
American Journal of Information Systems, 2016, Vol. 4, No. 2, 17-31 
Available online at http://pubs.sciepub.com/ajis/4/2/1 
© Science and Education Publishing 
DOI:10.12691/ajis-4-2-1 

ASP: Advanced Security Protocol for Security and 
Privacy in Cloud Computing  

Shyam Nandan Kumar1,*, Amit Vajpayee2 

1M.Tech-Computer Science and Engineering, Lakshmi Narain College of Technology-Indore (RGPV, Bhopal), MP, India 
2Department of Computer Science and Engineering, Lakshmi Narain College of Technology-Indore (RGPV, Bhopal), MP, India 

*Corresponding author: shyamnandan.mec@gmail.com 

Abstract  Security concern has become the biggest obstacle to adoption of cloud because all information and data 
are completely under the control of cloud service providers. To provide optimal services on cloud, this paper 
introduces a new distributed and scalable data sharing scheme for data owners in clouds that supports anonymous 
authentication. Proposed ASP (Advanced Security Protocol) protocol is a cryptographic access control protocol 
based on key-updating scheme referred to as Advanced Key Update (AKU). The main advantage of the AKU 
scheme its support for efficient delegation and revocation of privileges in hierarchies without requiring complex 
cryptographic data structures. Proposed ASP protocol also includes a new digital signature scheme that enables 
cloud providers to ensure that requests are submitted by authorized end-users, without learning their identities. User 
Revocation facility is also supported by proposed ASP. In this paper various existing approaches and issues related 
to data encryption and message authentications are also discussed. At last, experiment results are analyzed and 
performances are evaluated. The main aim of the paper is to provide more visibility and control to the end-users and 
close the gap between capabilities of existing solutions and new requirements of cloud-based systems. 
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1. Introduction 
Cloud computing is emerging from recent advances in 

technologies such as hardware virtualization, Web 
services, distributed computing, utility computing and 
system automation. It is continuously evolving and 
showing consistent growth in the field of computing [1]. 
With virtualization, one or more physical servers can be 
configured and partitioned into multiple independent 
"virtual" servers, all functioning independently and 
appearing to the user to be a single physical device. Such 
virtual servers are in essence disassociated from their 
physical server, and with this added flexibility, they can 
be moved around and scaled up or down on the fly 
without affecting the end user. The difference with cloud 
computing is that the computing process may run on one 
or many connected computers at the same time, utilizing 
the concept of virtualization [1]. With multiple users from 
different organizations contributing to data in the Cloud, 
the time and cost will be much less compared to having to 
manually exchange data and hence creating a clutter of 
redundant and possibly out-of-date documents. With 
social networking services such as Facebook, the benefits 
of sharing data are numerous such as the ability to share 
photos, videos, information and events. Google Docs 
provides data sharing capabilities as groups of students or 

teams working on a project can share documents and can 
collaborate with each other effectively. This allows higher 
productivity compared to previous methods of continually 
sending updated versions of a document to members of 
the group via email attachments. Also in modern 
healthcare environments, healthcare providers are willing 
to store and share electronic medical records via the Cloud 
and hence remove the geographical dependence between 
healthcare provider and patient. Due to this need of Cloud 
Mining [5] and security over web [4] is gaining popularity.  

Cloud computing providers offer their services 
according to several fundamental models [6]: 
infrastructure as a service (IaaS), platform as a service 
(PaaS), and software as a service (SaaS) where IaaS is the 
most basic and each higher model abstracts from the 
details of the lower models.  

Layered architecture of cloud computing requires 
different levels of security considerations. In this work we 
are mainly concerned with the problem of identity 
management and access control in application and service 
level. In SaaS, users are provided access to application 
software and databases. SaaS users have less control over 
security among the three fundamental delivery models in 
the cloud [1]. In the PaaS models, cloud providers deliver 
a computing platform, typically including operating 
system, programming language execution environment, 
database, and web server. Application developers can 
develop and run their software solutions on a cloud 
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platform without the cost and complexity of buying and 
managing the underlying hardware and software layers. 
PaaS application security comprises two software layers: 
Security of the PaaS platform itself (i.e., runtime engine), 
and Security of customer applications deployed on a PaaS 
platform [7]. PaaS providers are responsible for securing 
the platform software stack that includes the runtime 
engine that runs the customer applications. PaaS model 
aims to protect data, which is especially important in case 
of storage as a service. In case of congestion, there is the 
problem of outage from a cloud environment. Thus the 
need for security against outage is important to ensure 
load balanced service. The data needs to be encrypted 
when hosted on a platform for security reasons. Cloud 
providers manage the infrastructure and platforms that run 
the applications [1]. IaaS refers to the sharing of hardware 
resources for executing services, typically using 
virtualization technology. Potentially, with IaaS approach, 
multiple users use available resources. Unlike PaaS and 
SaaS, IaaS customers are primarily responsible for 
securing the hosts provisioned in the cloud. Customers of 
IaaS have full access to the virtualized guest VMs that are 
hosted and isolated from each other by hypervisor 
technology. Hence customers are responsible for securing 
and ongoing security management of the guest virtual 
machine (VM) [1]. However, finding an efficient and 
secure way to share partial data in cloud storage is not 
trivial. In a shared-tenancy cloud computing environment, 
things become even worse. Data from different clients can 
be hosted on separate virtual machines (VMs) but reside 
on a single physical machine. Data in a target VM could 
be stolen by instantiating another VM co-resident with the 
target one [2]. 

The fundamental factor defining the success of any new 
computing technology is the level of security it provides 
[1]. The three basic requirements of security: 
confidentiality, integrity and availability are required to 
protect data throughout its lifecycle. Data must be 
protected during the various stages of creation, sharing, 
archiving, processing etc. However, situations become 
more complicated in case of a public cloud where we do 
not have any control over the service provider’s security 
practices [8].  

To enable data access control in the Cloud, it is 
imperative that only authorized users are able to get access 
to data stored in the Cloud. Various access control models 
are in use, including the most common Mandatory Access 
Control (MAC), Discretionary Access Control (DAC) and 
Role Based Access Control (RBAC). All these models are 
known as identity based access control models. In all these 
access control models, user (subjects) and resources 
(objects) are identified by unique names. Identification 
may be done directly or through roles assigned to the 
subjects. These access control methods are effective in 
unchangeable distributed system, where there are only a 
set of Users with a known set of services [1,2]. In DAC, 
information may be accessed by unauthorized users 
because there is no control on copies of objects. MAC 
deals with information flow and solves this problem by 
attaching security levels on both users and objects. All 
users are required to obtain certain clearance to access 
objects. Security labels propagate to derivative objects, 
including copies. However, the policies in DAC and MAC 
are fixed and there is no room for flexible access control. 

RBAC emerged due to increasing practitioner 
dissatisfaction with the then dominant DAC and MAC 
paradigms, inspiring academic research on RBAC. Since 
then RBAC has become the dominant form of access 
control in practice. In enterprise settings, we see the rise in 
demand for data outsourcing, which assists in the strategic 
management of corporate data [1,2,3]. It is also used as a 
core technology behind many online services for personal 
applications.  

