chapter21 - JAX-RS: Advanced Topics and Example 415

Using JAX-RS With JAXB

416

<xs:complexType name="Product">
<xs:sequence>
<xs:element name="id" type="xs:int"/>
<xs:element name="name" type="xs:string"/>
<xs:element name="description" type="xs:string"/>
<xs:element name="price" type="xs:int"/>
</Xs:sequence>
</xs:complexType>
</xs:schema>

Run the schema compiler tool on the command line as follows:

xjc Product.xsd

This command generates the source code for Java classes that correspond to the types defined in
the . xsd file. The schema compiler tool generates a Java class for each complexType defined in
the . xsd file. The fields of each generated Java class are the same as the elements inside the
corresponding complexType, and the class contains getter and setter methods for these fields.

In this case the schema compiler tool generates the classes product.xml.Product and
product.xml.ObjectFactory. The Product class contains JAXB annotations, and its fields
correspond to those in the . xsd definition:

@XmlAccessorType(XmlAccessType.FIELD)

@XmlIyQF(name = "Product"”, propOrder = {
||name||,
"description”
"pr‘ice"

1)

public class Product {
protected int id;
@XmlElement(required = true)
protected String name;
@XmlElement(required = true)
protected String description;
protected int price;

// Setter and getter methods
/] ...
}

You can create instances of the Product class from your application (for example, from a
database). The generated class product.xml.0ObjectFactory contains a method that allows you
to convert these objects to JAXB elements that can be returned as XML inside JAX-RS resource
methods:

@XmlElementDecl(namespace = "http://xml.product", name = "product")
public JAXBElement<Product> createProduct(Product value) {

return new JAXBElement<Product>(Product QNAME, Product.class, null, value);
}

The following code shows how to use the generated classes to return a JAXB element as XML in
a JAX-RS resource method:

The Java EE 6 Tutorial « January 2013

Using JAX-RS With JAXB

@Path("/product")
public class ProductService {
@GET
@Path("/get")
@Produces ("application/xml")
public JAXBElement<Product> getProduct() {
Product prod = new Product();
prod.setId(1);
prod.setName("Mattress");
prod.setDescription("Queen size mattress");
prod.setPrice(500);
return new ObjectFactory().createProduct(prod);

}

For @POST and @PUT resource methods, you can use a Product object directly as a parameter.
JAX-RS maps the XML data from the request into a Product object.

@Path("/product")

public class ProductService {
@GET
// ...

@POST

@Path("/create")

@Consumes ("application/xml")

public Response createProduct(Product prod) {
// Process or store the product and return a response
/7 ...

}

Some IDEs, such as NetBeans IDE, will run the schema compiler tool automatically during the
build process if you add an . xsd file to your project sources. For a detailed example, see
“Modifying the Example to Generate Entity Classes from an Existing Schema” on page 426. The
modified customer example contains a more hierarchical XML schema definition, which
results in a more complex relationship between the Java classes that model the data.

Using JSON with JAX-RS and JAXB

JAX-RS can automatically read and write XML using JAXB, but it can also work with JSON
data. JSON is a simple text-based format for data exchange derived from JavaScript. For the
examples above, the XML representation of a product is:

<?xml version="1.0" encoding="UTF-8"?>
<product>
<id>1</id>
<name>Mattress</name>
<description>Queen size mattress</description>
<price>500</price>
</product>

The equivalent JSON representation is:

Chapter21 - JAX-RS: Advanced Topics and Example 417

The customer Example Application

{
"id":"1",
"name":"Mattress",
"description":"Queen size mattress"
"price":500

}

You can add the format application/json to the @roduces annotation in resource methods
to produce responses with JSON data:

@GET

@Path("/get")

@Produces ({"application/xml","application/json"})
public Product getProduct() { ... }

In this example the default response is XML, but the response is a JSON object if the client
makes a GET request that includes this header:

Accept: application/json

The resource methods can also accept JSON data for JAXB annotated classes:

@POST

@Path("/create")

@Consumes ({"application/xml","application/json"})
public Response createProduct(Product prod) { ... }

The client should include the following header when submitting JSON data with a POST request:

Content-Type: application/json

The customer Example Application

418

This section describes how to build and run the customer sample application. This example
application is a RESTful web service that uses JAXB to perform the Create, Read, Update, Delete
(CRUD) operations for a specific entity.

The customer sample application is in the tut-install/examples/jaxrs/customer/ directory.
See Chapter 2, “Using the Tutorial Examples,” for basic information on building and running
sample applications.

The Java EE 6 Tutorial « January 2013

The customer Example Application

Overview of the customer Example Application

The source files of this application are at tut-install/examples/jaxrs/customer/src/java/.
The application has three parts:

= The Customer and Address entity classes. These classes model the data of the application
and contain JAXB annotations. See “The Customer and Address Entity Classes” on page 419
for details.

m The CustomerService resource class. This class contains JAX-RS resource methods that
perform operations on Customer instances represented as XML or JSON data using JAXB.
See “The CustomerService Class” on page 422 for details.

® The CustomerClientXML and CustomerClientJSON client classes. These classes test the
resource methods of the web service using XML and JSON representations of Customer
instances. See “The CustomerClientXML and CustomerClientJSON Classes” on page 424 for
details.

The customer sample application shows you how to model your data entities as Java classes
with JAXB annotations. The JAXB schema generator produces an equivalent XML schema
definition file (. xsd) for your entity classes. The resulting schema is used to automatically
marshal and unmarshal entity instances to and from XML or JSON in the JAX-RS resource
methods.

In some cases you may already have an XML schema definition for your entities. See
“Modifying the Example to Generate Entity Classes from an Existing Schema” on page 426 for
instructions on how to modify the customer example to model your data starting from an . xsd
file and using JAXB to generate the equivalent Java classes.

The Customer and Address Entity Classes

The following class represents a customer’s address:

@XmlRootElement (name="address")
@XmlAccessorType(XmlAccessType.FIELD)
public class Address {

@XmlElement (required=true)
protected int number;

@XmlElement (required=true)
protected String street;

@XmlElement (required=true)
protected String city;

@XmlElement (required=true)
protected String state;

Chapter21 - JAX-RS: Advanced Topics and Example 419

The customer Example Application

@XmlElement (required=true)
protected String zip;

@XmlElement (required=true)
protected String country;

public Address() { }

// Getter and setter methods
/] ...
}

The @XmlRootElement (name="address") annotation maps this class to the address XML
element. The @XmlAccessorType (XmlAccessType.FIELD) annotation specifies that all the
fields of this class are bound to XML by default. The @XmlElement (required=true) annotation
specifies that an element must be present in the XML representation.

The following class represents a customer:

@XmlRootElement (name="customer")
@XmlAccessorType(XmlAccessType.FIELD)
public class Customer {

@XmlAttribute(required=true)
protected int id;

@XmlElement (required=true)
protected String firstname;

@XmlElement (required=true)
protected String lastname;

@XmlElement (required=true)
protected Address address;

@XmlElement (required=true)
protected String email;

@XmlElement (required=true)
protected String phone;

public Customer() { }

// Getter and setter methods
// ...
}

The Customer class contains the same JAXB annotations as the previous class, except for the
@XmlAttribute(required=true) annotation, which maps a property to an attribute of the
XML element representing the class.

The Customer class contains a property whose type is another entity, the Address class. This
mechanism allows you to define in Java code the hierarchical relationships between entities
without having to write an . xsd file yourself.

