
Replication-Based Incremental Copying Collection

Scott Nettles1, James O'Toole 2, David Pierce3, Nicholas Haines 4

Abstract

We introduce a new replication-based copyi ng garbage coll ecti on techni que. We

have i mpl ementedone si mpl e vari ati on of thi s methodto provi de i ncremental garbage

col l ecti on on stock hardware wi th no speci al operati ng systemor vi rtual memory

support. The performance of the prototype i mpl ementati on i s excel l ent: major

garbage col l ecti on pauses are compl etel y el i mi nated wi th onl y a sl i ght i ncrease i n

mi nor col l ecti on pause ti mes.

Unl i ke the standard copyi ng al gori thm, the repl i cati on-based method does not

destroy the ori gi nal repl i ca when a copy i s created. Instead, mul ti pl e copi es may

exi st, and vari ous standard strategi es f or mai ntai ni ng consi stency may be appl i ed.

In our i mpl ementati on for Standard ML of NewJersey, the mutator conti nues to

use the f rom-space repl i cas unti l the col l ector has achi eved a consi stent repl i ca of

al l l i ve data i n to-space.

We present a desi gn for a concurrent garbage col l ector usi ng the repl i cati on-

based techni que. We al so expect repl i cati on-based gc methods to be useful i n

provi di ng servi ces f or persi stence and di stri buti on, and bri ey di scuss these pos-

si bi l i ti es.

Keywords: replication, garbage collection, incremental collection, concurrent collec-
tion, real-time garbage collection

1 Introduction

Copyinggarbage collection(GC) is an important memorymanagement technique, but
its applicationhas beenlargelylimited tosituations that cantolerateGCpauses. There
have beennumerous schemes for incremental or concurrent copying collectors that are

Authors' a�liat i ons :1nett l es@cs .cmu. edu,3dp30@andrew. cmu. edu, 4ni ckh@cs. cmu. edu, School of Com-
puter Sci ence, Carnegi e Mel l on Uni vers i ty, Pi ttsburgh, Pennsyl vani a 15213.
2otool e@l cs . mi t. edu, Laboratory f or Computer Sci ence, Massachusetts Inst i tute of Technol ogy, Cam-
br i dge, Massachusetts 02139.

Thi s research was sponsored by the Avi oni cs Lab, Wri ght Research and Devel opment Center , Aeronau-
t i cal Systems Di vi s i on (AFSC), U. S. Ai r Force, Wri ght- PattersonAFB, OH 45433- 6543 under Contract
F33615- 90-C- 1465, Arpa Order No. 7597 and by the Ai r Force Systems Command and the Def ense
Advanced Research Projects Agency (DARPA) under Contract F19628- 91- C- 0128.

The vi ews and concl us i ons contai ned i n thi s document are those of the authors and shoul d not be
i nterpreted as represent i ng the o�ci al pol i ci es , ei ther expressed or i mpl i ed, of the Def ense Advanced
Research Proj ects Agency or the U. S. Government.

\real time," i.e. that limit GCpauses to small bounded intervals. Real-time collectors
interleave garbage collection with programexecution, thus spreading out the copying
work so that the individual interruptions are unobtrusive. These incremental collectors
fall intoone of twogroups: those that require special hardware [6], andthose that use
virtual memoryprotection[2].

The disadvantage of techniques which use special hardware is that they are not
portable. Techniqueswhichuseother operatingsystemsupport suchas theabilitytocon-
trol the virtual memorysystemare oftennot portable, andcanbe prohibitivelycostly
due to the cost of trap handling or similar operations. We propose a newtechnique
for implementingincremental andconcurrent copyingcollectors that requires nospecial
support fromeither hardware or operatingsystem. Inaddition, it promises tobe useful
for other algorithms that use copying to provide features such as persistent data and
distributedcomputing.

We �rst introduce our general approach, basedonnondestructive copyingor repli-
cation. Next we outline our experimental implementationandpresent preliminaryper-
formancemeasurements whichdemonstrate its excellent real-time behavior. Finallywe
discuss the applicationof the replication-basedtechnique to concurrent collection, and
suggest other applications.

2 The General Method

Copyingcollectionworks bycopyingall of the validdata fromone region(from-space)
toanother (to-space), leavingthe garbagebehind. Weassumethe reader is familiarwith
the basic technique of copyingcollectionas well as the notionof generational collection.
The keyoperations of copyingcollectionare as follows:

� Copy anobject fromfrom-space intoto-space, leavingaforwardingpointer inthe
original from-space object.