Cloud security is an evolving sub-domain of computer 
security, network security, and, more broadly, information 
security. It refers to a broad set of policies, technologies, 
and controls deployed to protect data, applications, and the 
associated infrastructure of cloud computing. Most Cloud 
service provider’s provide basic key encryption schemes 
for protecting data or may leave it to the user to encrypt 
their own data. Both encryption and key management are 
very important to help secure applications and data stored 
in the Cloud [1,3]. The stored data must be protected 
against unauthorized access. Also, both the data and the 
access to data need to be protected from cloud storage 
service providers (e.g., cloud system administrators). In 
these scenarios, relying on password and other access 
control mechanisms is insufficient. Cryptographic 
encryption mechanisms [2,3,4] are typically employed. 
However, simply having encryption and decryption 
implemented in the cloud database systems is insufficient. 
In order to support both challenges, data should be 
encrypted first by users before it is outsourced to a remote 
cloud storage service and both data security and data 
access privacy should be protected such that cloud storage 
service providers have no abilities to decrypt the data, and 
when the user wants to search some parts of the whole 
data, the cloud storage system will provide the 
accessibility without knowing what the portion of the 
encrypted data returned to the user is about [1,2].  

The Cloud however is susceptible to many privacy and 
security attacks. The biggest obstacle hindering the 
progress and the wide adoption of the Cloud is the privacy 
and security issues associated with it. Evidently, many 
privacy and security attacks occur from within the Cloud 
provider themselves as they usually have direct access to 
stored data and steal the data to sell to third parties in 
order to gain profit [1,2,3]. Care should be taken to ensure 
access control of the sensitive information. Performance 
of sharing and accessing applications should be improved. 

The main aim of the paper includes:  
•  To provide more visibility and control to the end-

users and close the gap between capabilities of 
existing solutions and new requirements of cloud-
based systems.  

•  To introduce a new scalable and secure key-updating 
scheme for access hierarchies. 

•  To design and implement a scalable and privacy-
preserving access control framework for existing 
untrusted cloud services. Proposed framework 
supports lazy revocation and access hierarchies.  

•  To present a signature scheme for Key-Policy 
Attribute-Based Encryption [15]. Using proposed 
signature scheme, users can prove that they own a 
key that its policy satisfies with a set of attributes, 
without revealing their identity or credentials. 

The paper is organized as follows. Security issue with 
cloud model is given in Section 2. Literature Review is 
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presented in Section 3. The mathematical background, 
Access policies and assumptions are detailed in Section 4. 
We present our privacy preserving access control scheme 
ASP in Section 5. Section 6 has the idea about 
Implementation and Operation of ASP protocol. The 
security is analyzed and computation complexity is 
discussed in Section 7. Conclusion and future work is 
provided in Section 8. 

2. Security issue with Cloud Model  
As cloud computing is achieving increased popularity, 

concerns are being voiced about the security issues 
introduced through adoption of this new model. The 
relative security of cloud computing services is a 
contentious issue that may be delaying its adoption [1]. 
Security issues have been categorized into sensitive data 
access, data segregation, privacy, bug exploitation, 
recovery, accountability, malicious insiders, management 
console security, account control, and multi-tenancy issues. 
Solutions to various cloud security issues vary, from 
cryptography, particularly public key infrastructure (PKI), 
to use of multiple cloud providers, standardization of APIs, 
and improving virtual machine support and legal support 
[1]. 

In a public cloud enabling a shared multi-tenant 
environment, as the number of users increase, security 
risks get more intensified and diverse. It is necessary to 
identify the attack surfaces which are prone to security 
attacks and mechanisms ensuring successful client-side 
and server-side protection [1,3,10]. Because of the 
multifarious security issues in a public cloud, adopting a 
private cloud solution is more secure with an option to 
move to a public cloud in future, if needed [1,13]. A few 
of the key security issues in a public cloud include: 
•  In case of a public cloud, the same infrastructure is 

shared between multiple tenants and the chances of 
data leakage between these tenants are very high. 
However, most of the service providers run a 
multitenant infrastructure. Proper investigations at 
the time of choosing the service provider must be 
done in order to avoid any such risk [1,8,46].  

•  The three basic requirements of security: 
confidentiality, integrity and availability are required 
to protect data throughout its lifecycle. Data must be 
protected during the various stages of creation, 
sharing, archiving, processing etc. However, 
situations become more complicated in case of a 
public cloud where we do not have any control over 
the service provider’s security practices [1,8]. 

In a private cloud, customers have total control over the 
network. Private cloud provides the flexibility to the 
customer to implement any traditional network perimeter 
security practice. Although the security architecture is 
more reliable in a private cloud, yet there are issues/risks 
that need to be considered: A few of the key security 
issues in a public cloud include [1]: 
•  In a private cloud, users are facilitated with an option 

to be able to manage portions of the cloud, and 
access to the infrastructure is provided through a web 
interface or an HTTP end point. There are two ways 
of implementing a web-interface, either by writing a 
whole application stack or by using a standard 

applicative stack, to develop the web interface using 
common languages such as Java, PHP, and Python 
etc. As part of screening process, Eucalyptus web 
interface has been found to have a bug, allowing any 
user to perform internal port scanning or HTTP 
requests through the management node which he 
should not be allowed to do. In the nutshell, 
interfaces need to be properly developed and 
standard web application security techniques need to 
be deployed to protect the diverse HTTP requests 
being performed [1,47]. 

•  Virtualization techniques are quite popular in private 
clouds. In such a scenario, risks to the hypervisor 
should be carefully analyzed. There have been 
instances when a guest operating system has been 
able to run processes on other guest VMs or host. In 
a virtual environment it may happen that virtual 
machines are able to communicate with all the VMs 
including the ones who they are not supposed to. To 
ensure that they only communicate with the ones 
which they are supposed to, proper authentication 
and encryption techniques such as IPsec [IP level 
Security] etc. should be implemented [1,48].  

Private clouds are considered safer in comparison to 
public clouds; still they have multiple issues which if 
unattended may lead to major security loopholes. Hybrid 
cloud model is a combination of both public and private 
cloud and hence the security issues discussed with respect 
to both are applicable in case of hybrid cloud.  

Various types of Attack on Cloud are increasing day by 
day. Some of the common attack can be consider as 
follows: 

Cross Site Scripting (XSS) attacks: Cross-site 
Scripting (XSS) refers to client-side code injection attack 
wherein an attacker can execute malicious scripts (also 
commonly referred to as a malicious payload) into a 
legitimate website or web application. XSS is amongst the 
most rampant of web application vulnerabilities and 
occurs when a web application makes use of un-validated 
or un-encoded user input within the output it generates. In 
order for an XSS attack to take place the vulnerable 
website needs to directly include user input in its pages. 
An attacker can then insert a string that will be used 
within the web page and treated as code by the victim’s 
browser [1,2,26]. 

XML Signature Wrapping Attacks: Using different 
kinds of XML signature wrapping attacks, one can 
completely take over the administrative rights of the 
Cloud user and create, delete, modify images as well as 
create instances [2].  

Data Stealing Attacks: A term used to describe the 
stealing of a user account and password by any means 
such as through brute-force attacks or over-the-shoulder 
techniques. The privacy and confidentiality of user’s data 
will be severely breached. A common mechanism to 
prevent such attacks is to include an extra value when 
authenticating. This value can be distributed to the right 
user by SMS and hence mitigate the likelihood of data 
confidentiality issues [2]. 

