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Quality Assessment of Preclassification Maps
Generated From Spaceborne/Airborne Multispectral
Images by the Satellite Image Automatic Mapper and

Atmospheric/Topographic Correction-Spectral
Classification Software Products: Part 1—Theory
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Abstract—In compliance with the Quality Assurance Frame-7
work for Earth Observation (QA4EO) guidelines, the goal of this8
paper is to provide a theoretical comparison and an experimen-9
tal quality assessment of two operational (ready-for-use) expert10
systems (prior knowledge-based nonadaptive decision trees) for11
automatic near real-time preattentional classification and seg-12
mentation of spaceborne/airborne multispectral (MS) images: the13
Satellite Image Automatic MapperTM (SIAMTM) software product14
and the Spectral Classification of surface reflectance signatures15
(SPECL) secondary product of the Atmospheric/Topographic16
CorrectionTM (ATCORTM) commercial software toolbox. For the17
sake of simplicity, this paper is split into two: Part 1—Theory,18
presented herein, and Part 2—Experimental results, already19
published elsewhere. The main theoretical contribution of the20
present Part 1 is threefold. First, it provides the published Part21
2 with an interdisciplinary terminology and a theoretical back-22
ground encompassing multiple disciplines, such as philosophi-23
cal hermeneutics, machine learning, artificial intelligence, com-24
puter vision, human vision, and remote sensing (RS). Second, it25
highlights the several degrees of novelty of the ATCOR-SPECL26
and SIAM deductive preliminary classifiers (preclassifiers) at27
the four levels of abstraction of an information processing sys-28
tem, namely, system design, knowledge/information representa-29
tion, algorithms, and implementation. Third, the present Part 130
requires the experimental Part 2 to collect a minimum set of com-31
plementary statistically independent metrological quality indica-32
tors (QIs) of operativeness (QIOs), in compliance with the QA4EO33
guidelines and the principles of statistics. In particular, sample34
QIs are required to be: 1) statistically significant, i.e., provided35
with a degree of uncertainty in measurement; and 2) statisti-36
cally valid (consistent), i.e., representative of the entire popula-37
tion being sampled, which requires the implementation of a prob-38
ability sampling protocol. Largely overlooked by the RS commu-39
nity, these sample QI requirements are almost never satisfied in40
the RS common practice. As a consequence, to date, QIOs of41
existing RS image understanding systems (RS-IUSs), including42
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thematic map accuracy, remain largely unknown in statistical 43
terms. The conclusion of the present Part 1 is that the pro- 44
posed comparison of the two alternative ATCOR-SPECL and 45
SIAM prior knowledge-based preclassifiers in operating mode, 46
accomplished in the Part 2, can be considered appropriate, well- 47
timed, and of potential interest to a large portion of the RS 48
readership. 49

Index Terms—Attentive vision, degree of uncertainty in mea- 50
surement, land cover classification taxonomy, preattentive vision, 51
preliminary classification, probability sampling, quality indicator 52
(QI), radiometric calibration, spectral category, spectral mixture 53
analysis. 54

I. INTRODUCTION 55

O NE VISIONARY goal of the remote sensing (RS) com- 56

munity is to develop information processing systems 57

capable of automatically transforming, without user interac- 58

tions, large-scale multisource multiresolution Earth observation 59

(EO) image databases into “operational, comprehensive, and 60

timely knowledge/information products” [1]–[3], at spatial 61

extents ranging from local to global [4]. The Quality Assurance 62

Framework for EO (QA4EO) guidelines [2], [3], conceived 63

by the international Group on EOs (GEO)-Committee on EO 64

Satellites (CEOS), comprise an extensive formulation of this 65

ambitious goal. For example, the ongoing GEO Global EO 66

System of Systems (GEOSS) implementation plan for years 67

2005–2015 incorporates the QA4EO guidelines to build a 68

global public infrastructure that allows “the provision of and 69

access to the Right (geospatial) Information, in the Right 70

Format, at the Right Time, to the Right People, to Make the 71

Right Decisions” [1]. 72

To pave the way for the design and implementation of 73

a novel generation of automatic RS image understanding 74

systems (RS-IUSs) in compliance with the QA4EO guide- 75

lines [2], [3], this paper provides a theoretical comparison 76

and an experimental quality assessment of two operational 77

(ready-for-use) expert systems (prior knowledge-based non- 78

adaptive decision trees) for automatic near real-time prelimi- 79

nary classification (preclassification [5]) and segmentation of 80

spaceborne/airborne EO multispectral (MS) images: the spec- 81

tral classification of surface reflectance signatures (SPECL) 82
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software module and the Satellite Image Automatic Map-83

per (SIAM) software product. The former is implemented as84

a nonvalidated secondary product within the popular Atmo-85

spheric/Topographic Correction (ATCOR)-2/3/4 commercial86

software toolbox [6]–[9]. The latter has been presented in recent87

years in the RS literature [10]–[19], where enough informa-88

tion is provided for the SIAM implementation to be reproduced89

[11], [17].90

Rather than being considered as standalone software prod-91

ucts, the two alternative ATCOR-SPECL and SIAM expert92

systems for automatic near real-time preclassification and seg-93

mentation of multisource MS images are eligible for use in the94

preattentive vision first stage of a novel generation of automatic95

hybrid (combined deductive and inductive) RS-IUS implemen-96

tations [10]–[20].97

For the sake of simplicity, this paper is split into two: the98

Part 1—Theory, presented herein, and the Part 2—Experi-99

mental results, already published elsewhere [20]. The main the-100

oretical contribution of the present Part 1 is threefold. First, it101

provides the Part 2 with an interdisciplinary terminology and102

a theoretical background encompassing multiple disciplines,103

such as philosophical hermeneutics, machine learning, artificial104

intelligence, computer vision, human vision, and RS. Hence,105

Part 1 is provided with a relevant survey value. Second, it high-106

lights the relevant degrees of novelty of the ATCOR-SPECL107

and SIAM prior knowledge-based preclassifiers at the four lev-108

els of abstraction of an information processing system, namely,109

system design, knowledge/information representation, algo-110

rithms, and implementation. Third, the present Part 1 requires111

the experimental Part 2 to collect a minimum set of complemen-112

tary independent metrological/statistically-based quality indi-113

cators (QIs) of operativeness (QIOs), in compliance with the114

QA4EO guidelines and the principles of statistics. In particu-115

lar, sample QIs are required to be: 1) statistically significant,116

i.e., provided with a degree of uncertainty in measurement117

and 2) statistically valid (consistent), i.e., representative of the118

entire population being sampled, which requires the imple-119

mentation of a probability sampling protocol. Largely over-120

looked by the RS community, these sample QI requirements121

are almost never satisfied in the RS common practice. As a122

consequence, to date, QIOs of existing RS-IUSs, including123

thematic map accuracy, remain largely unknown in statistical124

terms. The conclusion of the present Part 1 is that the pro-125

posed comparison of the two alternative ATCOR-SPECL and126

SIAM prior knowledge-based preclassifiers in operating mode,127

accomplished in the Part 2, can be considered appropriate, well-128

timed, and of potential interest to a large portion of the RS129

readership.130

The rest of the present Part 1 is organized as follows.131

Section II presents an interdisciplinary terminology and a132

theoretical background useful for the understanding of the133

experimental Part 2. Problem recognition and opportunity iden-134

tification are discussed in Section III. In Section IV, the two135

alternative ATCOR-SPECL and SIAM preclassification expert136

systems are compared at the four levels of abstraction of an137

information processing system. Conclusion of this theoretical138

contribution is reported in Section V.139

II. INTERDISCIPLINARY TERMINOLOGY AND PROBLEM 140

BACKGROUND 141

According to Section I, the goal of the experimental 142

Part 2 of this paper, published elsewhere [20], is to pur- 143

sue a statistically significant and statistically consistent qual- 144

ity assessment of the ATCOR-SPECL and SIAM deductive 145

preclassification software products in operating mode, eligi- 146

ble for use in the preattentive vision first stage of a hybrid 147

RS-IUS architecture [20]. Introduced by Section I, terms 148

such as “statistically significant” QI, “statistically consistent” 149

probability sampling, “QIOs of an information processing 150

system in operating mode,” “quality assessment of a pre- 151

classification map,” “deductive preclassification,” “preatten- 152

tive/attentive vision,” “deductive/inductive/hybrid inference,” 153

and “data/information/knowledge” are defined explicitly and 154

unambiguously in this section, based on a multidisciplinary 155

approach. To be employed in the rest of the present Part 1 and in 156

the Part 2, the proposed interdisciplinary terminology provides 157

this paper with a significant survey value. 158

A. Quantitative and Qualitative Concepts of Information 159

Philosophical hermeneutics refers to the theory of knowledge 160

and the practice, art or science of (text) interpretation and expla- 161

nation. According to philosophical hermeneutics [21], [22], the 162

impact upon computer science, information technology (IT), 163

artificial intelligence and machine learning of existing different 164

quantitative and qualitative concepts of information, embedded 165

in more or less explicit information theories, appears largely 166

underestimated. This means that fundamental questions—like: 167

When do (subsymbolic) data become (symbolic) information 168

[23]? When does vision go symbolic [5]? Should traditional 169

information retrieval be called document retrieval [21], [22]?— 170

appear largely overlooked and, as a consequence, far from being 171

answered. 172

In accordance with philosophical hermeneutics, the funda- 173

mental concepts of numerical data, quantitative information, 174

qualitative information and knowledge are defined hereafter 175

[21], [22]. 176176

1) Numerical data, sensory data, quantitative data, observa- 177

tional data are considered synonyms of “true facts” [24]. 178

Sensory data are provided, per se, with no semantics at 179

all [23], i.e., observational data are always subsymbolic 180

(unlabeled). 181

2) Subsymbolic, quantitative, unequivocal “information-as- 182

thing” is, according to the Shannon theory of commu- 183

nication [25], an object or a thing (e.g., number of bits 184

and number of words in a document) irrespective of its 185

meaning. This makes the information exchange between 186

a sender and a receiver unequivocal (context indepen- 187

dent) and, therefore, easier to deal with than when mean- 188

ing is involved in the communication process [18], [19], 189

[21], [22]. 190

3) Symbolic, qualitative, equivocal “information-as-(an 191

intepretation)process,” i.e., information as interpreted 192

data, is, in the words of philosophical hermeneutics, sym- 193

bolic information always related to “a receiver’s beliefs, 194
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desires and background knowledge” [21], [22]: the mean-195

ing of a message is always context-dependent, depending196

on (changing with) the inquirer (user, knower, receiver,197

cognitive agent) in charge of the message interpretation.198

For example, Adams et al. underline that land cover199

(LC) “class names are selected to have significance to200

an observer in the field and in the context of a given201

study” [26].202

4) “Knowledge” is strictly related to the concept of203

“information-as-(an intepretation)process,” such that204

“there is no knowledge without both an object of205

knowledge and a knowing subject.” [21], [22]. Hence,206

“information-as-(an interpretation)process” and “knowl-207

edge” can be considered as synonyms. A well-known208

example of equivocal (subjective, context-dependent)209

interpretation process is the so-called “fusion of ontolo-210

gies” or “fusion of thematic map legends” [21], [22],211

occurring when two thematic maps of the same geo-212

graphic area, but featuring different map legends, must be213

compared. In other words, it is reasonable to expect that214

two independent domain experts required to harmonize215

(reconcile) two thematic map legends may fulfill their216

(inherently equivocal) interpretation processes with dif-217

ferent inter-vocabulary mapping functions.218

Noteworthy, the complementary concepts of information-as-219

(an interpretation)process and information-as-thing apply one-220

to-one to the dual concepts of (equivocal, qualitative, symbolic)221

categorical (nominal) variables and (unequivocal, quantitative,222

subsymbolic) continuous/discrete scalar/vector variables (e.g.,223

biophysical variables, such as leaf area index and biomass), to224

be estimated from sensory data [18], [19], [47]. To conclude,225

the following terms can be considered as nontrivial synonyms.226226

1) Symbolic, semantic, cognitive, categorical, ordinal, nom-227

inal, qualitative, subjective, equivocal. For example, (dis-228

crete and symbolic) categorical variable.229

2) Subsymbolic, sensory, numerical, nonsemantic, quantita-230

tive, objective, unequivocal. For example, (subsymbolic)231

continuous or discrete sensory variable.232

For example, according to the terminology proposed herein,233

the two ATCOR-SPECL and SIAM prior knowledge-based pre-234

classifiers, to be assessed and compared in the Part 2 [20],235

automatically transform (subsymbolic quantitative) MS images236

(2-D data) into a (symbolic qualitative) categorical variable,237

whose values belong to a discrete and finite legend of (seman-238

tic) concepts.239

B. Inductive, Deductive, and Hybrid Inference Systems, Either240

Subsymbolic or Symbolic, Investigated by the Machine Learn-241

ing, Artificial Intelligence, and RS Disciplines242

This section introduces expressions like inductive, deductive243

and hybrid inference system, either subsymbolic or symbolic244

(refer to Section II-A), depending on whether the inference245

system deals with, respectively, subsymbolic variables, either246

continuous or discrete, or (symbolic and discrete) categorical247

(nominal) variables. The specialization capability of this termi-248

nology is far superior to that of expressions traditionally used or249

misused by the RS community, such as supervised or unsuper- 250

vised data learning. For example, an expression such as “unsu- 251

pervised classification” is widely adopted by the RS community 252

to mean either “unsupervised data clustering” or “automatic 253

classification,” e.g., see [27] and [28]. Unfortunately, according 254

to the machine learning literature, this expression is a typical 255

contradiction of terms because: 1) “unsupervised,” e.g., unsu- 256

pervised data, refers to “unlabeled,” e.g., unlabeled data, rather 257

than “without user’s supervision,” i.e., “unsupervised” does not 258

mean “automatic” and 2) sensory data are provided with no 259

semantics at all (refer to Section II-A), i.e., observational data 260

are always, per se, unsupervised (unlabeled), while, by defini- 261

tion, classified data are always supervised (labeled) data, where 262

data labels belong to a discrete and finite taxonomy of (seman- 263

tic) concepts [23], [24], [29]. 264

Hereafter, the concepts of inductive, deductive and hybrid 265

inference system, either subsymbolic or symbolic, are dis- 266

cussed in detail. 267

There are two classical types of inference (learning), known 268

as: 1) induction, progressing from particular cases (e.g., true 269

facts and training data samples) to a general estimated depen- 270

dency or model, and 2) deduction, progressing from a general 271

model (e.g., a physical model-based equation) to particular 272

cases (e.g., output values) [24]. Inductive inference is the basis 273

of the machine learning discipline [24], [29]. Deductive infer- 274

ence is the main focus of interest of traditional artificial intelli- 275

gence [24], [29]–[31]. 276

The following terms are nontrivial synonyms of deductive 277

inference and become interchangeable in the rest of this work 278

[18], [19]: (subsymbolic or symbolic) deductive inference, 279

deductive learning, top-down inference system, coarse-to-fine 280

inference, driven-by-knowledge inference, learning-by-rules, 281

physical model, prior knowledge-based decision system, rule- 282

based system, expert system, syntactic inference, and syntactic 283

pattern recognition. 284

The following terms are nontrivial synonyms of inductive 285

inference [18], [19]: (subsymbolic or symbolic) inductive infer- 286

ence, inductive learning from either labeled (supervised) or 287

unlabeled (unsupervised) data, bottom-up inference, fine-to- 288

coarse inference, driven-without-knowledge (knowledge-free) 289

inference, learning-from-examples, statistical model. 290

For the sake of completeness, some well-known examples 291

of inductive and deductive inference systems, presented in the 292

computer vision, machine learning and/or RS literature, are 293

listed as follows. 294294

1) In the computer vision literature, image segmentation 295

algorithms are typical examples of subsymbolic inductive 296

inference systems for unlabeled data learning [32]–[36]. 297

2) In the machine learning literature, unsupervised (unla- 298

beled) data learning algorithms are either vector data 299

quantizers (e.g., the well-known k-means data quantiza- 300

tion algorithm, improperly called k-means data clustering 301

algorithm), probability density function estimators or 302

unlabeled data clustering algorithms [15], [24], [29], 303

[37]–[40]. Inductive supervised (labeled) data learning 304

systems are either: 1) symbolic (classifiers), e.g., artifi- 305

cial neural network classifiers, support vector machine 306
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classifiers [41], nearest-neighbor classifiers, adaptive307

decision-tree classifiers, and radial basis function net-308

works for classification [24], [29] or 2) subsymbolic, suit-309

able for function regression, e.g., radial basis function310

networks for function regression [24], [29].311

3) In the RS literature [24], [29], a typical example of sub-312

symbolic inductive inference system is principal compo-313

nent analysis; a popular example of subsymbolic deduc-314

tive inference system is tasseled cap transformation.315

The machine learning literature clearly acknowledges that316

all inductive data learning problems are inherently ill-posed in317

the Hadamard sense [42]. According to Hadamard, mathemat-318

ical or statistical models of physical phenomena are defined as319

well-posed (respectively, ill-posed) when they satisfy (respec-320

tively, do not satisfy at least one of) the following requirements321

[42]: 1) a solution exists, 2) the solution is unique, and 3) the322

solution’s behavior hardly changes when there is a slight change323

in the initial condition. In the words of Mulier and Cherkassky:324

“induction amounts to forming generalizations from particu-325

lar true facts. This is an inherently difficult (ill-posed) prob-326

lem and its solution requires a priori knowledge in addition327

to data” [24] (p. 39). Hence, to become better posed (con-328

ditioned) for numerical treatment, any inductive data learning329

algorithm requires an a priori knowledge base (deductive infer-330

ence approach) to avoid starting from scratch when looking at331

input sensory data [10]–[19]. This conclusion complies with332

the well-known statistical principle of stratification, equivalent333

to the divide-and-conquer (dividi et impera) problem solving334

approach [29], to be enforced upon statistical systems. The335

advantage of a stratified statistical system is that it “will always336

achieve greater precision (than its nonstratified counterpart),337

provided that the strata have been chosen so that members of338

the same stratum are as similar as possible in respect of the339

characteristic of interest” [43].340

On one hand, well-known limitations of statistical (bottom-341

up inference) systems in common practice are that they are342

inherently semiautomatic and site-specific [18], [45]. On the343

other hand, typical drawbacks of physical (top-down inference)344

models are that [18]: 1) in general, it takes a long time for345

human experts to learn physical laws of the real-world-through-346

time and tune physical models, 2) physical models suffer from347

an intrinsic lack of flexibility, i.e., decision rules do not adapt to348

changes in the input data format and users’ needs, hence their349

knowledge base may soon become obsolete, and 3) physical350

models suffer from an intrinsic lack of scalability, in particular351

rule-based systems are impractical for complex problems [30].352

There is an ongoing multidisciplinary debate about a claimed353

inadequacy of scientific disciplines such as computer vision,354

artificial intelligence, and machine learning, whose origins date355

back to the late 1950s, in the provision of operational solu-356

tions to their ambitious cognitive objectives [23], [44]. This357

claim may mean that, if they are not combined, inductive and358

deductive inference approaches show intrinsic weaknesses in359

operational use, irrespective of implementation [18]. As a con-360

sequence, to outperform existing deductive and inductive infer-361

ence systems whose drawbacks are well known, a novel trend362

in recent literature aims at developing hybrid inference sys-363

tems for retrieval of subsymbolic variables (e.g., leaf area index,364

LAI) or symbolic variables (e.g., LC and LC change (LCC) 365

classes) from sensory data (e.g., optical imagery) [45]–[48]. 366

By definition, hybrid inference systems, either subsymbolic or 367

symbolic, combine both statistical and physical models to take 368

advantage of the unique features of each and overcome their 369

shortcomings [46], [47]. For example, in the foreword of the 370

seminal book by Nagao and Matsuyama [47], published in 371

1980 (oldies, but goldies), it is written: “The work described 372

here is a deep unification and synthesis of the two fundamental 373

approaches to pattern recognition: numerical (also known as 374

‘statistical’) and structural (‘linguistic,’ ‘syntactic’).” 375

Noteworthy, physical model-based inference systems as well 376

as hybrid models require as input observational data pro- 377

vided with a physical meaning, i.e., sensory data provided 378

with a physical unit of measure, e.g., RS imagery radiometri- 379

cally calibrated into top-of-atmosphere (TOA) radiance or TOA 380

reflectance values [10]. On the other hand, statistical systems 381

can be input with any sort of numerical data, irrespective of 382

their physical meaning, if any. This is tantamount to saying that, 383

whereas dimensionless sensory data, provided with no physical 384

unit of measure, are eligible for use as input to statistical mod- 385

els exclusively, on the contrary, numerical data provided with 386

a physical unit of measure can be input to both physical and 387

statistical models. 388

For the sake of completeness, let us review some additional 389

examples of inductive, deductive and hybrid RS-IUS instances 390

proposed in recent years in the RS literature. A large family 391

of one-stage one-pass (noniterative) prior knowledge-based 392

(static, nonadaptive to input data) decision-tree (pre)classifiers 393

(symbolic expert systems) has been proposed, starting from 394

the 1970 s, as a legacy of traditional artificial intelligence [49], 395

[50], [51]–[54]. For example, in [50] (p. 4176), a one-stage 396

physical model-based RS-IUS, see Fig. 1(a), consists of a 397

hierarchy of five pixel-specific prior knowledge-based spectral 398

rules proposed to detect six land surface types, namely, “vege- 399

tated lands,” “nonvegetated lands,” “snow/ice,” “water bodies,” 400

“clouds,” and “cloud shadows,” in radiometrically calibrated 401

500 m resolution moderate resolution imaging spectroradiome- 402

ter (MODIS) images. In 30 m resolution Landsat images, 403

a one-stage deductive RS-IUS, consisting of a hierarchy of 404

per-pixel prior knowledge-based spectral rules, detects LC 405

classes “water,” “coniferous forest,” “deciduous forest,” “agri- 406

cultural areas,” “grassland,” “urban areas,” and “roads” [52]. 407

In recent years, prior knowledge-based decision-tree classifiers 408

are employed per image-object at an attentive vision second 409

stage, in series with an inductive image segmentation first 410

stage, like in the popular two-stage noniterative Geographic 411

Object-Based Image Analysis (GEOBIA) system architecture, 412

see Fig. 1(b), and in the three-stage iterative Geographic 413

Object-Observation Image Analysis (GEOOIA) system design 414

[32]–[34], [55]–[60]. The former is a special case of the 415

latter, i.e., GEOBIA ⊆ GEOOIA, where both GEOBIA and 416

GEOOIA share a statistical model-based subsymbolic image 417

segmentation first stage. Alternative to GEOBIA/GEOOIA 418

systems, an original two-stage hybrid RS-IUS architecture is 419

proposed by Shackelford and Davis [61], [62]. It comprises an 420

image-object-based expert system for second-stage decision- 421

tree classification in series with a first-stage pixel-based 422
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Fig. 1. (a) Top: Traditional one-stage RS-IUS architecture. 100% of the semantic information gap from sensory data to LC classes is filled up in one step.
(b) Middle. Traditional two-stage noniterative GEOBIA design. 100% of the semantic information gap from sensory data to LC classes is filled up in the segment-
based image classification second stage, in series with the subsymbolic inductive-data-learning image segmentation first stage. (c) Bottom. Novel three-stage hybrid
RS-IUS design. Approximately, 50% of the semantic information gap from sensory data to LC classes is filled up in the automatic deductive preclassification first
stage [80].

