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Abstract

Many real-time applications, such as traffic con-
trol systems, surveillance systems and health monitor-
ing systems, need to operate on continuous unbounded
streams of data. These applications also have inherent
real-time performance requirements that have to be met
under high-volume, time-varying incoming data streams.
In this paper, we present a real-time data stream query
model named PQuery, which provides periodic real-time
queries on data streams for the aforementioned real-time
applications. To support the PQuery model, a real-time
data stream management prototype system named RT-
STREAM is developed to provide deadline miss ratio
guarantees for periodic queries over continuous and un-
bounded data streams. We describe the periodic query
semantics and discuss why the periodic query model is
appropriate for real-time applications. To handle irreg-
ular data arrival patterns and query workloads, we pro-
pose data admission as an overload protection mecha-
nism. We conduct performance studies with synthetic
workloads as well as real workloads from network traf-
fic monitoring applications. The experimental results
show that the proposed periodic query model suits the
need of the real-time applications and the data admis-
sion overload protection approach is effective in manag-
ing the workload fluctuations.

1 Introduction

With the emergence of a large number of more pow-
erful, but ever smaller sensors, combined with the im-
proved wired and wireless communication technology,
the computing systems nowadays are equipped with
great power in monitoring the physical world. As a
result, there is a growing need for managing the data
generated by the physical sensors. Many new applica-
tions need to query on series of sensor data to make
proper decisions. For example, in security surveillance
systems, a surveillance query may need more than just
the most recent sensor readings. It needs to read a se-

ries of sensor readings or even correlate data series from
several different sensors. Therefore, stream data man-
agement capability becomes an essential requirement of
these applications.

These applications also have inherent real-time re-
quirements, i.e., their queries on streaming data should
be finished within their specific deadlines. Consider the
surveillance systems as an example. The system has
to alert the controlling party (e.g., human operators)
within certain deadlines or the target may be missed.

Real-time query processing on data streams is chal-
lenging for several reasons. First, the incoming data
streams can be irregular, with unpredictable peaks
which may overload the system. When the data ar-
rival rate is too high, the system may become CPU-
constrained and many queries will miss their dead-
lines. Second, the execution time of the queries de-
pends not only on the data volume, but also on the
contents of the data streams. The queries registered
in the databases (especially those with join operations)
may have execution time that varies dramatically with
the contents of their inputs. Third, in addition to be-
ing CPU-constrained, the system can also be memory-
constrained. The total storage space required by all
registered queries may exceed the size of the physical
memory and the system performance degrades drasti-
cally when the intermediate query results are forced to
be swapped out of the physical memory.

In this paper, we mainly deal with the CPU time
constraints. Addressing the memory constraints in data
stream query processing is an important yet complicated
research problem. We plan to address the memory issues
in future work. In the rest of this paper, we assume that
there is always enough main memory space for query
processing. The remaining parts of this paper are orga-
nized as follows. Sections 2 gives an overview of the data
stream management systems. Section 3 introduces the
periodic query model and compares it with the existing
continuous query model. Section 4 presents our Quality-
of-Service (QoS) metrics and our data admission over-
load protection mechanism. The prototype implementa-
tion details are described in section 5. Our performance



Stream S (int ID, float value, char[8] type);
Relation R (int ID);

Select avg (S.value)
From S [range 5 second], R
Where S.ID = R.ID and S.type = Magnetic;

Figure 1. An Example Query in CQL

evaluation and experimental results are presented in sec-
tion 6. Section 7 discusses the related work and section
8 summarizes the paper.

2 Data Stream Management System

A data stream is defined as a real-time, continuous,
ordered (implicitly by arrival time or explicitly by times-
tamps) sequence of items [14]. Due to the high volume
of data streams, it is often assumed that it is not pos-
sible to store a stream in its entirety, nor is it feasible
to query the whole stream history (often summaries or
approximated results are used).