Flooding Attacks: A malicious user can send requests 
to the Cloud; he/she can then easily overload the server by 
creating bogus data requests to the Cloud. The attempt is 
to increase the workload of the Cloud servers by 
consuming lots of resources needlessly [2]. 
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Passive Attacks: This type of attacks includes 
observation or monitoring of communication. A passive 
attack attempts to learn or make use of information from 
the system but does not affect system resources. The goal 
of the opponent is to obtain information that is being 
transmitted [3]. Types of passive attacks includes: Traffic 
Analysis and Release of Message Contents. 

Cloud computing security issues include preserving 
confidentiality and privacy of data. Only encryption or 
authentication cannot give suitable security service. They 
having individual feature [1]. Confidentiality assures that 
private or confidential information is not made available 
or disclosed to unauthorized individuals over the clouds. 
A loss of confidentiality is the unauthorized disclosure of 
information. Message authentication assures that data 
received are exactly as sent (i.e., contain no modification, 
insertion, deletion, or replay). In many cases, there is a 
requirement that the authentication mechanism assures 
that purported identity of the sender is valid. It verifies the 
integrity of message [1]. 

To achieve confidentiality, integrity and authentication 
of data, there should be encryption and decryption along 
with message signature and verification. Data 
Confidentiality and Message Authentication together will 
give better security than single encryption or single 
authentication during data processing over the cloud. The 
data objects should never be updated by unauthorized 
clients and in order to achieve this limitation the system 
ensures that only correct and authorized client are able to 
perform the updates [1]. For optimal authentication, 
signing and verifying of message is need. Message 
authentication may also verify sequencing and timeliness. 

3. Literature Review 
When sensitive information is stored in cloud servers, 

which is out of user‘s control in most cases, risks would 
rise dramatically. Unauthorized users may also be able to 
intercept someone‘s data (e.g. server compromise).  

Sahai and Waters proposed a new type of IBE – Fuzzy 
Identity-Based Encryption [14]. It is also known as 
Attribute-Based Encryption (ABE). In their work, an 
identity is viewed as a set of descriptive attributes. 
Different from the IBE, where the receiver could decrypt 
the message if and only if his identity is exactly the same 
as what specified by the sender, this fuzzy IBE enables the 
decryption if there are identity overlaps‘ exceeding a pre-
set threshold between the one specified by sender and the 
one belongs to receiver. However, this kind of threshold-
based scheme was limited for designing more general [1]. 

In Key-policy ABE or KP-ABE (Goyal et al. [15]), the 
sender has an access policy to encrypt data. Cipher-text is 
associated with a set of attributes, which partially 
represents the cipher-text‘s encryption policy. A writer 
whose attributes and keys have been revoked cannot write 
back stale information. The receiver receives attributes 
and secret keys from the attribute authority and is able to 
decrypt information if it has matching attributes. 
Unfortunately, with a drawback that the access policy is 
built into the secret key, the data owner in a KP-ABE 
scheme cannot decide the one who can decrypt the cipher 
text, and he can only choose a set of attributes to control 
the access of cipher texts. Besides, the access structure is a 

monotonic access structure which cannot express the 
negative attribute to exclude the participants with whom 
the data owner does not want to share data. Subsequently, 
Ostrovsky et al. [16] proposed a scheme with a non-
monotonic access structure where the secret keys are 
labeled with a set of attributes including positive and 
negative attributes [1].  

In 2007, using a monotonic access tree as access 
structure, Bethencourt et al. [17] proposed the first CP-
ABE construction. Their scheme can support flexible 
access control policies like the KP-ABE [15] scheme, but 
the security proof is in the generic group model. Cheung 
and Newport [18] provided a provably secure CP-ABE 
scheme which is proved to be secure under the standard 
model and their scheme supports AND gate on positive 
and negative attributes as its access policy. In 2011, 
Waters [19] proposed a new methodology for realizing 
CP-ABE under concrete and non-interactive cryptographic 
assumptions in the standard model. He expressed access 
control by a linear secret sharing scheme (LSSS) matrix 
over the attributes in the system (previously used 
structures can be expressed succinctly in terms of an 
LSSS). In this most efficient scheme, the cipher text size 
and the encryption/decryption overheads increase linearly 
with the complexity of the access formula. As a result, his 
scheme achieves the same performance and functionality 
as Bethencourt et al.’s [17]. Finally, Lewko et al. [20] 
recently leveraged the encoding technique from Waters’s 
scheme [19] to propose an ABE scheme that achieves 
adaptive (nonselective) security. Their scheme is based on 
the Composite order groups, which results in some loss of 
practical efficiency when compared with Water’s. Emura 
et al. [21] improved the efficiency and achieved hidden 
policies [1]. 

Multi-authority ABE schemes [22,23] can be divided 
into two types. One needs a central authority (CA, for 
short) which is used to guarantee the proper decryption 
and can also decrypt all cipher texts, such as schemes 
[22,24], while the other does not need a CA, such as 
schemes [25,26]. Paper [55] proposes the threshold-based 
key generation approach (TKGA) for ciphertext-policy 
attribute-based encryption (CP-ABE). TKGA is a multi-
authority approach which utilize the technologies of 
functional encryption and (n, k)-secret sharing. TKGA 
could efficiently impede collusion attacks because no 
single authority can directly generate secret keys. 

In 2009, Attrapadung and Imai [27] presented a new 
ABE scheme called the Dual-Policy ABE. Basically, it is 
a conjunctively combined scheme of Goyal et al.’s KP-
ABE scheme [15] and Waters’ CP-ABE scheme [19]. It 
allows simultaneously two access control mechanisms 
over encrypted data. One involves policies over objective 
attributes ascribed to data and the other involves policies 
over subjective attributes ascribed to user credentials. 
These two access control mechanisms can only allow 
either functionality above one at a time. What is more, the 
security proof is based on decisional bilinear Diffie-
Hellman exponent (DBDHE) assumption [1]. 

 To achieve the hierarchical access control and improve 
update efficiency, the revocable attribute based encryption 
scheme with hierarchical revocation based on multi-linear 
maps is proposed in [57]. Hierarchical attribute-based 
encryption scheme (HABE) [28] by combining a 
hierarchical identity-based encryption (HIBE) system and 
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a cipher text-policy attribute-based encryption (CP-ABE) 
system, so as to provide not only fine-grained access 
control, but also full delegation and high performance. It 
supports a scalable revocation scheme by applying proxy 
re-encryption (PRE) and lazy re-encryption (LRE) to the 
HABE scheme, so as to efficiently revoke access rights 
from users. Based on the key-policy attribute-based 
encryption (KP-ABE), combined with the idea of 
hierarchical ID-Based encryption (HIBE), a hierarchical 
authority key-policy attribute-based encryption (HA-KP-
ABE) scheme is presented in [58]. It uses hierarchical 
multi-authority to distribute private keys to users. Here 
private keys are computed for users according to random 
polynomials.  