F1:1
F1:2
F1:3
F1:4
F1:5

statistical preclassifier, implemented as a traditional plug-in423

(nonadaptive to input data) pixel-based maximum likelihood424

(ML) classifier. In this scenario, the ATCOR-SPECL [6]–[9]425

and SIAM [10]–[19] software products, to be assessed and426

compared in the Part 2 of this paper [20], are, to the best427

of these authors’ knowledge, the first examples of prior428

knowledge-based decision-tree preclassifiers in operating429

mode eligible for use at the preattentive vision first stage of430

a hybrid RS-IUS architecture, see Fig. 1(c). Noteworthy, the 431

hybrid RS-IUS architecture shown in Fig. 1(c) is alternative 432

to both the two-stage hybrid RS-IUS architecture proposed by 433

Shackelford and Davis [61], [62] and the GEOBIA/GEOOIA 434

system architecture shown in Fig. 1(b). To summarize, whereas 435

prior knowledge-based decision-tree classifiers have been 436

traditionally employed in one-stage RS-IUSs [see Fig. 1(a)] 437

or at the attentive vision second stage of two-stage hybrid 438
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RS-IUSs, whose first stage consists of either a subsymbolic439

statistical system, like in GEOBIA/GEOOIA systems, see440

Fig. 1(b), or a semisymbolic plug-in statistical system, like441

in the Shackelford and Davis RS-IUS architecture [61], [62],442

the degree of novelty of the ATCOR-SPECL and SIAM prior443

knowledge-based preclassifiers is to provide a multistage444

hybrid RS-IUS architecture with an injection of prior knowl-445

edge right at the level of the preattentive vision first stage446

[10]–[19], see Fig. 1(c) [20]. Additional examples of hybrid447

inference systems for RS image classification are those pro-448

posed by Matsuyama et al. in [46], [47], as well as the popular449

Landsat-7 Enhanced Thematic Mapper (ETM) + Automated450

Cloud-Cover Assessment (ACCA) algorithm. In the ACCA451

algorithm, first, a per-pixel (context-independent) physical452

model-based decision rule set is applied to a radiometrically453

calibrated Landsat image to detect pixels considered as cloud454

candidates. Second, to remove small holes in cloud segments,455

a bottom-up (data-driven) context-sensitive aggregation and456

filling algorithm is applied in the (2-D) image domain to pixels457

considered as noncloud candidates at step one [63] (p. 1183).458

C. Human and Computer Vision459

In the words of Iqbal and Aggarwal: “frequently, no claim460

is made about the pertinence or adequacy of the digital mod-461

els as embodied by computer algorithms to the proper model462

of human visual perception. . . This enigmatic situation arises463

because research and development in computer vision is often464

considered quite separate from research into the functioning of465

human vision. A fact that is generally ignored is that biologi-466

cal vision is currently the only measure of the incompleteness467

of the current stage of computer vision, and illustrates that the468

problem is still open to solution” [64].469

According to this quote, human vision should be consid-470

ered the gold standard (reference baseline) of the computer471

vision discipline, which incorporates RS image understand-472

ing as a special case. Unfortunately, the great majority of the473

RS community does not appear to consider biological vision474

as a reference baseline. In addition, relationships between475

the RS and computer vision communities appear weak too,476

the latter community considering the expertise of the former477

not very advanced, because traditional RS image understand-478

ing is pixel-based, where spatial (contextual) information is479

ignored. As a result of this lack of interdisciplinary commu-480

nication, the RS community tends to underestimate the com-481

plexity of vision in general and RS image understanding in482

particular.483

In the rest of this paper, including the experimental Part 2484

[20], RS image understanding (classification, mapping) is con-485

ceived as a subset of computer vision, where human vision486

is adopted as a reference standard, to compare the ATCOR-487

SPECL and SIAM software products as alternative implemen-488

tations of a prior knowledge-based preclassification first stage489

in a hybrid RS-IUS architecture [10]–[20] (refer to Section I).490

Hence, this paper complies with the aforementioned thesis by491

Iqbal and Aggarwal [64], but is in contrast with the majority492

of the RS literature, where links to computer vision and human493

vision disciplines are absent.494

In this section, basic principles of human vision, which com- 495

prises a preattentive vision first stage and an attentive vision 496

second stage, are briefly described [5], [46]. 497

1) Goal of a (Biological or Artificial) Vision System: 498

A (human or computer) visual system is a (biological or arti- 499

ficial) IUS suitable to provide plausible (multiple) symbolic 500

description(s) of a 3-D scene, located in the (4-D) world- 501

through-time, as it is observed by a (2-D) imaging sensor at a 502

given acquisition time. The information gap between a subsym- 503

bolic (2-D) image and a symbolic (3-D) scene can be filled by 504

conjectures that map subsymbolic image features (e.g., image- 505

objects or, vice versa, image-contours) into symbolic classes 506

of 4-D objects-through-time (4-D concepts-through-time, e.g., 507

buildings and roads) belonging to the so-called preexisting 508

(4-D) world model [46], [65]. A world model, also called world 509

ontology, can be graphically represented as a semantic net- 510

work consisting of: 1) classes of 4-D objects-through-time as 511

nodes and 2) inter-concept relations as arcs between nodes, 512

namely: (I) spatial relations, either topological (e.g., adjacency 513

and inclusion) or nontopological (e.g., distance and in-between 514

angle), (II) temporal relations and/or (III) nonspatiotemporal 515

relations (e.g., part-of and subset-of) [18], [19], [46], [55], [66]. 516

In terms of computational theory, the problem of image 517

understanding (vision), from subsymbolic (2-D) imagery to 518

symbolic description(s) of the (3-D) scene of the (4-D) world 519

observed at a given time, belongs to the class of symbolic induc- 520

tive data learning problems [24] (from sensory data to models, 521

refer to Section II-B). As such, it is inherently ill-posed in the 522

Hadamard sense [42] and, consequently, very difficult to solve, 523

due to the combination of the two following qualitative and 524

quantitative information gaps to be filled (refer to Section II-A) 525

[18], [19], [46]: 1) The well-known (semantic) information gap 526

between continuous subsymbolic sensory sensations and dis- 527

crete symbolic (semantic, linguistic) persistent (stable) percepts 528

(concepts), which has been thoroughly investigated in both phi- 529

losophy and psychophysical studies of perception. In practice, 530

“we are always seeing objects we have never seen before at 531

the sensation level, while we perceive familiar objects every- 532

where at the perception level” [46]. 2) The intrinsic insuffi- 533

ciency of image features, namely, 0-D points, 1-D lines (e.g., 534

contours) and 2-D polygons (image-objects), in the reconstruc- 535

tion of an observed (3-D) scene, due to data dimensionality 536

reduction which causes, e.g., occlusion phenomena. 537

2) Processing Elements and Modular Structure of the 538

Human Visual System: In mammals, a vision system accom- 539

plishes a preattentive vision first phase and an attentive vision 540

second phase, summarized as follows. 541541

1) Preattentive (low-level) vision extracts picture primitives 542

based on general-purpose image processing criteria inde- 543

pendent of the scene under analysis. It acts in paral- 544

lel on the entire image as a rapid (< 50 ms) scanning 545

system to detect variations in simple visual properties 546

[67]–[69]. In the primary visual cortex (PVC, or area 17 547

of the visual cortex, or V1), single opponent and dou- 548

ble opponent color cells are called Type I and Type II, 549

respectively, by Wiesel and Hubel [72] (examples of Type 550

I and Type II receptive fields can be found in [73]). 551

Receptive fields that are spatially opponent, but not color 552
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opponent, are called Type III [73]. Layers of PVC are553

vertically organized into blobs and interblob areas. The554

same single-opponent cells are thought to provide, in par-555

allel, color contrast information to cells in the blobs, and556

achromatic contrast information to cells in the interblob557

regions. The visual cells heavily concentrated in cortical558

blobs are double-opponent cells. In the interblob areas,559

cortical cells belong to the hierarchy composed of simple-560

and complex-cell categories. A major difference between561

simple- and complex-cells is that the former are quasilin-562

ear while the latter exhibit a clear second-order squaring563

nonlinearity [98]. A regular sequence of hypercolumns564

is repeated over the surface of PVC, each hypercolumn565

occupying an area of about 1 mm2. This repeating orga-566

nization constitutes the modular structure of PVC, such567

that every axis of orientation, whose gradations of ori-568

entation are around 10◦ [67] to 15◦ [70], [71], is repre-569

sented for every retinal position at at least four spatial570

scales of analysis [99]. In each hypercolumn, there are571

end-stopped cells, in addition to simple- and complex-572

cells [100]. While simple- and complex-cells are thought573

to accomplish line and edge extraction, end-stopped cells574

respond to image singularities, such as line/edge cross-575

ings, vertices of image-objects, and end-points of line seg-576

ments [101].577

2) Attentive (high-level) vision operates as a careful scan-578

ning system employing a focus of attention mechanism579

based on end-stopped cells [100], [101]. Scene sub-580

sets, corresponding to a narrow aperture of attention, are581

observed in sequence and each step is examined quickly582

(20–80 ms) [67]–[69].583

It is worth noting that human achromatic vision is nearly584

as effective as human chromatic vision in detecting forms and585

accomplishing image interpretation. On an a posteriori basis,586

this observation has two important implications. First, in the587

real 4-D world-through-time, color information of 4-D objects588

(e.g., cars and trees) is dominated by their 4-D spatiotemporal589

information, as properly stated by Adams et al. [26]. Second,590

the same consideration holds for a (2-D) image representation591

of the (4-D) world-through-time, where 2-D spatial (contex-592

tual) information dominates color information. To cope with the593

dominant 2-D spatial information in a (2-D) image, the human594

visual system employs modular arrays of multiscale 2-D local595

filters capable of providing a topology-preserving mapping of a596

(2-D) image [67]–[71], [74].597

3) When Does Vision Go Symbolic? Inference Mechanisms598

in Human Vision: In the literature of psychophysics, accord-599

ing to Vecera and Farah, preattentive image segmentation600

is an interactive (hybrid) inference process “in which top-601

down knowledge (e.g., familiarity) partly guides lower level602

processing” ([75]; p. 1294). That is to say, human vision is a603

symbolic hybrid (combined deductive and inductive) inference604

system where (symbolic) prior knowledge is injected into the605

sensory data interpretation process starting from the preatten-606

tive vision first stage [18], [19].607

In the computer vision literature, according to Marr608

“(human) vision goes symbolic almost immediately, right at the609

level of (second-order derivative’s) zero-crossing (raw primal610

sketch). . . without loss of information” ([5]; p. 343), which 611

is consistent with the aforementioned quote by Vecera and 612

Farah [75]. Unfortunately, in [5], the computer vision system 613

proposed by Marr is unable to satisfy either one of the two 614

aforementioned vision system requirements inspired by human 615

vision. In particular, the Marr preattentive vision first stage is 616

subsymbolic. It is split into a subsymbolic raw primal sketch 617

and a subsymbolic full primal sketch, where: (I) the raw pri- 618

mal sketch consists of a hierarchy of subsymbolic primitives, 619

namely, multiscale zero-crossings ([5]; pp. 54–59), followed 620

by zero-crossing segments ([5]; p. 60) and level 1 image- 621

tokens, comprising blobs (closed contours), edges, bars and 622

discontinuities (terminations) ([5]; pp. 70–73), and (II) a full 623

primal sketch, equivalent to perceptual grouping [75]–[77], 624

where level 2 boundaries (e.g., texture boundaries) are detected 625

between groups of tokens ([5]; pp. 53, 91–95). Marr never pro- 626

vided implementation details of his proposed subsymbolic raw 627

primal sketch or subsymbolic full primal sketch. This apparent 628

contradiction between Marr’s computer vision system design 629

(computational theory) specifications and his own implementa- 630

tion is not at all surprising. It accounts in general for the cus- 631

tomary distinction between a model and the algorithm used to 632

identify it [18]. 633

4) Possible Relationships Between a Human Vision System 634

and the ATCOR-SPECL and SIAM Prior Knowledge-Based 635

Preclassifiers: Possible relationships between a human vision 636

system, as it is described in Sections II-C1–II-C3, and the 637

ATCOR-SPECL and SIAM prior knowledge-based preclassi- 638

fiers, to be investigated in the Part 2 of this paper as alternative 639

implementations of a preattentive vision first stage in a hybrid 640

RS-IUS architecture [20], are highlighted as follows. 641641

1) At the abstraction level of computational theory (system 642

design), the hybrid RS-IUS architecture proposed in this 643

paper is consistent with a human vision system conceived 644

as a symbolic hybrid inference system where symbolic 645

prior knowledge is injected right at the preattentive vision 646

first stage (see Section II-C3). 647

2) In (2-D) images of the (4-D) world-through-time, 2-D 648

spatial (contextual) information dominates color informa- 649

tion (see Section II-C2). In traditional pixel-based RS- 650

IUSs, the input data set is a 1-D sequence of pixel-specific 651

data vectors where 2-D space (contextual) information is 652

ignored. A pixel-based RS-IUS can perform accurately 653

without 2-D spatial information in the image domain if 654

and only if the image spatial resolution and time resolu- 655

tion are adequate to discriminate the target phenomenon 656

under investigation based on (context-insensitive) color- 657

through-time properties exclusively. It means that, to be 658

considered useful, the application-independent ATCOR- 659

SPECL and SIAM prior knowledge-based preclassifiers, 660

which are pixel-based (context-insensitive) and eligible 661

for use with any single-date RS imagery independent of 662

its spatial resolution, must be considered as simple build- 663

ing blocks in a multistage RS-IUS architecture, i.e., they 664

cannot be considered as standalone systems. In fact, their 665

first-stage pixel-based (color-driven) preattentive image 666

analysis must be followed by an attentive vision second 667

stage, capable of (2-D) spatial analysis plus 1-D temporal 668
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analysis of image data conditioned (driven, stratified)669

by first-stage spectral categories, equivalent to conven-670

tional color names to be community agreed upon [102],671

[103]. In terms of filling the information gap from sensory672

data to LC maps (refer to Section II-C1), the ATCOR-673

SPECL and SIAM prior knowledge-based preclassifiers674

map subsymbolic sensory data into semisymbolic spec-675

tral categories (refer to the further Section IV-B) based676

on single-date pixel-based MS (color) properties (spectral677

signatures) exclusively. The remaining information gap678

from semisymbolic spectral categories to LC classes must679

be filled by the RS-IUS’ attentive vision second stage680

based on stratified spatiotemporal information.681

We can conclude that, if compared with a human visual sys-682

tem, the degree of compatibility of the ATCOR-SPECL and683

SIAM prior knowledge-based preclassifiers, employed in sup-684

port of the preattentive vision first stage of a hybrid RS-IUS685

architecture, is inferior to the degree of biological plausibility686

of an airplane compared to a bird. That said, from an engineer-687

ing standpoint, the ATCOR-SPECL and SIAM deductive pre-688

classifiers provide a realistic and feasible contribution to the689

development of automatic hierarchical RS-IUSs in operating690

mode, where a preattentional first-stage prior knowledge-based691

discretization of a continuous color space may be employed692

to better condition for numerical treatment an inherently693

difficult-to-solve second-stage attentive vision spatio-temporal694

analysis.695

D. EO Big Data: Challenges and Opportunities696

According to Section I, the secondary objective of this paper697

is to contribute to the development of a new generation of698

operational hybrid RS-IUSs capable of transforming large-scale699

multisensor multiresolution EO image databases into informa-700

tion products, in compliance with the QA4EO guidelines. The701

magnitude of EO data collected since the early 1970 s by a vari-702

ety of spaceborne/airborne and in situ sensory data sources, at703

varying spatial extents and multiple spatial, temporal and spec-704

tral resolutions, is so phenomenal to be identified, by the present705

authors, as EO big data, in line with the terminology of IT.706

In IT, the popular term “big data” identifies “a collec-707

tion of data sets so large and complex that it becomes dif-708

ficult to process using on-hand database management tools709

or traditional data processing applications. The challenges710

include capture, storage, search, sharing, analysis, and visu-711

alization” [78]. Among big data challenges, interpretation of712

observational data, i.e., the transformation of sensory data into713

information/knowledge products, has been historically investi-714

gated by both philosophical hermeneutics [21], [22] (refer to715

Section II-A) and psychophysical studies of perception [46]716

(refer to Section II-C).717

According to the present authors, “big data” is a syn-718

onym of “central limit theorem.” In statistics, the well-known719

central limit theorem states that [29], given certain conditions720

(typically random variables must be identically distributed),721

the sum (mean) of a sufficiently large number of indepen-722

dent random variables, each with a well-defined mean and723

well-defined variance (for example, one random variable is an 724

LC class-specific distribution of pixel values in a RS image), 725

tends to form a Gaussian distribution, where no “meaning- 726

ful” or “natural” hidden data entities, clusters or (sub)structures 727

can be identified [18], [19]. As a consequence of the central 728

limit theorem, “big data” distributions are Gaussian-like, hence 729

meaningful cluster/substructure detection in “big data” is inher- 730

ently ill-conditioned in the Hadamard sense (refer to Section II- 731

B). In other words, in “big data” sets, traditional inductive 732

supervised or unsupervised data learning is extremely difficult 733

or impossible to accomplish (refer to Section II-B). 734

These general considerations, driven from common knowl- 735

edge in IT, may explain why, to date, EO big data assets are 736

underemployed by the RS community. For example, the Euro- 737

pean Space Agency (ESA) estimates as 10% or less the per- 738

centage of RS images ever downloaded (which does not mean 739

ever used) by stakeholders from its EO databases [18], [19]. 740

It may mean that the RS discipline is still incapable of filling 741

up the information gap from RS data to knowledge/information 742

products (refer to Section II-C). To fill this information gap, 743

data interpretation (cognitive) processes (related to the con- 744

cept of equivocal “information-as-(an intepretation)process”) 745

dominate, i.e., are more difficult to solve than data transforma- 746

tion (e.g., data enhancement, data preprocessing) tasks (related 747

to the concept of unequivocal “information-as-thing,” refer to 748

Section II-A). Typically, RS scientists and practitioners over- 749

look their cognitive inadequacy to derive “operational, com- 750

prehensive, and timely knowledge/information products” from 751

sensory data [1]–[3] by asking for more data of better quality, 752

which actually makes their cognitive lack even worse. In prac- 753

tice, by overestimating its data interpretation capability the RS 754

community is outpaced by the ever-increasing rate of collection 755

of EO data of enhanced quality and quantity [10]–[19] (also 756

refer to the further Section III). 757

To recapitulate, in agreement with common knowledge in IT, 758

EO big data assets represent a huge opportunity/challenge for 759

the RS interdisciplinary science. To be transformed into knowl- 760

edge/information products in compliance with the QA4EO 761

guidelines [1]–[3], EO big data require the development of 762

a novel generation of hybrid inference systems in operating 763

mode, capable of outperforming traditional inductive or deduc- 764

tive inference systems, whose limitations are well known (refer 765

to Section II-B). As a realistic contribution to this challenge, 766

this paper provides a theoretical and experimental assessment 767

of the ATCOR-SPECL and SIAM prior knowledge-based pre- 768

classification software products in operating mode. 769

E. Probability and Nonprobability Sampling of a Geospatial 770

Population 771

This paper requires that sample QIs, estimated from the 772

ATCOR-SPECL and SIAM deductive preclassification maps, 773

must be statistically valid (consistent), refer to Section I. By 774

definition, an information map (e.g., a thematic map) is a 775

reduced representation of a target geospatial population. To pro- 776

vide a statistically valid estimation of QIs from an information 777

map representing a geospatial population [82], [83] (refer to 778
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Section I), the following definitions of probability and nonprob-779

ability sampling protocol are required.780780

1) By definition, probability sampling must satisfy three781

necessary not sufficient conditions to deliver statistically782

valid sample estimates, i.e., sample estimates provided783

with the necessary probability foundation to permit gen-784

eralization from the sample data set to the whole target785

geospatial population being sampled [82], [83]. 1) All786

inclusion probabilities must be greater than zero in the787

target geospatial population to be sampled. If some sam-788

pling units have an inclusion probability of zero, then the789

accuracy assessment does not represent the entire target790

region depicted in the map to be assessed and the results791

cannot be deemed statistically consistent. 2) The inclu-792

sion probabilities must be: a) knowable for nonsampled793

units and b) known for those units selected in the sam-794

ple: since the inclusion probability determines the weight795

attached to each sampling unit in the accuracy estimation796

formulas, if the inclusion probabilities are unknown, so797

are the estimation weights. Probability sampling methods798

can be split into equal or variable (unequal) probability799

sampling methods. Unequal inclusion probabilities cre-800

ate no difficulties as long as they are known for sampled801

units and accounted for in the estimation formulas, but802

equal probability designs are advantageous in that they803

allow for simpler analysis. For example, an area sampling804

protocol selects polygons into the sample with an inclu-805

sion probability monotonically increasing with the poly-806

gon area [82], [83]. Noteworthy, no probability sampling807

is required to assess the degree of uncertainty in sample808

estimates [5].809

2) Nonprobability sampling methods do not satisfy the810

requirements of probability sampling methods listed in811

this section above. According to the existing literature812

[82]: “unfortunately, examples of nonprobability sam-813

pling are common in accuracy assessment applications.814

Selecting reference locations by purposeful, convenient,815

or haphazard procedures does not allow the sampling816

design to determine the inclusion probabilities for each817

sampling unit. Such designs, therefore, are not probability818

samples. Purposefully, selecting training data for a super-819

vised classification is a good example of a nonprobabil-820

ity sample. Such samples are acceptable for developing a821

land cover classification map, but often have limited use822

for accuracy assessment because the necessary probabil-823

ity foundation to permit generalization from the sample824

data to accuracy of the full population is lacking.” To reca-825

pitulate, “it is possible to obtain useful information from826

nonprobability samples, but the limitations of such data827

should be recognized” [82]. For example, nonprobabil-828

ity sampling allows to assess the degree of uncertainty in829

sample estimates.830

3) A protocol, defined as a sorted set of guidelines for good831

practice [3], encompasses a structural knowledge and a832

procedural knowledge, like in decision trees [55]. Struc-833

tural knowledge is related to the content of the rule set834

while procedural knowledge is related to the order of835

presentation of rules. The definition of international pro- 836

tocols for best practices, such as the QA4EO guidelines 837

[2], together with standardization, have been major chal- 838

lenges for the RS community [2], [3]. 839

Unfortunately, in the RS literature there is a lack of proba- 840

bility sampling protocols adopted for the validation of RS data- 841

derived products in compliance with the principles of statistics 842

and the QA4EO guidelines. As a negative example of nonprob- 843

ability sampling for map quality assessment not to be imitated, 844

refer to [41]. 845

A probability sampling protocol for thematic and spatial 846

quality assessments of classification maps generated from EO 847

images is proposed in [80] and adapted in Part 2 of this 848

paper [20]. 849

F. QIO of an RS-IUS 850

The test phase of a software product, which encompasses a 851

QI selection stage, can be so relevant to absorb up to 50% of 852

a project budget [93]. In this section, a possible list of mutu- 853

ally uncorrelated metrological/statistically-based QIOs is pro- 854

posed and recommended for use by the Part 2 of this paper, 855

to accomplish the experimental assessment and comparison of 856

the ATCOR-SPECL and SIAM software products in operating 857

mode [20]. 858

Often forgotten in practice, the noninjective property of 859

any metrological/statistically-based QI states that it is always 860

possible to find two different instances of the same target 861

phenomenon capable of generating the same QI value. For 862

example, two different classification maps may provide the 863

same map’s overall accuracy value. This is tantamount to say- 864

ing that no universal QI can exist [10], [19], which is in contrast 865

with a significant segment of the existing literature, e.g., see 866

[79] and [94]. Rather, a target-specific set of complementary 867

statistically independent QIs must be selected and agreed upon 868

by the scientific community. 869

To cope with EO big data challenges (refer to Section II-D), 870

this paper provides an assessment of operational RS-IUSs in 871

compliance with the principles of statistics, the QA4EO guide- 872

lines [2] and the GEO-CEOS land product accuracy valida- 873

tion criteria [3] (refer to Section I). These work requirements 874

mean that the quality assessment of an RS-IUS should rely on a 875

complete set of complementary metrological/statistically-based 876

QIOs that are statistically independent, valid and significant. 877

To be considered statistically significant, QIOs must be pro- 878

vided with a degree of uncertainty in measurement (refer to 879

Section I). To be statistically valid (consistent), QIOs must be 880

estimated from probability sampling of EO big data (refer to 881

Section II-E). 882

Selected from the existing literature, a possible list of QIOs 883

of an information processing system in operating mode is 884

proposed as follows, to be community-agreed upon [10]– 885

[19]. 1) Degree of automation (ease-of-use), monotonically 886

decreasing with the number of system free-parameters to be 887

user-defined based on heuristics. 2) Effectiveness, e.g., the- 888

matic accuracy and spatial accuracy of classification and seg- 889

mentation maps generated from EO images [80]. 3) Efficiency, 890
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e.g., inversely related to computation time and memory occu-891