A number of data stream query languages were de-
veloped in several projects [18][13][9]. In this paper, we
choose the Continuous Query Language (CQL) to spec-
ify queries on data streams. CQL is a SQL-based declar-
ative language for registering continuous queries against
streams and updatable relations. CQL expands the ba-
sic SQL with a number of operators that converts data
streams to relations and vice versa. We choose CQL
because it has a comprehensive set of operators and is
more expressive than other existing data stream query
languages. More information about CQL and compar-
isons against other related query languages are provided
in [2].

An example of query written in CQL is shown in
Figure 1. In this example, there are a data stream S
and a relation R registered with the system. The data
stream is the sensor reading stream from the sensing
system. The data tuple in the stream has three fields:
an ID field of integer type, a value field of float type and
a type field of string type. The relation R contains all
the sensor IDs of a target area. The query operates on
data tuples arriving in stream S during the last 5 seconds
and calculates the average value of the magnetic sensor
readings in the target area during that time period.

3 Real-Time Periodic Query

Many existing data stream management systems sup-
port the continuous query model [8][2]. In the contin-
uous query model, the query instances are triggered by
the incoming streaming data. When a new tuple ar-
rives, a new query instance is initiated and processed.
The query results are updated with the results from the
newest input. The continuous model performs well when

the system workloads are moderate and the system has
resources to finish all query instances triggered. How-
ever, because the number of query instances and system
workloads depend directly on the unpredictable input,
it is not appropriate for real-time applications that need
predictable responses.

Another drawback of the continuous query model is
that the application can not control how often each
query is executed. In some applications, some queries
are more interesting to the application and thus need to
be executed more often. With continuous query model,
this can not be easily achieved. Statically allocating sys-
tem resource to different queries does not work because
the query execution time changes with the system input.

We propose the periodic query (PQuery) model for
real-time applications that need predictable query re-
sponse. In the PQuery model, once a query is registered
with the DSMS system, its query instances are initiated
periodically by the system. Upon initialization, a query
instance takes the snapshot from data streams as its in-
put. The input does not change throughout the course
of the instance execution even when there are newer data
tuples in the data streams. Instead, the newly arrived
data tuples are processed by the next query instance.
Using this semantics, the query execution is not inter-
rupted or aborted by the new incoming data. When an
application gets the results of a periodic query instance,
it knows that the results reflect the state of the system
when the query instance is initiated. In the periodic
query model, the query frequencies and deadlines are
specified by applications and enforced by the system.
Compared to the continuous query model, the work-
loads of the periodic queries are easier to estimate since
at any given time, there are a fixed number of query
instances in the system.

4 Query QoS and Overload Protection

Given the fact that the stream data and query exe-
cution time are bursty, the system may experience tran-
sient overload at run time. When the system is over-
loaded, QoS adaptations are needed to reduce the sys-
tem workloads and restore the system to stable states.

4.1 Periodic Query QoS Metrics

In this paper, the quality of stream data query is
measured by the following QoS metrics:

• Data Completeness: The data completeness mea-
sures the percentage of incoming stream data that
are used to compute the query results. Due to
the bursty nature of stream data, techniques like
sampling and load shedding [5] [19] may be used
to reduce the system workload in case of overload.
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Figure 2. A Data Completeness Example

The data completeness metric quantitatively mea-
sures the effects of these operations. An example
is given in Figure 2 to show the concept of data
completeness. In Figure 2, 15 tuples are sampled
from a larger sliding window which contains 30 tu-
ples. In the ideal case, the query should be ex-
ecuted against the larger sliding window with 30
data tuples. Due to the resource constraints, the
system can only process 15 tuples. The sampling
algorithm selects every other tuple along the data
stream and the query is executed on the newly cre-
ated data window. The sampling process reduces
the data completeness of the query to 50%. The
data completeness notion applies to both the raw
data (i.e., the incoming sensor data streams) and
the intermediate results (e.g., the output of a join
operator).

• Miss Ratios: Miss ratios measure the percentage of
queries that are not finished within their deadlines.