To make data sharing more efficient, proxy re-
encryption (PRE) is proposed. Introduced by Mambo and 
Okamoto [29] and first defined by Blaze et al. [30], PRE 
extends the traditional public key encryption (PKE) to 
support the delegation of decryption rights. It allows a 
semi-trusted party called proxy to transform a cipher text 
encrypted under Alice’s public key into another cipher 
text of the same plaintext intended for Bob. The proxy, 
however, learns neither the decryption key nor the 
underlying plaintext [1]. Paper [56] paper presents a novel 
cipher text-policy attribute-based multi-use unidirectional 
proxy re-encryption scheme. In this scheme, the tree 
access policy can be used to handle and (¡Ä), or (¡Å) and 
threshold (of) operators.  

Digital content is easily spread out in the era of cloud 
computing. [53] Proposed a novel identity-based access 
control approach for digital content based on ciphertext-
policy attribute-based encryption (iDAC). In iDAC, the 
access control still works even the digital content is 
duplicated to another content server. Moreover, only one 
copy of encrypted digital content is required to share with 
multiple users. This could efficiently reduce the overhead 
of content servers.  

In [54], for achieving access control and keeping data 
confidential, the data owners could adopt attribute-based 
encryption to encrypt the stored data. Users with limited 
computing power are however more likely to delegate the 
mask of the decryption task to the cloud servers to reduce 
the computing cost. This scheme achieves security against 
chosen-plaintext attacks under the k-multi-linear 
Decisional Diffie-Hellman assumption.  

4. Background Work 
In this section, Access Policies, Mathematical 

Background, assumptions and KP-ABE [15] scheme are 
presented.  

4.1. Assumptions 
Following assumptions are made [2]: 
1)  The cloud is honest-but-curious, which means that 

the cloud administrators can be interested in 
viewing user‘s content, but cannot modify it. This is 
a valid assumption that has been made in [2,34]. 
Honest-but-curious model of adversaries do not 
tamper with data so that they can keep the system 
functioning normally and remain undetected.  

2)  Users can have either read or write or both accesses 
to a file stored in the cloud.  

3)  All communications between users/clouds are 
secured by Secure Shell Protocol, SSH.  

4.2. Formats of Access Policies 
Access policies can be in any of the following formats: 

1) Boolean functions of attributes, 2) Linear Secret 
Sharing Scheme (LSSS) matrix, or 3) Monotone span 
programs. Any access structure can be converted into a 
Boolean function [2,35]. An example of a Boolean 
function is 1 2 3 4 5 6 7(( ) ( )) ( ))a a a a a a a∧ ∧ ∨ ∧ ∧ ∨ , where 

1 2 7, ,...,a a a  are attributes. Consider an access structure 
for which there exists a linear secret-sharing scheme that 
realizes it. It is known that for every LSSS realizable 
access structure, there exist a monotone span program 
(MSP) that computes the corresponding Boolean functions 
and vice versa. Thus, such an access structure can be 
represented by a monotone span program. 

Secret-Sharing Schemes: Secret-sharing schemes (SSS) 
are used to divide a secret among a number of parties. The 
information given to a party is called the share (of the 
secret) for that party. Every SSS realizes some access 
structure that defines the sets of parties who should be 
able to reconstruct the secret by using their shares.  

Let { } { }n: 0,1 0,1Y →  be a monotone Boolean function 
[2,36]. A monotone span program for Y  over a field F is 
an l t×  matrix M with entries in F, along with a labeling 
function : [1] [ ]a n→  that associates each row of M with 
an input variable of Y , such that, for every 

( ) { }n
1 2 nx , x ..., x 0,1∈ , the following condition is 

satisfied: 
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In other words, ( )1 2 nx , x ,..., x 1Y =  if and only if the 

rows of M  indexed by { }( )| x 1a ii =  span the vector 

[1,0,0,...,0] . 

4.2.1. Access Tree 
Let T  be a tree representing an access structure. Each 

non-leaf node of the tree represents a threshold gate, 
described by its children and a threshold value. If xnum  is 
the number of children of a node x  and xk  is its threshold 
value, then 0 x xk num< ≤ . When 1xk = , the threshold 
gate is an OR gate and when x xk num= , it is an AND 
gate. Each leaf node x  of the tree is described by an 
attribute and a threshold value 1xk = . 

Here the parent of the node x in the tree is denoted by 
parent(x). The function att(x) is defined only if x is a leaf 
node and denotes the attribute associated with the leaf 
node x in the tree. The access tree T also defines an 
ordering between the children of every node, that is, the 
children of a node are numbered from 1 to num. The 
function index(x) returns such a number associated with 
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the node x . Here the index values are uniquely assigned 
to nodes in the access structure for a given key in an 
arbitrary manner. 

4.3. Mathematical Background 
Bilinear pairings on elliptic curves is used. Let G be a 

cyclic group of prime order q generated by g. Let G2 be a 
group of order q. We can define the map 1 1 2:e G G G× → . 
The map satisfies the following properties [3]: 

1) ( , ) ( , )a b abe P Q e P Q=   for all 1,P Q G∈  and 
, qa b Z∈ , { }0,1,2,..., 1qZ q= − . 

2) Non-degenerate: e(g,g) 1≠ . 
Bilinear pairing on elliptic curves groups is used. The 

choice of curve is an important consideration because it 
determines the complexity of pairing operations. 

4.4. Key Policy-Attribute Based Encryption 
(KP-ABE) 

Key Policy - Attribute Based Encryption [15] scheme 
consists of four algorithms, proceeds as follows:  

4.4.1. System Setup 
This is a randomized algorithm that takes no input other 

than the implicit security parameter. It outputs the public 
parameters PK and a master key MK. 

Let G1 be a bilinear group of prime order p, and let g be 
a generator of G1. In addition, let 1 1 2:e G G G× →  denote 
the bilinear map. A security parameter, k, will determine 
the size of the groups. We also define the Lagrange 
coefficient ,i s∆  for qi Z∈  and a set, S, of elements in 

, j s, j i: ( ) (x j) / (i j)q i sZ x ∈ ≠∆ = Π − − . We will associate 

each attribute with a unique element in *
qZ .  

Consider T  be an access tree with root r . Consider xT  
as the subtree of T  rooted at the node x . Hence T  is the 
same as rT . If a set of attributes γ  satisfies the access tree 

xT , it can be denoted as ( ) 1xT γ = . ( )xT γ  can be 
computed recursively as follows:  
•  If x is a non-leaf node, evaluate ' ( )xT γ  for all 

children 'x  of node x . ( )xT γ  returns 1 if and only if 
at least xk  children return 1. If x is a leaf node, then 
Tx( )γ  returns 1 if and only if att( )x γ∈ . 

Define the universe of attributes { }1,2, , nu = …… . 
Now, for each attribute i u∈ , choose a number it  
uniformly at random from qZ . Finally, choose y 

uniformly at random in qZ . The published public 
parameters PK are  

 ( )1 t| |
1 | |,  .. , , ,  yt u

uT g T g Y e g g= … = =  

The master key MK is: 

 1 | |, ., , .ut t y……  

4.4.2. Encryption (M, γ, PK) 

This is a randomized algorithm that takes as input a 
message M, a set of attributes γ , and the public 
parameters PK. It outputs the cipher text E.  