pation. 4) Robustness to changes in input parameters, if any892

free-parameter exists. 5) Robustness to changes in input data893

acquired across time, space and sensors. For example, refer to894

the CEOS land product accuracy validation stages 1–4 in [3],895

[4]. 6) Scalability, to cope with changes in input data specifica-896

tions, sensors and user’s requirements. 7) Timeliness, defined897

as the time between data acquisition and data-derived high-898

level product generation. For example, user interactions, such as899

those required to collect reference samples for training a super-900

vised data learning system, increase timeliness [81]. 8) Costs,901

monotonically increasing with computer power and manpower.902

To be termed operational, an information processing system903

must score high in every QIO of a set of community-agreed904

independent QIOs, e.g., refer to points 1) to 8) in the previous905

paragraph.906

Unfortunately, experiments presented in large portions of907

the RS literature are affected by the following methodological908

drawbacks. 1) The sole mapping accuracy is selected from the909

possible set of mutually independent QIOs eligible for param-910

eterizing RS-IUSs for assessment and comparison purposes.911

2) Statistical estimates of the mapping accuracy are not pro-912

vided with a degree of uncertainty in measurement, i.e., they913

have no statistical significance. 3) Statistical estimates of the914

mapping accuracy are not collected by means of a probabil-915

ity sampling strategy, hence they lack statistical consistency916

(refer to Section II-E). 4) Alternative RS data mapping solutions917

are tested exclusively in toy problems, defined in this paper918

as test data mapping problems featuring a small spatial scale919

(e.g., local scale) and/or a coarse semantic granularity, such920

that these test cases do not reflect the complexity of the exist-921

ing “EO big data” archives (refer to Section II-D) that must be922

dealt with to comply with the QA4EO requirements [2] (refer to923

Section I). As a consequence of these experimental limitations,924

many RS-IUS implementations tested in the RS literature fea-925

ture the following drawbacks. (I) A mapping accuracy which926

remains unknown in statistical terms and/or is unable to gen-927

eralize from a sample data set to the whole target geospatial928

population being sampled. (II) A robustness to changes in the929

input data set which is unknown or appears questionable. (III) A930

scalability to real-world RS data applications at large (e.g., con-931

tinental and global) spatial scale and fine semantic granularity932

which is unknown or appears questionable.933

The conclusion of this section is that, in real-world RS934

data applications, different from toy problems at small spatial935

scale and/or coarse semantic granularity, published RS-IUSs936

are likely to score poorly in operating mode, because at least937

one of their OQI values is expected to score low.938

III. PROBLEM RECOGNITION AND OPPORTUNITY939

IDENTIFICATION: COMPLIANCE OF EXISTING RS-IUS940

COMMERCIAL SOFTWARE PRODUCTS WITH THE QA4EO941

KEY PRINCIPLES AND CALIBRATION/VALIDATION942

(CAL/VAL) REQUIREMENTS943

Adopted by the ongoing GEOSS implementation plan for944

years 2005–2015 [1], the international GEO-CEOS QA4EO945

recommendations promote the development of “operational,946

comprehensive, and timely knowledge/information products” 947

from a variety of satellite, airborne, and in situ sensory data 948

sources [2] (refer to Section I). To guarantee “the provision 949

of and access to the Right Information, in the Right For- 950

mat, at the Right Time, to the Right People, to Make the 951

Right Decisions,” the QA4EO guidelines require the successful 952

implementation of two necessary and sufficient key principles 953

[2]: (I) Accessibility/Availability and (II) Suitability/Reliability 954

of RS data and data-derived knowledge/information products 955

(refer to Section II-A). To accomplish these system require- 956

ments the GEO identified the need to develop a GEOSS 957

data quality assurance strategy where calibration and val- 958

idation (Cal/Val) activities become critical to data qual- 959

ity assurance and, thus, to data usability. According to the 960

QA4EO guidelines [2], [3], the following Cal/Val activities are 961

required. 962962

1) An appropriate coordinated program of calibration activ- 963

ities throughout all stages of a spaceborne mission, 964

from sensor building to end-of-life, is considered manda- 965

tory to ensure the harmonization and interoperability 966

of multisource multitemporal RS data [2]. By defini- 967

tion, radiometric calibration is the transformation of 968

dimensionless digital numbers (DNs) into a community- 969

agreed physical unit of radiometric measure, e.g., TOA 970

radiance (TOARD), TOA reflectance (TOARF), and spec- 971

tral reflectance (SURF). 972

2) To satisfy validation requirements (e.g., accuracy valida- 973

tion [3]), observational data and data-derived products 974

generated in each step of a satellite-based information 975

processing workflow must have associated with them a set 976

of independent, quantifiable, metrological/statistically- 977

based QIs, featuring a degree of uncertainty in mea- 978

surement at a known degree of statistical significance, 979

to comply with the general principles of statistics and 980

provide a documented traceability of the propagation of 981

errors through the information processing chain in com- 982

parison with established “community-agreed reference 983

standards” [2] (refer to Section II-F). 984

It is an indisputable fact that, to date, almost ten years 985

from the launch of the GEOSS initiative, the RS community 986

has been more successful in pursuing the first rather than the 987

second GEOSS key principle. For example, in line with the 988

GEOSS requirement of Accessibility/Availability of RS data 989

and data-derived products, the U.S. 2008 free Landsat data 990

policy has opened a new era of exploitation of the more than 991

three million scenes stored in the U.S. Landsat archive [84]. 992

On the other hand, the ever-increasing rate of collection of EO 993

data of enhanced spatial, spectral and temporal quality out- 994

paces the current ability of the RS discipline to transform EO 995

big data assets into knowledge/information products (refer to 996

Section II-D). This means that the GEOSS requirement of Suit- 997

ability/Reliability of sensory data and data-derived products 998

can still be considered far from being accomplished by the RS 999

community. 1000

To explain their different degrees of success, the first and sec- 1001

ond GEOSS key principles are analyzed at different levels of 1002

abstraction. At the abstraction level of knowledge/information 1003

representation, according to philosophical hermeneutics [21], 1004
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[22], the first GEOSS key issue is quantitative (unequivocal)1005

and related to the Shannon concept of “information-as-thing”1006

irrespective of its meaning [25]. As such, it is easier to deal with1007

than the second GEOSS principle, which is qualitative (equivo-1008

cal), since the latter has to deal with the meaning (interpretation,1009

understanding) of sensory data and is related to the concept of1010

“information-as-(an interpretation) process” [21], [22] (refer to1011

Section II-A).1012

At the abstraction level of RS-IUS design, the second1013

GEOSS key principle remains difficult to cope with also1014

because Cal/Val activities are often neglected or ignored in the1015

RS common practice. On theory, the RS community regards as1016

common knowledge that “the prerequisite for physically based,1017

quantitative analysis of airborne and satellite sensor measure-1018

ments in the optical domain is their calibration to spectral1019

radiance” ([95], p. 29). Moreover, according to related works1020

[10]–[19], radiometric calibration is a necessary not sufficient1021

condition for automatic interpretation of (for physical model-1022

based inference from) EO imagery, refer to Section II-B. On1023

the other hand, RS scientists, practitioners and institutions tend1024

to overlook Cal/Val activities as necessary not sufficient pre-1025

conditions for the harmonization of large-scale multitemporal1026

multisensor EO datasets. For example, the European Commis-1027

sion Image 2000 product is a noncalibrated multisensor MS1028

image mosaic at European scale, whose scientific usability for1029

quantitative variable estimation is questionable or null [96]. To1030

recover from this lack, the European Commission Image 20061031

program includes radiometric calibration of multisensor MS1032

images at European scale in its project requirements specifi-1033

cation. However, in the Image 2006 project, no RS data-derived1034

product validation policy is enforced [97].1035

To explain why radiometric calibration is neglected in the1036

RS common practice, let us investigate the degree of com-1037

pliance of RS-IUS commercial software products with the1038

QA4EO key principles and Cal/Val requirements. Starting from1039

the RS-IUS architectures proposed in Fig. 1, consider the:1040

1) two- or three-stage Trimble eCognition Developer [60],1041

2) one- or two-stage Pixel- and Segment-based versions of the1042

Environment for Visualizing Images (ENVI) by ITT VIS [85],1043

3) one- or two-stage IDRISI Taiga, 4) one-stage ESRI ArcGIS,1044

5) ATCOR-2/3/4 [6]–[8], 6) one-stage PCI Geomatica (with1045

an optional ATCOR for atmospheric correction), and 7) one-1046

or two-stage ERDAS IMAGINE Objective (with an optional1047

ATCOR for atmospheric correction). These commercial soft-1048

ware packages for RS image processing/ understanding con-1049

sist of large suites of options to choose from [18], [56]–[59].1050

Frequently considered overwhelming by nonexpert users, these1051

large software suites allow selectable algorithms to be cho-1052

sen, supervised, and combined by a user, based on heuristics,1053

to form a user- and application-specific information process-1054

ing workflow. Among these wide sets of selectable algorithms,1055

several options may appear not particularly relevant, or be dif-1056

ficult to use (because they require lots of user interactions to1057

run) or omit steps considered critical in a standard RS data1058

processing chain (like those promoted by the QA4EO recom-1059

mendations [2]). In practice, to favor flexibility considered nec-1060

essary to develop customized solutions, these software suites1061

promote an approach to RS image analysis closer to art, namely,1062

empirical, qualitative and nonreproducible, than science, which 1063

is rigorous, quantitative and reproducible. For example, the 1064

large majority of selectable algorithms implemented in the RS- 1065

IUS commercial software products listed above, with the sole 1066

exception of the physical model-based ATCOR-2/3/4 toolbox 1067

[6]–[8], does not consider radiometric calibration as manda- 1068

tory. This relaxed input data constraint means that, in these 1069

commercial software products, the large majority of selectable 1070

algorithms consist of statistical systems, hence the remaining 1071

small minority comprises physical models. Due to their inher- 1072

ent ill-posedness in the Hadamard sense [42], statistical systems 1073

are typically semiautomatic and site-specific [18], [45] (refer 1074

to Section II-B). Although statistical systems do not require as 1075

input observational data provided with a physical meaning, they 1076

may benefit from radiometric calibration in terms of robust- 1077

ness to changes in the input data set (refer to Section II-B). 1078

For example, in the ENVI commercial software toolbox [85], 1079

an atmospheric correction tool, called Fast Line-of-sight Atmo- 1080

spheric Analysis of Spectral Hypercubes (FLAASH), is avail- 1081

able as an optional RS image preprocessing stage. As another 1082

example, in the PCI Geomatica and ERDAS RS data prepro- 1083

cessing workflows, a physical model-based ATCOR module 1084

can be optionally installed, etc. 1085

The first conclusion about the RS-IUS commercial software 1086

products listed above is the following. In line with common 1087

knowledge in the machine learning community [24], since sta- 1088

tistical model-based systems are inherently poorly-conditioned, 1089

semiautomatic and site-specific and require prior knowledge in 1090

addition to data to become better posed for numerical treat- 1091

ment (refer to Section II-B), then statistical systems available 1092

for selection in RS-IUS commercial software products, where 1093

they typically outnumber physical model-based options, are 1094

expected to be, per se, unable to cope with the well-known 1095

challenges of EO big data (refer to Section II-D). To become 1096

more successful, these statistical systems must be combined 1097

with physical models, to form hybrid inference systems capa- 1098

ble of outperforming their individual components (refer to 1099

Section II-B). This consideration holds because at least one 1100

or more QIOs (e.g., timeliness, scalability, and robustness to 1101

changes in the input data set, refer to Section II-F) of any induc- 1102

tive data learning system, either supervised or unsupervised, 1103

whether or not it adopts an RS data radiometric calibration 1104

preprocessing stage in compliance with the QA4EO guidelines 1105

(refer to Section III), are expected to score low in real-world RS 1106

data mapping applications (refer to Section II-B), where EO big 1107

data assets (refer to Section II-D), different from unrealistic toy 1108

problems at small spatial scale and/or coarse semantic granu- 1109

larity (refer to Section II-F), are to be mapped. 1110

In addition, RS-IUS commercial software products, such as 1111

those listed above, appear affected by a lack of selectable phys- 1112

ical model-based inference systems, considered necessary to 1113

support, with prior knowledge in addition to data (in accordance 1114

with well-known principles of inductive inference, clearly 1115

stated by Mulier and Cherkassky [24], refer to Section II-B), 1116

the large majority of selectable options, consisting of statistical 1117

systems. This second conclusion about the RS-IUS commercial 1118

software products listed above is driven from the sole physical 1119

model found in this list, the ATCOR [6]–[8]. 1120
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The core of the ATCOR consists of a radiative transfer1121

model which is inverted to calculate as output directional sur-1122

face reflectance (SURF) values starting from at-sensor (top-1123

of-atmosphere, TOA) radiance (TOARD) values [9]. In the1124

standard ATCOR implementation, the influence of surface type-1125

specific bidirectional reflectance distribution function (BRDF)1126

effects is not modeled. In the words of the ATCOR’s authors1127

[9], “ideally, an atmospheric and radiometric correction routine1128

would result in BRDFs for all observed targets, as the BRDF1129

is the unambiguous radiometric property of the Earth’s surface.1130

Unfortunately, imaging spectrometers rarely provide sufficient1131

information to produce reliable BRDFs as most instruments1132

acquire data for a single view geometry. Thus, a quantity not1133

depending on the view geometry is of interest. The spectral1134

albedo, i.e., the bihemispherical reflectance (BHR), is a value1135

which is well suited for an unbiased view of the Earth’s sur-1136

face.” In recent years, an “augmented” ATCOR implementa-1137

tion, sketched in Fig. 2, has been tested to retrieve spectral1138

albedo in series with surface reflectance values starting from1139

dimensionless DNs [9]. A peculiar aspect of this augmented1140

ATCOR workflow, suitable for continuous variable estimation1141

from RS data, is that categorical variables are generated as inter-1142

mediate products by preliminary classification modules at sev-1143

eral hierarchical stages (refer to Section II-A). In Fig. 2, data1144

processing blocks identified as “preclassification” and “quan-1145

titative classification” are suitable for mapping semantic con-1146

cepts from data, such as “clouds,” “water,” “vegetation,” and1147

“haze.” Once estimated from sensory data, these categorical1148

variables are further employed as input to processing modules1149

capable of continuous (e.g., bio-physical) variable estimation1150

(refer to Section II-B). That is to say, in the augmented ATCOR1151

workflow shown in Fig. 2, the inherently poorly-conditioned1152

inductive inference problem of continuous variable estimation1153

from sensory data is accomplished on a symbolic stratified1154

(driven-by-knowledge) basis to become better conditioned for1155

numerical treatment (refer to Section II-B). In practice, the1156

complete atmospheric correction and radiometric normalization1157

scheme shown in Fig. 2 provides an additional source of exper-1158

imental evidence supporting the recent conjecture, proposed in1159

the RS literature [15], [80], that categorical variables (e.g., LC1160

and LCC maps) and continuous variables (e.g., spectral albedo,1161

LAI and green biomass), conceived as two sides of the same1162

coin, should be estimated from RS images alternately and itera-1163

tively, starting from a categorical variable estimation first stage1164

(refer to Section I). Intuitively, MS image preclassification is1165

preliminary to continuous variable estimation, which includes1166

atmospheric correction, because the former task is “easier” to1167

accomplish than the latter. In fact, an expert photointepreter1168

can successfully interpret (classify) an RS image irrespective1169

of whether this image has been provided with a physical unit1170

of radiometric measure through radiometric calibration. On the1171

other hand, the RS literature clearly acknowledges that no spec-1172

tral index (e.g., the normalized difference vegetation index,1173

NDVI) should ever be computed as a quantitative proxy of a1174

continuous biophysical variable (e.g., a LAI value), if no radio-1175

metric calibration has taken place, yet [45].1176

To summarize, capable of alternating categorical and contin-1177

uous variable estimation from sensory data, the surface albedo1178

Fig. 2. A complete (“augmented”) physical model-based system for RS data
normalization combines a standard ATCOR workflow [6]–[9] with a novel bidi-
rectional reflectance distribution function (BRDF) effect correction. Processing
blocks are represented as circles and output products as rectangles. This work-
flow estimates categorical and continuous variables from sensory data alter-
nately, starting from a prior knowledge-based pre-classification first stage, such
as SPECL. Same as in [9], courtesy of Daniel Schläpfer, ReSe Applications
Schläpfer.

F2:1
F2:2
F2:3
F2:4
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F2:7
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estimation workflow shown in Fig. 2, based on an inverted 1179

radiative transfer model, is provided with a relevant degree of 1180

novelty in comparison with standard radiative transfer software 1181

products, like the Second Simulation of the Satellite Signal in 1182

the Solar Spectrum (6S) [86]. For example, in the 6S software 1183

tool, the land cover class-specific BRDF effects correction of 1184

RS imagery relies on ancillary thematic information, i.e., the 1185

6S software product is per se unable to extract from the input 1186

RS image the surface types (e.g., ocean surface, vegetation and 1187

bare soil [86]) required as input to run the driven-by-knowledge 1188

BRDF correction phase. 1189

This section concludes that, eligible for use as the physical 1190

model-based “preclassification” block in Fig. 2, the ATCOR- 1191

SPECL and SIAM prior knowledge-based preclassifiers feature 1192
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a wide application domain, encompassing not only categori-1193

cal variable estimation from EO data (as it is logical to expect1194

from a preclassification system), but also continuous variable1195

estimation from EO data, in compliance with the Cal/Val activ-1196

ities considered mandatory by the QA4EO guidelines for both1197

RS data preprocessing (data enhancement) and RS data pro-1198

cessing (data understanding) phases [2]. In other words, the1199

ATCOR-SPECL and SIAM deductive preclassifiers appear as1200

viable tools to accomplish not only automatic mapping of real-1201

world EO big data sets (refer to Section II-D), in compli-1202

ance with the QA4EO guidelines and the objectives of this1203

paper (refer to Section I), but also RS image enhancement, as1204

shown in Fig. 2. Existing examples of the SIAM applied to RS1205

image preprocessing problems include stratified topographic1206

correction [15], stratified atmospheric correction [6]–[8], strat-1207

ified image mosaicking, stratified image co-registration, etc.1208

[10]–[19] (refer to the further Section IV-A).1209

IV. COMPARISON OF THE ATCOR-SPECL AND SIAM1210

SOFTWARE PRODUCTS AT THE FOUR LEVELS1211

OF UNDERSTANDING OF AN INFORMATION1212

PROCESSING SYSTEM1213

Starting from the interdisciplinary nomenclature introduced1214

in Section II, differences and similarities between the ATCOR-1215

SPECL and SIAM software products can be investigated at the1216

four levels of abstraction of an RS-IUS [5], [16], [18], [30],1217

[87], namely: 1) computational theory (system architecture),1218

2) information/knowledge representation, 3) algorithms, and1219

4) implementation. Among these four levels of analysis, the first1220

two are considered of fundamental importance for the success1221

of any information processing system in operating mode (refer1222

to Section I). In the words of Sonka et al., “the linchpin of suc-1223

cess (of an information processing system) is addressing the1224

(computational) theory (and information/knowledge represen-1225

tation [87]) rather than algorithms or implementation” ([30];1226

p. 376).1227

A. Computational Theory1228

In Section I, the ATCOR-SPECL and SIAM software prod-1229

ucts are introduced as two alternative prior knowledge-based1230

color space discretizers capable of providing a hybrid RS-1231

IUS architecture with an injection of prior spectral knowledge,1232

equivalent to color naming, right at the preattentive vision first1233

stage, in compliance with human vision (refer to Section II-C).1234

Common features of the two deductive image mapping sys-1235

tems are the following. 1) As physical models, they require as1236

input a MS image provided with a physical unit of measure,1237

namely, a MS image radiometrically calibrated into TOARF or1238

SURF or surface albedo values (refer to Sections II-B and III).1239

2) They are context-insensitive, i.e., pixel-based, because color1240

is the sole (0-D) pixel-specific information in a (2-D) image. All1241

remaining visual properties are context-sensitive, e.g., texture1242

[73], shape of image-polygons, and inter-object spatial rela-1243

tions [10]–[19], [46], [47], [61], [62]. 3) They are static, i.e.,1244

nonadaptive to input data, 4) one-pass, i.e., noniterative, 5) syn-1245

tactic, i.e., rule-based [30], 6) semisymbolic, i.e., eligible for1246

mapping a MS image into a discrete and finite set (legend) of 1247

spectral-based semiconcepts (refer to Section I), and 7) “fully 1248

automatic,” because deductive inference systems require nei- 1249

ther user-defined parameters nor training data sample to run 1250

[88] (refer to Section I). 1251

Since they share the aforementioned list of system specifica- 1252

tions, then the ATCOR-SPECL and SIAM systems can be used 1253

interchangeably in a hybrid RS-IUS workflow, such as those 1254

shown in Fig. 1(c) or 2. Although interchangeable, the ATCOR- 1255

SPECL and SIAM prior knowledge-based preclassifiers are not 1256

expected to perform the same, since their decision-tree design 1257

and implementation are completely different, in terms of both 1258

structural and procedural knowledge (refer to Section II-E). 1259

A novel three-stage hybrid RS-IUS architecture, shown in 1260

Fig. 1(c), whose preattentive vision first stage employs a prior 1261

knowledge-based preclassifier provided with feedback loops 1262

[10]–[19], is described as follows. 12631263

1) An EO image preprocessing stage zero, suitable for MS 1264

image enhancement, including a mandatory MS image 1265

radiometric calibration of DNs into TOARF values, in 1266

compliance with the QA4EO guidelines. Although SURF 1267

values, considered as a special case of TOARF values in 1268

very clear sky conditions and flat terrain conditions [12], 1269

[80], [89], i.e., TOARF ⊇ SURF, such that TOARF ≈ 1270

SURF + atmospheric “noise,” are allowed as input, they 1271

are not mandatory, i.e., atmospheric correction is not con- 1272

sidered a MS image preprocessing requirement. 1273

2) A physical model-based symbolic context-insensitive 1274

(pixel-based) preattentive vision first stage, like the 1275

ATCOR-SPECL or the SIAM prior knowledge-based 1276

preclassifier. An injection of prior knowledge in the preat- 1277

tentive vision first stage makes the inherently poorly- 1278

conditioned EO image interpretation problem better 1279

posed for numerical treatment (refer to Section II-B), in 1280

agreement with the Marr intuition that vision goes sym- 1281

bolic right at the level of the raw primal sketch [5] (refer 1282

to Section II-C). 1283

3) A second-stage battery of attentive vision context- 1284

sensitive stratified (driven-by-knowledge) application-, 1285

sensor- and LC/LCC class-specific feature extractors 1286

(e.g., multiscale texture is investigated exclusively in the 1287

image portion masked by the first-stage spectral category 1288

“vegetation,” in order to split spectral type “vegetation” 1289

into two LC classes, namely, low-texture “grassland” and 1290

high-texture “forest” [61], [62]) and one-class LC/LCC 1291

classification modules (e.g., if a first-stage spectral cate- 1292

gory mask is “vegetation” and the second-stage “vegeta- 1293

tion” masked data feature extractor is “high texture,” then 1294

“forest”). 1295

4) A feedback mechanism between the preattentive vision 1296

first stage, the attentive vision second stage and the RS 1297

image preprocessing stage zero. Existing examples of 1298

these feedback loops are stratified topographic correction 1299

[15], stratified atmospheric correction [6]–[8], stratified 1300

image mosaicking, stratified image co-registration, and 1301

cloud/cloud-shadow masking [10]–[19]. 1302

This novel hybrid RS-IUS design [see Fig. 1(c)] is alter- 1303

native to the two-stage hybrid RS-IUS architecture proposed 1304
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by Shackelford and Davis [61], [62], whose first stage is a1305