� Forward afrom-space pointer intoto-space, if necessary copyingthe object it ref-
erences, andredirectingthe pointer tothe to-space copy.

� Scan ato-space object, forwardingall of the object's pointers.

The mutator canperformthe followingoperations onobjects: reada �eld, write a
�eld, andcompare pointers for equality. Incremental GCrequires that these operations
be interleavablewiththeoperations of the garbagecollector outlinedabove. (Concurrent
GChas muchstricter requirements, discussedinsection5 below.)

Since the standardcopyingtechnique overwrites from-space objects withforwarding
pointers intheCopy operation, most incremental collectors require that themutator use
onlythe to-space copyof anobject. Tomaintainthis invariant, the collectionalgorithm
mustrelyonlow-level hardwaresupport. (E.g. hardwaresupport for followingforwarding
pointers or trappingall attempts toaccess the unscannedportions of to-space.)

In contrast, our technique simply replicates the from-space object in to-space. A
forwarding pointer is placed ina special wordreserved at the head of the from-space
object. Since the original object is not destroyed by the copying operation, any use
of the object maycontinue to reference the original object. However, because multiple
copies of anobject mayexist, readandwrite operations must adhere toone of several
consistencyprotocols.

If reads are permittedto access either copy, write operations must modifybothto-
space and from-space replicas. Also, pointer-based equalitytests must followthe for-
wardingpointers inorder toensure that onlyto-space (or onlyfrom-space) pointers are
compared. Inmore sophisticatedsystems, where copyingis usedfor purposes other than
GCand there maybe more than two replicas of anobject, the mutator must modify
al l replicas (for this purpose we canmake the forwarding chain circular by having a
`reversingpointer' inthe newest replica). Inthis system, readoperations canbe freely
interleavedwith anyof the GCoperations, but under some consistency protocols the
write operations may require synchronizationwith the collector, and care maybe re-
quired to ensure that the mutator does not write from-space pointers into previously
scannedto-space replicas.

This general protocol of reading any copyandwriting all copies is a standard one
used for maintaining replicated data, so we use the term\replication-based copying".
Another possibility is to have write operations modify only the newest version of an
object, inwhichcasethe readoperations formut abl e objects mustalwaysreadthenewest
version. Insection5, we discuss this possibility, whichmaybe preferable for concurrent
applications.

Note that these operations are distinct fromthat of updatingthe `root set', that set
of pointers directlyvisible to the mutator (registers, the stack, etc.). At some point in
the GCprocess, these pointers must be updated. Ina standard incremental collector,
this is done immediatelyafter the `ip' byasimple `forward' operationtostart the GC.
Withareplication-basedalgorithm, it is possible todelaythis stepuntil just before the
ip, after copyingall live data intoto-space. Byusing this technique, the collector can
ensure that the mutator uses onlyfrom-space objects. Inthis case, there is noneedfor
the collector to synchronize with the mutator except very briey at ip time. Notice
that this variationis not fullygeneral, as it does not provide for more sophisticateduses
of copying.

Theadvantageof the abovetechnique is that it allows for incremental collectionwith
no special hardware or OSsupport, but what are the disadvantages? First, it requires
one extra word per object for the forwarding pointer. Fortunately, this extra word
canoftenbe absorbed intoother object header words whichare alreadypresent. The
seconddisadvantageis that theconsistencyprotocol maymakewrites (andpossiblyreads
of mutable objects) more expensive. For some languages this wouldbe unsatisfactory
because mutations are common. However, for applicative languages like SML, inwhich
side e�ects are less frequent andmutable objects are clearly distinguished by a type
system, this runtime cost is probablynot aproblem. The thirddisadvantage is that of
copyinglatent garbage, but this is aninevitable cost of anyincremental method, andall
suchgarbage is discardedbythe next collection. The �nal disadvantage is that tests of
pointer equalitybecome more expensive. This maybe a serious disadvantage for Lisp
familylanguages where the use of eq is common. It is probablyless important for SML,
because equalitytesting is alreadyexpensive, andnot as frequentlyused.

3 Implementation

We have built a prototype implementationof a replication-based incremental collector
for SML/NJ (version66). Inorder to quickly test the utility of the replication-based
method, we chose to implement asimple variationof the general replicationalgorithm.

Inthis variation, themutator uses onlythe from-space replicas. Therefore, themutator
neednot adhere toaconsistencyprotocol, andsoonlyone small change tothe SML/NJ
compiler was required. The rest of the implementationworkrequiredmodi�cations to
the standardSML/NJgarbage collector.