420 The Java EE 6 Tutorial « January 2013

The customer Example Application

JAXB generates the following XML schema definition for the two classes above:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<xs:schema version="1.0" xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xs:element name="address" type="address"/>
<xs:element name="customer" type="customer"/>

<xs:complexType name="address">
<xs:sequence>
<xs:element name="number" type="xs:int"/>
<xs:element name="street" type="xs:string"/>
<xs:element name="city" type="xs:string"/>
<xs:element name="state" type="xs:string"/>
<xs:element name="zip" type="xs:string"/>
<xs:element name="country" type="xs:string"/>
</Xs:sequence>
</xs:complexType>

<xs:complexType name="customer">
<xs:sequence>

<xs:element name="firstname" type="xs:string"/>

<xs:element name="lastname" type="xs:string"/>

<xs:element ref="address"/>

<xs:element name="email" type="xs:string"/>

<xs:element name="phone" type="xs:string"/>
</xs:sequence>

<xs:attribute name="id" type="xs:int" use="required"/>

</xs:complexType>
</xs:schema>

The file sample-input.xml in the top-level directory of the project contains an example of an

XML representation of a customer:

<?xml version="1.0" encoding="UTF-8"?>
<customer id="1">
<firstname>Duke</firstname>
<lastname>0fJava</lastname>
<address>
<number>1l</number>
<street>Duke’'s Way</street>
<city>JavaTown</city>
<state>JA</state>
<z1ip>12345</zip>
<country>USA</country>
</address>
<email>duke@example.com</email>
<phone>123-456-7890</phone>
</customer>

The file sample-input. json contains an example of a JSON representation of a customer:

"@id”: ||1||,
"firstname": "Duke",
"lastname": "OfJava",

Chapter 21 - JAX-RS: Advanced Topics and Example

421

The customer Example Application

"address": {
"number": 1,
"street": "Duke’s Way"
"city": "JavaTown",
"state“: IIJAII'
"Zip": II12345II,
"country": "USA"
+
"email": "duke@example.com",
"phone": "123-456-7890"

The CustomerService Class

The CustomerService class has a createCustomer method that creates a customer resource
based on the Customer class and returns a URI for the new resource. The persist method
emulates the behavior of the JPA entity manager. This example uses a java.util.Properties
file to store data. If you are using the default configuration of GlassFish Server, the properties
file is at domain-dir/CustomerDATA. txt.

@Path("/Customer")
public class CustomerService {
public static final String DATA STORE = "CustomerDATA.txt";
public static final Logger logger =
Logger.getLogger(CustomerService.class.getCanonicalName());

@POST
@Consumes ({"application/xml", "application/json"})
public Response createCustomer(Customer customer) {
try {
long customerId = persist(customer);
return Response.created(URI.create("/" + customerId)).build();
} catch (Exception e) {
throw new WebApplicationException(e,
Response.Status.INTERNAL SERVER ERROR);

private long persist(Customer customer) throws IOException {
File dataFile = new File(DATA STORE);

if (!dataFile.exists()) {
dataFile.createNewFile();

}

long customerId
Address address

customer.getId();
customer.getAddress();

Properties properties = new Properties();
properties.load(new FileInputStream(dataFile));

422 The Java EE 6 Tutorial « January 2013

The customer Example Application

properties.setProperty(String.valueOf(customerId),
customer.getFirstname() + ","
+ customer.getlLastname() + ","

non

address.getNumber() +
address.getStreet() + ",
address.getCity() + ","
address.getState() + ",
address.getZip() + "'
address.getCountry() +
customer.getEmail() + ","
customer.getPhone());

nwon
’

+ 4+ o+ o+ o+

properties.store(new FileOutputStream(DATA STORE),null);

return customerld;

}

The response returned to the client has a URI to the newly created resource. The return type is
an entity body mapped from the property of the response with the status code specified by the
status property of the response. The WebApplicationException isaRuntimeException thatis
used to wrap the appropriate HTTP error status code, such as 404, 406, 415, or 500.

The @Consumes ({"application/xml","application/json"}) and

@Produces ({"application/xml","application/json"}) annotations set the request and

response media types to use the appropriate MIME client. These annotations can be applied to a
resource method, a resource class, or even an entity provider. If you do not use these
annotations, JAX-RS allows the use of any media type ("*/*").

The following code snippet shows the implementation of the getCustomer and findbyId
methods. The getCustomer method uses the @Produces annotation and returns a Customer
object, which is converted to an XML or JSON representation depending on the Accept:
header specified by the client.

@GET

@Path("{id}")

@Produces ({"application/xml", "application/json"})

public Customer getCustomer(@PathParam("id") String customerId) {
Customer customer = null;

try {
customer = findById(customerlId);
} catch (Exception ex) {
logger.log(Level.SEVERE,
"Error calling searchCustomer() for customerId {0}. {1}"
new Object[]{customerId, ex.getMessage()});
}
return customer;

}

private Customer findById(String customerId) throws IOException {
properties properties = new Properties();
properties.load(new FileInputStream(DATA STORE));

Chapter21 - JAX-RS: Advanced Topics and Example 423

The customer Example Application

String rawData = properties.getProperty(customerId);

if (rawbData !'= null) {
final String[] field = rawData.split(",");

Address address = new Address();

Customer customer = new Customer();
customer.setId(Integer.parselnt(customerld));
customer.setAddress(address);

customer.setFirstname(field[0]);
customer.setLastname(field[1]);
address.setNumber(Integer.parselnt(field[2]));
address.setStreet(field[3]);
address.setCity(field[4]);
address.setState(field[5]);
address.setZip(field[6]);
address.setCountry(field[7]);
customer.setEmail(field[8]);
customer.setPhone(field[9]);

return customer;

return null;

The CustomerClientXML and CustomerClientJSON
Classes

Jersey is the reference implementation of JAX-RS (JSR 311). You can use the Jersey client API to
write a test client for the customer example application. You can find the Jersey APIs at
http://jersey.java.net/nonav/apidocs/latest/jersey/.

The CustomerClientXML class calls Jersey APIs to test the CustomerService web service:

package customer.rest.client;

import com.sun.jersey.api.client.Client;

import com.sun.jersey.api.client.ClientResponse;
import com.sun.jersey.api.client.WebResource;
import customer.data.Address;

import customer.data.Customer;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.ws.rs.core.MediaType;

public class CustomerClientXML {
public static final Logger logger =
Logger.getLogger(CustomerClientXML.class.getCanonicalName());

public static void main(String[] args) {

Client client = Client.create();
// Define the URL for testing the example application

424 The Java EE 6 Tutorial « January 2013

http://jersey.java.net/nonav/apidocs/latest/jersey/

The customer Example Application

WebResource webResource =
client.resource("http://localhost:8080/customer/rest/Customer")

// Test the POST method

Customer customer = new Customer();
Address address = new Address();
customer.setAddress(address);

customer.setId(1);
customer.setFirstname("Duke");
customer.setLastname("0flava");
address.setNumber(1);
address.setStreet("Duke’s Drive");
address.setCity("JavaTown");
address.setZip("1234")
address.setState("JA");
address.setCountry("USA");
customer.setEmail ("duke@java.net");
customer.setPhone("12341234");

ClientResponse response =
webResource.type("application/xml").post(ClientResponse.class,
customer);

logger.info("POST status: {0}" + response.getStatus());
if (response.getStatus() == 201) {
logger.info("POST succeeded");
} else {
logger.info("POST failed");
}

// Test the GET method using content negotiation

response = webResource.path("1l").accept(MediaType.APPLICATION XML)
.get(ClientResponse.class);

Customer entity = response.getEntity(Customer.class);

logger.log(Level.INFO, "GET status: {0}", response.getStatus());
if (response.getStatus() == 200) {
logger.log(Level.INFO, "GET succeeded, city is {0}"
entity.getAddress().getCity());
} else {
logger.info("GET failed");

// Test the DELETE method
response = webResource.path("1").delete(ClientResponse.class);

logger.log(Level.INFO, "DELETE status: {0}", response.getStatus());
if (response.getStatus() == 204) {
logger.info("DELETE succeeded (no content)");
} else {
logger.info("DELETE failed");
}

response = webResource.path("1l").accept(MediaType.APPLICATION XML)
.get(ClientResponse.class);
logger.log(Level.INFO, "GET status: {0}", response.getStatus());
if (response.getStatus() == 204) {
logger.info("After DELETE, the GET request returned no content.");

Chapter21 - JAX-RS: Advanced Topics and Example 425

The customer Example Application

} else {
logger.info("Failed, after DELETE, GET returned a response.");

}
This Jersey client tests the POST, GET, and DELETE methods using XML representations.