To encrypt a message 2M G∈  under a set of attributes 
γ , choose a random value qs Z∈  and publish the cipher 
text as: 

 s s
i( , ' ,{  T } ).i iE E MY E γγ ∈= = =  

4.4.3. Key Generation (T, MK, PK) 
This is a randomized algorithm that takes as input – 

Access Tree T (an access structure A), the master key MK 
and the public parameters PK. It outputs a decryption key 
D. 

The algorithm outputs a key that enables the user to 
decrypt a message encrypted under a set of attributes γ  if 
and only if ( ) 1T γ = . The algorithm proceeds as follows. 
First choose a polynomial xq  for each node x  (including 
the leaves) in the tree T. These polynomials are chosen in 
the following way in a top-down manner, starting from the 
root node r.  

For each node x  in the tree, set the degree xd  of the 
polynomial xq  to be one less than the threshold value xk  
of that node, that is, 1x xd k= − . Now, for the root node 
r , set (0)rq y=  and rd  other points of the polynomial qr 
randomly to define it completely. For any other node x , 
set ( )(0) (index( ))x parent xq q x=  and choose xd  other 

points randomly to completely define xq .  
Once the polynomials have been decided, for each leaf 

node x , we give the following secret value to the user:  

 (0)/ , where att( )qx ti
xD g i x= =  

The set of above secret values is the decryption key D.  

4.4.4. Decryption (E, D, PK) 
This algorithm takes as input - the cipher text E that 

was encrypted under the set γ  of attributes, the 
decryption key D for access tree T (access control 
structure A) and the public parameters PK. It outputs the 
message M if Aγ ∈ . 

Decryption procedure is specified as a recursive 
algorithm. For ease of exposition, the simplest form of the 
decryption algorithm is presented. Let consider a recursive 
algorithm DecryptNode(E, D, x) that takes as input the 
cipher text { }( , ', )i iE E E γγ ∈= , the private key D (we 

assume the access tree T is embedded in the private key), 
and a node x  in the tree. It outputs a group element of 

2G  or ⊥ . 
Consider i = att(x). If the node x is a leaf node then: 

 (0)/ . . (0)

( , , ) Either ( , )

( , ) ( ,  ) if
Or otherwise

x i
qx ti s ti s qx

DecryptNode E D x e D E

e g g e g g i γ

=

= = ∈
⊥

 

Now consider the recursive case when x is a non-leaf 
node. The algorithm DecryptNode(E, D, x) then proceeds 
as follows:  
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For all nodes z  that are children of x , it calls 
DecryptNode(E, D, x) and stores the output as zF . Let xS  
be an arbitrary kx-sized set of child nodes z  such that 

zF ≠⊥ . If no such set exists then the node was not 
satisfied and the function returns ⊥ .  

Otherwise, compute following and return the result: 
i,s ' x(0)

x z sx zF F ∆
∈= Π , where index(z)i =  and 

' {index(z) : }x xs z s= ∈  
. (0) i,s ' x(0)( ( , ) )s qz

z sx e g g ∆
∈= Π  

. ( )( ( )) i,s ' x(0)( ( , ) )s qparrent z index z
z sx e g g ∆
∈= Π  (by construction) 

. ( ) i,s ' x(0)( ( , ) )s qx i
z sx e g g ∆
∈= Π  

( ) . (0), s qxe g g=  (using polynomial interpolation) 
The decryption algorithm simply calls the function on 

the root of the tree. It can be observed that 
ys s( , , ) ( , ) YDecryptNode E D x e g g= =  if and only if the 

cipher text satisfies the tree. Since, '  MYsE =  the 
decryption algorithm simply divides out sY  and recovers 
the message M . 

5. Proposed Methodology 
In this section, ASP (Advanced Security Protocol) is 

presented which is a privacy-preserving cryptographic 
access control Protocol that enables end-users to securely 
store, share, and manage their sensitive data in untrusted 
cloud storage anonymously. ASP is scalable and supports 
lazy revocation. It can be easily implemented on top of 
existing cloud services and APIs. Its prototype can be 
demonstrated based on Amazon S3 [37] API.  

Advanced Security Protocol (ASP) supports 
cryptographic key-updating scheme, referred to as AKU 
(Advanced Key Update) as well as Authentication and 
data Integrity scheme, referred to as AB-SIGN. The main 
advantage of the AKU scheme its support for efficient 
delegation and revocation of privileges in hierarchies 
without requiring complex cryptographic data structures. 
Authentication Scheme is attribute based which enables 
the verifier to ensure that a signature is produced by a 
sender/creator/writer whose access policy is satisfied by a 
set of attributes without learning the signer's identity. 

First, a formal definition for secure key-updating 
schemes for hierarchical access is provided. Then, we give 
a concrete construction of a key-updating scheme based 
on ABE scheme. It supports both key revocation and 
hierarchical delegation of secret access keys. 

5.1. Hierarchical KU Scheme: Model and 
Definition 

Let T = (V, E, O) be a tree that represent a hierarchical 
access structure. More general access class hierarchies in 
which partially ordered access classes are represented by a 
DAG are studied in [34]. In our work, we are only 
interested in a special case where DAG is a tree. Each 
vertex iv  in { }0 1 2, , , ., nV v v v v= …  corresponds to an 
access class. 0v  is the root and an edge ( , )i je v v E= ∈  

implies that iv  class is the parent of class jv . O is a set of 

sensitive data objects, each object o  is associated with 
exactly one access class ( )V o . In this model, any subject 
that can assume access rights at class iv  is also permitted 
to access any object assigned to a vertex that is a 
descendant of iv . 

Definition 1 The local time at vertex iv  is an integer it  
that increases (elapses) every time access rights of a 
subject to that class is revoked. 

Definition 2 The global time associated with node iv  is 
a vector 0( , , , ., )i i jT t t t= … …  where jt  is the local time 

of thj  vertex on the path from root to vertex iv  on the 
access tree T . 

Two instances of global time are comparable only if the 
vertices that they belong to are identical or one of them is 
the ancestor of the other one; We say i jT T<  if and only if 

iT  and jT  are comparable and all common components of 

iT  are less than the corresponding components in jT  . 
Similarly, we define comparative operators =,>,≤, and ≥.  

Definition 3 A Hierarchical Key-Updating (HKU) 
Scheme consists of a root user and end users. An end user 
may be a reader, a writer, or both. There are five 
polynomial time algorithms HKU = (Init, Derive, Encrypt, 
Decrypt, Update) defined as follows: 
•  Init (1 , )k T  is a randomized process run by the root 

user which takes as input a security parameter k  and 
an access hierarchy tree T  and then generates and 
publishes a set of public parameters Pub and outputs 
the root key 0Kv , ⊥ . It also initializes the state 
parameters including the value of local time at each 
vertex.  

•  Derive ( , ) j( , , )vi TiT K v  is a randomized process run 
by the root user, reader or writer which using the 
private key ( , )vi TiK  of iv  at time iT  derives a private 

key of target class vj at its current global time jT  
according to T. Derive computes the requested key 
only if iv  is an ancestor of vj and j iT T= ; otherwise, 
it outputs null ( ⊥ ). 

•  Revoke ( , )iT v  run by the root user, reader or writer, 
increments the local time it  of iv  by one, updates 
other state variables, and returns the updated tree 'T . 