SML/NJuses asimplegenerational copyingcollector [1], withtwogenerations known
as new-space andold-space. The new-space is used for newlyallocateddata, and the
old-space contains datawhichhas survivedat least one collection. Whenthe new-space
�lls, a`minor' collectionis performed, copyingdatafromthe new-space tothe old-space.
The compiler keeps a record (the `store list') of all writes to mutable objects so that
references fromthe old-space intothe new-space canbe foundduringminor collection.
Whenthe old-space�lls, a`major' copyingcollectionis performed. Minor collections are
typicallyshort andnon-disruptive, but major collections are oftenlengthy.

Our implementationleavesminor collections as theyare, but makes themajor collec-
tions incremental, doingsome portionof the major collectionat eachminor collection.
There are several reasons for this choice. First, it avoids havingthe allocator allocate
the forwardingword; insteadit is addedwhenobjects are copiedfromnewtoold. This
avoids achange tothe compiler backend's allocationprimitives. Second, since the GCis
incontrol duringaminorcollection, it is convenientandcheaptodoincremental workat
that time. Bylimitingthe amountof incremental workdoneat eachminor collection, we
cankeeppauses brief, withinafactor of, say, three times as longas for aminor collection
alone.

We use the strategy, described above, of only updating the root set when the GC
is complete. The mutator can therefore onlysee from-space objects. We use the store
list duringeachGCincrement toupdate to-space versions andrescanthemif necessary.
The SML/NJcompiler version66keeps a logof all mutations whichstore pointers, for
use bythe generational collectionalgorithm. Wemodi�edthe mutationlog to include
all mutations, so that the incremental collector canupdate to-space. This avoidedthe
needtomodifythe compiler toaddawrite-all-replicas protocol.

Inorder toensure that the garbage collector terminates, wemust guarantee that all
livedatawill be replicatedinto-space before from-spaceoverowswithnewdatacopied
by the minor collections. We want to restrict the amount of GCwork done in each
increment, but still ensure that a `ip' takes place before from-space is full. Otherwise,
when from-space �lls, the incremental collector will have to performa large amount of
remaininggc work, whichwill be tantamount toamajor garbage collectionpause.

Intheprototype implementation, weguaranteethat this will not happenbyrequiring
the incremental collector to copymore objects intoto-space thanwere added to from-
space by the minor collection. Therefore, the duration of the incremental collector's
pauses can be controlled by adjusting the size of the new-space and the amount of
additional incremental copyingdone.

4 Measurements

The initial performance measurements for our prototype implementationare shownin
table 1. The table describes the garbage collector pauses whichoccurredduringasingle
test case. The test case compileda signi�cant part of the SML/NJ compiler, andwas
runwithout paging activityona DECstation5000/200 equippedwith64 Mbof main

#minor mean modal max. 90% #major mean max. total
pauses pause pause pause below pauses pause pause GC

orig 5422 17ms 15ms 734ms 45ms 48 2.2s 5.0s 201s
incr 5422 57ms 46ms 499ms 93ms | | | 312s

Table 1: Pause timings for stop-and-copyvs. incremental collectors.

memory. The incremental collector completelyeliminates the major collectionpauses of
2to5seconds withwhicheverySML/NJuser is aggravatedlyfamiliar.

Theminor pauses measuredfor the original collector represent the delaycausedbya
collectionof old-spaceintonew-space. Theminorpausetimeforthe incremental collector
includes the generational collectionof old-space intonew-space andalsothe workdone
bythe incremental algorithmtransporting objects inthe from-space (old-space) to the
to-space.

The statistical distributionof the minor pause times are bothunimodal, withpro-
nouncedmodes at at a pause time of less than 50ms, but with a long tail to several
hundredmilliseconds. Our collector increases themode, but its performance appears to
be interactive enoughtoremainacceptable tousers.

The measuredmeanpause time for our collector is 57milliseconds. We expect to
reduce that �gure to 50ms or less byvaryingthe control parameters of our implemen-
tation. Reducing the size of the new-space andthe fractionof incremental workdone
will shortenthese pauses. Because our collector is incremental, we canalsocut short the
incremental collectionactivityif it becomes toolengthy.

Thetotal garbagecollectiontimeis increasedbymorethan50%relativetoversion66
of the SML/NJ. Weanticipatebeingable toreduce this toapproximately10%bysimple
optimizations of our existingcode (webelievemost of this increase is due tothe fact that
the prototype implementationperforms a `ip' operationtwice as oftenas the standard
algorithm. There is nomutator timeoverheadinthe current implementation.