All of these HTTP status codes indicate success: 201 for POST, 200 for GET, and 204 for
DELETE. For details about the meanings of HT'TP status codes, see http://www.w3.0rg/
Protocols/rfc2616/rfc2616-secl@.html.

The CustomerClientJSON class is similar to CustomerClientXML but it uses JSON
representations to test the web service. In the CustomerClientJSON class "application/xml" is
replaced by "application/json", and MediaType.APPLICATION_ XML is replaced by
MediaType.APPLICATION JSON

Modifying the Example to Generate Entity Classes
from an Existing Schema

This section describes how you can modify the customer example if you provide an XML
schema definition file for your entities instead of providing Java classes. In this case JAXB
generates the equivalent Java entity classes from the schema definition.

For the customer example you provide the following . xsd file:

<?xml version="1.0"?>

<xs:schema targetNamespace="http://xml.customer"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified"
xmlns:ora="http://xml.customer">

<xs:element name="customer" type="ora:Customer"/>

<xs:complexType name="Address">
<xs:sequence>
<xs:element name="number" type="xs:int"/>
<xs:element name="street" type="xs:string"/>
<xs:element name="city" type="xs:string"/>
<xs:element name="state" type="xs:string"/>
<xs:element name="zip" type="xs:string"/>
<xs:element name="country" type="xs:string"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="Customer">
<xs:sequence>
<xs:element name="firstname" type="xs:string"/>
<xs:element name="lastname" type="xs:string"/>
<xs:element name="address" type="ora:Address"/>
<xs:element name="email" type="xs:string"/>
<xs:element name="phone" type="xs:string"/>

426 The Java EE 6 Tutorial « January 2013

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

The customer Example Application

</xs:sequence>
<xs:attribute name="id" type="xs:int" use="required"/>
</xs:complexType>
</xs:schema>

You can modify the customer example as follows:

To Modify the customer Example to Generate Java Entity Classes from
an Existing XML Schema Definition

Create a JAXB binding to generate the entity Java classes from the schema definition. For
example, in NetBeans IDE, follow these steps:

a. Rightclick onthe customer projectand select New > Other...
b. Underthe XML folder, select JAXB Binding and click Next.

¢. IntheBinding Name field, type CustomerBinding.

d. Click Browse and choose the . xsd file from your file system.
e. InthePackage Name field, type customer.xml.

f. Click Finish.

This procedure creates the Customer class, the Address class, and some JAXB auxiliary classes
in the package customer.xml.

Modify the CustomerService class as follows:

a. Replacethe customer.data.*imports with customer.xml.* imports and import the
JAXBElement and ObjectFactory classes:

import customer.xml.Customer;
import customer.xml.Address;
import customer.xml.ObjectFactory;
import javax.xml.bind.JAXBElement;
b. Replace the return type of the getCustomer method:

public JAXBElement<Customer> getCustomer(
@PathParam("id") String customerId) {

return new ObjectFactory().createCustomer(customer);

Chapter21 - JAX-RS: Advanced Topics and Example 427

The customer Example Application

428

3 Modify the CustomerClientXML and CustomerClientJSON classes as follows:

a. Replacethe customer.data.*imports with customer.xml.*imports and import the
JAXBElement and ObjectFactory classes:

import customer.xml.Address;
import customer.xml.Customer;
import customer.xml.ObjectFactory;
import javax.xml.bind.JAXBElement;

b. CreateanObjectFactoryinstance and a JAXBElement<Customer> instance at the
beginning of the main method:

public static void main(String[] args) {
Client client = Client.create();
ObjectFactory factory = new ObjectFactory();
WebResource webResource = ...;

customer.setPhone("12341234");

JAXBElement<Customer> customerJAXB = factory.createCustomer(customer);

ClientResponse response = webResource.type("application/xml")
.post(ClientResponse.class, customerJAXB);

}

¢. Modify the GET request after testing the DELETE method:

response = webResource.path("1l").accept(MediaType.APPLICATION XML)
.get(ClientResponse.class);
entity = response.getEntity(Customer.class);
logger.log(Level.INFO, "GET status: {0}", response.getStatus());
try {
logger.info(entity.getAddress().getCity());
} catch (NullPointerException ne) {
// null after deleting the only customer
logger.log(Level.INFO, "After DELETE, city is: {0}", ne.getCause());
}

The instructions for building, deploying, and running the example are the same for the original
customer example and for the modified version using this procedure.

Running the customer Example

You can use either NetBeans IDE or Ant to build, package, deploy, and run the customer
application.

¥ ToBuild, Package, and Deploy the customer Example Using NetBeans

IDE

This procedure builds the application into the
tut-install/examples/jax-rs/customer/build/web/ directory. The contents of this directory
are deployed to the GlassFish Server.

The Java EE 6 Tutorial « January 2013

The customer Example Application

From the File menu, choose Open Project.

In the Open Project dialog, navigate to:

tut-install/examples/jaxrs/

Select the customer folder.
Select the Open as Main Project check box.

Click Open Project.

It may appear that there are errors in the source files, because the files refer to JAXB classes that
will be generated when you build the application. You can ignore these errors.

In the Projects tab, right-click the customer project and select Deploy.

To Build, Package, and Deploy the customer Example Using Ant

In a terminal window, go to:

tut-install/examples/jaxrs/customer/

Type the following command:

ant

This command calls the default target, which builds and packages the application intoa WAR
file, customer.war, located in the dist directory.

Type the following command:
ant deploy

Typing this command deploys customer.war to the GlassFish Server.

To Run the customer Example Using the Jersey Client
In NetBeans IDE, expand the Source Packages node.
Expand the customer.rest.client node.

Right-click the CustomerClientXML. java file and select Run File.
The output of the client looks like this:

run:
Jun 12, 2012 2:40:20 PM customer.rest.client.CustomerClientXML main
INFO: POST status: 201

Jun 12, 2012 2:40:20 PM customer.rest.client.CustomerClientXML main
INFO: POST succeeded

Jun 12, 2012 2:40:20 PM customer.rest.client.CustomerClientXML main

Chapter21 - JAX-RS: Advanced Topics and Example 429

The customer Example Application

INFO: GET status: 200

Jun 12, 2012 2:40:20 PM customer.rest.client.CustomerClientXML main
INFO: GET succeeded, city is JavaTown

Jun 12, 2012 2:40:20 PM customer.rest.client.CustomerClientXML main
INFO: DELETE status: 204

Jun 12, 2012 2:40:20 PM customer.rest.client.CustomerClientXML main
INFO: DELETE succeeded (no content)

Jun 12, 2012 2:40:20 PM customer.rest.client.CustomerClientXML main
INFO: GET status: 204

Jun 12, 2012 2:40:20 PM customer.rest.client.CustomerClientXML main
INFO: After DELETE, the GET request returned no content.

BUILD SUCCESSFUL (total time: 5 seconds)

The output is slightly different for the modified customer example:

run:
Jun 12, 2012 2:40:20 PM customer.rest.client.CustomerClientXML main
INFO: POST status: 201

[...]

Jun 12, 2012 2:40:20 PM customer.rest.client.CustomerClientXML main
INFO: DELETE succeeded (no content)

Jun 12, 2012 2:40:20 PM customer.rest.client.CustomerClientXML main
INFO: GET status: 200

Jun 12, 2012 2:40:20 PM customer.rest.client.CustomerClientXML main
INFO: After DELETE, city is: null

BUILD SUCCESSFUL (total time: 5 seconds)

¥ To Run the customer Example Using the Web Services Tester

1 InNetBeans IDE, right-click the customer node and select Test RESTful Web Services.

Note - The Web Services Tester works only with the modified version of the customer example.

2 Inthe Configure REST Test Client dialog, select Web Test Client in Project and click Browse.

3 Inthe Select Project dialog, choose the customer project and click OK.

4 Inthe Configure REST Test Client dialog, click OK.

5 When the test client appears in the browser, select the Customer resource node in the left pane.

6 Paste the following XML code into the Content text area, replacing “Insert content here”:

<?xml version="1.0" encoding="UTF-8"?>
<customer id="1">
<firstname>Duke</firstname>
<lastname>0fJava</lastname>
<address>
<number>1l</number>
<street>Duke’s Way</street>
<city>JavaTown</city>
<state>JA</state>

430 The Java EE 6 Tutorial « January 2013

The customer Example Application

<zip>12345</zip>
<country>USA</country>
</address>
<email>duke@example.com</email>
<phone>123-456-7890</phone>
</customer>

You can find the code in the file customer/sample-input.xml.