•  Encrypt ( , )kT o  is a randomized algorithm called by 
writer that encrypts the data object ko  and returns 
the encrypted object C .  

•  Decrypt ( , )( , )vi TiK C  is a deterministic process run 
by reader which takes a key and an encrypted object 
as inputs and returns the corresponding object in 
plaintext. This function can decrypt C  only if it 
belongs to the same or a descendant of the access 
class that the key belongs to and the time that ok is 
encrypted at is less than or equal to iT ; otherwise, it 
outputs null (⊥ ). 

Definition 3 is a generalization of the definition of key-
updating schemes in [38] and the definition of key 
allocation schemes for hierarchies in [39]. If we assign to 
T a tree of depth 1 where its leaves are a set of groups (i.e., 
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remove hierarchies), our definition reduces to a key-
updating scheme defined in [38] and if we remove the 
update process and the time dimension, our scheme reduces 
to key allocation scheme for hierarchies defined in [39]. 
Intuitively, a hierarchical key-updating scheme is secure if 
all polynomial time adversaries have at most a negligible 
advantage to break the cipher-text encrypted with the 
current-time key of a target class, assuming that the 
adversaries do not belong to higher (ancestor) target classes 
in the hierarchy, or possess keys for earlier time periods. 
In this model the adversary chooses her target at the beginning 
of the game and then adaptively queries the scheme. 

We define the security model of hierarchical key-
updating schemes as follows: 

Definition 4 A hierarchical key-updating schemes is 
secure if no polynomial time adversary A has a non-
negligible advantage (in the security parameter k ) against 
the challenger in the following game (HKU game):  

Choosing target: The adversary declares an access 
object v  and a time instance vT



 that she wishes to guess 
its corresponding private key (i.e. '( ', ')K v T ).  

Setup: The challenger runs Init (1 , )k T , and gives the 
resulting public parameters Pub and T to the adversary.  

Key-Extraction Query: The adversary adaptively 
queries the private keys of polynomial number of vertices 
at any time that she wishes subject to the restriction that 
either the queried vertices are not an ancestor of (or equal 
to) v  or the time instance that they are being queried at is 
earlier than or equal to vT



.  
Challenge: The adversary submits two equal length 

objects 0o  and 1o  belonging to the access class v . The 
challenger flips a random coin b , and encrypts bo  for 
time vT



 and submits the result to the adversary.  
The adversary issues more Key-Extraction queries.  
Guess: The adversary outputs a guess 'b  of b .  
Adversary's advantage is the probability that her guess 

is correct: [ ' ]AAdv Pr b b= = . The HKU scheme is secure 
if the adversary's probability compared to random 
guessing (1/2 ) is negligible.  

5.2. AKU: Confidentiality Scheme 
In this section, a concrete construction for HKU scheme 

called Advanced Key Update (AKU) is presented. This 
scheme is based on the use of bilinear map and the 
difficulty of the Decisional Bilinear Diffie-Hellman 
problem. Our solution is realized on top of the Key-Policy 
Attribute-Based Encryption scheme (KP-ABE) [15] and 
invokes KP-ABE operations including Setup ABE, 
KeyGen ABE for private key generation, Encrypt_ABE 
for data encryption, and Decrypt_ABE for decryption. 

5.2.1. Init(1k, T) 
The root user runs the Setup Attribute Based Encryption 

process with 1k as security parameter to generate ABE 
public parameters and the master key MK. Publishes the 
ABE public parameters as Pubabe. 

Invoke KeyGen_ABE procedure using MK as the 
secret key and 0 0" "L v=  as its policy. Outputs the result 
as the root key ( ( 0, )vK ⊥ = Key- Gen_ABE(MK, 0 0L v= )). 

To each vertex in T  adds a local time variable it  
initialized to zero. 

5.2.2. Derive(T, K(vi, Ti), vj) 
It is run by a user (root user, reader, or writer) with secret 

key ( , )vi TiK  at time iT  to obtain the private key for node 

jv . 

If class jv  is not a descendant of class iv , or the time 

iT  is not equal to current time jT  associated with jv , 

then return null. Otherwise, denote 1 2( , , ., )nu u u…  as the 
list of vertices in the path from iv  to jv ; denote 

1 2( , , , , )u u un vjt t t t……  on T as the list of current local time 

values of intermediate vertices (including jv  ); and let d 

represent the depth of iv .  
The user performs the following operations:  
1)   Construct the access tree 'T  which corresponds to 

the following Boolean expression: ( .dL v  attribute 
represents vertex in d-th level, .dL t  represents its 

current local time and ∧  is conjunction operator.). 

 

( 1) 1 ( )

( 1)

( 1) 1 ( )

( )

( . ..... .

. )

( . ..... .

. )

d d n n

d n

d u d n

vj

L v u L v u

L v vj

L t T L t Tun

L t Tvj

∧ ∧
+ +

∧ ∧
+ +

∧ ∧
+ +

∧

= =

=

= =

≤

 

  This Boolean expression restricts access to objects 
that belong to node vj  or its descendants and are 
created at current time or before. 

2)   Denote the access tree of ( , )vi TiK  by T . Using the 
procedure for delegation of private key in [15], add 
the access tree 'T  to the root of ( , )vi TiK , increase 
its threshold by one, update and calculate the 
private parameters associated to the root according 
the protocol. In implementation section we provide 
more details on this procedure.  

3)  Output the resulting access tree and parameters as a 
private key ( , )vj TjK  for jv . 

5.2.3. Encrypt(T, ok) 
Encryption of data is performed using key. Denote vi as 

the access class that object ko  belongs to. ( ( ))i kv V o= . 
Denote 0 1 2( , , , ., , )n iv u u u v…  as 'siv  path and 

0 1 2( , , , .., , )i v u u un viT t t t t t= …  as its current time according 
to T. A writer encrypts ko  as follows: 

The attribute set is used as the public key for encryption. 
Set the attribute set γ  as follows:  

 0 0 1

0 0 1

{ . ,......, . , . ;
. , ., . , . }

n n n i

v n un n vi

L v v L v v L v v
L t t L t t L t t
γ +

+

= = = =

= …… = =
 

Use ABE encryption procedure to encrypt ko  with 
attribute set γ  and return the resulting encrypted object. 
( _ ( , , ))kC Encrypt ABE Pubabe oγ= .  
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5.2.4. Decrypt(K(vi, Ti), C) 
After encryption of the data using key, we get cipher 

text that is transmitted to receiver end. Receiver or reader 
decrypts the cipher text as follows: 
•  If the encrypted object C does not belong to the same 

access class vi as the key ( , )vi TiK  or one of its 
descendants, or the time when C is encrypted is later 
than the time iT  when the key is generated, then 
return null ( ⊥ ). 

•  Otherwise, run ABE decryption procedure and return 
its result as output ( , )( Decrypt _ ABE( ( , ))k vi Tio K C= . 