4.2 Data Admission Controller

In many real-time applications, partial results are
more desirable than queries missing their deadlines.
Therefore, the data completeness may be traded off for
better query miss ratios at run time. We propose an
overload protection mechanism called data admission,
which trades data completeness for better query miss ra-
tios. The basic approach is to reduce the incoming data
volume when the system is overloaded. Based on the
previous research results [5], which indicate that load
shedding is more effective when performed at the earlier
stages of the query plan, we design our load shedding
process to be performed before data stream tuples are
processed by the system. Considering that certain data
stream tuples are more important than others, we allow
the data stream sources to mark their important data
tuples with high importance flags. All data tuples with
flags are admitted by the system.

We use a Proportional-Integral (PI) controller to con-
trol the data admission process as it is simple to use
and it provides acceptable response time to workload
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Figure 3. Data Admission Controller

fluctuations. We do not choose proportional-Integral-
Derivative (PID) controller because the workloads of
query system vary dramatically from one sampling pe-
riod to another (due to irregular data arrival rate or
time-varying query selectivity). Adding a derivative
control signal amplifies the random fluctuations in the
system workloads. The data admission control architec-
ture is shown in Figure 3. As shown in the figure, the
query miss ratios (MR) are sampled periodically and
compared against the miss ratio target. The differences
are passed to the PI controller to generate the data ad-
mission control signal ∆PAC , which is subtracted from
the current data admission ratio. The ∆PAC is derived
using the following equation.

∆PAC = PMR × (MRST −MRthreshold) +
IMR × (MRLT −MRthreshold)

MRST and MRLT are the short-term and long-term
query miss ratios sampled in the last sampling period.
MRthreshold is the specified maximum miss ratio al-
lowed by the application; PMR and IMR are two con-
troller parameters which control the weights that short-
term and long-term query miss ratios have on the data
admission control signal. In this paper, the two con-
troller parameters are hand picked to give the best sys-
tem response. How to tune the controller to suit differ-
ent system responses is not addressed in this paper and
is left for future work.

To provide service differentiation, multiple data ad-
mission controllers can be used, with one data admission
controller corresponding to one service class.

5 System Implementation

To evaluate the real-time periodic query model, we
have developed a data stream management system pro-
totype named RTSTREAM. The system is developed on
top of STREAM data stream management system pro-
totype developed at Stanford University [16]. In the pro-
totype system, we extended the query specification lan-
guage and its parser, added an EDF operator scheduler
and data admission controller. The original STREAM
has about 32k lines of code and 3k lines of code are
added or modified to support periodic query model.



5.1 Query Language Extensions

As mentioned earlier, the CQL query language sup-
ported by STREAM project has a comprehensive set
of operators and is more expressive than other exist-
ing stream query languages [2]. However, CQL can not
specify the timing requirements of the queries. In RT-
STREAM, in order to specify periodic real-time queries,
we added the following constructs to CQL query lan-
guage:

• STIME: Starting time of a periodic query;

• ETIME: Ending time of a periodic query;

• PERIOD: Period of the query (if applicable);

• DEADLINE: Deadline of the query (relative to the
query starting time);

• IMPORTANCE: Importance level of the query;

The new query language can specify different types
of queries. It can specify real-time and non-real-time
queries depending on how the DEADLINE fields are set
(non-real-time queries have infinitely large deadline val-
ues). It can specify both periodic and aperiodic queries
depending on how the PERIOD fields are set (aperi-
odic queries have infinitely large period value). To pro-
vide service differentiation, the query language allows
applications to divide their queries into different service
classes by specifying different importance values.

5.2 Query and Scheduler

We have implemented an EDF scheduler to replace
the original round-robin scheduler. After the specifica-
tion of a periodic query is parsed by the query parser, it
is stored in an internal object that represents the query.
The query instances are initialized periodically accord-
ing to the specification. The queries that are ready to
run are stored in a linked list called active query list.
The list is sorted based on their importance levels and
deadlines. The queries that do not have active query
instances or have instances that are already finished are
stored in a separate linked list called dormant query list.
The queries in the dormant query list are sorted by the
starting times of their next query instances.

