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Abstract

Despite detailed psychophysical, neurophysiological and electrophysiological investigation, the number and nature of indepen-
dent and parallel motion processing mechanisms in the visual cortex remains controversial. Here we use computational modelling
to evaluate evidence from two psychophysical studies collectively thought to demonstrate the existence of three separate and
independent motion processing channels. We show that the pattern of psychophysical results can largely be accounted for by a
single mechanism. The results demonstrate that a low-level luminance based approach can potentially provide a wider account of
human motion processing than generally thought possible. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The notion of a low-level motion detector that oper-
ates directly upon image luminance has gained a wide
acceptance and is perceived to be the basic building
block for the biological detection of motion (van San-
ten & Sperling, 1984, 1985; Adelson & Bergen, 1985,
1986; Watson & Ahumada, 1985). Such a mechanism
cannot readily account for motion that is not defined
by luminance (Chubb & Sperling, 1988; Benton &
Johnston, 1997). Fig. 1a shows a sinusoidal contrast
modulation (the envelope) translating over a textured
background (the carrier). This motion may be referred
to as contrast-defined and is part of the wider class of
texture-defined motion. Examples of the latter are
translating modulations of the spatial frequency, tem-
poral frequency or orientation of texture elements.
These can be described as ‘second-order’ because they
involve the modulation of second-order image statistics
(Cavanagh & Mather, 1989). The term ‘first-order’ is
used to describe luminance-defined motion.

In order to account for the perception of texture-
defined motion, a dedicated texture motion mechanism
has been proposed (Chubb & Sperling, 1988; Clifford,
Freedman & Vaina, 1998; Clifford & Vaina, 1999). In
this approach, motion analysis is preceded by a texture
grabber, a mechanism that spatio-temporally filters the
image and then applies some gross non-linearity such as
squaring or full-wave rectification about mean lumi-
nance (Sperling, 1989). This process makes texture-
defined motion detectable by standard low-level motion
analysis.

One can also create types of motion that are not
luminance-defined and can also not be extracted
through the operation of the texture channel outlined
above. Examples of these are motion defined by com-
plex features (Cavanagh, 1992; Lu & Sperling,
1995a,b), motion generated by motion boundaries (also
termed theta motion (Zanker, 1993)), and motion
defined by binocular disparity (Patterson, Donnelly,
Phinney, Nawrot, Whiting & Eyle, 1997; Smith &
Scott-Samuel, 1998). The fact that we can detect mo-
tion in these stimuli suggests that some additional
process or processes may operate. One possibility is a
feature tracking mechanism, a concept that has a long
history within the field of human motion perception.
Although the existence of a feature tracking process is
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generally recognized, there is little consensus regarding
the underlying mechanisms. Additionally, there is evi-
dence that feature tracking may underlie the perception
of texture-defined motion (Seiffert & Cavanagh, 1998;
Derrington & Ukkonen, 1999). If this is the case, one
may reasonably question the utility of dedicated texture
motion mechanism.

In a recent study examining patients with neurologi-
cal damage, a double dissociation for first- and second-
order motion was reported (Vaina, Cowey & Kennedy,
1999). This finding is not supported by other studies
which have sought to detect and identify different
processing areas for first- and second-order motion
(Victor & Conte, 1992; Greenlee & Smith, 1997; Smith,
Greenlee, Singh, Kraemer, & Hennig, 1998; Somers,
Seiffert, Dale, & Tootell, 1998, 1999). These have re-
ported small or no differences in the cortical areas
activated by the two classes of stimuli. The lack of
concordance may well imply that where differences are
found, these reflect the response of a single mechanism
to different stimuli, rather than a functional subdivision
in the cortical motion analysis system.

A number of studies have described neurons in the
visual cortex of cat and macaque that respond to both
luminance and texture-defined motion (Albright, 1992;
Zhou & Baker, 1993; Mareschal & Baker, 1998;
O’Keefe & Movshon, 1998). Although these studies
provide evidence for the neural processing of second-or-
der motion, they provide no direct evidence for a
dedicated texture motion channel. Such a mechanism
would predict the existence of cells that respond mainly
to texture-defined motion whilst showing little or no
response to luminance-defined motion. As yet, there is
no evidence to support this prediction.