Click Test.
The following message appears in the window below:
Status: 201 (Created)

Expand the Customer node and click {id}.

Type 1intheid field and click Test to test the GET method.
The following status message appears:
Status: 200 (OK)

The XML output for the resource appears in the Response window:

<?xml version="1.0" encoding="UTF-8"?>
<customer xmlns="http://xml.customer" id="1">
<firstname>Duke</firstname>
<lastname>0fJava</lastname>
<address>
<number>1</number>
<street>Duke’'s Way</street>
<city>JavaTown</city>
<state>JA</state>
<zip>12345</zip>
<country>USA</country>
</address>
<email>duke@example.com</email>
<phone>123-456-7890</phone>
</customer>

A GET for a nonexistent ID also returns a 200 (0K) status, but the output in the Response
window shows no content:

<?xml version="1.0" encoding="UTF-8"?>
<customer xmlns="http://xml.customer"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:nil="true"/>

You can test other methods as follows:

= Select PUT, type the input for an existing customer, modify any content except the id value,
and click Test to update the customer fields. A successful update returns the following status
message:
Status: 303 (See Other)

= Select DELETE, type the ID for an existing customer, and click Test to remove the customer.
A successful delete returns the following status message:

Chapter21 - JAX-RS: Advanced Topics and Example 431

The customer Example Application

Status: 204 (See Other)

Using Curl to Run the customer Example Application

Curlis a command-line tool you can use to run the customer application on UNIX platforms.
You can download Curl from http://curl.haxx.se oradd it to a Cygwin installation.

Run the following commands in the directory tut-install/examples/jaxrs/customer/ after
deploying the application.

To add a new customer and test the POST method using XML data, use the following
command:

curl -i --data @sample-input.xml \
--header Content-type:application/xml \
http://localhost:8080/customer/rest/Customer

To add a new customer using JSON data instead, use the following command:

curl -i --data @sample-input.json \
--header Content-type:application/json \
http://localhost:8080/customer/rest/Customer

A successful POST returns HTTP Status: 201 (Created).
To retrieve the details of the customer whose ID is 1, use the following command:

curl -i -X GET http://localhost:8080/customer/rest/Customer/1

To retrieve the details of the same customer represented as JSON data, use the following
command:

curl -i --header Accept:application/json
-X GET http://localhost:8080/customer/rest/Customer/1l

A successful GET returns HTTP Status: 200 (OK).

To delete a customer record, use the following command:

curl -i -X DELETE http://localhost:8080/customer/rest/Customer/1
A successful DELETE returns HTTP Status: 204.

The customer example and the modified version respond differently to a GET request for a
customer ID that does not exist. The original customer example returns HTTP Status: 204
(No content), whereas the modified version returns HTTP Status: 200 (0K) with a response
that contains the XML header but no customer data.

432 The Java EE 6 Tutorial « January 2013

http://curl.haxx.se

PART IV

Enterprise Beans

Part IV explores Enterprise JavaBeans components. This part contains the following
chapters:

Chapter 22, “Enterprise Beans”

Chapter 23, “Getting Started with Enterprise Beans”

Chapter 24, “Running the Enterprise Bean Examples”

Chapter 25, “A Message-Driven Bean Example”

Chapter 26, “Using the Embedded Enterprise Bean Container”

Chapter 27, “Using Asynchronous Method Invocation in Session Beans”

433

434

L R 2 4 CHAPTER 22

Enterprise Beans

Enterprise beans are Java EE components that implement Enterprise JavaBeans (EJB)
technology. Enterprise beans run in the EJB container, a runtime environment within the
GlassFish Server (see “Container Types” on page 48). Although transparent to the application
developer, the EJB container provides system-level services, such as transactions and security,
to its enterprise beans. These services enable you to quickly build and deploy enterprise beans,
which form the core of transactional Java EE applications.

The following topics are addressed here:

= “WhatIs an Enterprise Bean?” on page 435

= “What Is a Session Bean?” on page 437

= “What Is a Message-Driven Bean?” on page 439

= “Accessing Enterprise Beans” on page 441

“The Contents of an Enterprise Bean” on page 447
“Naming Conventions for Enterprise Beans” on page 449
“The Lifecycles of Enterprise Beans” on page 450

“Further Information about Enterprise Beans” on page 453

What s an Enterprise Bean?

Written in the Java programming language, an enterprise bean is a server-side component that
encapsulates the business logic of an application. The business logic is the code that fulfills the
purpose of the application. In an inventory control application, for example, the enterprise
beans might implement the business logic in methods called checkInventoryLevel and
orderProduct. By invoking these methods, clients can access the inventory services provided
by the application.

435

What Is an Enterprise Bean?

436

Benefits of Enterprise Beans

For several reasons, enterprise beans simplify the development of large, distributed
applications. First, because the EJB container provides system-level services to enterprise beans,
the bean developer can concentrate on solving business problems. The EJB container, rather
than the bean developer, is responsible for system-level services, such as transaction
management and security authorization.

Second, because the beans rather than the clients contain the application’s business logic, the
client developer can focus on the presentation of the client. The client developer does not have
to code the routines that implement business rules or access databases. As a result, the clients
are thinner, a benefit that is particularly important for clients that run on small devices.

Third, because enterprise beans are portable components, the application assembler can build
new applications from existing beans. Provided that they use the standard APIs, these
applications can run on any compliant Java EE server.

When to Use Enterprise Beans

You should consider using enterprise beans if your application has any of the following
requirements.

= Theapplication must be scalable. To accommodate a growing number of users, you may
need to distribute an application’s components across multiple machines. Not only can the
enterprise beans of an application run on different machines, but also their location will
remain transparent to the clients.

= Transactions must ensure data integrity. Enterprise beans support transactions, the
mechanisms that manage the concurrent access of shared objects.

= The application will have a variety of clients. With only a few lines of code, remote clients
can easily locate enterprise beans. These clients can be thin, various, and numerous.

Types of Enterprise Beans

Table 22-1 summarizes the two types of enterprise beans. The following sections discuss each
type in more detail.

The Java EE 6 Tutorial « January 2013

What Is a Session Bean?

TABLE22-1 Enterprise Bean Types

Enterprise Bean Type Purpose

Session Performs a task for a client; optionally, may implement a web service

Message-driven Acts as a listener for a particular messaging type, such as the Java Message
Service API

What s a Session Bean?

A session bean encapsulates business logic that can be invoked programmatically by a client
over local, remote, or web service client views. To access an application that is deployed on the
server, the client invokes the session bean’s methods. The session bean performs work for its
client, shielding it from complexity by executing business tasks inside the server.

A session bean is not persistent. (That is, its data is not saved to a database.)

For code samples, see Chapter 24, “Running the Enterprise Bean Examples”

Types of Session Beans

Session beans are of three types: stateful, stateless, and singleton.

Stateful Session Beans

The state of an object consists of the values of its instance variables. In a stateful session bean, the
instance variables represent the state of a unique client/bean session. Because the client
interacts (“talks”) with its bean, this state is often called the conversational state.

As its name suggests, a session bean is similar to an interactive session. A session bean is not
shared; it can have only one client, in the same way that an interactive session can have only one
user. When the client terminates, its session bean appears to terminate and is no longer
associated with the client.

The state is retained for the duration of the client/bean session. If the client removes the bean,
the session ends and the state disappears. This transient nature of the state is not a problem,
however, because when the conversation between the client and the bean ends, there is no need
to retain the state.

Stateless Session Beans

A stateless session bean does not maintain a conversational state with the client. When a client
invokes the methods of a stateless bean, the bean’s instance variables may contain a state specific
to that client but only for the duration of the invocation. When the method is finished, the

Chapter22 - Enterprise Beans 437

What s a Session Bean?