nonadaptive statistical classifier, namely, a plug-in parametric1306

ML classifier (refer to Section II-B), and to state-of-the-art two-1307

stage noniterative GEOBIA system [see Fig. 1(b)] and three-1308

stage iterative GEOOIA system architectures [18], [19] (refer to1309

Section II-B), where: 1) the preattentive vision first stage con-1310

sists of an unlabeled data learning algorithm for image segmen-1311

tation [32]–[34], [55]–[60], which is inherently poorly-posed1312

[24] and is, therefore, semiautomatic and site-specific [45]; and1313

2) prior knowledge, if any, is injected exclusively at the attentive1314

vision second stage, if and only if this second stage is imple-1315

mented as a static image-object-based decision-tree classifier.1316

If no prior knowledge is employed at the GEOBIA/GEOOIA1317

attentive vision second stage, because it is implemented as1318

an inductive data learning classifier (e.g., an artificial neural1319

network classifier, a support vector machine classifier [41],1320

a nearest-neighbor classifier, an adaptive decision-tree clas-1321

sifier, and a radial basis function network for classification1322

[24], [29]), then the GEOBIA/GEOOIA system implementa-1323

tion is fully inductive at both first and second stages, which1324

means that the GEOBIA/GEOOIA system, due to its inher-1325

ent ill-posedness, is semiautomatic and site-specific in common1326

practice (refer to Section II-B). This line of reasoning justi-1327

fies the low productivity of many GEOBIA/GEOOIA systems1328

increasingly observed in the existing literature [56], [57], which1329

makes them inadequate to cope with large-scale RS image1330

databases.1331

B. Information/Knowledge Representation1332

The ATCOR-SPECL and SIAM software products are com-1333

pared in terms of: 1) input MS data requirements and 2) output1334

preclassification map’s legend.1335

1) Input MS Data Requirements Specification: The physi-1336

cal model-based ATCOR-SPECL and SIAM prior knowledge-1337

based preclassifiers require as input MS images radiometrically1338

calibrated into a physical unit of radiometric measure (refer to1339

Section II-B), in compliance with the Cal/Val requirements of1340

the QA4EO guidelines [2] (refer to Section III). In particular,1341

SIAM requires as input a MS image radiometrically calibrated1342

into TOARF or SURF or surface albedo values, where SURF is1343

a special case of TOARF in very clear sky conditions and flat1344

terrain conditions [12], [80], [89], i.e., TOARF ⊇ SURF, such1345

that TOARF ≈ SURF + atmospheric “noise.” It means that1346

an LC class-specific family of spectral signatures in TOARF1347

values forms a buffer area (envelope) which includes, as a spe-1348

cial case, the family of “ideal” (atmospheric noiseless) spec-1349

tral signatures in SURF values for that same LC class, see1350

Fig. 3.1351

In practice, SIAM is capable of recognizing surface types1352

in RS images by “looking through” atmospheric effects, like1353

the presence of haze and thin clouds [10]–[19]. This “look-1354

through” capability is due to the fact that the original spec-1355

tral prior knowledge base of the SIAM consists of a reference1356

dictionary of spectral signatures in TOARF values, where rela-1357

tion TOARF ≈ (SURF + atmosphericnoise) holds, whereas1358

traditional libraries of spectral signatures are in SURF val-1359

ues (measured at the ground level) exclusively, i.e., they are1360

Fig. 3. Land cover (LC)-class specific families of spectral signatures in TOA
reflectance (TOARF) values form buffer areas (envelopes) which include sur-
face reflectance (SURF) values as a special case in clear sky and flat terrain
conditions.
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F3:3
F3:4

atmospheric noise-free. Well-known examples of reference 1361

dictionaries of spectral signatures in (atmospheric noise-free) 1362

SURF values, such as the U.S. Geological Survey (USGS) 1363

mineral and vegetation spectral libraries, the Johns Hopkins 1364

University spectral library and the Jet Propulsion Laboratory 1365

mineral spectral library [6]–[9], can be found in the existing lit- 1366

erature, e.g., refer to [90] (p. 273) or in commercial software 1367

products [85]. Being provided with an (implicit) atmospheric 1368

noise model, the SIAM is expected to be robust to the presence 1369

of atmospheric effects. This means that SIAM does not con- 1370

sider preliminary atmospheric correction as mandatory because 1371

SIAM is knowledgeable on how to cope with RS data affected 1372

by atmospheric noise. 1373

Unlike the SIAM reference dictionary of spectral signatures 1374

in TOARF values, the ATCOR-SPECL rule set has been devel- 1375

oped starting from a prior knowledge base of reference spec- 1376

tral signatures in SURF values [6], [91], which means that the 1377

ATCOR-SPECL requires atmospheric correction as a manda- 1378

tory preprocessing stage. In general, atmospheric correction is 1379

inherently poorly-conditioned and, therefore, difficult to solve. 1380

In practice, atmospheric correction requires user-supervision 1381

to become better posed for numerical treatment, also refer to 1382

Fig. 2 [6]–[9]. Although it requires SURF values as input data, 1383

the ATCOR-SPECL software product is expected to be able to 1384

cope with (to look-through) input images in TOARF values, 1385

when atmospheric effects are those typical of clear or very clear 1386

sky conditions and topographic effects are negligible, such that 1387

TOARF ≈ SURF [89]. 1388

2) First-Stage Output Semisymbolic Information Primitives: 1389

In a community-agreed ontology of the 4-D world-through- 1390

time (refer to Section II-C), e.g., in an LC or LCC map’s legend 1391

(vocabulary), each ontological concept, e.g., each LC or LCC 1392

class name in the vocabulary, identifies a specific class of sur- 1393

face objects in the 4-D world-through-time featuring specific 1394

4-D spatio-temporal properties, together with spectral (color) 1395

properties. In general, LC class-specific spatio-temporal infor- 1396

mation dominates color information [26] (refer to Section I), 1397

which is the reason why achromatic vision can be very success- 1398

ful despite the absence of color information. 1399

In a preclassification map generated by the ATCOR-SPECL 1400

and SIAM software products from a single-date MS imagery, 1401
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the map legend consists of a discrete and finite set of semisym-1402

bolic informational primitives, called color names, color-based1403

inference categories, spectral-based semiconcepts, spectral cat-1404

egories or spectral endmembers, such as “vegetation,” “bare1405

soil or built-up,” and “water or shadow” [10]–[19], [26]. Each1406

spectral-based semiconcept can be mapped onto (matched with)1407

one or more LC classes whose spectral properties can over-1408

lap, irrespective of spatio-temporal properties capable of dis-1409

ambiguating these LC classes (refer to Section I). In other1410

words, spectral-based semiconcepts are single-date and pixel-1411

specific, i.e., they ignore the (dominant) 4-D spatio-temporal1412

information carried by LC classes, but exclusively investigate1413

the (dominated) color properties of LC classes. As a conse-1414

quence, the semantic meaning of a spectral-based semicon-1415

cept (e.g., “vegetation”) is: 1) superior to zero, where zero1416

is the semantic information conveyed by subsymbolic image1417

features, i.e., image-objects (image-polygons) or, vice versa,1418

image-contours (since image contour detection is the dual task1419

of image segmentation and they are both poorly-posed [10]–1420

[19]); and 2) equal or inferior to the semantic meaning of con-1421

cepts in the attentive vision second stage, i.e., LC classes, e.g.,1422

“needle-leaf forest,” belonging to a world model, namely, a1423

spatio-temporal ontology of the 4-D world-through-time.1424

Hence, in general, one spectral-based semiconcept can be1425

associated with none, one or many LC classes (refer to1426

Section I). For example, spectral category “strong vegeta-1427

tion” can be linked to LC classes “grassland” or “agricul-1428

tural field” or “forest,” just like “endmember fractions cannot1429

always be inverted to unique class names” ([26], p. 147).1430

Analogously, one LC class can encompass different color dis-1431

cretization levels, e.g., the LC class “deciduous forest” can1432

look like several tones of green equivalent to the SIAM’s1433

color quantization levels (spectral categories, color names)1434

“strong vegetation,” “average vegetation,” and “dark vegeta-1435

tion.” This means that, in general, a finite set of many-to-many1436

associations holds between spectral-based semiconcepts in the1437

(2-D) image domain and the reference LC classes belonging1438

to a spatio-temporal ontology of the 4-D world-through-time1439

[80]. Special cases of many-to-many inter-vocabulary rela-1440

tions are one-to-many, many-to-one and one-to-one relations.1441

Many-to-many inter-legend relations convey mapping informa-1442

tion because only all-to-all inter-legend “correct” entries do1443

not (like if every spectral category were mapped onto all LC1444

classes). For example, proposed in [80], an original Categor-1445

ical Variable Pair Similarity Index (CVPSI) provides an esti-1446

mated value, around 50%, of the degree of match between1447

the SIAM’s vocabulary and the LC class legend adopted by1448

the USGS 2006 National Land Cover Data map, also refer to1449

Fig. 1(c).1450

At a finer level of detail, SIAM delivers as output preclassifi-1451

cation maps at various levels of color discretization, namely,1452

fine, intermediate and coarse, where prior knowledge-based1453

color quantization levels depend on the spectral resolution1454

of the imaging sensor. At coarse granularity, SIAM’s spec-1455

tral categories belong to the following six parent spectral1456

categories (also called super-categories) or major spectral end-1457

members: 1) “Clouds,” 2) “Either snow or ice,” 3) “Either1458

water or shadow,” 4) “Vegetation,” equivalent to “either woody1459

vegetation or cropland or grassland (herbaceous vegetation) or 1460

(shrub and brush) rangeland,” 5) “Either bare soil or built-up,” 1461

and 6) “Outliers.” 1462

These SIAM super-categories can be compared with the four 1463

reference endmembers, namely, “green vegetation,” “nonpho- 1464

tosynthetic vegetation” (e.g., woody material on the ground 1465

together with dead or dying leaves), “soil,” and “shadow,” 1466

derived from laboratory surface reflectance spectra by Adams 1467

et al. in spectral mixture analysis [26]. 1468

Due to the presence of class “Outliers” (“Unknowns”), SIAM 1469

provides a mutually exclusive and totally exhaustive mapping 1470

of the input MS image into a discrete and finite vocabulary 1471

(legend) of color names, in line with the Congalton and Green 1472

requirements of a classification scheme [92]. It is noteworthy 1473

that, although the definition of a rejection rate is a well-known 1474

objective of any RS image classification system, e.g., refer to 1475

[26] and [90], RS image classifiers are often applied without 1476

any outlier detection strategy. 1477

Similar considerations hold for the ATCOR-SPECL preclas- 1478

sifier, refer to the ATCOR-SPECL legend shown in Table I. 1479

For example, to identify information primitives of an ATCOR- 1480

SPECL’s output map, the most recent ATCOR user guides, like 1481

[7] and [8], adopt the same term, “spectral categories,” origi- 1482

nally proposed in the SIAM literature to differentiate spectral- 1483

based semiconcepts from traditional LC classes [10]–[19]. 1484

According to [6]–[8], revised by Richter [91], the ATCOR- 1485

SPECL static decision-tree preclassifier consists of a sorted set 1486

of 19 spectral categories, including class “unknowns” (refer to 1487

Table I), in compliance with the Congalton and Green require- 1488

ments of a classification scheme [92]. 1489

C. Algorithm Design 1490

In [93], algorithm design is defined as “everything, but code.” 1491

This definition is recalled to point out that, although they belong 1492

to the same family of spectral knowledge-based preclassifiers 1493

(refer to Section IV-A), capable of transforming subsymbolic 1494

observational data into semisymbolic spectral categories (refer 1495

to Section IV-B), the ATCOR-SPECL and SIAM software 1496

products are totally different in terms of decision-tree design, 1497

comprising both structural and procedural knowledge (refer to 1498

Section II-E), irrespective of implementation. 1499

Sonka et al. describe aspects of image-object labeling 1500

through artificial intelligence in terms of syntactic pattern 1501

recognition ([30]; p. 285). In syntactic pattern recognition, the 1502

following considerations hold. 15031503

1) Elementary properties of the syntactically described 1504

objects from a given class are called primitives. Rela- 1505

tions between objects may be modeled as hierarchical 1506

relational structures. 1507

2) A class-specific description language is the set of all 1508

words that may be used to describe objects from one class, 1509

based on information primitives. For example, in written 1510

language, words of the language are constructed from let- 1511

ters and the set of all letters is called the alphabet. Letters 1512

are equivalent to information primitives and the words of 1513

the language are created from a collection of the alpha- 1514

bet’s letters. 1515
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TABLE IT1:1
SPECTRAL RULES AND PSEUDO-COLORS OF THE LEGEND ADOPTED BY THE ATCOR-SPECL PRIOR KNOWLEDGE-BASED PRECLASSIFIER [6], [91]T1:2

aThese expressions are optional and only used if b5 is present.
bDecision rule depends on presence of b5.
cDecision rule depends on presence of b7 [8].

3) A class-specific description grammar is the set of (sub-1516

stitution) rules that must be followed when words of1517

the class-specific description language are constructed1518

from letters. In other terms, each class consists only of1519

objects whose syntactic description is syntactically cor-1520

rect according to the particular class grammar. In the writ-1521

ten language example, although many words may be used1522

together, only those which follow the correct grammar1523

will form a coherent sentence.1524

4) Syntactic recognition is a process that looks for the class-1525

specific grammar that can generate the syntactic word or1526

phrase which describes an unknown object.1527

5) (Qualitative) syntactic object description should be used1528

whenever (quantitative) statistical feature description is1529

not able to represent the complexity of the target objects1530

and/or when there are inter-object relations, like part-of1531

or subset-of , difficult to learn from data by means of 1532

inductive data learning algorithms and that typically 1533

require significant human interaction to be identified. 1534

In the aforementioned terminology of syntactic pattern 1535

recognition systems, both the ATCOR-SPECL and SIAM 1536

deductive decision-tree preclassifiers are built upon a physical 1537

knowledge base of families (envelops) of real-world spectral 1538

signatures per surface type (e.g., “bare soil or built-up”), so that 1539

a sorted set of land surface type-specific grammars (hierarchical 1540

decision-tree) is constructed. 1541

In the SIAM software product, a spectral category-specific 1542

grammar is a combination of two information primitives capa- 1543

ble of describing the family of spectral signatures belonging 1544

to that surface type (see [11] for full details). The first spec- 1545

tral primitive is the so-called “spectral rule” whose aim is to 1546

describe the shape of a buffer zone (envelope) of a surface 1547
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type-specific family of spectral signatures in TOARF values,1548

irrespective of intensity (see Fig. 2). In particular, a spectral1549

rule defines a buffer zone of spectral tolerance, irrespective of1550

the absolute intensity of spectral bands, by means of relational1551

operators (<, >, ≤, ≥) between spectral bands. The second1552

spectral primitive is a spectral fuzzy set (e.g., low, medium, and1553

high) extracted from the intensity of scalar spectral variables,1554

namely, spectral bands or spectral indexes. To recapitulate, a1555

surface type-specific grammar is a combination of logical oper-1556

ators (AND, OR, NOT) with one or more spectral rules and/or1557

one or more spectral fuzzy sets, capable of modeling the shape1558

and the radiometric intensity of the surface type-specific MS1559

envelope of spectral signatures [11].1560

Unlike SIAM, where a spectral category-specific grammar1561

consists of a logical (AND, OR, NOT) combination of one or1562

more spectral rules and spectral fuzzy sets [11], each ATCOR-1563

SPECL’s category-specific grammar consists of a single spec-1564

tral rule per spectral category [6]–[8], see Table I.1565

Since the rule complexity of the SIAM expert system is supe-1566

rior to that of the ATCOR-SPECL, the former is expected to be1567

more accurate than the latter at the cost of a higher implemen-1568

tation complexity and computation time.1569

To conclude this section, let us point out the algorith-1570

mic difference between the ATCOR-SPECL and SIAM prior1571

knowledge-based preclassifiers and the popular spectral mix-1572

ture analysis for MS image classification [26]. In spectral1573

unmixing, the so-called (endmember) fraction categories are1574

detected by category-specific boundaries established sequen-1575

tially and in a particular order by an application developer in an1576

E-dimensional measurement space, where E is the total number1577

of reference endmembers, such that E is always less or equal1578

than the number of spectral bands minus 1. For example, in the1579

work of Adams et al. [26], dealing with 7-band Landsat images,1580

the free number of spectral endmembers E is set equal to four, to1581

allow the endmember space be rotated by the application devel-1582

oper on the computer screen to show any desired projection.1583

On the contrary, the prior knowledge-based preclassification1584

decision trees implemented in the ATCOR-SPECL and SIAM1585

software products consist of dozens of prior knowledge-based1586

category-specific grammars, whose inputs are spectral bands1587

and spectral indexes, but never reference endmembers. Rather,1588

the ATCOR-SPECL and SIAM expert systems, consisting of1589

prior knowledge-based color discretization levels equivalent to1590

data- and application-independent spectral endmembers, are1591

suitable for automatic preclassification of hyperspectral images1592

as a viable deductive alternative to state-of-the-art inductive1593

algorithms for spectral endmember learning from hyperspectral1594

data [104].1595

D. Implementation1596

The two ATCOR-SPECL and SIAM deductive decision-tree1597

preclassifiers are totally different at the abstraction level of1598

algorithm design (refer to Section IV-C), encompassing the list1599

of category-specific grammars (structural knowledge [55]) and1600

their order of presentation (procedural knowledge [55]). As a1601

consequence, they are completely different at the implementa-1602

tion level of analysis.1603

According to [6]–[8], revised by Richter [91], the static 1604

decision-tree preclassifier currently implemented in the 1605

ATCOR-SPECL secondary software product consists of a 1606

sorted set of 19 spectral category-specific grammars (refer 1607

to Table I) which includes class “unknowns” (refer to 1608

Section IV-B2). In terms of semantic granularity the ATCOR- 1609

SPECL is coarser than the SIAM (vice versa, the seman- 1610

tic cardinality of the former is inferior to that of the latter), 1611

which means that the implementation complexity of the latter’s 1612

decision tree is greater than that of the former (also refer to 1613

Section IV-C). 1614

To the best of these authors’ knowledge, the SIAM soft- 1615

ware product is the first semisymbolic expert system (refer to 1616

Section II-B), made available to the RS community for oper- 1617

ational use in a RS-IUS preattentive vision first stage (refer 1618

to Section II-C), capable of accomplishing multiscale image 1619

segmentation and multigranule image preclassification simul- 1620

taneously, automatically and in near real-time [10]–[19]. The 1621

extraction of a (subsymbolic) image segmentation map (where 1622

subsymbolic image-objects are identified as, say, segment 1, 1623

segment 2, etc.) from a binary or multilevel image (e.g., a the- 1624

matic map) can be accomplished by a traditional well-posed 1625

(deterministic) automatic (requiring no user interaction) two- 1626

pass connected-component image labeling algorithm, e.g., refer 1627

to [30] (p. 197). In practice, a unique (subsymbolic) segmen- 1628

tation map can be generated from a multilevel image, like a 1629

thematic map, but the contrary does not hold, e.g., different 1630

thematic maps can generate the same segmentation map, i.e., 1631

no unequivocal thematic map can be inferred from a segmen- 1632

tation map [18], [19]. In other words, a realistic alternative 1633

to the (e.g., eCognition’s) generation of an inherently poorly- 1634

conditioned, semiautomatic and site-specific multiscale seg- 1635

mentation map from an input subsymbolic MS image is the 1636

automatic well-posed generation of a multiscale segmentation 1637

map from a multilevel semisymbolic preclassification map, fea- 1638

turing several degrees of color discretization (e.g., fine, interme- 1639

diate and coarse), which has been automatically generated by a 1640

prior knowledge-based multigranule preclassifier from an input 1641

MS image. 1642

SIAM is implemented as an integrated system of six sub- 1643

systems, including one “master” Landsat-like subsystem plus 1644

five “slave” (down-scale) subsystems, whose spectral resolu- 1645

tion overlaps with Landsat’s, but is inferior to Landsat’s, refer to 1646

Table II. Noteworthy, the expression “Landsat-like MS image” 1647

adopted in this paper means: “an MS image whose spectral res- 1648

olution mimics the spectral domain of the 7 bands of the Land- 1649

sat family of imaging sensors,” i.e., a spectral resolution where 1650

bands visible blue (B), visible green (G), visible red (R), near 1651

infra-red (NIR), medium infra-red 1 (MIR1), medium infra-red 1652

2 (MIR2) and thermal infra-red (TIR) overlap (which does not 1653

mean coincide) with Landsat’s. 1654

The aforementioned SIAM’s six subsystems are summa- 1655

rized in Table II. The output spectral categories detected at the 1656

fine, intermediate and coarse color discretization levels by the 1657

SIAM’s six subsystems, described in Table II, are summarized 1658

in Table III. 1659

With regard to the SIAM implementation, in [11] enough 1660

information is provided for the crisp L-SIAM implementation 1661
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TABLE IIT2:1
LIST OF SPACEBORNE/AIRBORNE SENSORS ELIGIBLE FOR USE WITH THE SIAM SYSTEM OF SYSTEMST2:2
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TABLE IIT2:1
CONTINUEDT2:2

Acronyms: Y, Yes; N, No; C, Complete; I, Incomplete (radiometric calibration offset parameters are set to zero); (E)TM, (Enhanced) Thematic Mapperl;
B, Blue; G, Green; R, Red; NIR, Near Infra-Red; MIR, Medium Infra-Red; TIR, Thermal Infra-Red; SR, Spatial Resolution; and Pan, Panchromatic.
Adopted acronyms: SPOT, Satellite Pour l’Observation de la Terre; NOAA, National Oceanic and Atmospheric Administration (NOAA); AVHRR,
Advanced Very High Resolution Radiometer; AATSR, ENVISAT Advanced Along-Track Scanning Radiometer; Q, QuickBird; DMC, Disaster Monitor-
ing Constellation.
Column highlight color: Blue columns are related to visible channels typical of water and haze; Green column identify the NIR band, typical of vegetation;
Brown columns are related to MIR channels, characteristic of bare soils; and Red column: TIR channel, useful to detect fire.

to be reproduced. The down-scale S-SIAM, AV-SIAM and1662

Q-SIAM versions, generated from the “master” L-SIAM imple-1663

mentation (refer to Table II), are described in [12]–[14]. In [17],1664

the crisp-to-fuzzy SIAM transformation is explained in detail.1665

It is noteworthy that since its first 2006 release presented in1666

[11], L-SIAM has increased its number of output spectral cate-1667

gories from 46 to 96 (see Table II). This progressive, but slow,1668

increase in the number of spectral categories detected by the 1669

sequence of “master” L-SIAM implementations proposed to 1670

the RS literature in recent years shows that, in line with the- 1671

ory [45], [55] (refer to Section II-B), there is a slow “learning 1672

curve” in the development and fine-tuning of physical models, 1673

such as the ATCOR-SPECL and SIAM prior knowledge-based 1674

preclassifiers. 1675
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TABLE IIIT3:1
SIAM SYSTEM OF SIX SUBSYSTEMST3:2

∗Employed in sensor-independent bitemporal LCC detection.
Summary of input bands and output spectral categories reported in Table II.