The pseudo code of the EDF scheduler is shown in
Figure 4. The CPU time is divided into small time slots
(currently 10 ms). At each slot, the EDF scheduler first
inspects the dormant query list for query instances that
need to be activated. If there are such query instances,
the query instances are activated and inserted to the ac-
tive query list. The active query list is then inspected
for query instances that have already missed their dead-
lines. If such tardy query instances exist, they are imme-
diately terminated and removed from the active query

EDFScheduelr::Run ()
{
  Get_Current_System_Time();

  Inspect_Dormant_Query_List();
  Initialize_New_Query_Instances ();

  Inspect_Active_Query_List();
  Remove_Tardy_Query_Instances();

  Run_Next_Query ();

  If (NextQuery.finished()) {
    Insert_to_Dorm_Query_List();
  }
  else {
    Insert_to_Active_Query_List();
  }
}

Figure 4. EDF Scheduler in Pseudo Code

list. After inspecting two linked lists, the scheduler then
executes the next active query. If the query finishes in
the time slot, the query is inserted to the dormant query
list, waiting to be activated; otherwise, the query is in-
serted back to active query list. The current implemen-
tation requires that the relative deadline of a periodic
query to be less than or equal to its period so that at any
given time, there is at most one active query instance
for each periodic query.

5.3 Concurrency Control

The system allows append-only operations on data
streams, which matches the nature of data streams. The
system also supports updatable relations. The system
uses a timestamp-based concurrency control algorithm.
It requires that the updates to the relations are marked
explicitly by timestamps that are in non-decreasing or-
der. Relation updates that arrive out of order are sorted
before they are applied to the relations. If an update has
been applied and an older update arrives, the older up-
date is dropped. The updates to data streams and re-
lations are handled by special system operators called
stream source operator and relation source operator,
which run with a priority higher than that of the ap-
plication queries.

5.4 Data Admission Controller

To implement the data admission controller described
in section 4, the query miss ratio statistics need to be
maintained. The long term query miss ratio used by
the data admission controller is the average miss ratio
of the last 200 query instances. The short term query
miss ratio is the average miss ratio of the last 20 query
instances. The query miss ratio threshold is set as 5%
in the current system implementation. The data admis-
sion controller is invoked periodically by the scheduler
to adjust the data admission ratios. If queries are di-
vided into multiple service classes, the system maintains
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tion

short-term and long-term miss ratio statistics for each
service class and each service class has its own data ad-
mission controller.

The data admission control need to be implemented
at the query level so that different queries can have dif-
ferent data admission ratios even if they share the same
data stream source. As shown by Figure 5, two queries
share the same data stream input S. The incoming data
tuples of data stream S are first processed by the stream
source operator. After the stream source operator, the
data stream tuples are in the system. The data ad-
mission process for the queries is carried out at stream
data window operators. In the example shown in Fig-
ure 5, range window operators Op 0 and Op 1 perform
the data admission for query 0 and query 1 separately.
With this design, different queries can use different data
admission ratios.

Operators perform data admission using random
dropping. Though not covered in this paper, semantic
dropping can be used to improve system performance if
query semantics are considered. The system also allows
the data sources to mark the important data tuples to
make sure they get processed by the system. The im-
portance flag is marked by setting the highest bit of the
data tuple timestamp. The data tuples with the flags
are admitted to the system regardless of the current
data admission ratios. However, operators maintain the
target data admission percentage by dropping more un-
marked data tuples.