438

client-specific state should not be retained. Clients may, however, change the state of instance
variables in pooled stateless beans, and this state is held over to the next invocation of the
pooled stateless bean. Except during method invocation, all instances of a stateless bean are
equivalent, allowing the EJB container to assign an instance to any client. That is, the state of a
stateless session bean should apply across all clients.

Because they can support multiple clients, stateless session beans can offer better scalability for
applications that require large numbers of clients. Typically, an application requires fewer
stateless session beans than stateful session beans to support the same number of clients.

A stateless session bean can implement a web service, but a stateful session bean cannot.

Singleton Session Beans

A singleton session bean is instantiated once per application and exists for the lifecycle of the
application. Singleton session beans are designed for circumstances in which a single enterprise
bean instance is shared across and concurrently accessed by clients.

Singleton session beans offer similar functionality to stateless session beans but differ from
them in that there is only one singleton session bean per application, as opposed to a pool of
stateless session beans, any of which may respond to a client request. Like stateless session
beans, singleton session beans can implement web service endpoints.

Singleton session beans maintain their state between client invocations but are not required to
maintain their state across server crashes or shutdowns.

Applications that use a singleton session bean may specify that the singleton should be
instantiated upon application startup, which allows the singleton to perform initialization tasks
for the application. The singleton may perform cleanup tasks on application shutdown as well,
because the singleton will operate throughout the lifecycle of the application.

When to Use Session Beans

Stateful session beans are appropriate if any of the following conditions are true.
= The bean’s state represents the interaction between the bean and a specific client.
= The bean needs to hold information about the client across method invocations.

= The bean mediates between the client and the other components of the application,
presenting a simplified view to the client.

= Behind the scenes, the bean manages the work flow of several enterprise beans.

The Java EE 6 Tutorial « January 2013

What Is a Message-Driven Bean?

To improve performance, you might choose a stateless session bean if it has any of these traits.

= Thebean’s state has no data for a specific client.

= Inasingle method invocation, the bean performs a generic task for all clients. For example,
you might use a stateless session bean to send an email that confirms an online order.

= Thebean implements a web service.

Singleton session beans are appropriate in the following circumstances.

= State needs to be shared across the application.
= Asingle enterprise bean needs to be accessed by multiple threads concurrently.

= Theapplication needs an enterprise bean to perform tasks upon application startup and
shutdown.

= Thebean implements a web service.

What Is a Message-Driven Bean?

A message-driven bean is an enterprise bean that allows Java EE applications to process
messages asynchronously. This type of bean normally acts as a JMS message listener, which is
similar to an event listener but receives JMS messages instead of events. The messages can be
sent by any Java EE component (an application client, another enterprise bean, or a web
component) or by a JMS application or system that does not use Java EE technology.
Message-driven beans can process JMS messages or other kinds of messages.

What Makes Message-Driven Beans Different from
Session Beans?

The most visible difference between message-driven beans and session beans is that clients do
not access message-driven beans through interfaces. Interfaces are described in the section
“Accessing Enterprise Beans” on page 441. Unlike a session bean, a message-driven bean has
only a bean class.

Chapter 22 - Enterprise Beans 439

What Is a Message-Driven Bean?

440

In several respects, a message-driven bean resembles a stateless session bean.

= A message-driven bean’s instances retain no data or conversational state for a specific client.

= Allinstances of a message-driven bean are equivalent, allowing the EJB container to assign a
message to any message-driven bean instance. The container can pool these instances to
allow streams of messages to be processed concurrently.

= A single message-driven bean can process messages from multiple clients.
The instance variables of the message-driven bean instance can contain some state across the

handling of client messages, such as a JMS API connection, an open database connection, or an
object reference to an enterprise bean object.

Client components do not locate message-driven beans and invoke methods directly on them.
Instead, a client accesses a message-driven bean through, for example, JMS by sending messages
to the message destination for which the message-driven bean class is the MessageListener.
You assign a message-driven bean’s destination during deployment by using GlassFish Server
resources.

Message-driven beans have the following characteristics.

= They execute upon receipt of a single client message.
= Theyare invoked asynchronously.
= They are relatively short-lived.

= They do not represent directly shared data in the database, but they can access and update
this data.

= They can be transaction-aware.

= They are stateless.

When a message arrives, the container calls the message-driven bean’s onMessage method to
process the message. The onMessage method normally casts the message to one of the five JMS
message types and handles it in accordance with the application’s business logic. The onMessage
method can call helper methods or can invoke a session bean to process the information in the
message or to store it in a database.

A message can be delivered to a message-driven bean within a transaction context, so all
operations within the onMessage method are part of a single transaction. If message processing
is rolled back, the message will be redelivered. For more information, see Chapter 25, “A
Message-Driven Bean Example,” and Chapter 44, “Transactions”

When to Use Message-Driven Beans

Session beans allow you to send JMS messages and to receive them synchronously but not
asynchronously. To avoid tying up server resources, do not to use blocking synchronous

The Java EE 6 Tutorial « January 2013

Accessing Enterprise Beans

receives in a server-side component; in general, JMS messages should not be sent or received
synchronously. To receive messages asynchronously, use a message-driven bean.

Accessing Enterprise Beans

Note — The material in this section applies only to session beans and not to message-driven
beans. Because they have a different programming model, message-driven beans do not have
interfaces or no-interface views that define client access.

Clients access enterprise beans either through a no-interface view or through a business
interface. A no-interface view of an enterprise bean exposes the public methods of the enterprise
bean implementation class to clients. Clients using the no-interface view of an enterprise bean
may invoke any public methods in the enterprise bean implementation class or any superclasses
of the implementation class. A business interface is a standard Java programming language
interface that contains the business methods of the enterprise bean.

A client can access a session bean only through the methods defined in the bean’s business
interface or through the public methods of an enterprise bean that has a no-interface view. The
business interface or no-interface view defines the client’s view of an enterprise bean. All other
aspects of the enterprise bean (method implementations and deployment settings) are hidden
from the client.

Well-designed interfaces and no-interface views simplify the development and maintenance of
Java EE applications. Not only do clean interfaces and no-interface views shield the clients from
any complexities in the EJB tier, but they also allow the enterprise beans to change internally
without affecting the clients. For example, if you change the implementation of a session bean
business method, you won’t have to alter the client code. But if you were to change the method
definitions in the interfaces, you might have to modify the client code as well. Therefore, it is
important that you design the interfaces and no-interface views carefully to isolate your clients
from possible changes in the enterprise beans.

Session beans can have more than one business interface. Session beans should, but are not
required to, implement their business interface or interfaces.

Using Enterprise Beans in Clients

The client of an enterprise bean obtains a reference to an instance of an enterprise bean through
either dependency injection, using Java programming language annotations, or JNDI lookup,
using the Java Naming and Directory Interface syntax to find the enterprise bean instance.

Chapter22 - Enterprise Beans 441

Accessing Enterprise Beans

442

Dependency injection is the simplest way of obtaining an enterprise bean reference. Clients that
run within a Java EE server-managed environment, JavaServer Faces web applications, JAX-RS
web services, other enterprise beans, or Java EE application clients, support dependency
injection using the javax.ejb.EJB annotation.

Applications that run outside a Java EE server-managed environment, such as Java SE
applications, must perform an explicit lookup. JNDI supports a global syntax for identifying
Java EE components to simplify this explicit lookup.

Portable JNDI Syntax
Three JNDI namespaces are used for portable JNDI lookups: java:global, java:module, and
java:app.

= The java:global JNDI namespace is the portable way of finding remote enterprise beans
using JNDI lookups. JNDI addresses are of the following form:

java:globall[/application namel/module name/enterprise bean name[/interface namel

Application name and module name default to the name of the application and module
minus the file extension. Application names are required only if the application is packaged
within an EAR. The interface name is required only if the enterprise bean implements more
than one business interface.

= The java:module namespace is used to look up local enterprise beans within the same
module. JNDI addresses using the java:module namespace are of the following form:

java:module/enterprise bean name/ [interface name]

The interface name is required only if the enterprise bean implements more than one
business interface.