V. CONCLUSION1676

In compliance with the QA4EO guidelines, the goal of this1677

paper is to provide a theoretical comparison and an experimen-1678

tal quality assessment of two operational (ready-for-use) expert1679

systems (prior knowledge-based nonadaptive decision trees) for1680

automatic near real-time preattentional classification and seg-1681

mentation of spaceborne/airborne MS images: the SIAM soft-1682

ware product and the SPECL secondary product of the ATCOR1683

commercial software toolbox. Rather than as standalone sys-1684

tems, these two alternative prior knowledge-based preclassifiers1685

in operating mode are eligible for use in the preattentive vision1686

first stage of a novel hybrid (combined deductive and inductive)1687

RS-IUS architecture, proposed to the RS community in recent1688

years [10]–[20].1689

For the sake of simplicity, this paper is split into two: Part1690

1—Theory, proposed herein, and Part 2—Experimental results,1691

already published elsewhere [20].1692

The original contribution of the present Part 1 is three-1693

fold. First, it provides Part 2 with an interdisciplinary1694

terminology and a theoretical background encompassing multi-1695

ple disciplines, like philosophical hermeneutics, machine learn-1696

ing, artificial intelligence, computer vision, human vision and1697

RS. Second, it highlights the relevant degrees of novelty of the1698

ATCOR-SPECL and SIAM prior knowledge-based preclassi-1699

fiers at the four levels of understanding of an information pro-1700

cessing system, namely, system design, knowledge/information1701

representation, algorithms and implementation. Third, it1702

requires that a minimum set of community-agreed complemen-1703

tary independent metrological/statistically-based QIOs must be1704

estimated from a RS-IUS in operating mode, to comply with1705

the principles of statistics, the QA4EO guidelines [2] and the1706

Committee on EO Satellites (CEOS) land product accuracy val-1707

idation criteria [3]. In particular, sample QIs of the ATCOR-1708

SPECL and SIAM prior knowledge-based preclassifiers, to1709

be collected in Part 2 of this paper, must be: 1) statistically1710

significant, i.e., provided with a degree of uncertainty in mea-1711

surement, and 2) statistically valid (consistent), i.e., representa-1712

tive of the entire population being sampled, which requires the1713

implementation of a probability sampling protocol [82], [83].1714

Noteworthy, these basic sample statistic requirements should 1715

not be considered either trivial or obvious. For example, they 1716

are almost never satisfied in the RS common practice. As a con- 1717

sequence, to date, QIOs of existing RS-IUSs, including map- 1718

ping accuracy, in addition to degree of automation, efficiency, 1719

robustness, scalability, timeliness and costs, remain largely 1720

unknown in statistical terms. 1721

The conclusion of the present Part 1 of this paper is that the 1722

proposed comparison of the ATCOR-SPECL and SIAM soft- 1723

ware products in operating mode, accomplished in Part 2, can 1724

be considered appropriate, well-timed and of potential interest 1725

to a wide portion of the RS community. 1726
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Quality Assessment of Preclassification Maps
Generated From Spaceborne/Airborne Multispectral
Images by the Satellite Image Automatic Mapper and

Atmospheric/Topographic Correction-Spectral
Classification Software Products: Part 1—Theory

1

2

3

4
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Andrea Baraldi and Michael L. Humber6

Abstract—In compliance with the Quality Assurance Frame-7
work for Earth Observation (QA4EO) guidelines, the goal of this8
paper is to provide a theoretical comparison and an experimen-9
tal quality assessment of two operational (ready-for-use) expert10
systems (prior knowledge-based nonadaptive decision trees) for11
automatic near real-time preattentional classification and seg-12
mentation of spaceborne/airborne multispectral (MS) images: the13
Satellite Image Automatic MapperTM (SIAMTM) software product14
and the Spectral Classification of surface reflectance signatures15
(SPECL) secondary product of the Atmospheric/Topographic16
CorrectionTM (ATCORTM) commercial software toolbox. For the17
sake of simplicity, this paper is split into two: Part 1—Theory,18
presented herein, and Part 2—Experimental results, already19
published elsewhere. The main theoretical contribution of the20
present Part 1 is threefold. First, it provides the published Part21
2 with an interdisciplinary terminology and a theoretical back-22
ground encompassing multiple disciplines, such as philosophi-23
cal hermeneutics, machine learning, artificial intelligence, com-24
puter vision, human vision, and remote sensing (RS). Second, it25
highlights the several degrees of novelty of the ATCOR-SPECL26
and SIAM deductive preliminary classifiers (preclassifiers) at27
the four levels of abstraction of an information processing sys-28
tem, namely, system design, knowledge/information representa-29
tion, algorithms, and implementation. Third, the present Part 130
requires the experimental Part 2 to collect a minimum set of com-31
plementary statistically independent metrological quality indica-32
tors (QIs) of operativeness (QIOs), in compliance with the QA4EO33
guidelines and the principles of statistics. In particular, sample34
QIs are required to be: 1) statistically significant, i.e., provided35
with a degree of uncertainty in measurement; and 2) statisti-36
cally valid (consistent), i.e., representative of the entire popula-37
tion being sampled, which requires the implementation of a prob-38
ability sampling protocol. Largely overlooked by the RS commu-39
nity, these sample QI requirements are almost never satisfied in40
the RS common practice. As a consequence, to date, QIOs of41
existing RS image understanding systems (RS-IUSs), including42
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thematic map accuracy, remain largely unknown in statistical 43
terms. The conclusion of the present Part 1 is that the pro- 44
posed comparison of the two alternative ATCOR-SPECL and 45
SIAM prior knowledge-based preclassifiers in operating mode, 46
accomplished in the Part 2, can be considered appropriate, well- 47
timed, and of potential interest to a large portion of the RS 48
readership. 49

Index Terms—Attentive vision, degree of uncertainty in mea- 50
surement, land cover classification taxonomy, preattentive vision, 51
preliminary classification, probability sampling, quality indicator 52
(QI), radiometric calibration, spectral category, spectral mixture 53
analysis. 54

I. INTRODUCTION 55

O NE VISIONARY goal of the remote sensing (RS) com- 56

munity is to develop information processing systems 57

capable of automatically transforming, without user interac- 58

tions, large-scale multisource multiresolution Earth observation 59

(EO) image databases into “operational, comprehensive, and 60

timely knowledge/information products” [1]–[3], at spatial 61

extents ranging from local to global [4]. The Quality Assurance 62

Framework for EO (QA4EO) guidelines [2], [3], conceived 63

by the international Group on EOs (GEO)-Committee on EO 64

Satellites (CEOS), comprise an extensive formulation of this 65

ambitious goal. For example, the ongoing GEO Global EO 66

System of Systems (GEOSS) implementation plan for years 67

2005–2015 incorporates the QA4EO guidelines to build a 68

global public infrastructure that allows “the provision of and 69

access to the Right (geospatial) Information, in the Right 70

Format, at the Right Time, to the Right People, to Make the 71

Right Decisions” [1]. 72

To pave the way for the design and implementation of 73

a novel generation of automatic RS image understanding 74

systems (RS-IUSs) in compliance with the QA4EO guide- 75

lines [2], [3], this paper provides a theoretical comparison 76

and an experimental quality assessment of two operational 77

(ready-for-use) expert systems (prior knowledge-based non- 78

adaptive decision trees) for automatic near real-time prelimi- 79

nary classification (preclassification [5]) and segmentation of 80

spaceborne/airborne EO multispectral (MS) images: the spec- 81

tral classification of surface reflectance signatures (SPECL) 82

1939-1404 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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software module and the Satellite Image Automatic Map-83

per (SIAM) software product. The former is implemented as84

a nonvalidated secondary product within the popular Atmo-85

spheric/Topographic Correction (ATCOR)-2/3/4 commercial86

software toolbox [6]–[9]. The latter has been presented in recent87

years in the RS literature [10]–[19], where enough informa-88

tion is provided for the SIAM implementation to be reproduced89

[11], [17].90

Rather than being considered as standalone software prod-91

ucts, the two alternative ATCOR-SPECL and SIAM expert92

systems for automatic near real-time preclassification and seg-93

mentation of multisource MS images are eligible for use in the94

preattentive vision first stage of a novel generation of automatic95

hybrid (combined deductive and inductive) RS-IUS implemen-96

tations [10]–[20].97

For the sake of simplicity, this paper is split into two: the98

Part 1—Theory, presented herein, and the Part 2—Experi-99

mental results, already published elsewhere [20]. The main the-100

oretical contribution of the present Part 1 is threefold. First, it101

provides the Part 2 with an interdisciplinary terminology and102

a theoretical background encompassing multiple disciplines,103

such as philosophical hermeneutics, machine learning, artificial104

intelligence, computer vision, human vision, and RS. Hence,105

Part 1 is provided with a relevant survey value. Second, it high-106

lights the relevant degrees of novelty of the ATCOR-SPECL107

and SIAM prior knowledge-based preclassifiers at the four lev-108

els of abstraction of an information processing system, namely,109

system design, knowledge/information representation, algo-110

rithms, and implementation. Third, the present Part 1 requires111

the experimental Part 2 to collect a minimum set of complemen-112

tary independent metrological/statistically-based quality indi-113

cators (QIs) of operativeness (QIOs), in compliance with the114

QA4EO guidelines and the principles of statistics. In particu-115

lar, sample QIs are required to be: 1) statistically significant,116

i.e., provided with a degree of uncertainty in measurement117

and 2) statistically valid (consistent), i.e., representative of the118

entire population being sampled, which requires the imple-119

mentation of a probability sampling protocol. Largely over-120

looked by the RS community, these sample QI requirements121

are almost never satisfied in the RS common practice. As a122

consequence, to date, QIOs of existing RS-IUSs, including123

thematic map accuracy, remain largely unknown in statistical124

terms. The conclusion of the present Part 1 is that the pro-125

posed comparison of the two alternative ATCOR-SPECL and126

SIAM prior knowledge-based preclassifiers in operating mode,127

accomplished in the Part 2, can be considered appropriate, well-128

timed, and of potential interest to a large portion of the RS129

readership.130

The rest of the present Part 1 is organized as follows.131

Section II presents an interdisciplinary terminology and a132

theoretical background useful for the understanding of the133

experimental Part 2. Problem recognition and opportunity iden-134

tification are discussed in Section III. In Section IV, the two135

alternative ATCOR-SPECL and SIAM preclassification expert136

systems are compared at the four levels of abstraction of an137

information processing system. Conclusion of this theoretical138

contribution is reported in Section V.139

II. INTERDISCIPLINARY TERMINOLOGY AND PROBLEM 140

BACKGROUND 141

According to Section I, the goal of the experimental 142

Part 2 of this paper, published elsewhere [20], is to pur- 143

sue a statistically significant and statistically consistent qual- 144

ity assessment of the ATCOR-SPECL and SIAM deductive 145

preclassification software products in operating mode, eligi- 146

ble for use in the preattentive vision first stage of a hybrid 147

RS-IUS architecture [20]. Introduced by Section I, terms 148

such as “statistically significant” QI, “statistically consistent” 149

probability sampling, “QIOs of an information processing 150

system in operating mode,” “quality assessment of a pre- 151

classification map,” “deductive preclassification,” “preatten- 152

tive/attentive vision,” “deductive/inductive/hybrid inference,” 153

and “data/information/knowledge” are defined explicitly and 154

unambiguously in this section, based on a multidisciplinary 155

approach. To be employed in the rest of the present Part 1 and in 156

the Part 2, the proposed interdisciplinary terminology provides 157

this paper with a significant survey value. 158

A. Quantitative and Qualitative Concepts of Information 159

Philosophical hermeneutics refers to the theory of knowledge 160

and the practice, art or science of (text) interpretation and expla- 161

nation. According to philosophical hermeneutics [21], [22], the 162

impact upon computer science, information technology (IT), 163

artificial intelligence and machine learning of existing different 164

quantitative and qualitative concepts of information, embedded 165

in more or less explicit information theories, appears largely 166

underestimated. This means that fundamental questions—like: 167

When do (subsymbolic) data become (symbolic) information 168

[23]? When does vision go symbolic [5]? Should traditional 169

information retrieval be called document retrieval [21], [22]?— 170

appear largely overlooked and, as a consequence, far from being 171

answered. 172

In accordance with philosophical hermeneutics, the funda- 173

mental concepts of numerical data, quantitative information, 174

qualitative information and knowledge are defined hereafter 175

[21], [22]. 176176

1) Numerical data, sensory data, quantitative data, observa- 177

tional data are considered synonyms of “true facts” [24]. 178

Sensory data are provided, per se, with no semantics at 179

all [23], i.e., observational data are always subsymbolic 180

(unlabeled). 181

2) Subsymbolic, quantitative, unequivocal “information-as- 182

thing” is, according to the Shannon theory of commu- 183

nication [25], an object or a thing (e.g., number of bits 184

and number of words in a document) irrespective of its 185

meaning. This makes the information exchange between 186

a sender and a receiver unequivocal (context indepen- 187

dent) and, therefore, easier to deal with than when mean- 188

ing is involved in the communication process [18], [19], 189

[21], [22]. 190

3) Symbolic, qualitative, equivocal “information-as-(an 191

intepretation)process,” i.e., information as interpreted 192

data, is, in the words of philosophical hermeneutics, sym- 193

bolic information always related to “a receiver’s beliefs, 194
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desires and background knowledge” [21], [22]: the mean-195

ing of a message is always context-dependent, depending196

on (changing with) the inquirer (user, knower, receiver,197

cognitive agent) in charge of the message interpretation.198

For example, Adams et al. underline that land cover199

(LC) “class names are selected to have significance to200

an observer in the field and in the context of a given201

study” [26].202

4) “Knowledge” is strictly related to the concept of203

“information-as-(an intepretation)process,” such that204

“there is no knowledge without both an object of205

knowledge and a knowing subject.” [21], [22]. Hence,206

“information-as-(an interpretation)process” and “knowl-207

edge” can be considered as synonyms. A well-known208

example of equivocal (subjective, context-dependent)209

interpretation process is the so-called “fusion of ontolo-210

gies” or “fusion of thematic map legends” [21], [22],211

occurring when two thematic maps of the same geo-212

graphic area, but featuring different map legends, must be213

compared. In other words, it is reasonable to expect that214

two independent domain experts required to harmonize215

(reconcile) two thematic map legends may fulfill their216

(inherently equivocal) interpretation processes with dif-217

ferent inter-vocabulary mapping functions.218

Noteworthy, the complementary concepts of information-as-219

(an interpretation)process and information-as-thing apply one-220

to-one to the dual concepts of (equivocal, qualitative, symbolic)221

categorical (nominal) variables and (unequivocal, quantitative,222

subsymbolic) continuous/discrete scalar/vector variables (e.g.,223

biophysical variables, such as leaf area index and biomass), to224

be estimated from sensory data [18], [19], [47]. To conclude,225

the following terms can be considered as nontrivial synonyms.226226

1) Symbolic, semantic, cognitive, categorical, ordinal, nom-227

inal, qualitative, subjective, equivocal. For example, (dis-228

crete and symbolic) categorical variable.229

2) Subsymbolic, sensory, numerical, nonsemantic, quantita-230

tive, objective, unequivocal. For example, (subsymbolic)231

continuous or discrete sensory variable.232

For example, according to the terminology proposed herein,233

the two ATCOR-SPECL and SIAM prior knowledge-based pre-234

classifiers, to be assessed and compared in the Part 2 [20],235

automatically transform (subsymbolic quantitative) MS images236

(2-D data) into a (symbolic qualitative) categorical variable,237

whose values belong to a discrete and finite legend of (seman-238

tic) concepts.239

B. Inductive, Deductive, and Hybrid Inference Systems, Either240

Subsymbolic or Symbolic, Investigated by the Machine Learn-241

ing, Artificial Intelligence, and RS Disciplines242

This section introduces expressions like inductive, deductive243

and hybrid inference system, either subsymbolic or symbolic244

(refer to Section II-A), depending on whether the inference245

system deals with, respectively, subsymbolic variables, either246

continuous or discrete, or (symbolic and discrete) categorical247

(nominal) variables. The specialization capability of this termi-248

nology is far superior to that of expressions traditionally used or249

misused by the RS community, such as supervised or unsuper- 250

vised data learning. For example, an expression such as “unsu- 251

pervised classification” is widely adopted by the RS community 252

to mean either “unsupervised data clustering” or “automatic 253

classification,” e.g., see [27] and [28]. Unfortunately, according 254

to the machine learning literature, this expression is a typical 255

contradiction of terms because: 1) “unsupervised,” e.g., unsu- 256

pervised data, refers to “unlabeled,” e.g., unlabeled data, rather 257

than “without user’s supervision,” i.e., “unsupervised” does not 258

mean “automatic” and 2) sensory data are provided with no 259

semantics at all (refer to Section II-A), i.e., observational data 260

are always, per se, unsupervised (unlabeled), while, by defini- 261

tion, classified data are always supervised (labeled) data, where 262

data labels belong to a discrete and finite taxonomy of (seman- 263

tic) concepts [23], [24], [29]. 264

Hereafter, the concepts of inductive, deductive and hybrid 265

inference system, either subsymbolic or symbolic, are dis- 266

cussed in detail. 267

There are two classical types of inference (learning), known 268

as: 1) induction, progressing from particular cases (e.g., true 269

facts and training data samples) to a general estimated depen- 270

dency or model, and 2) deduction, progressing from a general 271

model (e.g., a physical model-based equation) to particular 272

cases (e.g., output values) [24]. Inductive inference is the basis 273

of the machine learning discipline [24], [29]. Deductive infer- 274

ence is the main focus of interest of traditional artificial intelli- 275

gence [24], [29]–[31]. 276

The following terms are nontrivial synonyms of deductive 277

inference and become interchangeable in the rest of this work 278

[18], [19]: (subsymbolic or symbolic) deductive inference, 279

deductive learning, top-down inference system, coarse-to-fine 280

inference, driven-by-knowledge inference, learning-by-rules, 281

physical model, prior knowledge-based decision system, rule- 282

based system, expert system, syntactic inference, and syntactic 283

pattern recognition. 284

The following terms are nontrivial synonyms of inductive 285

inference [18], [19]: (subsymbolic or symbolic) inductive infer- 286

ence, inductive learning from either labeled (supervised) or 287

unlabeled (unsupervised) data, bottom-up inference, fine-to- 288

coarse inference, driven-without-knowledge (knowledge-free) 289

inference, learning-from-examples, statistical model. 290

For the sake of completeness, some well-known examples 291

of inductive and deductive inference systems, presented in the 292

computer vision, machine learning and/or RS literature, are 293

listed as follows. 294294

1) In the computer vision literature, image segmentation 295

algorithms are typical examples of subsymbolic inductive 296

inference systems for unlabeled data learning [32]–[36]. 297

2) In the machine learning literature, unsupervised (unla- 298

beled) data learning algorithms are either vector data 299

quantizers (e.g., the well-known k-means data quantiza- 300

tion algorithm, improperly called k-means data clustering 301

algorithm), probability density function estimators or 302

unlabeled data clustering algorithms [15], [24], [29], 303

[37]–[40]. Inductive supervised (labeled) data learning 304

systems are either: 1) symbolic (classifiers), e.g., artifi- 305

cial neural network classifiers, support vector machine 306
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classifiers [41], nearest-neighbor classifiers, adaptive307

decision-tree classifiers, and radial basis function net-308

works for classification [24], [29] or 2) subsymbolic, suit-309

able for function regression, e.g., radial basis function310

networks for function regression [24], [29].311

3) In the RS literature [24], [29], a typical example of sub-312

symbolic inductive inference system is principal compo-313

nent analysis; a popular example of subsymbolic deduc-314

tive inference system is tasseled cap transformation.315

The machine learning literature clearly acknowledges that316

all inductive data learning problems are inherently ill-posed in317

the Hadamard sense [42]. According to Hadamard, mathemat-318

ical or statistical models of physical phenomena are defined as319

well-posed (respectively, ill-posed) when they satisfy (respec-320

tively, do not satisfy at least one of) the following requirements321

[42]: 1) a solution exists, 2) the solution is unique, and 3) the322

solution’s behavior hardly changes when there is a slight change323

in the initial condition. In the words of Mulier and Cherkassky:324

“induction amounts to forming generalizations from particu-325

lar true facts. This is an inherently difficult (ill-posed) prob-326

lem and its solution requires a priori knowledge in addition327

to data” [24] (p. 39). Hence, to become better posed (con-328

ditioned) for numerical treatment, any inductive data learning329

algorithm requires an a priori knowledge base (deductive infer-330

ence approach) to avoid starting from scratch when looking at331

input sensory data [10]–[19]. This conclusion complies with332

the well-known statistical principle of stratification, equivalent333

to the divide-and-conquer (dividi et impera) problem solving334

approach [29], to be enforced upon statistical systems. The335

advantage of a stratified statistical system is that it “will always336

achieve greater precision (than its nonstratified counterpart),337

provided that the strata have been chosen so that members of338

the same stratum are as similar as possible in respect of the339

characteristic of interest” [43].340

On one hand, well-known limitations of statistical (bottom-341

up inference) systems in common practice are that they are342

inherently semiautomatic and site-specific [18], [45]. On the343

other hand, typical drawbacks of physical (top-down inference)344

models are that [18]: 1) in general, it takes a long time for345

human experts to learn physical laws of the real-world-through-346

time and tune physical models, 2) physical models suffer from347

an intrinsic lack of flexibility, i.e., decision rules do not adapt to348

changes in the input data format and users’ needs, hence their349

knowledge base may soon become obsolete, and 3) physical350

models suffer from an intrinsic lack of scalability, in particular351

rule-based systems are impractical for complex problems [30].352

There is an ongoing multidisciplinary debate about a claimed353

inadequacy of scientific disciplines such as computer vision,354

artificial intelligence, and machine learning, whose origins date355

back to the late 1950s, in the provision of operational solu-356

tions to their ambitious cognitive objectives [23], [44]. This357

claim may mean that, if they are not combined, inductive and358

deductive inference approaches show intrinsic weaknesses in359

operational use, irrespective of implementation [18]. As a con-360

sequence, to outperform existing deductive and inductive infer-361

ence systems whose drawbacks are well known, a novel trend362

in recent literature aims at developing hybrid inference sys-363

tems for retrieval of subsymbolic variables (e.g., leaf area index,364

LAI) or symbolic variables (e.g., LC and LC change (LCC) 365

classes) from sensory data (e.g., optical imagery) [45]–[48]. 366

By definition, hybrid inference systems, either subsymbolic or 367

symbolic, combine both statistical and physical models to take 368

advantage of the unique features of each and overcome their 369

shortcomings [46], [47]. For example, in the foreword of the 370

seminal book by Nagao and Matsuyama [47], published in 371

1980 (oldies, but goldies), it is written: “The work described 372

here is a deep unification and synthesis of the two fundamental 373

approaches to pattern recognition: numerical (also known as 374

‘statistical’) and structural (‘linguistic,’ ‘syntactic’).” 375

Noteworthy, physical model-based inference systems as well 376

as hybrid models require as input observational data pro- 377

vided with a physical meaning, i.e., sensory data provided 378

with a physical unit of measure, e.g., RS imagery radiometri- 379

cally calibrated into top-of-atmosphere (TOA) radiance or TOA 380

reflectance values [10]. On the other hand, statistical systems 381

can be input with any sort of numerical data, irrespective of 382

their physical meaning, if any. This is tantamount to saying that, 383

whereas dimensionless sensory data, provided with no physical 384

unit of measure, are eligible for use as input to statistical mod- 385

els exclusively, on the contrary, numerical data provided with 386

a physical unit of measure can be input to both physical and 387

statistical models. 388

For the sake of completeness, let us review some additional 389

examples of inductive, deductive and hybrid RS-IUS instances 390

proposed in recent years in the RS literature. A large family 391

of one-stage one-pass (noniterative) prior knowledge-based 392

(static, nonadaptive to input data) decision-tree (pre)classifiers 393

(symbolic expert systems) has been proposed, starting from 394

the 1970 s, as a legacy of traditional artificial intelligence [49], 395

[50], [51]–[54]. For example, in [50] (p. 4176), a one-stage 396

physical model-based RS-IUS, see Fig. 1(a), consists of a 397

hierarchy of five pixel-specific prior knowledge-based spectral 398

rules proposed to detect six land surface types, namely, “vege- 399

tated lands,” “nonvegetated lands,” “snow/ice,” “water bodies,” 400

“clouds,” and “cloud shadows,” in radiometrically calibrated 401

500 m resolution moderate resolution imaging spectroradiome- 402

ter (MODIS) images. In 30 m resolution Landsat images, 403

a one-stage deductive RS-IUS, consisting of a hierarchy of 404

per-pixel prior knowledge-based spectral rules, detects LC 405

classes “water,” “coniferous forest,” “deciduous forest,” “agri- 406

cultural areas,” “grassland,” “urban areas,” and “roads” [52]. 407

In recent years, prior knowledge-based decision-tree classifiers 408

are employed per image-object at an attentive vision second 409

stage, in series with an inductive image segmentation first 410

stage, like in the popular two-stage noniterative Geographic 411

Object-Based Image Analysis (GEOBIA) system architecture, 412

see Fig. 1(b), and in the three-stage iterative Geographic 413

Object-Observation Image Analysis (GEOOIA) system design 414

[32]–[34], [55]–[60]. The former is a special case of the 415

latter, i.e., GEOBIA ⊆ GEOOIA, where both GEOBIA and 416

GEOOIA share a statistical model-based subsymbolic image 417

segmentation first stage. Alternative to GEOBIA/GEOOIA 418

systems, an original two-stage hybrid RS-IUS architecture is 419

proposed by Shackelford and Davis [61], [62]. It comprises an 420

image-object-based expert system for second-stage decision- 421

tree classification in series with a first-stage pixel-based 422
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Fig. 1. (a) Top: Traditional one-stage RS-IUS architecture. 100% of the semantic information gap from sensory data to LC classes is filled up in one step.
(b) Middle. Traditional two-stage noniterative GEOBIA design. 100% of the semantic information gap from sensory data to LC classes is filled up in the segment-
based image classification second stage, in series with the subsymbolic inductive-data-learning image segmentation first stage. (c) Bottom. Novel three-stage hybrid
RS-IUS design. Approximately, 50% of the semantic information gap from sensory data to LC classes is filled up in the automatic deductive preclassification first
stage [80].