#objects total overhead
copied size bytes %heap

all objects 27M 344Mb 108Mb 24%
mutable only 1.76M 18Mb 7Mb 2%

Table 2: Space overheadof forwardingwords for incremental collector.

Table 2shows the total space overheadof our system. The total size measurements
giveninthe table donot include the overheadfor forwardingwords, andthe percentage
�gure measures the amount of overheadbytes as a percentage of the total heap size,
includingoverhead. The prototype implementationuses aseparate forwardingwordfor

everyobject, whichresults inaveryhighspace overheadof 24%because amajorityof
objects are two-wordrecords (̀ cons cells') withaheader word. However, we canreduce
the space overheadbystoringthe forwardingpointer andthe header informationinthe
sameword. Inthis scheme, areplicatedobject has header informationononlythenewest
copy. Anyoperationwhichneeds theheader informationmust followforwardingpointers
to locate the newest copyof the object. Inthe write-newest protocol, this optimization
canbe appliedtoall objects, eliminatingthe space overheadentirely.

However, inthe write-all consistency protocol, eventhe newest replicas of mutable
objects require `backwardingpointers', sothis optimizationcannot be appliedto them.
In this case the space overheadwouldbe reduced to just 2%of the heap, as shownin
the table. Certainoperations suchas size wouldneedto followthe forwardingpointer
chain, as well as other low-level run-timeoperations suchas tagchecks.

5 Concurrent Collection

The same technique is applicable toaconcurrent system, inwhichthe collector andthe
mutatorruninparallel, as separate threads of asingleprocess. This is onlyanadvantage
inmulti-processor systems, when the collector maybe running onone processor while
the mutator (or mutators) is runningonthe others|insingle-processor systems one is
merelysacri�cingcontrol over whenthe collector runs, whichis pointless.

Ina concurrent system, not onlymust the semantic operations of the collector and
mutator be independent, as discussedabove, but the individual machine instructions of
eachmust be interleavable. This is a much stronger condition, but it is not hard to
satisfyinaconcurrent versionof the incremental collector describedabove.

First consider whether runningour prototype incremental collector concurrentlywith
themutatorwouldproduce read/write conicts. Themutator onlyreads or writes from-
space replicas. The collector reads from-space replicas, but writes onlyto-space replicas.
The collector alsowrites the forwardingwords of from-space replicas, whichthemutator
does not access. Thus the collector will not interferewiththemutator. If the forwarding
wordandthe header wordaremerged, thenthe collector andthemutator couldconict
while accessing this word. However, as longas the collector canatomicallyupdate the
header word to install the forwarding pointer, there is no danger. The mutator will
either read the from-space replica's header wordbefore it is overwritten, or followthe
forwardingpointer tothe to-space replica.

Nowconsider whether the mutator will interfere with the collector. It can only
interfere bywritingawordthe collector is reading. But at worst this wouldcause the
collector to copythe wrongvalue to to-space andat some point this mistakewouldbe
correctedintheprocess of updatingto-space toreect mutatorwrites. Thus themutator
does not interfere withthe collector.

Almost all of the synchronizationneededtomakeour prototype incremental collector
concurrent is alreadypresent inthe incremental collector, because the e�ects of mutator
stores are communicatedtothe collector indirectlythroughthe store list. Implementing
a concurrent collector is simplyamatter of managingthe hando�of the current roots
andthe store list, andsynchronizingto forwardthe root pointer set whenthe collection
terminates.

6 RelatedWorks

Real-time incremental or concurrent garbage collectionhas been the goal of manyre-
searchprojects inthe past. Recent workincludes that byEllis, Li, andAppel [2], which
exempli�es the use of the virtual-memorysystemto control the GCbehavior, andHal-
stead[5], usinghardware improvements. The �rst real-time copyingcollector, byBaker
[3] requires special hardware, andpavedthe wayfor manyother such systems. Some
existingalgorithms workonstockhardwarewithout operatingsystems support, suchas
thosebyBrooks [4] andlater North[8], but noneof these showsuchsmall timeandspace
overheads as our technique.

7 Future Work

Since the overheadfor this newtechnique appears to be acceptable, we believe it will
be useful whenappliedto several other interestingGC-relatedalgorithms. These other
algorithms canall make use of copyingtoachieve some useful endother thancollecting
garbage, andmaybe able toshare some runtime and/or storage costs withthe garbage
collector.