In the absence of firm neurophysiological and elec-
trophysiological evidence, support for the existence of a
separate motion processing channels has come mainly
from the domain of psychophysics. Here we examine
two psychophysical paradigms: one that has been taken
to demonstrate the existence of separate luminance and
texture motion mechanisms, and one that has been
taken to demonstrate the existence of separate lumi-
nance and feature based mechanisms. The first utilises
an interleaved sequence of luminance- and contrast-
defined motion (Ledgeway & Smith, 1994), the second,
a beat pattern created from the addition of 3f and 4f
components (Hammett, Ledgeway & Smith, 1993).

We apply a recent model of cortical motion process-
ing (Johnston, McOwan & Benton, 1999a) to the stim-
uli to see if the effects can be accounted for within a
unified architecture. The model is an elaboration of a
simple low-level motion detection strategy — the spa-
tio-temporal gradient model (Fennema & Thompson,
1979; Horn & Schunck, 1981). The simulations show
that the pattern of psychophysical results from the two
tasks can be accounted for by a single luminance based

mechanism. It is clear that the model can behave in a
manner that is generally thought indicative of multiple
motion mechanisms. Our results offer the possibility
that luminance based mechanisms can provide a wider
account of human motion processing than is generally
perceived to be the case.

2. A computational model of biological motion
processing

This section contains a general description of the
model employed in the study. A full description is given
by Johnston et al. (1999a). We initially describe a
version that operates in only two dimensions (i.e. one
spatial dimension, x, and one temporal dimension, t).

The model is derived from the gradient approach in
which velocity is calculated by dividing the temporal
derivative of image brightness by the spatial derivative
of image brightness. Because partial differentiation of
an image followed by filtering is equivalent to applying
a partially differentiated filter to the image (Bracewell,
1965), a gradient model may be realised by applying
pairs of filters to an image, one of which is the temporal
derivative and one the spatial derivative of the same
filter kernel. Local velocity can then be calculated by
taking the ratio of the outputs of the two filters.

One potential problem is that, when the output of the
spatial filter is zero, velocity is undefined. In order to
condition the velocity ratio calculation, one can include
additional measures. Rather than thinking of a single
filter kernel, one can think of a vector of filter kernels.
By taking the spatial derivatives of each of the filter
kernels we derive one vector of filters, and by taking the
temporal derivatives we derive another. A least squares
estimate of velocity can then be calculated as the ratio
of dot products:

velocity=
X · T
X · X

(1)

where X is the vector of filter outputs from the spatially
differentiated filters, and T is a vector of filter outputs
from the temporally differentiated filters. In this case,
for the denominator to equal zero, all of the measures
in X must equal zero. If we increase the number of
measures then the probability of this occurring is
reduced.

Here, however, one is faced with the problem of how
to construct the vector of filter kernels prior to differen-
tiation. What filters should be used, and how should
they be weighted relative to one another? One way to
solve this problem is to utilise a proposal put forward
by Koenderink and van Doorn (1987). In this frame-
work, local image structure is represented as a trun-
cated Taylor series expansion. In other words, image
structure in a local region is represented by the
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weighted outputs of a series of filters applied at a point
in the image. These filters are generated from a single
filter (the blur kernel) by progressively increasing the
order of the spatial and temporal differential operators
applied to the kernel.

From the Taylor series expansion, one can estimate
image brightness at a distance from the point at which
the measures are taken. The weights that are attached
to the various derivatives are dependent upon the direc-
tion and length of the vector joining the point at which
the measures are taken and the point at which we wish
to estimate image brightness. Therefore, for any point
in the image we can construct a vector of weighted filter
functions which will serve as the initial vector of filter
kernels. The calculation of velocity uses this property of
the Taylor series to integrate over a region surrounding
the point at which the bank of filters is applied.

The 2D space–time version of the model summarised
so far, has been described by Johnston, McOwan and
Buxton (1992) and Johnston and Clifford (1995a). In
the current study we use a version that has been
extended to accommodate three dimensions (i.e. two
spatial dimensions, x and y, and one temporal dimen-
sion, t). To generate our vector of filter kernels from a
single blur kernel, we differentiate the kernel in increas-
ing orders of x, y and t. As in the 2D version of the
model, the blur kernel is a Gaussian in space and log
time.