5.2.5. Revoke(T, vi) 
It is run by a user to increment the local time of vi by 

one and then returns the updated tree 'T .) 
The correctness of AKU scheme follows the 

correctness of the key policy ABE scheme [15]. 
Theorem 1 Assuming the hardness of the Decisional 

BDH, AKU is a secure hierarchical key-updating scheme. 
Proof 1 Sketch. It suffices to show that an adversary, 

who can play HKU game for AKU with non-negligible 
advantage, can also win KP-ABE game with a non-
negligible probability, and thus break the security of KP-
ABE and subsequently the Decisional BDH. Let A be an 
adversary who can win HKU game with non-negligible 
advantage 1/ 2 €+ . She can play KP-ABE Selective-Set 
model game as follows: 

Init: A declares the set of attributes that corresponds to 
vertex v  and time vT



 as γ , the set of attributes that she 
wishes to be challenged upon.  

Setup: This step is identical to Setup step in HKU game.  
Phase 1: In this phase the adversary queries for the 

private keys for access structures (trees) Tj which 
correspond to that of keys that she would query in HKU 
game. Since, according to the protocol of HKU game, 
these keys belong to vertices that are not an ancestor of v  
or their time is less than vT



, their access trees will not 
satisfy with attributes in γ ( γ  does not belong to jT ) and 
therefore they are legitimate queries. 

Challenge: Identical to the Challenge step in HKU game. 
Phase 2: Repeat Phase 1. 
Guess: The adversary guesses b using the same strategy 

that she uses in HKU game. Since the data is encrypted 
under the same set of attributes and using the same 
procedure, she has the same non-negligible advantage to 
make the correct guess. This concludes our proof.  

5.3. AB-SIGN: Authentication and Integrity 
Scheme 

Proposed ASP protocol supports message authentication 
and data integrity using AB-SIGN scheme. Our design for 
AB-SIGN is based on the same technique introduced by 
by Moni Naor (Section 6 of [40]) for Identity Based 
Encryption and then extended in [41] for HIDS signature 
scheme. However, the original paper which introduces 
KP-ABE [15] does not present any signature scheme.  

AB-SIGN scheme is an attribute based signature 
scheme which  

1) Enable the readers to verify the integrity of data and 
ensure that it is produced by an authorized writer,  

2) Enable the cloud service providers to validate 
incoming requests and block unauthorized accesses.  

Definition 5 AB-SIGN is a signature scheme for KP-
ABE [15] that it’s signing and verification methods are 
defined as follows. Let's say that the signer has a key K for 
policy P, and wants to sign message M. The verifier needs 
to verify that the signature is generated by a signer whose 
key policy satisfies attribute set A:  

Signature: From K derive a key ( )'K  which 
corresponds to a policy which is the concatenation of P 
and ( )@ S M=  ( @ S  is a reserved attribute for 
signatures). Send the derived key to the verifier as the 
signature.  

Signature Verification: Generate a random token and 
encrypt it using the attribute set { }U @A S M=  and then 
decrypt the result using a key which is equal to the 
signature. If the result is equal to the original token the 
signature is valid (i.e. the attribute set A satisfies the 
signer's key policy.) 

To prevent an attacker from using the signature method 
to derive a valid access key, we need to reserve the 
attribute `@ 'S  for signature. 

Theorem 2: Assuming the hardness of the Decisional 
BDH, AB-SIGN is a secure signature scheme.  

Proof 2: Enforceability of AB-SIGN scheme follows 
immediately from the security of KP-ABE scheme. In 
AB-SIGN, a signature is a derived key from the actual 
write access key. Therefore, based on the security of KP-
ABE derive operation; the only entity who can generate the 
signature is the owner of the write access key. Moreover, 
security of derive operation guarantees that the verifier 
cannot guess the original access key from the derived key. 

6. Implementation and Operation 
The ASP protocol runs between the root user, end-user 

(reader or writer), and the cloud providers. The root user 
may be a system administrator in the data owner's 
organization, who can specify the access privileges of 
end-users. The end-users may further delegate their access 
privileges to other individuals for easy sharing. We 
achieve the revocation of privilege by encoding the 
validity period in the private keys of users and advancing 
time with respect to the target hierarchy or data object. 
Another advantage of our ASP framework for use in cloud 
storage is the support of anonymous access.  

ASP protocol requires three repositories: Meta-data 
Directory, Data Store and Key-store as shown in Figure 1. 

Meta-data Directory: All meta-data associated with 
hierarchies and data objects are maintained in this 
repository. ASP requires two properties for each object: 
Read Access Revision (RAR) and Write Access Revision 
(WAR). These two properties play the role of local time in 
AKU for read and write access, respectively. In order to 
compute Read/Write Access Revision Vectors (which 
correspond to global time instances in ASP), the cloud 
provider that hosts Meta-data Directory needs to provide 
an API for querying RAR and WAR values of multiple 
directories in a single request. All existing cloud-based 
databases (also known as `NoSQL systems’ or `schema-
free database’ such as Amazon SimpleDB [43], Microsoft 
Azure SQL [42], and Google's AppEngine [44] database 
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(Bigtable [45])) satisfy this requirement and therefore 
qualify to host an ASP Meta-data Directory. For our 
experiments we use Amazon SimpleDB [43]. 

Data Store: This repository contains the actual content 
of each data object. Any cloud key-value based storage 
system such as Amazon S3 [37] can be used as ASP Data 
Store. In ASP, keys are hierarchical path name of data 
objects and values are the actual content of corresponding 
data objects. Cloud key-value storage providers are tuned 
for high throughput and low storage cost; these features 
make them a good candidate for ASP Data Store. 

Key-store: Key-Store is a secure local repository which 
having all read/write access keys of end-users. Each key-
store contains all public parameters as well as read/write 
access key entries of all data-objects and categories that 
the end user has access to. Each access key entry contains 
the following fields: object path, access type (read/write), 
granter's identity, and secret key. The Key-store provides 
an API that given user's credential and a path, returns the 
first key entry that its path is a prefix of the input path. 

 
Figure 1. ASP Working Environment 

All major participants of ASP protocol are shown in 
Figure 1. In ASP protocol, end-users can enforce access 
control on their own data without fully trusting or relying 
on the cloud providers. Here keys are distributed and 
managed in a distributed fashion. Solid arrows represent 
access delegation.  
Working with ASP 
•  To work with ASP, the root user needs to follow the 

following steps:  
•  Sign up for cloud services required for hosting Meta-

data Directory and Data Store. 
•  Run Init procedure according to AKU scheme to 

generate public parameters and the master key. 
•  Save the master key and public parameters in the 

root's Key-store.  
•  Share the public parameters with the cloud service 

providers that support ASP request authorization. 
•  Create an entry in Meta-date Directory that 

corresponds to the root directory. The WAR and 
RAR numbers of the root directory entry are 
initialized to zero.  

6.1. ASP Operation  

The basic operations supported by ASP include: write, 
read, delegate, and revoke. Each basic operation leads to 
calls to Meta-data directory and/or Data Store. Other 
operations such as create, remove, rename, update for 
directories and data objects can be defined similarly. AB-
SIGN Scheme is needed before performing the basic 
operations to maintain the authenticity and data integrity. 
Requirement of AB-SIGN of ASP to perform operations 
enables cloud providers to block unauthorized request.  

6.1.1. Write Operation 
Figure 2 shows the idea about write operation using 

ASP protocol. To write into a specific data object, the end-
user needs to perform the following steps:  

1)  Retrieve the required write access key from the local 
Key-store. 