6 Performance Evaluation

We conduct the performance evaluation with both
synthetic workloads and real workloads from network
monitoring applications. For synthetic workload exper-
iments, we test the system performance with both short
and long workload bursts. The real workload experi-
ments are performed to show that the current system
with our overload protection mechanism can handle the
workload fluctuations of a real application. All experi-
ments are carried out on a single machine running Red-
hat Linux 8.0. The machine is equipped with a 2.8

Parameter Value
Total Memory 256 M

Page Size 4 K
Page # per Queue 50

Stream # 12
Data Rate per Stream 200 tuples/sec

Query per Stream 4
Total Query # 48
Selection Sel. 0.1

Stream-2-Stream Join Sel. 0.01
Stream-2-Rel Join Sel. 0.1

Query Period 1 - 4 sec
Query Deadline 1 - 4 sec

PMR 0.2
IMR 0.1

Data AC Period 1 sec
Experiments Run Time 300 sec

Table 1. Synthetic Workloads Settings

Ghz Pentium 4 hyperthreading processor and 1 Giga-
byte DDR 3200 SDRAM main memory.

6.1 Synthetic Workloads

The settings for the synthetic workloads experiments
are shown in Table 1. The data stream management sys-
tem is configured to use 256 megabytes of main mem-
ory space. The system page size is set to be 4 kilo-
bytes and each temporal result queue between two ad-
jacent operators has 50 pages. The system is configured
with such large memory space to eliminate the effects of
memory constraints. There are 12 data streams regis-
tered in the system and for each registered data stream,
there are 4 periodic queries associated with it. The data
streams used in the experiments are variable-rate data
streams and the average data tuple arrival rate of one
data stream is 200 tuple/sec. The arrival of the data tu-
ples conforms to Poisson distribution and the data rate
shown is the average arrival rate. The data tuples in
the streams are assigned with special values so that the
selectivity values are configurable. In the experiments,
we set the selection query selectivity to 0.1, the stream-
to-stream join selectivity to 0.01 and stream-to-relation
join selectivity to 0.1. The sampling period of the data
admission controller is set to 1 second to give fast re-
sponse to workload fluctuations. The total run time of
one experiment is 300 seconds.

The data streams and relations used in the experi-
ments have the same schema as in the example shown
in Figure 1.

Stream S : (ID : integer, value : float, type : char(8))

Rlation R : (ID : integer)



For each data stream, there are four queries associ-
ated with it. For example, the periodic queries corre-
sponding to data stream S0 are given below:

1. select * from S0 [range 4 second], S1 [range 4 sec-
ond] where S0.type = S1.type and S0.ID = S1.ID
and S0.value <> S1.value rtspec stime 0 second
etime 301 second period 2 second deadline 2 sec-
ond importance 0;

2. select * from S0 [range 6 second], R0 where S0.ID
= R0.ID rtspec stime 0 second etime 301 second
period 3 second deadline 3 second importance 0;

3. select avg(S0.value), min (S0.value), max
(S0.value) from S0 [range 2 second], R0 where
S0.ID = R0.ID rtspec stime 0 second etime 301 sec-
ond period 2 second deadline 1 second importance
0;

4. select S0.type, Count(*) from S0 [range 1 second]
group by S0.type rtspec stime 0 second etime 301
second period 1 second deadline 1 second impor-
tance 0;

Query 1 is a stream-to-stream join query, which mon-
itors two different data streams (S0 and S1) and returns
those tuples that have same sensor types and same sen-
sor IDs but different values. Query 2 joins a stream (S0)
with a relation (R0). It selects all the data tuples sent
by those sensors identified by the IDs in the relation R0.
Query 3 is an aggregate query that maintains the statis-
tics for those sensors specified in relation R0. Query 4
collects statistics about the incoming data stream. It
maintains the report count for each type of sensor in
the data stream.

There are 12 streams registered in the system and
the system has total 48 queries. The same set of queries
without real-time query specifications are executed on
the original STREAM prototype to compare the system
performance. We conduct experiments on the following
four systems:

• Stream: The original STREAM system which uses
a round-robin scheduler and supports continuous
queries.