In the 3D version of the model, the reference frame
(i.e. the x and y axes defining the local direction of
spatial differentiation) is rotated through a number of
orientations with respect to the input image. A total of
24 orientations (evenly spaced over 360°) are employed.
For each orientation, three vectors of filters are created
by differentiating the vector of filter kernels with re-
spect to x, y and t. Coupled with the rotation of the
reference frame, this produces a population of filters
that are tuned to different orientations and spatial
frequencies and may show either transient or sustained
temporal properties. From the measures derived by
applying the three vectors of filter functions to the
image, we calculate the following four speed related
measures: speed, orthogonal speed, inverse speed and
orthogonal inverse speed:

speed=
X · T
X · X

cos2 f=
X · T
X · X

�
1+

�X · Y
X · X

�2�−1

(2)

orthogonal speed=
Y · T
Y · Y

sin2 f

=
Y · T
Y · Y

�
1+

�X · Y
Y · Y

�2�−1

(3)

inverse speed=
X · T
T · T

(4)

orthogonal inverse speed=
Y · T
T · T

(5)

where X is the vector of filter outputs from the x
differentiated filters, Y is the vector of filter outputs
from the y differentiated filters and T is the vector of
filter outputs from the temporally differentiated filters.
Speed (X · T/X · X) and orthogonal speed (Y · T/Y · Y)
measures are ill conditioned when there is no variation
over x and y, respectively. To prevent this from degrad-
ing the final velocity estimate, speed and orthogonal
speed are both conditioned by measures of the angle of
image structure relative to the reference frame (f).
From Eq. (2), it can be seen that as X · X decreases,
(X · Y/X · X)2 increases more rapidly than the speed
term, thereby forcing the product to zero as (X · T/
X · X) approaches infinity. The inverse speed measures
however become infinite when the temporal derivative
is close to zero, which is appropriate.

As the four speed related measures are calculated
from different combinations of different filter outputs,
they may all thought of as different estimates that are
related to local speed. The inclusion of additional image
measures to increase robustness is one of the core
design criteria that runs through the model. By taking
each of the speed related measures indexed by the
orientations through which the reference frame is ro-
tated, we can form the vectors, ŝ (speed), ŝÞ (orthogo-
nal speed), s̆ (inverse speed) and s̆Þ (orthogonal inverse
speed). The final speed estimate is calculated as the
square root of the ratio of determinants:

speed2=

Ã
Ã
Ã
Ã
Ã
Ã
Ã

ŝ·F ŝ·FÞ

ŝÞ·F ŝÞ·FÞ

ŝ·s̆ ŝ·s̆Þ
s� Þ·s̆ s� Þ·s̆Þ

Ã
Ã
Ã
Ã
Ã
Ã
Ã

(6)

where F and FÞ are vectors containing the cosines and
sines of the angles through which the reference frame
has been rotated.

In the case of the motion of a simple pattern such as,
for example, a translating sine wave grating, the de-
nominator of Eq. (6) takes a value of 1. Measures of
speed and orthogonal speed vary sinusoidally with an-
gle of reference frame, with orthogonal speed lagging
behind speed by a quarter of a cycle. The numerator
shown in Eq. (6) works by taking a measure of the
amplitude of the distribution of speed measures that is
combined across both speed and orthogonal speed. The
denominator (and its measures of inverse speed) are
included to stabilise the final speed estimation. This can
be shown to be particularly important in the case where
motion occurs in the presence of static pattern (see
Johnston et al., 1999 for a full analysis).

Direction of motion is extracted by calculating a
measure of phase that is combined across all four speed
related measures:
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direction= tan−1�(s̆+ ŝ) · FÞ+ (s̆Þ+ ŝÞ) · F
(s̆+ ŝ) · F− (s̆Þ+ ŝÞ) · FÞ

�
(7)

When speed is large (and inverse speed is small) then
direction is dominated by the speed measures, however
when speed is small (and inverse speed is large) then the
measure is dominated by inverse speed. The use of
complementary and antagonistic speed and inverse

speed measures should prove valuable in any system
where small signals are likely to be affected by noise.

The model described above incorporates a number of
distinct processing stages and integrates the outputs of
oriented filters that have a range of spatial and tempo-
ral frequency tuning characteristics, consistent with the
properties of cortical neurons. In summary, the model
can be thought of as a stable and robust extension of
the gradient algorithm. The model seeks to resolve
problems of mathematical ill-conditioning by making
multiple measures on the stimulus rather than by intro-
ducing arbitrary constants or thresholds. It should be
noted that the model contains no non-linear prepro-
cessing stages that seek to extract texture or features
prior to motion analysis; the computation of speed and
direction are based directly upon the output of filters
applied to the input image.