One such algorithmis used to implement persistent storage. One of us has im-
plementeda persistent storage systembased on copying objects fromthe heap into a
persistent heap[7]. Amajor performance bottleneckis the needtoscanthe entire heap
for pointers to objects whichhave been copied. Nondestructive copyingwill eliminate
this scan.

We are also interested in using copying to implement mechanisms for distributed
computing, suchas thoserequiredbyobject repositories. Inthesedistributingcomputing
systems, datawhichwill bereplicatedataremotemachineis copiedintoamessagebu�er,
linearizingit for transmissionpurposes. Againnondestructive copyingwill greatlylessen
the overheadof suchcopies. Also, weanticipate asimple interface betweenthe local GC
describedhere andthe global (distributed) GCrequiredinsuchasystem.

A�nal possibilityis the technique of delayedhashconsing. Here the systemtries to
detect if two (immutable) objects are identical. If they are then they canbe merged.
This merge canbe implementedbynondestructively addinga forwardingpointer from
one object to the other. This technique maygreatly reduce the amount of heap space
needed.

Weare extendingour implementationinthesedirections andexploringsomeideas for
\opportunistic"GC[9], inwhichthe timingof garbage collections is chosentominimize
disruptiveness. We are investigating triggering GCwithin the user-interaction loop,
immediatelybefore promptingfor input, andafter longwaits for input. As a start, we
are addingsomeverysimplecode todisable the incremental techniquewhenthemutator
is compute-bound, revertingtothemore e�cient stop-and-copycollection, the pauses of
whichwill not be noticedduringthe compute delay.

8 Conclusions

Wehave introducedapromisingnewcopyingGCtechnique, replication-basedcopying.
This technique is especiallywell suitedtolanguages likeSMLwheremutations are rare.

We have implementeda simple incremental GCfor SML/NJ based on this technique
andhaveobtainedpreliminarydatashowingour ideatobeworkable. Weare continuing
worktomake relatedalgorithms equallypractical.

Acknowl edgment s: Scott Nettles andJames O'Toolewouldlike tothankDEC's Sys-
tems ResearchCenter for support as summer interns, duringwhichtime this ideawas
originallyconceived. Scott Nettles andDavidPierce wouldlike to thankPeter Lee for
support withthe implementation. Thanks alsotoJohnReppyfor his suggestiontomerge
the forwardingpointer andheader word. GregMorrisett providedmanyhours of helpful
conversation. Thanks to PennyAnderson, Mark Sheldon, EllenSiegel andthe Venari
groupfor proofreading.

References

[1] A. Appel. Simple generational garbage collection and fast allocation. Soft ware{
Pract i ce and Experi ence, 19(2):171{183, February1989.

[2] AndrewW. Appel, JohnR. Ellis, andKai Li. Real-timeconcurrent garbagecollection
onstockmultiprocessors. InSIGPLAN Symposi umon Programmi ng Language Desi gn
and Impl ement at i on, pages 11{20, 1988.

[3] H. G. Baker. List processing inreal time ona serial computer. Communi cat i ons of
t he ACM, 21(4):280{294, 1978.

[4] RodneyA. Brooks. Tradingdataspace for reducedtimeandcode space inreal-time
garbage collection. InSIGPLANSymposi umon LISP and Funct i onal Programmi ng,
pages 256{262, 1984.

[5] Robert H. Halstead, Jr. Implementationof multilisp: LISPonamultiprocessor. In
ACMSymposi umon LISP and Funct i onal Programmi ng, pages 9{17, 1984.

[6] DavidA. Moon. Garbage collection in a large lisp system. InProceedi ngs of t he
1984 ACMSymposi umon Li sp and Funct i onal Programmi ng, pages 235{246. ACM,
August 1984.

[7] Scott M. Nettles andJ.M. Wing. Persistence + Undoability= Transactions. Tech-
nical Report CMU-CS-91-173, CarnegieMellonUniversity, August 1991.

[8] S. C. NorthandJ.H. Reppy. Concurrent garbage collectiononstockhardware. In
Gilles Kahn, editor, Funct i onal Programmi ng Languages and Comput er Archi t ect ure
(LNCS 274), pages 113{133. Springer-Verlag, 1987.

[9] Paul R. WilsonandThomasG. Moher. Designof the opportunisticgarbagecollector.
InProceedi ngs of ACMSIGPLAN1989 Conf erence on Object -Ori ent ed Programmi ng:
Syst ems, Languages, and Appl i cat i ons , 1989.