• RTStream: The RTSTREAM system which runs
with an EDF scheduler and supports the periodic
query model. Data admission control is not used in
this system.

• RTStream-DAC-S: The RTSTREAM system with
single data admission controller for the whole sys-
tem.

• RTStream-DAC-M: The RTSTREAM system with
multiple data admission controllers (one for each
service class).

Time (Seconds)

Workload

0 60 120 180 240 300

80%

160%

Figure 6. Workload Illustration

We are not aware of other existing real-time data stream
query systems or algorithms. Therefore, no other base-
lines are available for performance comparisons.

To evaluate the system, we study the system perfor-
mance with normal workloads and extreme workloads.
As shown in Figure 6, the system workloads are config-
ured in such way that with normal system workloads,
the system CPU utilization is 80%. To evaluate the
system performance under heavy workloads, we create
the two workload bursts during the experiment. The
workloads during the burst are twice the normal system
workloads, which would need 160% of the CPU process-
ing capacity. As shown in Figure 6, the first workload
burst is a short burst. It begins at 60th second and
lasts for only 10 seconds. The second workload burst
is a long burst. It begins at 180th second and ends at
240th second. We choose such heavy workload fluctu-
ations to test the system performance under extreme
overload situations. All the experiment results shown
are based on more than 10 runs and the 90% confidence
intervals are less than 10% of the corresponding data
values.

6.1.1 Single Service Class

The first set of experiments evaluate the system per-
formance with queries of one service class. The exper-
iment results are shown in Figure 7. As shown in Fig-
ure 7 (a), when the system is overloaded, the latencies
of continuous queries increase monotonically with time.
The maximum latency reaches as high as 23 seconds.
The latency of the system continues to grow even af-
ter the burst ends at the 240th second. The reason is
that a large number of data tuples are accumulated in
the queues and the system needs to process those data
tuples before it can process new incoming data tuples.
Even though the length of the queue is decreasing after
the workload burst, the latency still increases due to the
fact that there are more data tuples per second during
the workload burst and it takes more than one second
to process those data tuples accumulated in one second
during the burst.

In the periodic query model, the latencies of the
queries are bounded by the specified query deadlines.
As shown in the Figure 7 (b), similar to the latency of
the continuous queries, the short-term miss ratio of the
periodic query continues to increase until the burst goes
away at the 240th second. After that, the short-term
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Figure 7. Single Service Class: Latency and
Miss Ratios

miss ratio begins to drop. When data admission control
is introduced, the system can respond to the workload
fluctuations very faster. In the experiment, the data ad-
mission process returns the system query miss ratio to
below 5% within 10 seconds. The process is fairly fast
given the magnitude of the workload fluctuations. The
data completeness of the system is maintained around
63% during the long workload burst. After the burst,
the data completeness is restored to 100 % within 10
seconds.

The overhead of applying our data admission algo-
rithm is almost negligible. From our measurements in
the experiments, the overhead of running the scheduler
and data admission controller costs less than 2% of the
CPU time. Due to the space limitations, we will not
show the overhead graph here.

6.1.2 Differentiated Services

Differentiated services are required by many applica-
tions. In case of overload, the system has to guarantee
that the most important set of queries get processed.
The second set of our experiments test the service differ-
entiation capability of the system. In this set of experi-
ments, 12 streams and the associated queries are divided
in to three service classes, classes 0, 1 and 2, with the
class 0 queries being the most important. Each service
class has 4 data streams and 16 queries.