= The java:app namespace is used to look up local enterprise beans packaged within the same
application. That is, the enterprise bean is packaged within an EAR file containing multiple
Java EE modules. JNDI addresses using the java:app namespace are of the following form:

java:app[/module name/enterprise bean name[/interface namel]

The module name is optional. The interface name is required only if the enterprise bean
implements more than one business interface.

For example, if an enterprise bean, MyBean, is packaged within the web application archive
myApp .war, the module name is myApp. The portable JNDI name is java:module/MyBean An
equivalent JNDI name using the java:global namespace is java:global/myApp/MyBean.

Deciding on Remote or Local Access

When you design a Java EE application, one of the first decisions you make is the type of client
access allowed by the enterprise beans: remote, local, or web service.

The Java EE 6 Tutorial « January 2013

Accessing Enterprise Beans

Whether to allow local or remote access depends on the following factors.

= Tight orloose coupling of related beans: Tightly coupled beans depend on one another.
For example, if a session bean that processes sales orders calls a session bean that emails a
confirmation message to the customer, these beans are tightly coupled. Tightly coupled
beans are good candidates for local access. Because they fit together as a logical unit, they
typically call each other often and would benefit from the increased performance that is
possible with local access.

= Type of client: If an enterprise bean is accessed by application clients, it should allow remote
access. In a production environment, these clients almost always run on machines other
than those on which the GlassFish Server is running. If an enterprise bean’s clients are web
components or other enterprise beans, the type of access depends on how you want to
distribute your components.

= Component distribution: Java EE applications are scalable because their server-side
components can be distributed across multiple machines. In a distributed application, for
example, the server that the web components run on may not be the one on which the
enterprise beans they access are deployed. In this distributed scenario, the enterprise beans
should allow remote access.

= Performance: Owing to such factors as network latency, remote calls may be slower than
local calls. On the other hand, if you distribute components among different servers, you
may improve the application’s overall performance. Both of these statements are
generalizations; performance can vary in different operational environments. Nevertheless,
you should keep in mind how your application design might affect performance.

If you aren’t sure which type of access an enterprise bean should have, choose remote access.
This decision gives you more flexibility. In the future, you can distribute your components to
accommodate the growing demands on your application.

Although it is uncommon, it is possible for an enterprise bean to allow both remote and local
access. If this is the case, either the business interface of the bean must be explicitly designated as
a business interface by being decorated with the @Remote or @Local annotations, or the bean
class must explicitly designate the business interfaces by using the @emote and @Local
annotations. The same business interface cannot be both a local and a remote business
interface.

Local Clients

A local client has these characteristics.

= It must run in the same application as the enterprise bean it accesses.
= [tcanbe aweb component or another enterprise bean.

= Tothelocal client, the location of the enterprise bean it accesses is not transparent.

Chapter 22 - Enterprise Beans 443

Accessing Enterprise Beans

The no-interface view of an enterprise bean is a local view. The public methods of the enterprise
bean implementation class are exposed to local clients that access the no-interface view of the
enterprise bean. Enterprise beans that use the no-interface view do not implement a business
interface.

The local business interface defines the bean’s business and lifecycle methods. If the bean’s
business interface is not decorated with @Local or @Remote, and if the bean class does not
specify the interface using @Local or @Remote, the business interface is by default a local
interface.

To build an enterprise bean that allows only local access, you may, but are not required to, do
one of the following:

= Create an enterprise bean implementation class that does not implement a business
interface, indicating that the bean exposes a no-interface view to clients. For example:
@Session
public class MyBean { ... }

= Annotate the business interface of the enterprise bean as a @Local interface. For example:
@Local
public interface InterfaceName { ... }

= Specify the interface by decorating the bean class with @Local and specify the interface
name. For example:

@Local (InterfaceName.class)
public class BeanName implements InterfaceName { ... }

Accessing Local Enterprise Beans Using the No-Interface View

Client access to an enterprise bean that exposes a local, no-interface view is accomplished
through either dependency injection or JNDI lookup.

= To obtain a reference to the no-interface view of an enterprise bean through dependency
injection, use the javax.ejb.EJB annotation and specify the enterprise bean’s
implementation class:
@EJB
ExampleBean exampleBean;

= To obtain a reference to the no-interface view of an enterprise bean through JNDI lookup,
use the javax.naming.InitialContext interface’s lookup method:

ExampleBean exampleBean = (ExampleBean)
InitialContext.lookup("java:module/ExampleBean")

Clients do not use the new operator to obtain a new instance of an enterprise bean that uses a
no-interface view.

444 The Java EE 6 Tutorial « January 2013

Accessing Enterprise Beans

Accessing Local Enterprise Beans That Implement Business Interfaces

Client access to enterprise beans that implement local business interfaces is accomplished
through either dependency injection or JNDIlookup.

= To obtain a reference to the local business interface of an enterprise bean through
dependency injection, use the javax.ejb.EJB annotation and specify the enterprise bean’s
local business interface name:

@QEJB
Example example;

= To obtain areference to alocal business interface of an enterprise bean through JNDI
lookup, use the javax.naming.InitialContext interface’s Llookup method:

ExampleLocal example = (ExamplelLocal)
InitialContext.lookup("java:module/ExampleLocal")

Remote Clients

A remote client of an enterprise bean has the following traits.

= [tcanrun on adifferent machine and a different JVM from the enterprise bean it accesses.
(Itis not required to run on a different JVM.)

It can be a web component, an application client, or another enterprise bean.
= Toaremote client, the location of the enterprise bean is transparent.

= The enterprise bean must implement a business interface. That is, remote clients may not
access an enterprise bean through a no-interface view.

To create an enterprise bean that allows remote access, you must either

= Decorate the business interface of the enterprise bean with the @emote annotation:

@Remote
public interface InterfaceName { ... }
= Decorate the bean class with @Remote, specifying the business interface or interfaces:

@Remote(InterfaceName.class)
public class BeanName implements InterfaceName { ... }

The remote interface defines the business and lifecycle methods that are specific to the bean. For
example, the remote interface of a bean named BankAccountBean might have business methods
named deposit and credit. Figure 22-1 shows how the interface controls the client’s view of
an enterprise bean.

Chapter22 - Enterprise Beans 445

Accessing Enterprise Beans

446

FIGURE 22-1 Interfaces for an Enterprise Bean with Remote Access

Remote Client Remote Interface BankAccountBean
q deposit () |,
credit () .
e
e

Client access to an enterprise bean that implements a remote business interface is accomplished
through either dependency injection or JNDI lookup.

= To obtain a reference to the remote business interface of an enterprise bean through
dependency injection, use the javax.ejb.EJB annotation and specify the enterprise bean’s
remote business interface name:

@EJB
Example example;

= To obtain a reference to a remote business interface of an enterprise bean through JNDI
lookup, use the javax.naming.InitialContext interface’s lookup method:

ExampleRemote example = (ExampleRemote)
InitialContext.lookup("java:global/myApp/ExampleRemote");

Web Service Clients

A web service client can access a Java EE application in two ways. First, the client can access a
web service created with JAX-WS. (For more information on JAX-WS, see Chapter 19,

“Building Web Services with JAX-WS.”) Second, a web service client can invoke the business
methods of a stateless session bean. Message beans cannot be accessed by web service clients.

Provided that it uses the correct protocols (SOAP, HT'TP, WSDL), any web service client can
access a stateless session bean, whether or not the client is written in the Java programming
language. The client doesn’t even “know” what technology implements the service: stateless
session bean, JAX-WS, or some other technology. In addition, enterprise beans and web
components can be clients of web services. This flexibility enables you to integrate Java EE
applications with web services.

A web service client accesses a stateless session bean through the bean’s web service endpoint
implementation class. By default, all public methods in the bean class are accessible to web
service clients. The @WebMethod annotation may be used to customize the behavior of web
service methods. If the @WebMethod annotation is used to decorate the bean class’s methods,
only those methods decorated with @WebMethod are exposed to web service clients.

For a code sample, see “A Web Service Example: helloservice” on page 476.