3. Method and results

3.1. General methodology

All input sequences contained 128 frames of 128×
128 pixel images. The temporal filters incorporated into
the model are calibrated by fitting their temporal fre-
quency tuning curves to psychophysical data. The tem-
poral scaling means that 128 frames represents 1 second
(Johnston & Clifford, 1995b). Model input and associ-
ated output are shown as space–time plots. The follow-
ing procedure was used to compress space–space–time
model input and output. Within each frame, x refers to
the dimension parallel to the direction of motion (hori-
zontal), y refers to the dimension perpendicular to
motion (vertical). Space time images of input sequences
were created by collating the central horizontal lines
from each input frame. Model output gives speed and
direction which may be expressed in component form.
Space–time model output was derived from space–
space–time output by averaging the motion vectors
over y. After this procedure, each frame is represented
by a horizontal line of averaged motion vectors. These
are then expressed as speed and direction, collated over
frames and plotted separately as space–time plots.

We calculate a directional index from the model
output. This is a measure of contrast between forwards
and reversed motion. Velocities are expressed in com-
ponent form, and the sum of the positive values (P)
and the sum of the absolute negative values (N) of the
velocity components in the direction of motion are
calculated. The directional index is defined as (P−N)/
(P+N). A positive index indicates forwards/rightwards
motion, a negative index indicates reversed/leftwards
motion. The measure ranges from 1.0 to −1.0. In this
study, each directional index is drawn from 64 frames
of model output. The mean indexes described in this

Fig. 1. Model input and output for contrast modulated, luminance
modulated and interleaved sequences. All images have been scaled to
fill the full luminance range. For clarity, in the examples of lumi-
nance-defined patterns, the contrast of the additive sinusoidal compo-
nent is 0.5. In space–time input/output plots (see Section 3), the
leftmost column shows input stimuli, centre column shows speed and
rightmost column shows direction. Speed is encoded by brightness,
direction is indicated by the grey surround. White indicates forwards
motion, black indicates reversed motion. Grey indicates motion per-
pendicular to that of the envelope. (a) Three frames from a contrast-
defined sequence in which the envelope translates from left to right by
a quarter of a cycle every frame. (b) Three frames from a luminance-
defined sequence with additive static noise in which the envelope
translates from left to right by a quarter of a cycle every frame. (c)
Space–time model input and output for a contrast-defined sequence.
(d) Space–time input/output for a luminance-defined sequence. (e)
Space–time input/output for an interleaved sequence.
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Table 1
Mean directional indexes (see Section 3)

Beat without inter frameContrast- InterleavedLuminance- Beat with inter frame
defined defined interval interval

−0.00251.000.49 0.18Mean direction index −0.86
(+ve= forwards)

Standard deviation 4.0×10−2 2.1×10−4 5.1×10−2 7.8×10−3 2.1×10−2

paper are based upon the model’s response to 100
instantiations of each input stimulus.

3.2. Interlea6ed first-order/second-order paradigm

We applied the model to luminance-defined, contrast-
defined and interleaved sequences. Fig. 1 shows exam-
ples of the stimuli. In contrast-defined sequences (a),
the contrast of static binary noise is modulated by a
translating sine wave grating. In luminance-defined se-
quences (b), static binary noise is added to a translating
sine wave grating. Noise element size was 4×4 pixels,
the spatial frequency of the sine wave was two cycles
per image. The sine wave jumped by a quarter of a
cycle every four frames (remaining static between
jumps). This gives a temporal update rate of 32 Hz.
Interleaved stimuli were created by taking alternating
four frame segments from luminance- and contrast-
defined sequences with the same underlying noise pat-
tern. In contrast modulated sequences the modulation
depth was 1.0, mean noise contrast was 0.5. To closely
approximate Ledgeway and Smith (1994), the contrast
of the sinusoidal component in the luminance-defined
motion sequences was 0.1. The contrast of the additive
noise was 0.5. Each stimulus instantiation contained a
fresh sample of static binary noise.