F1:1
F1:2
F1:3
F1:4
F1:5

statistical preclassifier, implemented as a traditional plug-in423

(nonadaptive to input data) pixel-based maximum likelihood424

(ML) classifier. In this scenario, the ATCOR-SPECL [6]–[9]425

and SIAM [10]–[19] software products, to be assessed and426

compared in the Part 2 of this paper [20], are, to the best427

of these authors’ knowledge, the first examples of prior428

knowledge-based decision-tree preclassifiers in operating429

mode eligible for use at the preattentive vision first stage of430

a hybrid RS-IUS architecture, see Fig. 1(c). Noteworthy, the 431

hybrid RS-IUS architecture shown in Fig. 1(c) is alternative 432

to both the two-stage hybrid RS-IUS architecture proposed by 433

Shackelford and Davis [61], [62] and the GEOBIA/GEOOIA 434

system architecture shown in Fig. 1(b). To summarize, whereas 435

prior knowledge-based decision-tree classifiers have been 436

traditionally employed in one-stage RS-IUSs [see Fig. 1(a)] 437

or at the attentive vision second stage of two-stage hybrid 438
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RS-IUSs, whose first stage consists of either a subsymbolic439

statistical system, like in GEOBIA/GEOOIA systems, see440

Fig. 1(b), or a semisymbolic plug-in statistical system, like441

in the Shackelford and Davis RS-IUS architecture [61], [62],442

the degree of novelty of the ATCOR-SPECL and SIAM prior443

knowledge-based preclassifiers is to provide a multistage444

hybrid RS-IUS architecture with an injection of prior knowl-445

edge right at the level of the preattentive vision first stage446

[10]–[19], see Fig. 1(c) [20]. Additional examples of hybrid447

inference systems for RS image classification are those pro-448

posed by Matsuyama et al. in [46], [47], as well as the popular449

Landsat-7 Enhanced Thematic Mapper (ETM) + Automated450

Cloud-Cover Assessment (ACCA) algorithm. In the ACCA451

algorithm, first, a per-pixel (context-independent) physical452

model-based decision rule set is applied to a radiometrically453

calibrated Landsat image to detect pixels considered as cloud454

candidates. Second, to remove small holes in cloud segments,455

a bottom-up (data-driven) context-sensitive aggregation and456

filling algorithm is applied in the (2-D) image domain to pixels457

considered as noncloud candidates at step one [63] (p. 1183).458

C. Human and Computer Vision459

In the words of Iqbal and Aggarwal: “frequently, no claim460

is made about the pertinence or adequacy of the digital mod-461

els as embodied by computer algorithms to the proper model462

of human visual perception. . . This enigmatic situation arises463

because research and development in computer vision is often464

considered quite separate from research into the functioning of465

human vision. A fact that is generally ignored is that biologi-466

cal vision is currently the only measure of the incompleteness467

of the current stage of computer vision, and illustrates that the468

problem is still open to solution” [64].469

According to this quote, human vision should be consid-470

ered the gold standard (reference baseline) of the computer471

vision discipline, which incorporates RS image understand-472

ing as a special case. Unfortunately, the great majority of the473

RS community does not appear to consider biological vision474

as a reference baseline. In addition, relationships between475

the RS and computer vision communities appear weak too,476

the latter community considering the expertise of the former477

not very advanced, because traditional RS image understand-478

ing is pixel-based, where spatial (contextual) information is479

ignored. As a result of this lack of interdisciplinary commu-480

nication, the RS community tends to underestimate the com-481

plexity of vision in general and RS image understanding in482

particular.483

In the rest of this paper, including the experimental Part 2484

[20], RS image understanding (classification, mapping) is con-485

ceived as a subset of computer vision, where human vision486

is adopted as a reference standard, to compare the ATCOR-487

SPECL and SIAM software products as alternative implemen-488

tations of a prior knowledge-based preclassification first stage489

in a hybrid RS-IUS architecture [10]–[20] (refer to Section I).490

Hence, this paper complies with the aforementioned thesis by491

Iqbal and Aggarwal [64], but is in contrast with the majority492

of the RS literature, where links to computer vision and human493

vision disciplines are absent.494

In this section, basic principles of human vision, which com- 495

prises a preattentive vision first stage and an attentive vision 496

second stage, are briefly described [5], [46]. 497

1) Goal of a (Biological or Artificial) Vision System: 498

A (human or computer) visual system is a (biological or arti- 499

ficial) IUS suitable to provide plausible (multiple) symbolic 500

description(s) of a 3-D scene, located in the (4-D) world- 501

through-time, as it is observed by a (2-D) imaging sensor at a 502

given acquisition time. The information gap between a subsym- 503

bolic (2-D) image and a symbolic (3-D) scene can be filled by 504

conjectures that map subsymbolic image features (e.g., image- 505

objects or, vice versa, image-contours) into symbolic classes 506

of 4-D objects-through-time (4-D concepts-through-time, e.g., 507

buildings and roads) belonging to the so-called preexisting 508

(4-D) world model [46], [65]. A world model, also called world 509

ontology, can be graphically represented as a semantic net- 510

work consisting of: 1) classes of 4-D objects-through-time as 511

nodes and 2) inter-concept relations as arcs between nodes, 512

namely: (I) spatial relations, either topological (e.g., adjacency 513

and inclusion) or nontopological (e.g., distance and in-between 514

angle), (II) temporal relations and/or (III) nonspatiotemporal 515

relations (e.g., part-of and subset-of) [18], [19], [46], [55], [66]. 516

In terms of computational theory, the problem of image 517

understanding (vision), from subsymbolic (2-D) imagery to 518

symbolic description(s) of the (3-D) scene of the (4-D) world 519

observed at a given time, belongs to the class of symbolic induc- 520

tive data learning problems [24] (from sensory data to models, 521

refer to Section II-B). As such, it is inherently ill-posed in the 522

Hadamard sense [42] and, consequently, very difficult to solve, 523

due to the combination of the two following qualitative and 524

quantitative information gaps to be filled (refer to Section II-A) 525

[18], [19], [46]: 1) The well-known (semantic) information gap 526

between continuous subsymbolic sensory sensations and dis- 527

crete symbolic (semantic, linguistic) persistent (stable) percepts 528

(concepts), which has been thoroughly investigated in both phi- 529

losophy and psychophysical studies of perception. In practice, 530

“we are always seeing objects we have never seen before at 531

the sensation level, while we perceive familiar objects every- 532

where at the perception level” [46]. 2) The intrinsic insuffi- 533

ciency of image features, namely, 0-D points, 1-D lines (e.g., 534

contours) and 2-D polygons (image-objects), in the reconstruc- 535

tion of an observed (3-D) scene, due to data dimensionality 536

reduction which causes, e.g., occlusion phenomena. 537

2) Processing Elements and Modular Structure of the 538

Human Visual System: In mammals, a vision system accom- 539

plishes a preattentive vision first phase and an attentive vision 540

second phase, summarized as follows. 541541

1) Preattentive (low-level) vision extracts picture primitives 542

based on general-purpose image processing criteria inde- 543

pendent of the scene under analysis. It acts in paral- 544

lel on the entire image as a rapid (< 50 ms) scanning 545

system to detect variations in simple visual properties 546

[67]–[69]. In the primary visual cortex (PVC, or area 17 547

of the visual cortex, or V1), single opponent and dou- 548

ble opponent color cells are called Type I and Type II, 549

respectively, by Wiesel and Hubel [72] (examples of Type 550

I and Type II receptive fields can be found in [73]). 551

Receptive fields that are spatially opponent, but not color 552
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opponent, are called Type III [73]. Layers of PVC are553

vertically organized into blobs and interblob areas. The554

same single-opponent cells are thought to provide, in par-555

allel, color contrast information to cells in the blobs, and556

achromatic contrast information to cells in the interblob557

regions. The visual cells heavily concentrated in cortical558

blobs are double-opponent cells. In the interblob areas,559

cortical cells belong to the hierarchy composed of simple-560

and complex-cell categories. A major difference between561

simple- and complex-cells is that the former are quasilin-562

ear while the latter exhibit a clear second-order squaring563

nonlinearity [98]. A regular sequence of hypercolumns564

is repeated over the surface of PVC, each hypercolumn565

occupying an area of about 1 mm2. This repeating orga-566

nization constitutes the modular structure of PVC, such567

that every axis of orientation, whose gradations of ori-568

entation are around 10◦ [67] to 15◦ [70], [71], is repre-569

sented for every retinal position at at least four spatial570

scales of analysis [99]. In each hypercolumn, there are571

end-stopped cells, in addition to simple- and complex-572

cells [100]. While simple- and complex-cells are thought573

to accomplish line and edge extraction, end-stopped cells574

respond to image singularities, such as line/edge cross-575

ings, vertices of image-objects, and end-points of line seg-576

ments [101].577

2) Attentive (high-level) vision operates as a careful scan-578

ning system employing a focus of attention mechanism579

based on end-stopped cells [100], [101]. Scene sub-580

sets, corresponding to a narrow aperture of attention, are581

observed in sequence and each step is examined quickly582

(20–80 ms) [67]–[69].583

It is worth noting that human achromatic vision is nearly584

as effective as human chromatic vision in detecting forms and585

accomplishing image interpretation. On an a posteriori basis,586

this observation has two important implications. First, in the587

real 4-D world-through-time, color information of 4-D objects588

(e.g., cars and trees) is dominated by their 4-D spatiotemporal589

information, as properly stated by Adams et al. [26]. Second,590

the same consideration holds for a (2-D) image representation591

of the (4-D) world-through-time, where 2-D spatial (contex-592

tual) information dominates color information. To cope with the593

dominant 2-D spatial information in a (2-D) image, the human594

visual system employs modular arrays of multiscale 2-D local595

filters capable of providing a topology-preserving mapping of a596

(2-D) image [67]–[71], [74].597

3) When Does Vision Go Symbolic? Inference Mechanisms598

in Human Vision: In the literature of psychophysics, accord-599

ing to Vecera and Farah, preattentive image segmentation600

is an interactive (hybrid) inference process “in which top-601

down knowledge (e.g., familiarity) partly guides lower level602

processing” ([75]; p. 1294). That is to say, human vision is a603

symbolic hybrid (combined deductive and inductive) inference604

system where (symbolic) prior knowledge is injected into the605

sensory data interpretation process starting from the preatten-606

tive vision first stage [18], [19].607

In the computer vision literature, according to Marr608

“(human) vision goes symbolic almost immediately, right at the609

level of (second-order derivative’s) zero-crossing (raw primal610

sketch). . . without loss of information” ([5]; p. 343), which 611

is consistent with the aforementioned quote by Vecera and 612

Farah [75]. Unfortunately, in [5], the computer vision system 613

proposed by Marr is unable to satisfy either one of the two 614

aforementioned vision system requirements inspired by human 615

vision. In particular, the Marr preattentive vision first stage is 616

subsymbolic. It is split into a subsymbolic raw primal sketch 617

and a subsymbolic full primal sketch, where: (I) the raw pri- 618

mal sketch consists of a hierarchy of subsymbolic primitives, 619

namely, multiscale zero-crossings ([5]; pp. 54–59), followed 620

by zero-crossing segments ([5]; p. 60) and level 1 image- 621

tokens, comprising blobs (closed contours), edges, bars and 622

discontinuities (terminations) ([5]; pp. 70–73), and (II) a full 623

primal sketch, equivalent to perceptual grouping [75]–[77], 624

where level 2 boundaries (e.g., texture boundaries) are detected 625

between groups of tokens ([5]; pp. 53, 91–95). Marr never pro- 626

vided implementation details of his proposed subsymbolic raw 627

primal sketch or subsymbolic full primal sketch. This apparent 628

contradiction between Marr’s computer vision system design 629

(computational theory) specifications and his own implementa- 630

tion is not at all surprising. It accounts in general for the cus- 631

tomary distinction between a model and the algorithm used to 632

identify it [18]. 633

4) Possible Relationships Between a Human Vision System 634

and the ATCOR-SPECL and SIAM Prior Knowledge-Based 635

Preclassifiers: Possible relationships between a human vision 636

system, as it is described in Sections II-C1–II-C3, and the 637

ATCOR-SPECL and SIAM prior knowledge-based preclassi- 638

fiers, to be investigated in the Part 2 of this paper as alternative 639

implementations of a preattentive vision first stage in a hybrid 640

RS-IUS architecture [20], are highlighted as follows. 641641

1) At the abstraction level of computational theory (system 642

design), the hybrid RS-IUS architecture proposed in this 643

paper is consistent with a human vision system conceived 644

as a symbolic hybrid inference system where symbolic 645

prior knowledge is injected right at the preattentive vision 646

first stage (see Section II-C3). 647

2) In (2-D) images of the (4-D) world-through-time, 2-D 648

spatial (contextual) information dominates color informa- 649

tion (see Section II-C2). In traditional pixel-based RS- 650

IUSs, the input data set is a 1-D sequence of pixel-specific 651

data vectors where 2-D space (contextual) information is 652

ignored. A pixel-based RS-IUS can perform accurately 653

without 2-D spatial information in the image domain if 654

and only if the image spatial resolution and time resolu- 655

tion are adequate to discriminate the target phenomenon 656

under investigation based on (context-insensitive) color- 657

through-time properties exclusively. It means that, to be 658

considered useful, the application-independent ATCOR- 659

SPECL and SIAM prior knowledge-based preclassifiers, 660

which are pixel-based (context-insensitive) and eligible 661

for use with any single-date RS imagery independent of 662

its spatial resolution, must be considered as simple build- 663

ing blocks in a multistage RS-IUS architecture, i.e., they 664

cannot be considered as standalone systems. In fact, their 665

first-stage pixel-based (color-driven) preattentive image 666

analysis must be followed by an attentive vision second 667

stage, capable of (2-D) spatial analysis plus 1-D temporal 668
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analysis of image data conditioned (driven, stratified)669

by first-stage spectral categories, equivalent to conven-670

tional color names to be community agreed upon [102],671

[103]. In terms of filling the information gap from sensory672

data to LC maps (refer to Section II-C1), the ATCOR-673

SPECL and SIAM prior knowledge-based preclassifiers674

map subsymbolic sensory data into semisymbolic spec-675

tral categories (refer to the further Section IV-B) based676

on single-date pixel-based MS (color) properties (spectral677

signatures) exclusively. The remaining information gap678

from semisymbolic spectral categories to LC classes must679

be filled by the RS-IUS’ attentive vision second stage680

based on stratified spatiotemporal information.681

We can conclude that, if compared with a human visual sys-682

tem, the degree of compatibility of the ATCOR-SPECL and683

SIAM prior knowledge-based preclassifiers, employed in sup-684

port of the preattentive vision first stage of a hybrid RS-IUS685

architecture, is inferior to the degree of biological plausibility686

of an airplane compared to a bird. That said, from an engineer-687

ing standpoint, the ATCOR-SPECL and SIAM deductive pre-688

classifiers provide a realistic and feasible contribution to the689

development of automatic hierarchical RS-IUSs in operating690

mode, where a preattentional first-stage prior knowledge-based691

discretization of a continuous color space may be employed692

to better condition for numerical treatment an inherently693

difficult-to-solve second-stage attentive vision spatio-temporal694

analysis.695

D. EO Big Data: Challenges and Opportunities696

According to Section I, the secondary objective of this paper697

is to contribute to the development of a new generation of698

operational hybrid RS-IUSs capable of transforming large-scale699

multisensor multiresolution EO image databases into informa-700

tion products, in compliance with the QA4EO guidelines. The701

magnitude of EO data collected since the early 1970 s by a vari-702

ety of spaceborne/airborne and in situ sensory data sources, at703

varying spatial extents and multiple spatial, temporal and spec-704

tral resolutions, is so phenomenal to be identified, by the present705

authors, as EO big data, in line with the terminology of IT.706

In IT, the popular term “big data” identifies “a collec-707

tion of data sets so large and complex that it becomes dif-708

ficult to process using on-hand database management tools709

or traditional data processing applications. The challenges710

include capture, storage, search, sharing, analysis, and visu-711

alization” [78]. Among big data challenges, interpretation of712

observational data, i.e., the transformation of sensory data into713

information/knowledge products, has been historically investi-714

gated by both philosophical hermeneutics [21], [22] (refer to715

Section II-A) and psychophysical studies of perception [46]716

(refer to Section II-C).717

According to the present authors, “big data” is a syn-718

onym of “central limit theorem.” In statistics, the well-known719

central limit theorem states that [29], given certain conditions720

(typically random variables must be identically distributed),721

the sum (mean) of a sufficiently large number of indepen-722

dent random variables, each with a well-defined mean and723

well-defined variance (for example, one random variable is an 724

LC class-specific distribution of pixel values in a RS image), 725

tends to form a Gaussian distribution, where no “meaning- 726

ful” or “natural” hidden data entities, clusters or (sub)structures 727

can be identified [18], [19]. As a consequence of the central 728

limit theorem, “big data” distributions are Gaussian-like, hence 729

meaningful cluster/substructure detection in “big data” is inher- 730

ently ill-conditioned in the Hadamard sense (refer to Section II- 731

B). In other words, in “big data” sets, traditional inductive 732

supervised or unsupervised data learning is extremely difficult 733

or impossible to accomplish (refer to Section II-B). 734

These general considerations, driven from common knowl- 735

edge in IT, may explain why, to date, EO big data assets are 736

underemployed by the RS community. For example, the Euro- 737

pean Space Agency (ESA) estimates as 10% or less the per- 738

centage of RS images ever downloaded (which does not mean 739

ever used) by stakeholders from its EO databases [18], [19]. 740

It may mean that the RS discipline is still incapable of filling 741

up the information gap from RS data to knowledge/information 742

products (refer to Section II-C). To fill this information gap, 743

data interpretation (cognitive) processes (related to the con- 744

cept of equivocal “information-as-(an intepretation)process”) 745

dominate, i.e., are more difficult to solve than data transforma- 746

tion (e.g., data enhancement, data preprocessing) tasks (related 747

to the concept of unequivocal “information-as-thing,” refer to 748

Section II-A). Typically, RS scientists and practitioners over- 749

look their cognitive inadequacy to derive “operational, com- 750

prehensive, and timely knowledge/information products” from 751

sensory data [1]–[3] by asking for more data of better quality, 752

which actually makes their cognitive lack even worse. In prac- 753

tice, by overestimating its data interpretation capability the RS 754

community is outpaced by the ever-increasing rate of collection 755

of EO data of enhanced quality and quantity [10]–[19] (also 756

refer to the further Section III). 757

To recapitulate, in agreement with common knowledge in IT, 758

EO big data assets represent a huge opportunity/challenge for 759

the RS interdisciplinary science. To be transformed into knowl- 760

edge/information products in compliance with the QA4EO 761

guidelines [1]–[3], EO big data require the development of 762

a novel generation of hybrid inference systems in operating 763

mode, capable of outperforming traditional inductive or deduc- 764

tive inference systems, whose limitations are well known (refer 765

to Section II-B). As a realistic contribution to this challenge, 766

this paper provides a theoretical and experimental assessment 767

of the ATCOR-SPECL and SIAM prior knowledge-based pre- 768

classification software products in operating mode. 769

E. Probability and Nonprobability Sampling of a Geospatial 770

Population 771

This paper requires that sample QIs, estimated from the 772

ATCOR-SPECL and SIAM deductive preclassification maps, 773

must be statistically valid (consistent), refer to Section I. By 774

definition, an information map (e.g., a thematic map) is a 775

reduced representation of a target geospatial population. To pro- 776

vide a statistically valid estimation of QIs from an information 777

map representing a geospatial population [82], [83] (refer to 778
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Section I), the following definitions of probability and nonprob-779

ability sampling protocol are required.780780

1) By definition, probability sampling must satisfy three781

necessary not sufficient conditions to deliver statistically782

valid sample estimates, i.e., sample estimates provided783

with the necessary probability foundation to permit gen-784

eralization from the sample data set to the whole target785

geospatial population being sampled [82], [83]. 1) All786

inclusion probabilities must be greater than zero in the787

target geospatial population to be sampled. If some sam-788

pling units have an inclusion probability of zero, then the789

accuracy assessment does not represent the entire target790

region depicted in the map to be assessed and the results791

cannot be deemed statistically consistent. 2) The inclu-792

sion probabilities must be: a) knowable for nonsampled793

units and b) known for those units selected in the sam-794

ple: since the inclusion probability determines the weight795

attached to each sampling unit in the accuracy estimation796

formulas, if the inclusion probabilities are unknown, so797

are the estimation weights. Probability sampling methods798

can be split into equal or variable (unequal) probability799

sampling methods. Unequal inclusion probabilities cre-800

ate no difficulties as long as they are known for sampled801

units and accounted for in the estimation formulas, but802

equal probability designs are advantageous in that they803

allow for simpler analysis. For example, an area sampling804

protocol selects polygons into the sample with an inclu-805

sion probability monotonically increasing with the poly-806

gon area [82], [83]. Noteworthy, no probability sampling807

is required to assess the degree of uncertainty in sample808

estimates [5].809

2) Nonprobability sampling methods do not satisfy the810

requirements of probability sampling methods listed in811

this section above. According to the existing literature812

[82]: “unfortunately, examples of nonprobability sam-813

pling are common in accuracy assessment applications.814

Selecting reference locations by purposeful, convenient,815

or haphazard procedures does not allow the sampling816

design to determine the inclusion probabilities for each817

sampling unit. Such designs, therefore, are not probability818

samples. Purposefully, selecting training data for a super-819

vised classification is a good example of a nonprobabil-820

ity sample. Such samples are acceptable for developing a821

land cover classification map, but often have limited use822

for accuracy assessment because the necessary probabil-823

ity foundation to permit generalization from the sample824

data to accuracy of the full population is lacking.” To reca-825

pitulate, “it is possible to obtain useful information from826

nonprobability samples, but the limitations of such data827

should be recognized” [82]. For example, nonprobabil-828

ity sampling allows to assess the degree of uncertainty in829

sample estimates.830

3) A protocol, defined as a sorted set of guidelines for good831

practice [3], encompasses a structural knowledge and a832

procedural knowledge, like in decision trees [55]. Struc-833

tural knowledge is related to the content of the rule set834

while procedural knowledge is related to the order of835

presentation of rules. The definition of international pro- 836

tocols for best practices, such as the QA4EO guidelines 837

[2], together with standardization, have been major chal- 838

lenges for the RS community [2], [3]. 839

Unfortunately, in the RS literature there is a lack of proba- 840

bility sampling protocols adopted for the validation of RS data- 841

derived products in compliance with the principles of statistics 842

and the QA4EO guidelines. As a negative example of nonprob- 843

ability sampling for map quality assessment not to be imitated, 844

refer to [41]. 845

A probability sampling protocol for thematic and spatial 846

quality assessments of classification maps generated from EO 847

images is proposed in [80] and adapted in Part 2 of this 848

paper [20]. 849

F. QIO of an RS-IUS 850

The test phase of a software product, which encompasses a 851

QI selection stage, can be so relevant to absorb up to 50% of 852

a project budget [93]. In this section, a possible list of mutu- 853

ally uncorrelated metrological/statistically-based QIOs is pro- 854

posed and recommended for use by the Part 2 of this paper, 855

to accomplish the experimental assessment and comparison of 856

the ATCOR-SPECL and SIAM software products in operating 857

mode [20]. 858

Often forgotten in practice, the noninjective property of 859

any metrological/statistically-based QI states that it is always 860

possible to find two different instances of the same target 861

phenomenon capable of generating the same QI value. For 862

example, two different classification maps may provide the 863

same map’s overall accuracy value. This is tantamount to say- 864

ing that no universal QI can exist [10], [19], which is in contrast 865

with a significant segment of the existing literature, e.g., see 866

[79] and [94]. Rather, a target-specific set of complementary 867

statistically independent QIs must be selected and agreed upon 868

by the scientific community. 869

To cope with EO big data challenges (refer to Section II-D), 870

this paper provides an assessment of operational RS-IUSs in 871

compliance with the principles of statistics, the QA4EO guide- 872

lines [2] and the GEO-CEOS land product accuracy valida- 873

tion criteria [3] (refer to Section I). These work requirements 874

mean that the quality assessment of an RS-IUS should rely on a 875

complete set of complementary metrological/statistically-based 876

QIOs that are statistically independent, valid and significant. 877

To be considered statistically significant, QIOs must be pro- 878

vided with a degree of uncertainty in measurement (refer to 879

Section I). To be statistically valid (consistent), QIOs must be 880

estimated from probability sampling of EO big data (refer to 881

Section II-E). 882

Selected from the existing literature, a possible list of QIOs 883

of an information processing system in operating mode is 884

proposed as follows, to be community-agreed upon [10]– 885

[19]. 1) Degree of automation (ease-of-use), monotonically 886

decreasing with the number of system free-parameters to be 887

user-defined based on heuristics. 2) Effectiveness, e.g., the- 888

matic accuracy and spatial accuracy of classification and seg- 889

mentation maps generated from EO images [80]. 3) Efficiency, 890
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e.g., inversely related to computation time and memory occu-891