The Java EE 6 Tutorial « January 2013

The Contents of an Enterprise Bean

Method Parameters and Access

The type of access affects the parameters of the bean methods that are called by clients. The
following sections apply not only to method parameters but also to method return values.

Isolation

The parameters of remote calls are more isolated than those of local calls. With remote calls, the
client and the bean operate on different copies of a parameter object. If the client changes the
value of the object, the value of the copy in the bean does not change. This layer of isolation can
help protect the bean if the client accidentally modifies the data.

In alocal call, both the client and the bean can modify the same parameter object. In general,
you should not rely on this side effect of local calls. Perhaps someday you will want to distribute
your components, replacing the local calls with remote ones.

As with remote clients, web service clients operate on different copies of parameters than does
the bean that implements the web service.

Granularity of Accessed Data

Because remote calls are likely to be slower than local calls, the parameters in remote methods
should be relatively coarse-grained. A coarse-grained object contains more data than a
fine-grained one, so fewer access calls are required. For the same reason, the parameters of the
methods called by web service clients should also be coarse-grained.

The Contents of an Enterprise Bean

To develop an enterprise bean, you must provide the following files:

= Enterprise bean class: Implements the business methods of the enterprise bean and any
lifecycle callback methods.

= Business interfaces: Define the business methods implemented by the enterprise bean class.
A business interface is not required if the enterprise bean exposes a local, no-interface view.

= Helper classes: Other classes needed by the enterprise bean class, such as exception and
utility classes.

Package the programming artifacts in the preceding list either into an EJB JAR file (a
stand-alone module that stores the enterprise bean) or within a web application archive (WAR)
module.

Packaging Enterprise Beans in EJB JAR Modules

An EJB JAR file is portable and can be used for various applications.

Chapter22 - Enterprise Beans 447

The Contents of an Enterprise Bean

448

To assemble a Java EE application, package one or more modules, such as EJB JAR files, into an
EAR file, the archive file that holds the application. When deploying the EAR file that contains
the enterprise bean’s EJB JAR file, you also deploy the enterprise bean to the GlassFish Server.
You can also deploy an EJB JAR that is not contained in an EAR file. Figure 22-2 shows the
contents of an EJB JAR file.

FIGURE22-2 Structure of an Enterprise Bean JAR

Assembly Root
|

|
META-INF

All .class files
for this module

—

ejb-jar.xml MANIFEST.MF
glassfish-ejb-jar.xml
(optional)

Packaging Enterprise Beans in WAR Modules

Enterprise beans often provide the business logic of a web application. In these cases, packaging
the enterprise bean within the web application’s WAR module simplifies deployment and
application organization. Enterprise beans may be packaged within a WAR module as Java
programming language class files or within a JAR file that is bundled within the WAR module.

To include enterprise bean class files in a WAR module, the class files should be in the
WEB-INF/classes directory.

To include a JAR file that contains enterprise beans in a WAR module, add the JAR to the
WEB-INF/1ib directory of the WAR module.

WAR modules that contain enterprise beans do not require an ejb-jar.xml deployment
descriptor. If the application uses ejb- jar.xml, it must be located in the WAR module’s
WEB- INF directory.

JAR files that contain enterprise bean classes packaged within a WAR module are not
considered EJB JAR files, even if the bundled JAR file conforms to the format of an EJB JAR file.

The Java EE 6 Tutorial « January 2013

Naming Conventions for Enterprise Beans

The enterprise beans contained within the JAR file are semantically equivalent to enterprise
beans located in the WAR module’s WEB- INF/classes directory, and the environment
namespace of all the enterprise beans are scoped to the WAR module.

For example, suppose that a web application consists of a shopping cart enterprise bean, a credit
card processing enterprise bean, and a Java servlet front end. The shopping cart bean exposes a
local, no-interface view and is defined as follows:

package com.example.cart;

@Stateless
public class CartBean { ... }

The credit card processing bean is packaged within its own JAR file, cc. jar, exposes alocal,
no-interface view, and is defined as follows:

package com.example.cc;

@Stateless
public class CreditCardBean { ... }

The servlet, com.example.web.StoreServlet, handles the web front end and uses both
CartBean and CreditCardBean. The WAR module layout for this application looks as follows:

WEB-INF/classes/com/example/cart/CartBean.class
WEB-INF/classes/com/example/web/StoreServlet
WEB-INF/1lib/cc.jar

WEB-INF/ejb-jar.xml

WEB-INF/web.xml

Naming Conventions for Enterprise Beans

Because enterprise beans are composed of multiple parts, it’s useful to follow a naming
convention for your applications. Table 22-2 summarizes the conventions for the example
beans in this tutorial.

TABLE 22-2 Naming Conventions for Enterprise Beans

Item Syntax Example
Enterprise bean name nameBean AccountBean
Enterprise bean class nameBean AccountBean
Business interface name Account

Chapter 22 - Enterprise Beans 449

The Lifecycles of Enterprise Beans

The Lifecycles of Enterprise Beans

450

An enterprise bean goes through various stages during its lifetime, or lifecycle. Each type of
enterprise bean (stateful session, stateless session, singleton session, or message-driven) has a
different lifecycle.

The descriptions that follow refer to methods that are explained along with the code examples
in the next two chapters. If you are new to enterprise beans, you should skip this section and run
the code examples first.

The Lifecycle of a Stateful Session Bean

Figure 22-3 illustrates the stages that a session bean passes through during its lifetime. The
client initiates the lifecycle by obtaining a reference to a stateful session bean. The container
performs any dependency injection and then invokes the method annotated with
@PostConstruct, if any. The bean is now ready to have its business methods invoked by the
client.

FIGURE 22-3 Lifecycle of a Stateful Session Bean

(@ Create

(2) Dependency injection, if any

(3 PostConstruct callback, if any

@) Init method, or ejbCreate<METHOD>, if any

PrePassivate
callback, if any
Does Not Exist — | Ready Passive

<

PostActivate
callback, if any
@ Remove

(@ PreDestroy callback, if any

While in the ready stage, the EJB container may decide to deactivate, or passivate, the bean by
moving it from memory to secondary storage. (Typically, the EJB container uses a
least-recently-used algorithm to select a bean for passivation.) The EJB container invokes the
method annotated @PrePassivate, if any, immediately before passivating it. If a client invokes
a business method on the bean while it is in the passive stage, the EJB container activates the
bean, calls the method annotated @PostActivate, if any, and then moves it to the ready stage.

The Java EE 6 Tutorial « January 2013

The Lifecycles of Enterprise Beans

At the end of the lifecycle, the client invokes a method annotated @Remove, and the EJB
container calls the method annotated @PreDestroy, if any. The bean’s instance is then ready for
garbage collection.

Your code controls the invocation of only one lifecycle method: the method annotated @Remove.
All other methods in Figure 22-3 are invoked by the EJB container. See Chapter 45, “Resources
and Resource Adapters,” for more information.

The Lifecycle of a Stateless Session Bean

Because a stateless session bean is never passivated, its lifecycle has only two stages: nonexistent
and ready for the invocation of business methods. Figure 22-4 illustrates the stages of a stateless
session bean.

FIGURE 22-4 Lifecycle of a Stateless Session Bean

(1 Dependency injection, if any
(2) PostConstruct callback, if any

Does Not Exist — > | Ready

PreDestroy callback, if any

The EJB container typically creates and maintains a pool of stateless session beans, beginning
the stateless session bean’s lifecycle. The container performs any dependency injection and then
invokes the method annotated @PostConstruct, if it exists. The bean is now ready to have its
business methods invoked by a client.

At the end of the lifecycle, the EJB container calls the method annotated @PreDestroy, if it
exists. The bean’s instance is then ready for garbage collection.

The Lifecycle of a Singleton Session Bean

Like a stateless session bean, a singleton session bean is never passivated and has only two
stages, nonexistent and ready for the invocation of business methods, as shown in Figure 22-5.