When either the contrast or the luminance-defined
stimuli are viewed, the overall direction of motion is
readily apparent. However, when they are interleaved,
no coherent motion percept is elicited. It has been
argued that this pattern of results demonstrates that
luminance- and contrast-defined motion are processed
through separate mechanisms (Ledgeway & Smith,
1994). Fig. 1c,d,e shows the results of the model applied
to the three sequences, direction indexes are given in
Table 1. The results show that motion is signalled in the
correct direction for the luminance- and contrast-
defined sequences but that no coherent motion is de-
tected in interleaved sequences1. This clearly

demonstrates that the pattern of psychophysical results
is not necessarily indicative of separate motion
mechanisms.

3.3. 3f+4f beat paradigm

Examples of 3f+4f beat sequences are shown in Fig.
2. For our simulations, the spatial frequency of the beat
pattern (given by the difference between its component
frequencies) was 2.0 cycles per image. The amplitudes
of the components were identical. The pattern jumped
through a quarter beat cycle every eight frames (re-
maining static between jumps). Inter frame intervals
were added by inserting mean luminance grey frames
between the eight frame segments. For the results de-
scribed in this paper, inter frame intervals of zero and
eight frames were employed. For each stimulus instanti-
ation, the phases of the components were randomised.

Fig. 2. Model input and output for 3f+4f beat patterns. In space–
time input/output plots, first column shows input stimuli, second
column shows input stimuli filtered with the first derivative of a log
Gaussian temporal filter, third and fourth columns show model
output. The scale of the temporal filter was determined by fitting to
psychophysical data (Johnston & Clifford, 1995b), eight frames repre-
sents an inter frame interval of 62.5 ms. (a) Example of three
successive frames, including a grey inter frame interval, from a
sequence in which the beat patterns translates by a quarter of a cycle
from left to right. (b) Space–time input/output for a sequence with
no interframe interval. (c) Space–time input/output for a sequence
with an eight frame inter frame interval.

1 The temporal update rate employed in this study (32 Hz) was
approximately double that of Ledgeway et al. (1993). They note that
temporal update rate is not a critical factor. When we use an update
rate of 16 Hz the pattern of results remains the same (although less
clear-cut). Mean directional indexes (and associated standard devia-
tions) are 0.26 (9.66×10−3) for the luminance-defined pattern, 0.26
(2.03×10−2) for the contrast-defined pattern and 0.0032 (2.70×
10−2) for the interleaved pattern.
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Fig. 3. Schematic diagram showing four small spatially localised areas
(2 pixels wide, 1 pixel high) over two successive frames as a square
wave contrast envelope, translating from left to right, modulates the
contrast of a static binary noise carrier. The first two columns of
squares indicate the luminances of two adjacent pixels at frame n, the
third and fourth columns indicate the luminances of those two pixels
on the next frame. In the top two examples, the leading edge of a
low-contrast grey region reduces the contrast of dark (a) and light (b)
pixels. In the bottom two examples, the contrast of dark (c) and light
(d) pixels increases as the trailing edge of the low-contrast region
moves to the right. The signs of the spatial and temporal gradients
are based on the following differences. Temporal gradient= (column
3+column 4)− (column 1+column 2). Spatial gradient= (column
1+column 3)− (column 2+column 4). The direction of velocity is
given by the sign of the ratio of the temporal gradient over the spatial
gradient. The figure demonstrates that at both the leading and
trailing edge of the low-contrast regions, velocity is signalled in the
same direction whatever the polarity of the underlying noise carrier.
Note that if all the noise elements are either dark or light (i.e. a
luminance-defined stimulus), the calculated direction of motion is the
same as that computed with the texture-defined stimulus.

the 2D version of the model employed in this study,
successfully modelled the perceived motion reversal
found with a missing fundamental fluted square wave
over increases in inter frame interval (Georgeson &
Harris, 1990).

4. Discussion

Taken together the results show the following. The
model correctly detects the direction of motion in lumi-
nance- and contrast-defined patterns but fails to detect
motion when these two patterns are interleaved. With
the 3f+4f beat sequence, the model’s output contains a
mixture of reversed and forwards motion with the latter
increasingly prevalent as the blank inter frame interval
is increased. These simulations indicate that a single
channel model can display behaviours normally
thought to indicate the presence of multiple motion
mechanisms.