pation. 4) Robustness to changes in input parameters, if any892

free-parameter exists. 5) Robustness to changes in input data893

acquired across time, space and sensors. For example, refer to894

the CEOS land product accuracy validation stages 1–4 in [3],895

[4]. 6) Scalability, to cope with changes in input data specifica-896

tions, sensors and user’s requirements. 7) Timeliness, defined897

as the time between data acquisition and data-derived high-898

level product generation. For example, user interactions, such as899

those required to collect reference samples for training a super-900

vised data learning system, increase timeliness [81]. 8) Costs,901

monotonically increasing with computer power and manpower.902

To be termed operational, an information processing system903

must score high in every QIO of a set of community-agreed904

independent QIOs, e.g., refer to points 1) to 8) in the previous905

paragraph.906

Unfortunately, experiments presented in large portions of907

the RS literature are affected by the following methodological908

drawbacks. 1) The sole mapping accuracy is selected from the909

possible set of mutually independent QIOs eligible for param-910

eterizing RS-IUSs for assessment and comparison purposes.911

2) Statistical estimates of the mapping accuracy are not pro-912

vided with a degree of uncertainty in measurement, i.e., they913

have no statistical significance. 3) Statistical estimates of the914

mapping accuracy are not collected by means of a probabil-915

ity sampling strategy, hence they lack statistical consistency916

(refer to Section II-E). 4) Alternative RS data mapping solutions917

are tested exclusively in toy problems, defined in this paper918

as test data mapping problems featuring a small spatial scale919

(e.g., local scale) and/or a coarse semantic granularity, such920

that these test cases do not reflect the complexity of the exist-921

ing “EO big data” archives (refer to Section II-D) that must be922

dealt with to comply with the QA4EO requirements [2] (refer to923

Section I). As a consequence of these experimental limitations,924

many RS-IUS implementations tested in the RS literature fea-925

ture the following drawbacks. (I) A mapping accuracy which926

remains unknown in statistical terms and/or is unable to gen-927

eralize from a sample data set to the whole target geospatial928

population being sampled. (II) A robustness to changes in the929

input data set which is unknown or appears questionable. (III) A930

scalability to real-world RS data applications at large (e.g., con-931

tinental and global) spatial scale and fine semantic granularity932

which is unknown or appears questionable.933

The conclusion of this section is that, in real-world RS934

data applications, different from toy problems at small spatial935

scale and/or coarse semantic granularity, published RS-IUSs936

are likely to score poorly in operating mode, because at least937

one of their OQI values is expected to score low.938

III. PROBLEM RECOGNITION AND OPPORTUNITY939

IDENTIFICATION: COMPLIANCE OF EXISTING RS-IUS940

COMMERCIAL SOFTWARE PRODUCTS WITH THE QA4EO941

KEY PRINCIPLES AND CALIBRATION/VALIDATION942

(CAL/VAL) REQUIREMENTS943

Adopted by the ongoing GEOSS implementation plan for944

years 2005–2015 [1], the international GEO-CEOS QA4EO945

recommendations promote the development of “operational,946

comprehensive, and timely knowledge/information products” 947

from a variety of satellite, airborne, and in situ sensory data 948

sources [2] (refer to Section I). To guarantee “the provision 949

of and access to the Right Information, in the Right For- 950

mat, at the Right Time, to the Right People, to Make the 951

Right Decisions,” the QA4EO guidelines require the successful 952

implementation of two necessary and sufficient key principles 953

[2]: (I) Accessibility/Availability and (II) Suitability/Reliability 954

of RS data and data-derived knowledge/information products 955

(refer to Section II-A). To accomplish these system require- 956

ments the GEO identified the need to develop a GEOSS 957

data quality assurance strategy where calibration and val- 958

idation (Cal/Val) activities become critical to data qual- 959

ity assurance and, thus, to data usability. According to the 960

QA4EO guidelines [2], [3], the following Cal/Val activities are 961

required. 962962

1) An appropriate coordinated program of calibration activ- 963

ities throughout all stages of a spaceborne mission, 964

from sensor building to end-of-life, is considered manda- 965

tory to ensure the harmonization and interoperability 966

of multisource multitemporal RS data [2]. By defini- 967

tion, radiometric calibration is the transformation of 968

dimensionless digital numbers (DNs) into a community- 969

agreed physical unit of radiometric measure, e.g., TOA 970

radiance (TOARD), TOA reflectance (TOARF), and spec- 971

tral reflectance (SURF). 972

2) To satisfy validation requirements (e.g., accuracy valida- 973

tion [3]), observational data and data-derived products 974

generated in each step of a satellite-based information 975

processing workflow must have associated with them a set 976

of independent, quantifiable, metrological/statistically- 977

based QIs, featuring a degree of uncertainty in mea- 978

surement at a known degree of statistical significance, 979

to comply with the general principles of statistics and 980

provide a documented traceability of the propagation of 981

errors through the information processing chain in com- 982

parison with established “community-agreed reference 983

standards” [2] (refer to Section II-F). 984

It is an indisputable fact that, to date, almost ten years 985

from the launch of the GEOSS initiative, the RS community 986

has been more successful in pursuing the first rather than the 987

second GEOSS key principle. For example, in line with the 988

GEOSS requirement of Accessibility/Availability of RS data 989

and data-derived products, the U.S. 2008 free Landsat data 990

policy has opened a new era of exploitation of the more than 991

three million scenes stored in the U.S. Landsat archive [84]. 992

On the other hand, the ever-increasing rate of collection of EO 993

data of enhanced spatial, spectral and temporal quality out- 994

paces the current ability of the RS discipline to transform EO 995

big data assets into knowledge/information products (refer to 996

Section II-D). This means that the GEOSS requirement of Suit- 997

ability/Reliability of sensory data and data-derived products 998

can still be considered far from being accomplished by the RS 999

community. 1000

To explain their different degrees of success, the first and sec- 1001

ond GEOSS key principles are analyzed at different levels of 1002

abstraction. At the abstraction level of knowledge/information 1003

representation, according to philosophical hermeneutics [21], 1004
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[22], the first GEOSS key issue is quantitative (unequivocal)1005

and related to the Shannon concept of “information-as-thing”1006

irrespective of its meaning [25]. As such, it is easier to deal with1007

than the second GEOSS principle, which is qualitative (equivo-1008

cal), since the latter has to deal with the meaning (interpretation,1009

understanding) of sensory data and is related to the concept of1010

“information-as-(an interpretation) process” [21], [22] (refer to1011

Section II-A).1012

At the abstraction level of RS-IUS design, the second1013

GEOSS key principle remains difficult to cope with also1014

because Cal/Val activities are often neglected or ignored in the1015

RS common practice. On theory, the RS community regards as1016

common knowledge that “the prerequisite for physically based,1017

quantitative analysis of airborne and satellite sensor measure-1018

ments in the optical domain is their calibration to spectral1019

radiance” ([95], p. 29). Moreover, according to related works1020

[10]–[19], radiometric calibration is a necessary not sufficient1021

condition for automatic interpretation of (for physical model-1022

based inference from) EO imagery, refer to Section II-B. On1023

the other hand, RS scientists, practitioners and institutions tend1024

to overlook Cal/Val activities as necessary not sufficient pre-1025

conditions for the harmonization of large-scale multitemporal1026

multisensor EO datasets. For example, the European Commis-1027

sion Image 2000 product is a noncalibrated multisensor MS1028

image mosaic at European scale, whose scientific usability for1029

quantitative variable estimation is questionable or null [96]. To1030

recover from this lack, the European Commission Image 20061031

program includes radiometric calibration of multisensor MS1032

images at European scale in its project requirements specifi-1033

cation. However, in the Image 2006 project, no RS data-derived1034

product validation policy is enforced [97].1035

To explain why radiometric calibration is neglected in the1036

RS common practice, let us investigate the degree of com-1037

pliance of RS-IUS commercial software products with the1038

QA4EO key principles and Cal/Val requirements. Starting from1039

the RS-IUS architectures proposed in Fig. 1, consider the:1040

1) two- or three-stage Trimble eCognition Developer [60],1041

2) one- or two-stage Pixel- and Segment-based versions of the1042

Environment for Visualizing Images (ENVI) by ITT VIS [85],1043

3) one- or two-stage IDRISI Taiga, 4) one-stage ESRI ArcGIS,1044

5) ATCOR-2/3/4 [6]–[8], 6) one-stage PCI Geomatica (with1045

an optional ATCOR for atmospheric correction), and 7) one-1046

or two-stage ERDAS IMAGINE Objective (with an optional1047

ATCOR for atmospheric correction). These commercial soft-1048

ware packages for RS image processing/ understanding con-1049

sist of large suites of options to choose from [18], [56]–[59].1050

Frequently considered overwhelming by nonexpert users, these1051

large software suites allow selectable algorithms to be cho-1052

sen, supervised, and combined by a user, based on heuristics,1053

to form a user- and application-specific information process-1054

ing workflow. Among these wide sets of selectable algorithms,1055

several options may appear not particularly relevant, or be dif-1056

ficult to use (because they require lots of user interactions to1057

run) or omit steps considered critical in a standard RS data1058

processing chain (like those promoted by the QA4EO recom-1059

mendations [2]). In practice, to favor flexibility considered nec-1060

essary to develop customized solutions, these software suites1061

promote an approach to RS image analysis closer to art, namely,1062

empirical, qualitative and nonreproducible, than science, which 1063

is rigorous, quantitative and reproducible. For example, the 1064

large majority of selectable algorithms implemented in the RS- 1065

IUS commercial software products listed above, with the sole 1066

exception of the physical model-based ATCOR-2/3/4 toolbox 1067

[6]–[8], does not consider radiometric calibration as manda- 1068

tory. This relaxed input data constraint means that, in these 1069

commercial software products, the large majority of selectable 1070

algorithms consist of statistical systems, hence the remaining 1071

small minority comprises physical models. Due to their inher- 1072

ent ill-posedness in the Hadamard sense [42], statistical systems 1073

are typically semiautomatic and site-specific [18], [45] (refer 1074

to Section II-B). Although statistical systems do not require as 1075

input observational data provided with a physical meaning, they 1076

may benefit from radiometric calibration in terms of robust- 1077

ness to changes in the input data set (refer to Section II-B). 1078

For example, in the ENVI commercial software toolbox [85], 1079

an atmospheric correction tool, called Fast Line-of-sight Atmo- 1080

spheric Analysis of Spectral Hypercubes (FLAASH), is avail- 1081

able as an optional RS image preprocessing stage. As another 1082

example, in the PCI Geomatica and ERDAS RS data prepro- 1083

cessing workflows, a physical model-based ATCOR module 1084

can be optionally installed, etc. 1085

The first conclusion about the RS-IUS commercial software 1086

products listed above is the following. In line with common 1087

knowledge in the machine learning community [24], since sta- 1088

tistical model-based systems are inherently poorly-conditioned, 1089

semiautomatic and site-specific and require prior knowledge in 1090

addition to data to become better posed for numerical treat- 1091

ment (refer to Section II-B), then statistical systems available 1092

for selection in RS-IUS commercial software products, where 1093

they typically outnumber physical model-based options, are 1094

expected to be, per se, unable to cope with the well-known 1095

challenges of EO big data (refer to Section II-D). To become 1096

more successful, these statistical systems must be combined 1097

with physical models, to form hybrid inference systems capa- 1098

ble of outperforming their individual components (refer to 1099

Section II-B). This consideration holds because at least one 1100

or more QIOs (e.g., timeliness, scalability, and robustness to 1101

changes in the input data set, refer to Section II-F) of any induc- 1102

tive data learning system, either supervised or unsupervised, 1103

whether or not it adopts an RS data radiometric calibration 1104

preprocessing stage in compliance with the QA4EO guidelines 1105

(refer to Section III), are expected to score low in real-world RS 1106

data mapping applications (refer to Section II-B), where EO big 1107

data assets (refer to Section II-D), different from unrealistic toy 1108

problems at small spatial scale and/or coarse semantic granu- 1109

larity (refer to Section II-F), are to be mapped. 1110

In addition, RS-IUS commercial software products, such as 1111

those listed above, appear affected by a lack of selectable phys- 1112

ical model-based inference systems, considered necessary to 1113

support, with prior knowledge in addition to data (in accordance 1114

with well-known principles of inductive inference, clearly 1115

stated by Mulier and Cherkassky [24], refer to Section II-B), 1116

the large majority of selectable options, consisting of statistical 1117

systems. This second conclusion about the RS-IUS commercial 1118

software products listed above is driven from the sole physical 1119

model found in this list, the ATCOR [6]–[8]. 1120
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The core of the ATCOR consists of a radiative transfer1121

model which is inverted to calculate as output directional sur-1122

face reflectance (SURF) values starting from at-sensor (top-1123

of-atmosphere, TOA) radiance (TOARD) values [9]. In the1124

standard ATCOR implementation, the influence of surface type-1125

specific bidirectional reflectance distribution function (BRDF)1126

effects is not modeled. In the words of the ATCOR’s authors1127

[9], “ideally, an atmospheric and radiometric correction routine1128

would result in BRDFs for all observed targets, as the BRDF1129

is the unambiguous radiometric property of the Earth’s surface.1130

Unfortunately, imaging spectrometers rarely provide sufficient1131

information to produce reliable BRDFs as most instruments1132

acquire data for a single view geometry. Thus, a quantity not1133

depending on the view geometry is of interest. The spectral1134

albedo, i.e., the bihemispherical reflectance (BHR), is a value1135

which is well suited for an unbiased view of the Earth’s sur-1136

face.” In recent years, an “augmented” ATCOR implementa-1137

tion, sketched in Fig. 2, has been tested to retrieve spectral1138

albedo in series with surface reflectance values starting from1139

dimensionless DNs [9]. A peculiar aspect of this augmented1140

ATCOR workflow, suitable for continuous variable estimation1141

from RS data, is that categorical variables are generated as inter-1142

mediate products by preliminary classification modules at sev-1143

eral hierarchical stages (refer to Section II-A). In Fig. 2, data1144

processing blocks identified as “preclassification” and “quan-1145

titative classification” are suitable for mapping semantic con-1146

cepts from data, such as “clouds,” “water,” “vegetation,” and1147

“haze.” Once estimated from sensory data, these categorical1148

variables are further employed as input to processing modules1149

capable of continuous (e.g., bio-physical) variable estimation1150

(refer to Section II-B). That is to say, in the augmented ATCOR1151

workflow shown in Fig. 2, the inherently poorly-conditioned1152

inductive inference problem of continuous variable estimation1153

from sensory data is accomplished on a symbolic stratified1154

(driven-by-knowledge) basis to become better conditioned for1155

numerical treatment (refer to Section II-B). In practice, the1156

complete atmospheric correction and radiometric normalization1157

scheme shown in Fig. 2 provides an additional source of exper-1158

imental evidence supporting the recent conjecture, proposed in1159

the RS literature [15], [80], that categorical variables (e.g., LC1160

and LCC maps) and continuous variables (e.g., spectral albedo,1161

LAI and green biomass), conceived as two sides of the same1162

coin, should be estimated from RS images alternately and itera-1163

tively, starting from a categorical variable estimation first stage1164

(refer to Section I). Intuitively, MS image preclassification is1165

preliminary to continuous variable estimation, which includes1166

atmospheric correction, because the former task is “easier” to1167

accomplish than the latter. In fact, an expert photointepreter1168

can successfully interpret (classify) an RS image irrespective1169

of whether this image has been provided with a physical unit1170

of radiometric measure through radiometric calibration. On the1171

other hand, the RS literature clearly acknowledges that no spec-1172

tral index (e.g., the normalized difference vegetation index,1173

NDVI) should ever be computed as a quantitative proxy of a1174

continuous biophysical variable (e.g., a LAI value), if no radio-1175

metric calibration has taken place, yet [45].1176

To summarize, capable of alternating categorical and contin-1177

uous variable estimation from sensory data, the surface albedo1178

Fig. 2. A complete (“augmented”) physical model-based system for RS data
normalization combines a standard ATCOR workflow [6]–[9] with a novel bidi-
rectional reflectance distribution function (BRDF) effect correction. Processing
blocks are represented as circles and output products as rectangles. This work-
flow estimates categorical and continuous variables from sensory data alter-
nately, starting from a prior knowledge-based pre-classification first stage, such
as SPECL. Same as in [9], courtesy of Daniel Schläpfer, ReSe Applications
Schläpfer.

F2:1
F2:2
F2:3
F2:4
F2:5
F2:6
F2:7
F2:8

estimation workflow shown in Fig. 2, based on an inverted 1179

radiative transfer model, is provided with a relevant degree of 1180

novelty in comparison with standard radiative transfer software 1181

products, like the Second Simulation of the Satellite Signal in 1182

the Solar Spectrum (6S) [86]. For example, in the 6S software 1183

tool, the land cover class-specific BRDF effects correction of 1184

RS imagery relies on ancillary thematic information, i.e., the 1185

6S software product is per se unable to extract from the input 1186

RS image the surface types (e.g., ocean surface, vegetation and 1187

bare soil [86]) required as input to run the driven-by-knowledge 1188

BRDF correction phase. 1189

This section concludes that, eligible for use as the physical 1190

model-based “preclassification” block in Fig. 2, the ATCOR- 1191

SPECL and SIAM prior knowledge-based preclassifiers feature 1192
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a wide application domain, encompassing not only categori-1193

cal variable estimation from EO data (as it is logical to expect1194

from a preclassification system), but also continuous variable1195

estimation from EO data, in compliance with the Cal/Val activ-1196

ities considered mandatory by the QA4EO guidelines for both1197

RS data preprocessing (data enhancement) and RS data pro-1198

cessing (data understanding) phases [2]. In other words, the1199

ATCOR-SPECL and SIAM deductive preclassifiers appear as1200

viable tools to accomplish not only automatic mapping of real-1201

world EO big data sets (refer to Section II-D), in compli-1202

ance with the QA4EO guidelines and the objectives of this1203

paper (refer to Section I), but also RS image enhancement, as1204

shown in Fig. 2. Existing examples of the SIAM applied to RS1205

image preprocessing problems include stratified topographic1206

correction [15], stratified atmospheric correction [6]–[8], strat-1207

ified image mosaicking, stratified image co-registration, etc.1208

[10]–[19] (refer to the further Section IV-A).1209

IV. COMPARISON OF THE ATCOR-SPECL AND SIAM1210

SOFTWARE PRODUCTS AT THE FOUR LEVELS1211

OF UNDERSTANDING OF AN INFORMATION1212

PROCESSING SYSTEM1213

Starting from the interdisciplinary nomenclature introduced1214

in Section II, differences and similarities between the ATCOR-1215

SPECL and SIAM software products can be investigated at the1216

four levels of abstraction of an RS-IUS [5], [16], [18], [30],1217

[87], namely: 1) computational theory (system architecture),1218

2) information/knowledge representation, 3) algorithms, and1219

4) implementation. Among these four levels of analysis, the first1220

two are considered of fundamental importance for the success1221

of any information processing system in operating mode (refer1222

to Section I). In the words of Sonka et al., “the linchpin of suc-1223

cess (of an information processing system) is addressing the1224

(computational) theory (and information/knowledge represen-1225

tation [87]) rather than algorithms or implementation” ([30];1226

p. 376).1227

A. Computational Theory1228

In Section I, the ATCOR-SPECL and SIAM software prod-1229

ucts are introduced as two alternative prior knowledge-based1230

color space discretizers capable of providing a hybrid RS-1231

IUS architecture with an injection of prior spectral knowledge,1232

equivalent to color naming, right at the preattentive vision first1233

stage, in compliance with human vision (refer to Section II-C).1234

Common features of the two deductive image mapping sys-1235

tems are the following. 1) As physical models, they require as1236

input a MS image provided with a physical unit of measure,1237

namely, a MS image radiometrically calibrated into TOARF or1238

SURF or surface albedo values (refer to Sections II-B and III).1239

2) They are context-insensitive, i.e., pixel-based, because color1240

is the sole (0-D) pixel-specific information in a (2-D) image. All1241

remaining visual properties are context-sensitive, e.g., texture1242

[73], shape of image-polygons, and inter-object spatial rela-1243

tions [10]–[19], [46], [47], [61], [62]. 3) They are static, i.e.,1244

nonadaptive to input data, 4) one-pass, i.e., noniterative, 5) syn-1245

tactic, i.e., rule-based [30], 6) semisymbolic, i.e., eligible for1246

mapping a MS image into a discrete and finite set (legend) of 1247

spectral-based semiconcepts (refer to Section I), and 7) “fully 1248

automatic,” because deductive inference systems require nei- 1249

ther user-defined parameters nor training data sample to run 1250

[88] (refer to Section I). 1251

Since they share the aforementioned list of system specifica- 1252

tions, then the ATCOR-SPECL and SIAM systems can be used 1253

interchangeably in a hybrid RS-IUS workflow, such as those 1254

shown in Fig. 1(c) or 2. Although interchangeable, the ATCOR- 1255

SPECL and SIAM prior knowledge-based preclassifiers are not 1256

expected to perform the same, since their decision-tree design 1257

and implementation are completely different, in terms of both 1258

structural and procedural knowledge (refer to Section II-E). 1259

A novel three-stage hybrid RS-IUS architecture, shown in 1260

Fig. 1(c), whose preattentive vision first stage employs a prior 1261

knowledge-based preclassifier provided with feedback loops 1262

[10]–[19], is described as follows. 12631263

1) An EO image preprocessing stage zero, suitable for MS 1264

image enhancement, including a mandatory MS image 1265

radiometric calibration of DNs into TOARF values, in 1266

compliance with the QA4EO guidelines. Although SURF 1267

values, considered as a special case of TOARF values in 1268

very clear sky conditions and flat terrain conditions [12], 1269

[80], [89], i.e., TOARF ⊇ SURF, such that TOARF ≈ 1270

SURF + atmospheric “noise,” are allowed as input, they 1271

are not mandatory, i.e., atmospheric correction is not con- 1272

sidered a MS image preprocessing requirement. 1273

2) A physical model-based symbolic context-insensitive 1274

(pixel-based) preattentive vision first stage, like the 1275

ATCOR-SPECL or the SIAM prior knowledge-based 1276

preclassifier. An injection of prior knowledge in the preat- 1277

tentive vision first stage makes the inherently poorly- 1278

conditioned EO image interpretation problem better 1279

posed for numerical treatment (refer to Section II-B), in 1280

agreement with the Marr intuition that vision goes sym- 1281

bolic right at the level of the raw primal sketch [5] (refer 1282

to Section II-C). 1283

3) A second-stage battery of attentive vision context- 1284

sensitive stratified (driven-by-knowledge) application-, 1285

sensor- and LC/LCC class-specific feature extractors 1286

(e.g., multiscale texture is investigated exclusively in the 1287

image portion masked by the first-stage spectral category 1288

“vegetation,” in order to split spectral type “vegetation” 1289

into two LC classes, namely, low-texture “grassland” and 1290

high-texture “forest” [61], [62]) and one-class LC/LCC 1291

classification modules (e.g., if a first-stage spectral cate- 1292

gory mask is “vegetation” and the second-stage “vegeta- 1293

tion” masked data feature extractor is “high texture,” then 1294

“forest”). 1295

4) A feedback mechanism between the preattentive vision 1296

first stage, the attentive vision second stage and the RS 1297

image preprocessing stage zero. Existing examples of 1298

these feedback loops are stratified topographic correction 1299

[15], stratified atmospheric correction [6]–[8], stratified 1300

image mosaicking, stratified image co-registration, and 1301

cloud/cloud-shadow masking [10]–[19]. 1302

This novel hybrid RS-IUS design [see Fig. 1(c)] is alter- 1303

native to the two-stage hybrid RS-IUS architecture proposed 1304
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by Shackelford and Davis [61], [62], whose first stage is a1305

nonadaptive statistical classifier, namely, a plug-in parametric1306

ML classifier (refer to Section II-B), and to state-of-the-art two-1307

stage noniterative GEOBIA system [see Fig. 1(b)] and three-1308

stage iterative GEOOIA system architectures [18], [19] (refer to1309

Section II-B), where: 1) the preattentive vision first stage con-1310

sists of an unlabeled data learning algorithm for image segmen-1311

tation [32]–[34], [55]–[60], which is inherently poorly-posed1312

[24] and is, therefore, semiautomatic and site-specific [45]; and1313

2) prior knowledge, if any, is injected exclusively at the attentive1314

vision second stage, if and only if this second stage is imple-1315

mented as a static image-object-based decision-tree classifier.1316

If no prior knowledge is employed at the GEOBIA/GEOOIA1317

attentive vision second stage, because it is implemented as1318

an inductive data learning classifier (e.g., an artificial neural1319

network classifier, a support vector machine classifier [41],1320

a nearest-neighbor classifier, an adaptive decision-tree clas-1321

sifier, and a radial basis function network for classification1322

[24], [29]), then the GEOBIA/GEOOIA system implementa-1323

tion is fully inductive at both first and second stages, which1324

means that the GEOBIA/GEOOIA system, due to its inher-1325

ent ill-posedness, is semiautomatic and site-specific in common1326

practice (refer to Section II-B). This line of reasoning justi-1327

fies the low productivity of many GEOBIA/GEOOIA systems1328

increasingly observed in the existing literature [56], [57], which1329

makes them inadequate to cope with large-scale RS image1330

databases.1331

B. Information/Knowledge Representation1332

The ATCOR-SPECL and SIAM software products are com-1333

pared in terms of: 1) input MS data requirements and 2) output1334

preclassification map’s legend.1335

1) Input MS Data Requirements Specification: The physi-1336

cal model-based ATCOR-SPECL and SIAM prior knowledge-1337

based preclassifiers require as input MS images radiometrically1338

calibrated into a physical unit of radiometric measure (refer to1339

Section II-B), in compliance with the Cal/Val requirements of1340

the QA4EO guidelines [2] (refer to Section III). In particular,1341

SIAM requires as input a MS image radiometrically calibrated1342

into TOARF or SURF or surface albedo values, where SURF is1343

a special case of TOARF in very clear sky conditions and flat1344

terrain conditions [12], [80], [89], i.e., TOARF ⊇ SURF, such1345

that TOARF ≈ SURF + atmospheric “noise.” It means that1346

an LC class-specific family of spectral signatures in TOARF1347

values forms a buffer area (envelope) which includes, as a spe-1348

cial case, the family of “ideal” (atmospheric noiseless) spec-1349

tral signatures in SURF values for that same LC class, see1350

Fig. 3.1351

In practice, SIAM is capable of recognizing surface types1352

in RS images by “looking through” atmospheric effects, like1353

the presence of haze and thin clouds [10]–[19]. This “look-1354

through” capability is due to the fact that the original spec-1355

tral prior knowledge base of the SIAM consists of a reference1356

dictionary of spectral signatures in TOARF values, where rela-1357

tion TOARF ≈ (SURF + atmosphericnoise) holds, whereas1358

traditional libraries of spectral signatures are in SURF val-1359

ues (measured at the ground level) exclusively, i.e., they are1360

Fig. 3. Land cover (LC)-class specific families of spectral signatures in TOA
reflectance (TOARF) values form buffer areas (envelopes) which include sur-
face reflectance (SURF) values as a special case in clear sky and flat terrain
conditions.