Chapter22 - Enterprise Beans 451

The Lifecycles of Enterprise Beans

452

FIGURE 22-5 Lifecycle of a Singleton Session Bean

(U Dependency injection, if any
(2) PostConstruct callback, if any

Does Not Exist — > | Ready

PreDestroy callback, if any

The EJB container initiates the singleton session bean lifecycle by creating the singleton
instance. This occurs upon application deployment if the singleton is annotated with the
@Startup annotation The container performs any dependency injection and then invokes the
method annotated @PostConstruct, if it exists. The singleton session bean is now ready to have
its business methods invoked by the client.

At the end of the lifecycle, the EJB container calls the method annotated @PreDestroy, if it
exists. The singleton session bean is now ready for garbage collection.

The Lifecycle of a Message-Driven Bean

Figure 22-6 illustrates the stages in the lifecycle of a message-driven bean.

FIGURE22-6 Lifecycle of a Message-Driven Bean

(1) Dependency injection, if any
(2) PostConstruct callback, if any

Does Not Exist onMessage Ready

PreDestroy callback, if any
The EJB container usually creates a pool of message-driven bean instances. For each instance,
the EJB container performs these tasks.

1. If the message-driven bean uses dependency injection, the container injects these references
before instantiating the instance.

2. The container calls the method annotated @PostConstruct, if any.

The Java EE 6 Tutorial « January 2013

Further Information about Enterprise Beans

Like a stateless session bean, a message-driven bean is never passivated and has only two states:
nonexistent and ready to receive messages.

At the end of the lifecycle, the container calls the method annotated @PreDestroy, if any. The
bean’s instance is then ready for garbage collection.

Further Information about Enterprise Beans

For more information on Enterprise JavaBeans technology, see

= Enterprise JavaBeans 3.1 specification:
http://jcp.org/en/jsr/summary?id=318

= Enterprise JavaBeans web site:

http://www.oracle.com/technetwork/java/ejb-141389.html

Chapter 22 - Enterprise Beans 453

http://jcp.org/en/jsr/summary?id=318
http://www.oracle.com/technetwork/java/ejb-141389.html

454

L K R 4 CHAPTER 23

Getting Started with Enterprise Beans

This chapter shows how to develop, deploy, and run a simple Java EE application named
converter. The purpose of converter is to calculate currency conversions between Japanese
yen and Eurodollars. The converter application consists of an enterprise bean, which performs
the calculations, and a web client.

Here’s an overview of the steps you’ll follow in this chapter:

Create the enterprise bean: ConverterBean.
Create the web client.

Deploy converter onto the server.

Using a browser, run the web client.

Ll .

Before proceeding, make sure that you've done the following:

= Read Chapter 1, “Overview”
= Become familiar with enterprise beans (see Chapter 22, “Enterprise Beans”)
= Started the server (see “Starting and Stopping the GlassFish Server” on page 73)

The following topics are addressed here:

= “Creating the Enterprise Bean” on page 455
= “Modifying the Java EE Application” on page 458

Creating the Enterprise Bean

The enterprise bean in our example is a stateless session bean called ConverterBean. The source
code for ConverterBean is in the tut-install/examples/ejb/converter/src/java/ directory.

Creating ConverterBean requires these steps:

1. Coding the bean’s implementation class (the source code is provided)
2. Compiling the source code

455

Creating the Enterprise Bean

Coding the Enterprise Bean Class

The enterprise bean class for this example is called ConverterBean. This class implements two
business methods: dollarToYen and yenToEuro. Because the enterprise bean class doesn’t
implement a business interface, the enterprise bean exposes a local, no-interface view. The
public methods in the enterprise bean class are available to clients that obtain a reference to
ConverterBean. The source code for the ConverterBean class is as follows:

package converter.ejb;

import java.math.BigDecimal;
import javax.ejb.*;

@Stateless

public class ConverterBean {
private BigDecimal yenRate = new BigDecimal("83.0602")
private BigDecimal euroRate = new BigDecimal("0.0093016")

public BigDecimal dollarToYen(BigDecimal dollars) {
BigDecimal result = dollars.multiply(yenRate);
return result.setScale(2, BigDecimal.ROUND UP);
}

public BigDecimal yenToEuro(BigDecimal yen) {

BigDecimal result = yen.multiply(euroRate);
return result.setScale(2, BigDecimal.ROUND UP);

}

Note the @Stateless annotation decorating the enterprise bean class. This annotation lets the
container know that ConverterBean is a stateless session bean.

Creating the converter Web Client

The web client is contained in the following servlet class:

tut-install/examples/ejb/converter/src/java/converter/web/ConverterServlet.java

A Java servlet is a web component that responds to HTTP requests.

The ConverterServlet class uses dependency injection to obtain a reference to
ConverterBean. The javax.ejb.EJB annotation is added to the declaration of the private
member variable converterBean, which is of type ConverterBean. ConverterBean exposes a
local, no-interface view, so the enterprise bean implementation class is the variable type:

@WebServlet

public class ConverterServlet extends HttpServlet {
@EJB
ConverterBean converterBean;

456 The Java EE 6 Tutorial « January 2013

Creating the Enterprise Bean

When the user enters an amount to be converted to yen and euro, the amount is retrieved from
the request parameters; then the ConverterBean.dollarToYen and the
ConverterBean.yenToEuro methods are called:

try {

String amount = request.getParameter("“amount");

if (amount !'= null && amount.length() > 0) {
// convert the amount to a BigDecimal from the request parameter
BigDecimal d = new BigDecimal(amount);
// call the ConverterBean.dollarToYen() method to get the amount
// in Yen
BigDecimal yenAmount = converter.dollarToYen(d);
// call the ConverterBean.yenToEuro() method to get the amount
// in Euros
BigDecimal euroAmount = converter.yenToEuro(yenAmount);

}

The results are displayed to the user.

Running the converter Example

Now you are ready to compile the enterprise bean class (ConverterBean. java) and the servlet
class (ConverterServlet. java) and to package the compiled classes into a WAR file. You can
use either NetBeans IDE or Ant to build, package, deploy, and run the converter example.
To Build, Package, and Deploy the converter Example in NetBeans IDE

From the File menu, choose Open Project.

In the Open Project dialog, navigate to:
tut-install/examples/ejb/

Select the converter folder.
Select the Open as Main Project check box.
Click Open Project.

In the Projects tab, right-click the converter project and select Deploy.

Chapter 23 - Getting Started with Enterprise Beans 457

Modifying the Java EE Application

To Build, Package, and Deploy the converter Example Using Ant

In a terminal window, go to:

tut-install/examples/ejb/converter/

Type the following command:

ant all

This command calls the default task, which compiles the source files for the enterprise bean
and the servlet, placing the class files in the build subdirectory (not the src directory) of the

project. The default task packages the project into a WAR module: converter.war. For more
information about the Ant tool, see “Building the Examples” on page 75.

Note - When compiling the code, the ant task includes the Java EE APIJAR files in the classpath.
These JARs reside in the modules directory of your GlassFish Server installation. If you plan to
use other tools to compile the source code for Java EE components, make sure that the classpath
includes the Java EE API JAR files.

To Run the converter Example

Open aweb browser to the following URL:
http://localhost:8080/converter

The Servlet ConverterServlet page opens.

Type 100 in the input field and click Submit.

A second page opens, showing the converted values.

Modifying the Java EE Application

458

The GlassFish Server supports iterative development. Whenever you make a change to a Java
EE application, you must redeploy the application.

To Modify a Class File

To modify a class file in an enterprise bean, you change the source code, recompile it, and
redeploy the application. For example, to update the exchange rate in the dollarToYen business
method of the ConverterBean class, you would follow these steps.

To modify ConverterServlet, the procedure is the same.

Edit ConverterBean. javaand save thefile.

The Java EE 6 Tutorial « January 2013

Modifying the Java EE Application

2 Recompile the source file.

= Torecompile ConverterBean.javain NetBeans IDE, right-click the converter project and
select Run.

This recompiles the ConverterBean. java file, replaces the old class file in the build
directory, and redeploys the application to GlassFish Server.

= Recompile ConverterBean.java using Ant:
a. Inaterminal window, go to the tut-install/examples/ejb/converter/