The experiment results are shown in Figure 8. The
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system performance without data admission is shown
in graph (a). Without data admission, the miss ra-
tios of class 1 and class 2 queries keep increasing until
the workload burst disappears at 240th second. Graphs
(b) and (c) show the miss ratio and data completeness
of our two data admission schemes. The first one is
called RTStream-DAC-S, which stands for data admis-
sion control with single controller. In this scheme, there
is only one data admission controller and all queries in
the system share the same data admission controller.
The other one is called RTStream-DAC-M, which has
multiple data admission controllers, each corresponding
to one service class. The results of single controller sys-
tem is shown in graph (b). As shown by the graph,
the system handles the workload fluctuations very well.
The miss ratios of class 0 and class 1 queries remain 0
throughout the experiment and the miss ratio of class
2 queries is restored to below 5% within 10 seconds. In
multiple controllers scheme shown in graph (c), the data
completeness of class 0 and class 1 queries remains very
close to 100% and the miss ratio of class 0 queries re-
mains at 0. The miss ratio of class 1 queries has some
fluctuations around 200th second. It is restored to zero
within 5 seconds. However, this comes with at cost of
class 2 queries. During the long workload burst, al-
most all incoming data for class 2 queries are dropped.
Comparing graphs (b) with (c), we can see clearly the
QoS tradeoffs in the system. If the application is will-
ing to tolerate low data completeness ratios, the query
miss ratios of different service classes can be substan-
tially improved; if the miss ratios of the lower service
class queries can be sacrificed, the service quality of the
higher class queries can be preserved.

6.2 Real Network Monitoring Workloads

We also test our system prototype using workloads
that simulate a network traffic monitoring system, which
monitors the network traffic packet headers and network
performance measurements. The results of the queries
are used to optimize the network or counteract the mali-
cious attacks (e.g., DDOS attacks). The timing require-
ments of the system are obvious since the performance
of the network and essentially financial gains depend on
them. The system monitors streams of network packet
headers, which have the following format:

Packet(srcIP, srcPort, destIP, destPort, len,
flags, timestamp);

The workloads used in the experiments are made of
the following types of queries:

• Network Traffic Statistics Queries: Collecting
statistics about the ongoing network traffic.

• Source Destination Traffic Monitoring: Monitoring
the network traffic associated with particular source

Parameter Value
Total Memory 256 M

Page Size 4 K
Page # per Queue 400

Stream # 2
Data Rate per Stream 25000 tuples/sec

Query per Stream 8
Total Query # 16
Query Period 1 - 2 sec

Query Deadline 1 - 2 sec
PMR 0.5
IMR 0.2

Data AC Period 1 sec
Experiments Run Time 90 sec

Table 2. Network Monitoring Settings

or destination addresses.

• Application Traffic Monitoring: Monitoring the
network traffic associated with particular types of
applications.

Due to space limitation, we can not provide the
whole list of queries used in the experiments. The
network trace used in this experiment is trace #UFL-
1099267976-1 from Passive Measurement and Analysis
(PMA) project [17]. The experiment settings are shown
in Table 2. The system is configured to monitor two
network traces from two different router interfaces. The
average rate is 25000 packets per second. In order to
handle the high stream data arrival rate, the queue size
is increased to 400 pages. There are total 16 queries
registered in the system. The experiment lasts for 90
seconds, which is the length of the network traffic trace.

The network traffic workloads and experiment results
are shown in Figure 9. The network traffic has an av-
erage data arrival rate of 25000 tuples per second. The
rate variations are about 2000 tuples per second. De-
spite the small data arrival rate variations, the system
still has large query workload fluctuations due to the
query selectivity variations. The variations could be
caused by a sudden increase of certain type of traf-
fic workloads. For example, the selectivity of a query
that monitors http traffic may change radically if the
http packet volume suddenly increases in the traffic. As
shown in the second graph, the system experiences a
large workload burst starting at the 10th second. Our
system responds to the workload fluctuations within 6
seconds and returns the query miss ratio back to 0. We
can see that the workload fluctuations in network mon-
itoring application are quite large as the system needs
to reduce the data completeness to as low as 20% in or-
der to handle the workload burst. After the workload
burst, the system was restored to stable state (100%
data completeness) in 7 seconds. We also show the out-
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put latency of continuous queries. The workload burst
puts so much query workload into the system that with-
out dropping data, the system takes very long time to
return to stable state (as shown by the increasing la-
tencies). The results show that our PQuery model with
data admission control can handle the workload fluctu-
ations reasonably well in this type of applications.