F3:1
F3:2
F3:3
F3:4

atmospheric noise-free. Well-known examples of reference 1361

dictionaries of spectral signatures in (atmospheric noise-free) 1362

SURF values, such as the U.S. Geological Survey (USGS) 1363

mineral and vegetation spectral libraries, the Johns Hopkins 1364

University spectral library and the Jet Propulsion Laboratory 1365

mineral spectral library [6]–[9], can be found in the existing lit- 1366

erature, e.g., refer to [90] (p. 273) or in commercial software 1367

products [85]. Being provided with an (implicit) atmospheric 1368

noise model, the SIAM is expected to be robust to the presence 1369

of atmospheric effects. This means that SIAM does not con- 1370

sider preliminary atmospheric correction as mandatory because 1371

SIAM is knowledgeable on how to cope with RS data affected 1372

by atmospheric noise. 1373

Unlike the SIAM reference dictionary of spectral signatures 1374

in TOARF values, the ATCOR-SPECL rule set has been devel- 1375

oped starting from a prior knowledge base of reference spec- 1376

tral signatures in SURF values [6], [91], which means that the 1377

ATCOR-SPECL requires atmospheric correction as a manda- 1378

tory preprocessing stage. In general, atmospheric correction is 1379

inherently poorly-conditioned and, therefore, difficult to solve. 1380

In practice, atmospheric correction requires user-supervision 1381

to become better posed for numerical treatment, also refer to 1382

Fig. 2 [6]–[9]. Although it requires SURF values as input data, 1383

the ATCOR-SPECL software product is expected to be able to 1384

cope with (to look-through) input images in TOARF values, 1385

when atmospheric effects are those typical of clear or very clear 1386

sky conditions and topographic effects are negligible, such that 1387

TOARF ≈ SURF [89]. 1388

2) First-Stage Output Semisymbolic Information Primitives: 1389

In a community-agreed ontology of the 4-D world-through- 1390

time (refer to Section II-C), e.g., in an LC or LCC map’s legend 1391

(vocabulary), each ontological concept, e.g., each LC or LCC 1392

class name in the vocabulary, identifies a specific class of sur- 1393

face objects in the 4-D world-through-time featuring specific 1394

4-D spatio-temporal properties, together with spectral (color) 1395

properties. In general, LC class-specific spatio-temporal infor- 1396

mation dominates color information [26] (refer to Section I), 1397

which is the reason why achromatic vision can be very success- 1398

ful despite the absence of color information. 1399

In a preclassification map generated by the ATCOR-SPECL 1400

and SIAM software products from a single-date MS imagery, 1401
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the map legend consists of a discrete and finite set of semisym-1402

bolic informational primitives, called color names, color-based1403

inference categories, spectral-based semiconcepts, spectral cat-1404

egories or spectral endmembers, such as “vegetation,” “bare1405

soil or built-up,” and “water or shadow” [10]–[19], [26]. Each1406

spectral-based semiconcept can be mapped onto (matched with)1407

one or more LC classes whose spectral properties can over-1408

lap, irrespective of spatio-temporal properties capable of dis-1409

ambiguating these LC classes (refer to Section I). In other1410

words, spectral-based semiconcepts are single-date and pixel-1411

specific, i.e., they ignore the (dominant) 4-D spatio-temporal1412

information carried by LC classes, but exclusively investigate1413

the (dominated) color properties of LC classes. As a conse-1414

quence, the semantic meaning of a spectral-based semicon-1415

cept (e.g., “vegetation”) is: 1) superior to zero, where zero1416

is the semantic information conveyed by subsymbolic image1417

features, i.e., image-objects (image-polygons) or, vice versa,1418

image-contours (since image contour detection is the dual task1419

of image segmentation and they are both poorly-posed [10]–1420

[19]); and 2) equal or inferior to the semantic meaning of con-1421

cepts in the attentive vision second stage, i.e., LC classes, e.g.,1422

“needle-leaf forest,” belonging to a world model, namely, a1423

spatio-temporal ontology of the 4-D world-through-time.1424

Hence, in general, one spectral-based semiconcept can be1425

associated with none, one or many LC classes (refer to1426

Section I). For example, spectral category “strong vegeta-1427

tion” can be linked to LC classes “grassland” or “agricul-1428

tural field” or “forest,” just like “endmember fractions cannot1429

always be inverted to unique class names” ([26], p. 147).1430

Analogously, one LC class can encompass different color dis-1431

cretization levels, e.g., the LC class “deciduous forest” can1432

look like several tones of green equivalent to the SIAM’s1433

color quantization levels (spectral categories, color names)1434

“strong vegetation,” “average vegetation,” and “dark vegeta-1435

tion.” This means that, in general, a finite set of many-to-many1436

associations holds between spectral-based semiconcepts in the1437

(2-D) image domain and the reference LC classes belonging1438

to a spatio-temporal ontology of the 4-D world-through-time1439

[80]. Special cases of many-to-many inter-vocabulary rela-1440

tions are one-to-many, many-to-one and one-to-one relations.1441

Many-to-many inter-legend relations convey mapping informa-1442

tion because only all-to-all inter-legend “correct” entries do1443

not (like if every spectral category were mapped onto all LC1444

classes). For example, proposed in [80], an original Categor-1445

ical Variable Pair Similarity Index (CVPSI) provides an esti-1446

mated value, around 50%, of the degree of match between1447

the SIAM’s vocabulary and the LC class legend adopted by1448

the USGS 2006 National Land Cover Data map, also refer to1449

Fig. 1(c).1450

At a finer level of detail, SIAM delivers as output preclassifi-1451

cation maps at various levels of color discretization, namely,1452

fine, intermediate and coarse, where prior knowledge-based1453

color quantization levels depend on the spectral resolution1454

of the imaging sensor. At coarse granularity, SIAM’s spec-1455

tral categories belong to the following six parent spectral1456

categories (also called super-categories) or major spectral end-1457

members: 1) “Clouds,” 2) “Either snow or ice,” 3) “Either1458

water or shadow,” 4) “Vegetation,” equivalent to “either woody1459

vegetation or cropland or grassland (herbaceous vegetation) or 1460

(shrub and brush) rangeland,” 5) “Either bare soil or built-up,” 1461

and 6) “Outliers.” 1462

These SIAM super-categories can be compared with the four 1463

reference endmembers, namely, “green vegetation,” “nonpho- 1464

tosynthetic vegetation” (e.g., woody material on the ground 1465

together with dead or dying leaves), “soil,” and “shadow,” 1466

derived from laboratory surface reflectance spectra by Adams 1467

et al. in spectral mixture analysis [26]. 1468

Due to the presence of class “Outliers” (“Unknowns”), SIAM 1469

provides a mutually exclusive and totally exhaustive mapping 1470

of the input MS image into a discrete and finite vocabulary 1471

(legend) of color names, in line with the Congalton and Green 1472

requirements of a classification scheme [92]. It is noteworthy 1473

that, although the definition of a rejection rate is a well-known 1474

objective of any RS image classification system, e.g., refer to 1475

[26] and [90], RS image classifiers are often applied without 1476

any outlier detection strategy. 1477

Similar considerations hold for the ATCOR-SPECL preclas- 1478

sifier, refer to the ATCOR-SPECL legend shown in Table I. 1479

For example, to identify information primitives of an ATCOR- 1480

SPECL’s output map, the most recent ATCOR user guides, like 1481

[7] and [8], adopt the same term, “spectral categories,” origi- 1482

nally proposed in the SIAM literature to differentiate spectral- 1483

based semiconcepts from traditional LC classes [10]–[19]. 1484

According to [6]–[8], revised by Richter [91], the ATCOR- 1485

SPECL static decision-tree preclassifier consists of a sorted set 1486

of 19 spectral categories, including class “unknowns” (refer to 1487

Table I), in compliance with the Congalton and Green require- 1488

ments of a classification scheme [92]. 1489

C. Algorithm Design 1490

In [93], algorithm design is defined as “everything, but code.” 1491

This definition is recalled to point out that, although they belong 1492

to the same family of spectral knowledge-based preclassifiers 1493

(refer to Section IV-A), capable of transforming subsymbolic 1494

observational data into semisymbolic spectral categories (refer 1495

to Section IV-B), the ATCOR-SPECL and SIAM software 1496

products are totally different in terms of decision-tree design, 1497

comprising both structural and procedural knowledge (refer to 1498

Section II-E), irrespective of implementation. 1499

Sonka et al. describe aspects of image-object labeling 1500

through artificial intelligence in terms of syntactic pattern 1501

recognition ([30]; p. 285). In syntactic pattern recognition, the 1502

following considerations hold. 15031503

1) Elementary properties of the syntactically described 1504

objects from a given class are called primitives. Rela- 1505

tions between objects may be modeled as hierarchical 1506

relational structures. 1507

2) A class-specific description language is the set of all 1508

words that may be used to describe objects from one class, 1509

based on information primitives. For example, in written 1510

language, words of the language are constructed from let- 1511

ters and the set of all letters is called the alphabet. Letters 1512

are equivalent to information primitives and the words of 1513

the language are created from a collection of the alpha- 1514

bet’s letters. 1515
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TABLE IT1:1
SPECTRAL RULES AND PSEUDO-COLORS OF THE LEGEND ADOPTED BY THE ATCOR-SPECL PRIOR KNOWLEDGE-BASED PRECLASSIFIER [6], [91]T1:2

aThese expressions are optional and only used if b5 is present.
bDecision rule depends on presence of b5.
cDecision rule depends on presence of b7 [8].

3) A class-specific description grammar is the set of (sub-1516

stitution) rules that must be followed when words of1517

the class-specific description language are constructed1518

from letters. In other terms, each class consists only of1519

objects whose syntactic description is syntactically cor-1520

rect according to the particular class grammar. In the writ-1521

ten language example, although many words may be used1522

together, only those which follow the correct grammar1523

will form a coherent sentence.1524

4) Syntactic recognition is a process that looks for the class-1525

specific grammar that can generate the syntactic word or1526

phrase which describes an unknown object.1527

5) (Qualitative) syntactic object description should be used1528

whenever (quantitative) statistical feature description is1529

not able to represent the complexity of the target objects1530

and/or when there are inter-object relations, like part-of1531

or subset-of , difficult to learn from data by means of 1532

inductive data learning algorithms and that typically 1533

require significant human interaction to be identified. 1534

In the aforementioned terminology of syntactic pattern 1535

recognition systems, both the ATCOR-SPECL and SIAM 1536

deductive decision-tree preclassifiers are built upon a physical 1537

knowledge base of families (envelops) of real-world spectral 1538

signatures per surface type (e.g., “bare soil or built-up”), so that 1539

a sorted set of land surface type-specific grammars (hierarchical 1540

decision-tree) is constructed. 1541

In the SIAM software product, a spectral category-specific 1542

grammar is a combination of two information primitives capa- 1543

ble of describing the family of spectral signatures belonging 1544

to that surface type (see [11] for full details). The first spec- 1545

tral primitive is the so-called “spectral rule” whose aim is to 1546

describe the shape of a buffer zone (envelope) of a surface 1547
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type-specific family of spectral signatures in TOARF values,1548

irrespective of intensity (see Fig. 2). In particular, a spectral1549

rule defines a buffer zone of spectral tolerance, irrespective of1550

the absolute intensity of spectral bands, by means of relational1551

operators (<, >, ≤, ≥) between spectral bands. The second1552

spectral primitive is a spectral fuzzy set (e.g., low, medium, and1553

high) extracted from the intensity of scalar spectral variables,1554

namely, spectral bands or spectral indexes. To recapitulate, a1555

surface type-specific grammar is a combination of logical oper-1556

ators (AND, OR, NOT) with one or more spectral rules and/or1557

one or more spectral fuzzy sets, capable of modeling the shape1558

and the radiometric intensity of the surface type-specific MS1559

envelope of spectral signatures [11].1560

Unlike SIAM, where a spectral category-specific grammar1561

consists of a logical (AND, OR, NOT) combination of one or1562

more spectral rules and spectral fuzzy sets [11], each ATCOR-1563

SPECL’s category-specific grammar consists of a single spec-1564

tral rule per spectral category [6]–[8], see Table I.1565

Since the rule complexity of the SIAM expert system is supe-1566

rior to that of the ATCOR-SPECL, the former is expected to be1567

more accurate than the latter at the cost of a higher implemen-1568

tation complexity and computation time.1569

To conclude this section, let us point out the algorith-1570

mic difference between the ATCOR-SPECL and SIAM prior1571

knowledge-based preclassifiers and the popular spectral mix-1572

ture analysis for MS image classification [26]. In spectral1573

unmixing, the so-called (endmember) fraction categories are1574

detected by category-specific boundaries established sequen-1575

tially and in a particular order by an application developer in an1576

E-dimensional measurement space, where E is the total number1577

of reference endmembers, such that E is always less or equal1578

than the number of spectral bands minus 1. For example, in the1579

work of Adams et al. [26], dealing with 7-band Landsat images,1580

the free number of spectral endmembers E is set equal to four, to1581

allow the endmember space be rotated by the application devel-1582

oper on the computer screen to show any desired projection.1583

On the contrary, the prior knowledge-based preclassification1584

decision trees implemented in the ATCOR-SPECL and SIAM1585

software products consist of dozens of prior knowledge-based1586

category-specific grammars, whose inputs are spectral bands1587

and spectral indexes, but never reference endmembers. Rather,1588

the ATCOR-SPECL and SIAM expert systems, consisting of1589

prior knowledge-based color discretization levels equivalent to1590

data- and application-independent spectral endmembers, are1591

suitable for automatic preclassification of hyperspectral images1592

as a viable deductive alternative to state-of-the-art inductive1593

algorithms for spectral endmember learning from hyperspectral1594

data [104].1595

D. Implementation1596

The two ATCOR-SPECL and SIAM deductive decision-tree1597

preclassifiers are totally different at the abstraction level of1598

algorithm design (refer to Section IV-C), encompassing the list1599

of category-specific grammars (structural knowledge [55]) and1600

their order of presentation (procedural knowledge [55]). As a1601

consequence, they are completely different at the implementa-1602

tion level of analysis.1603

According to [6]–[8], revised by Richter [91], the static 1604

decision-tree preclassifier currently implemented in the 1605

ATCOR-SPECL secondary software product consists of a 1606

sorted set of 19 spectral category-specific grammars (refer 1607

to Table I) which includes class “unknowns” (refer to 1608

Section IV-B2). In terms of semantic granularity the ATCOR- 1609

SPECL is coarser than the SIAM (vice versa, the seman- 1610

tic cardinality of the former is inferior to that of the latter), 1611

which means that the implementation complexity of the latter’s 1612

decision tree is greater than that of the former (also refer to 1613

Section IV-C). 1614

To the best of these authors’ knowledge, the SIAM soft- 1615

ware product is the first semisymbolic expert system (refer to 1616

Section II-B), made available to the RS community for oper- 1617

ational use in a RS-IUS preattentive vision first stage (refer 1618

to Section II-C), capable of accomplishing multiscale image 1619

segmentation and multigranule image preclassification simul- 1620

taneously, automatically and in near real-time [10]–[19]. The 1621

extraction of a (subsymbolic) image segmentation map (where 1622

subsymbolic image-objects are identified as, say, segment 1, 1623

segment 2, etc.) from a binary or multilevel image (e.g., a the- 1624

matic map) can be accomplished by a traditional well-posed 1625

(deterministic) automatic (requiring no user interaction) two- 1626

pass connected-component image labeling algorithm, e.g., refer 1627

to [30] (p. 197). In practice, a unique (subsymbolic) segmen- 1628

tation map can be generated from a multilevel image, like a 1629

thematic map, but the contrary does not hold, e.g., different 1630

thematic maps can generate the same segmentation map, i.e., 1631

no unequivocal thematic map can be inferred from a segmen- 1632

tation map [18], [19]. In other words, a realistic alternative 1633

to the (e.g., eCognition’s) generation of an inherently poorly- 1634

conditioned, semiautomatic and site-specific multiscale seg- 1635

mentation map from an input subsymbolic MS image is the 1636

automatic well-posed generation of a multiscale segmentation 1637

map from a multilevel semisymbolic preclassification map, fea- 1638

turing several degrees of color discretization (e.g., fine, interme- 1639

diate and coarse), which has been automatically generated by a 1640

prior knowledge-based multigranule preclassifier from an input 1641

MS image. 1642

SIAM is implemented as an integrated system of six sub- 1643

systems, including one “master” Landsat-like subsystem plus 1644

five “slave” (down-scale) subsystems, whose spectral resolu- 1645

tion overlaps with Landsat’s, but is inferior to Landsat’s, refer to 1646

Table II. Noteworthy, the expression “Landsat-like MS image” 1647

adopted in this paper means: “an MS image whose spectral res- 1648

olution mimics the spectral domain of the 7 bands of the Land- 1649

sat family of imaging sensors,” i.e., a spectral resolution where 1650

bands visible blue (B), visible green (G), visible red (R), near 1651

infra-red (NIR), medium infra-red 1 (MIR1), medium infra-red 1652

2 (MIR2) and thermal infra-red (TIR) overlap (which does not 1653

mean coincide) with Landsat’s. 1654

The aforementioned SIAM’s six subsystems are summa- 1655

rized in Table II. The output spectral categories detected at the 1656

fine, intermediate and coarse color discretization levels by the 1657

SIAM’s six subsystems, described in Table II, are summarized 1658

in Table III. 1659

With regard to the SIAM implementation, in [11] enough 1660

information is provided for the crisp L-SIAM implementation 1661
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TABLE IIT2:1
LIST OF SPACEBORNE/AIRBORNE SENSORS ELIGIBLE FOR USE WITH THE SIAM SYSTEM OF SYSTEMST2:2
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TABLE IIT2:1
CONTINUEDT2:2

Acronyms: Y, Yes; N, No; C, Complete; I, Incomplete (radiometric calibration offset parameters are set to zero); (E)TM, (Enhanced) Thematic Mapperl;
B, Blue; G, Green; R, Red; NIR, Near Infra-Red; MIR, Medium Infra-Red; TIR, Thermal Infra-Red; SR, Spatial Resolution; and Pan, Panchromatic.
Adopted acronyms: SPOT, Satellite Pour l’Observation de la Terre; NOAA, National Oceanic and Atmospheric Administration (NOAA); AVHRR,
Advanced Very High Resolution Radiometer; AATSR, ENVISAT Advanced Along-Track Scanning Radiometer; Q, QuickBird; DMC, Disaster Monitor-
ing Constellation.
Column highlight color: Blue columns are related to visible channels typical of water and haze; Green column identify the NIR band, typical of vegetation;
Brown columns are related to MIR channels, characteristic of bare soils; and Red column: TIR channel, useful to detect fire.

to be reproduced. The down-scale S-SIAM, AV-SIAM and1662

Q-SIAM versions, generated from the “master” L-SIAM imple-1663

mentation (refer to Table II), are described in [12]–[14]. In [17],1664

the crisp-to-fuzzy SIAM transformation is explained in detail.1665

It is noteworthy that since its first 2006 release presented in1666

[11], L-SIAM has increased its number of output spectral cate-1667

gories from 46 to 96 (see Table II). This progressive, but slow,1668

increase in the number of spectral categories detected by the 1669

sequence of “master” L-SIAM implementations proposed to 1670

the RS literature in recent years shows that, in line with the- 1671

ory [45], [55] (refer to Section II-B), there is a slow “learning 1672

curve” in the development and fine-tuning of physical models, 1673

such as the ATCOR-SPECL and SIAM prior knowledge-based 1674

preclassifiers. 1675
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TABLE IIIT3:1
SIAM SYSTEM OF SIX SUBSYSTEMST3:2

∗Employed in sensor-independent bitemporal LCC detection.
Summary of input bands and output spectral categories reported in Table II.

V. CONCLUSION1676

In compliance with the QA4EO guidelines, the goal of this1677

paper is to provide a theoretical comparison and an experimen-1678

tal quality assessment of two operational (ready-for-use) expert1679

systems (prior knowledge-based nonadaptive decision trees) for1680

automatic near real-time preattentional classification and seg-1681

mentation of spaceborne/airborne MS images: the SIAM soft-1682

ware product and the SPECL secondary product of the ATCOR1683

commercial software toolbox. Rather than as standalone sys-1684

tems, these two alternative prior knowledge-based preclassifiers1685

in operating mode are eligible for use in the preattentive vision1686

first stage of a novel hybrid (combined deductive and inductive)1687

RS-IUS architecture, proposed to the RS community in recent1688

years [10]–[20].1689

For the sake of simplicity, this paper is split into two: Part1690

1—Theory, proposed herein, and Part 2—Experimental results,1691

already published elsewhere [20].1692

The original contribution of the present Part 1 is three-1693

fold. First, it provides Part 2 with an interdisciplinary1694

terminology and a theoretical background encompassing multi-1695

ple disciplines, like philosophical hermeneutics, machine learn-1696

ing, artificial intelligence, computer vision, human vision and1697

RS. Second, it highlights the relevant degrees of novelty of the1698

ATCOR-SPECL and SIAM prior knowledge-based preclassi-1699

fiers at the four levels of understanding of an information pro-1700

cessing system, namely, system design, knowledge/information1701

representation, algorithms and implementation. Third, it1702

requires that a minimum set of community-agreed complemen-1703

tary independent metrological/statistically-based QIOs must be1704

estimated from a RS-IUS in operating mode, to comply with1705

the principles of statistics, the QA4EO guidelines [2] and the1706

Committee on EO Satellites (CEOS) land product accuracy val-1707

idation criteria [3]. In particular, sample QIs of the ATCOR-1708

SPECL and SIAM prior knowledge-based preclassifiers, to1709

be collected in Part 2 of this paper, must be: 1) statistically1710

significant, i.e., provided with a degree of uncertainty in mea-1711

surement, and 2) statistically valid (consistent), i.e., representa-1712

tive of the entire population being sampled, which requires the1713

implementation of a probability sampling protocol [82], [83].1714

Noteworthy, these basic sample statistic requirements should 1715

not be considered either trivial or obvious. For example, they 1716

are almost never satisfied in the RS common practice. As a con- 1717

sequence, to date, QIOs of existing RS-IUSs, including map- 1718

ping accuracy, in addition to degree of automation, efficiency, 1719

robustness, scalability, timeliness and costs, remain largely 1720

unknown in statistical terms. 1721

The conclusion of the present Part 1 of this paper is that the 1722

proposed comparison of the ATCOR-SPECL and SIAM soft- 1723

ware products in operating mode, accomplished in Part 2, can 1724

be considered appropriate, well-timed and of potential interest 1725

to a wide portion of the RS community. 1726
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