The model ‘sees’ luminance- and contrast-defined
motion, yet fails to see motion in interleaved patterns.
In the single channel model used for our simulations
(Johnston et al., 1999a), there is no initial non-linearity.
The detection of contrast-defined motion is based upon
a geometrical approach to the analysis of the luminance
surface (Johnston & Clifford, 1995a; Johnston, Benton
& McOwan, 1999b). A schematic diagram describing
how the model detects the direction of motion in trans-
lating contrast modulations of static noise is shown in
Fig. 3. This shows how the temporal and spatial gradi-
ents at the leading and trailing edges of a low-contrast
region may be combined to give the correct direction of
motion. When the sign of the both the temporal and
spatial gradients is changed, the sign of their ratio (i.e.
the direction of motion) is conserved (see Johnston et
al., 1999b for a more detailed examination). The analy-
sis can also be applied to translating sinusoidal contrast
modulations.

It is clear then that the gradient model can correctly
detect the direction of motion in luminance- and con-
trast-defined stimuli. Why then should it fail to detect
motion when the two are interleaved? Fig. 4 shows a
representation of three frames of an interleaved se-
quence. An explanation of why no motion is elicited by
this stimulus can be made by appealing to the temporal
symmetries inherent in the image.

There is no expected variation in mean luminance
across the contrast defined frame shown in Fig. 4a. Any
deviations from mean luminance that do occur will be
random and are equally likely to signal leftwards or
rightwards motion. On a more local level, the relation-
ship between the luminance-defined frames and the
noise elements in the high contrast regions of the
contrast defined frames is also balanced. Fig. 4b and c
show two portions of Fig. 4a which contain the left and

As the pattern translates by a quarter of a beat cycle,
the 4f component translates by a whole cycle (and is
therefore stationary) whilst the 3f component translates
forwards by three quarters of a cycle. The motion of
the latter is equivalent to the component shifting back-
wards by a quarter of a cycle. A low-level motion
detector should indicate this reversed motion. When the
inter frame interval is short, a percept of transparency
is obtained with both forwards and reversed motion
present. When the inter frame interval is increased,
there is a greater tendency to report forwards motion
and a concomitant reduction in transparency (Hammett
et al., 1993). It is argued that the forwards motion (the
direction of pattern motion) represents the influence of
a feature tracking mechanism. Fig. 2b,c shows the
response of the model to the stimulus. Table 1 shows
mean directional indexes. With an inter frame interval
of zero, the model’s output contains both forwards and
reversed motion. When the inter frame interval is in-
creased, there is a greater preponderance of forwards
motion. We can conclude from this that the pattern of
psychophysical results does not necessarily indicate
multiple motion channels. A similar conclusion is
reached by Johnston and Clifford (1995b) who, with
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Fig. 4. (a) Schematic representation showing a space time plot of
three successive frames of an interleaved motion sequence. The
middle frame shows a contrast modulated pattern with a block of
high contrast static noise in the centre. (b) A portion of (a) containing
the left hand half of the high contrast static noise. (c) A portion of (a)
containing the right hand half of the high contrast static noise.

temporal structure is dominated by the 3f component
which signals reversed luminance-defined motion.
When the inter frame interval is increased, the spatio-
temporal structure of the filtered image is very different.
There is a clearly oriented contrast modulation indicat-
ing motion in the forwards direction. The 3f+4f stimu-
lus can therefore be seen to contain both luminance-
and contrast-defined motion. As the inter frame inter-
val is increased, the local structural elements within the
temporally filtered image that signal forwards motion
become more prominent, leading to a shift in the
calculated direction of motion. The shift in balance
between forwards and reversed motion may simply
reflect the operation of a transient temporal filter in
human motion perception (see also Shioiri & Ca-
vanagh, 1990; Johnston & Clifford, 1995b), rather than
a switch in computational strategy.

5. Conclusions

This paper shows that a low-level luminance based
model of human visual perception can exhibit be-
haviour normally associated with multiple motion pro-
cessing mechanisms. In particular, the simulations
make the following two points. Firstly, the detection of
contrast defined motion does not necessarily require a
preprocessing non-linearity. Secondly, the inclusion of
an interframe interval does not necessarily disable low-
level motion processing, although it may well affect its
outcome. Our simulations show that two psychophysi-
cal tasks, collectively thought to indicate the existence
of three separate and parallel motion processing mecha-
nisms, may largely be accounted for by a single coher-
ent motion algorithm. More generally, the results raise
the possibility that a low-level mechanism can poten-
tially account for a greater portion of motion phenom-
ena than is normally supposed.
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