7 Related Work

In recent years, there has been a number of research
projects and industrial efforts that focus on stream data
management, including STREAM [7], Aurora [8], Tele-
graphCQ [11], NiagaraCQ [12], Gigascope [13], etc. The
research in stream data management can be divided
into categories such as query languages [2], query pro-
cessing [1], scheduling [10][4], memory management [4],
statistics maintenance [3], stream management in dis-
tributed environments [6] and clustering [15]. The real-
time data stream query processing systems are differ-
ent from real-time multimedia streaming systems in the
sense that the stream query systems focus on executing
complicated SQL-like queries on data streams instead
of encoding/decoding/transferring multimedia streams.
The Aurora project [9] claims to provide real-time data
stream processing capabilities. However, their real-time
metric is the average latency of data tuples, while our
system uses the deadline miss ratios of periodic queries.
The query models are different.

There are several papers that discuss the QoS and
load shedding issues in stream data processing. Tatbul
et. al. [19] propose a technique to dynamically insert
or remove drop operators into query plans in order to
handle the workload fluctuations. Babcock et. al. [5]
propose load shedding techniques for a restricted class
of stream queries. Like their approaches, the data ad-
mission approach proposed in this paper also reduces
system workload by dropping data tuples. One differ-
ence is that we treat each query as a black box and use a
PI controller to control the data admission process. Our

solution drops data tuples before they are processed by
the queries, which is more efficient compared to drop-
ping intermediate results. Another difference is that our
system considers the query time requirements and data
admission process aims to minimize the query deadline
miss ratios. Our system also supports query service dif-
ferentiation and allows different service classes to have
different data admission ratios.

There have been research results for scheduling query
operators. An operator scheduler focusing on streaming
data management is presented in [10]. The authors ar-
gue that a fine-grained scheduling approach in combina-
tion with various optimization techniques (such as batch
operations) can significantly improve the system per-
formance. They also discuss application-aware exten-
sions that make scheduling decisions according to per-
application QoS specifications. The proposed schedul-
ing algorithms focus on optimizing throughput, latency
and memory consumptions. However, the only tim-
ing requirements discussed in the paper is the output
latency. Providing deadline guarantees for queries is
not the main focus of the paper. Babcock et. al. [4]
propose a scheduling algorithm called chain scheduling.
The authors claim that the algorithm is almost optimal
in minimizing run-time memory usage for single-stream
queries involving selections, projections and foreign-key
joins with stored relations. The paper mainly focuses on
the minimizing the memory requirements of the system
and the proposed algorithm does not deal with query
timing requirements.

8 Summary and Future Work

In this paper, we present the design and implementa-
tion of our real-time data stream query processing sys-
tem prototype named RTSTREAM. We propose the pe-
riodic query model as an alternative to the continuous
query model for real-time applications. We discuss the
semantic difference between these two models and their
advantages and disadvantages. We introduce our real-



time periodic query QoS metrics and the query language
extensions to support real-time periodic query speci-
fications. We also design and implement data admis-
sion as an overload protection mechanism to reduce the
system workloads in case of overload. In performance
evaluation, we use synthetic workloads to test the sys-
tem performance under extreme workload fluctuations
and use real workloads from network traffic monitoring
applications to show that the current system and data
admission control mechanism can handle the workload
fluctuations of a real application.

For future work, we are currently looking into several
directions. One direction is to build the mathemati-
cal model for data stream queries so that the controller
tuning process can be automated and the controller per-
formance can be guaranteed. One direction is to address
the memory constraints. How to adjust query quality
and operator scheduling orders to deal with memory
constraints at run time is an interesting research prob-
lem. Another direction is to extend the current system
to distributed environments. With data stream sources
and DSMS systems spread in distributed environments,
the data stream dissemination, intermediate results gen-
eration and propagation, query QoS adaptation are all
important and challenging research problems.
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