2)  Query Meta-data directory to get read access 
revision (RAR) vector of the target object. 

3)  Using AKU scheme, encrypt the data by the 
retrieved RAR vector and its path. 

4)  Using AB-SIGN scheme, sign the data by his write 
access key. 

5)  Construct a key-value pair where the key is equal to 
the path of data object and the value is the 
encrypted data and corresponding signature. Store 
the pair in Data Store. 

6)  To prevent destructive writes by unauthorized users, 
the Data Store can query write access revision 
(WAR) vector of that object from the Meta-data 
Directory to validate the signature of request. 

 
Figure 2. Write Operation 

6.1.2. Read Operation 
Figure 3 shows the idea about read operation using ASP 

protocol. To ensure the data is produced by an authorized 
writer, the reader needs to validate the corresponding 
signature using AB-SIGN signature scheme. Then the 
reader can decrypt the data using its read access key and 
AKU scheme. To read a specific data object stored using 
ASP protocol, the end-user needs to do the following steps: 

1)  Retrieve the required read access key from the local 
Key-store. 
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2)  Using AKU scheme and the read access key, 
decrypt the encrypted data. 

3)  Using AB-SIGN signature scheme, validate the 
signature to ensure that data is produced by a user 
who has the proper write access. 

4)  Return the decrypted data. 

 
Figure 3. Read Operation 

6.1.3. Delegation Operation 
Delegation operation can be run by a user to authorize 

another user a subset of his access privileges as shown in 
Figure 1. It requires three input parameters: the identity of 
the delegate, the resource path, and access type (read/write). 
The steps required for this operation are listed below: 

1)  From the local Key-store, get the access key that 
matches the target resource path and access type. 

2)  Query Meta-date Directory to get the read/write 
access revision (RAR/WAR) vector of target 
resource. 

3)  Run Derive operation, as defined in AKU scheme, 
to generate the required access key. 

4)  Send the generated access key to the delegate 
through a secure communication channel. 

6.1.4. Revocation Operation 
This facility reduces the overhead on the data center by 

restricting fake user. To revoke a user's access on a 
specific directory or data object, the authorized user needs 
to make a signed request to the Meta-data Directory to 
increase the corresponding access revision number. To 
ensure the integrity of access revision numbers, these 
entries should be signed by the requester. 

7. Analysis of Proposed Technique 
In this section, some experimental results are provided 

which show the performance overhead of our ASP protocol.  
Pre-computation and caching: As discussed in the 

previous sections, to overcome the limitation of fixed 
attributes, we adopted large universe construction of KP-
ABE. However, in this construction the process of 
mapping an attribute to the bilinear group 

( . .{1,0}* )G i e G→  is very expensive (on average 22 ms 
per attribute). In our KP-ABE library every bit of a 

numerical attribute gets translated into a symbolic 
attribute. For example, a 10-bit representation of the 
numerical attribute li = 352 gets translated into a list of 
symbolic attributes shown in Table 1. 

Table 1. Symbolic representation of attribute li = 352 
[ li@0=1, li@1=1, li@2=0, li@3=0, li@4=0, 
li@5=1, l i@6=1, li@7=0, li@8=1, li@9=0] 

Also, all numerical comparisons get translated into 
symbolic matching policies. For example, Table policy 2 
corresponds to the numerical comparison li < 356.  

Table 2. KP-ABE policy for li < 356 
(2 li@9=0 (1 (2 li@7=0 (1 (1 (2 li@4=0 (2 li@3=0 (1 

li@1=0 li@2=0)) 
) li@5=0) li@6=0)) li@8=0)) 

In ASP, every level of an object's path has two numbers 
associated with it – read access revision number and write 
access revision number. Therefore, these numerical 
attributes lead too many symbolic attributes which their 
mapping cost create a significant over-head. Since the 
value of each bit is either zero or one, we pre-compute the 
mapped values of these symbols and during the startup 
process load them into the framework. Moreover, at 
runtime, we cache the mapped value of each path segment 
in a hash table so that it can be reused. Using the 
described pre-computation and caching techniques, we 
were able to significantly reduce the computational cost 
associated with required KP-ABE crypto operations. 

Security Process: In ASP the actual content of data is 
encrypted using either a symmetric-key or asymmetric-
key encryption scheme based on user choice. And only the 
corresponding symmetric/asymmetric keys are encrypted 
by KP-ABE scheme. By default our framework uses AES 
(Advanced Encryption Standard) [4,12] for symmetric 
encryption with the default key length of 128 bits. 
Similarly, AB-SIGN signature scheme is performed on 
fixed-length digest of data. Our framework, by default, 
uses SHA-1 [4,11] as the digest hash function. SHA-1 
generates 160-bit message digest of data.  

 
Figure 4. Encryption Analysis 

The Figure 4 and Figure 5 show the overhead of 
encryption and decryption schemes while Figure 6 and 
Figure 7 show signature and sign verification schemes of 
ASP protocol on top of underlying symmetric-key 
encryption and hashing schemes. In our experiments 
numerical attributes are of size 10 bits.  

Figure 4 shows how the cost of ASP encryption relates 
to the user's access level and hierarchy level of the data 
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object. In KP-ABE the encryption time is only a function 
of number of attributes, which linearly increases as the 
object level increases. As a result, ASP encryption cost 
linearly increases as the hierarchy level of the object 
increases, but it is independent of the user's access level.  

By contrast, as Figure 5 shows, decryption time is just a 
function of user's access level. That is because in KP-ABE, 
decryption time is a function of complexity of access 
structure that linearly increases as user's access level 
increases. Decryption time is independent of hierarchy 
level of the encrypted object.  

 

Figure 5. Decryption Analysis 

Figure 6 and Figure 7 show the overhead of ASP 
signing and signature verification on signed objects in 
different hierarchy levels for users with different access 
levels respectively. In ASP, as Figure 6 illustrates, 
signature cost is independent of the hierarchy level of data 
objects; it only depends on access level of the user. This is 
because proposed AB-SIGN signature scheme is based on 
KP-ABE derive operation which its complexity linearly 
increases as the complexity of the access structures 
increases. 

 

Figure 6. Message Signing Analysis 

In AB-SIGN scheme, each signature verification operation 
requires KP-ABE encryption and decryption, therefore its 
computational cost depends on the user's access level as 
well as the hierarchy level of data object. Figure 7 shows 
how the time required for signature verification increases 
linearly as the access level of user decrease and the 
hierarchy level of data object increases. 

 
Figure 7. Signature Verification Analysis 

Figure 8 and Figure 9 show the combined overhead cost 
of read and write operations in ASP. To perform ASP 
write operation, a user needs to encrypt and sign the data 
objects. The portion of cost below the white indicator is 
related to encryption and the rest is the cost associated 
with signature as shown in Figure 8. 

 
Figure 8. Write Operation Analysis 

ASP read operation includes cost of decryption and 
signature verification. If we divide the graph given in 
Figure 9 by horizontal line, portion below and above of 
that line, shows the overhead cost for decryption and 
signature verification, respectively.  

 
Figure 9. Read Operation Analysis 

7.1. Complexity Analysis  
In this section, we denote N as the number of attribute 

authorities, I as the size of the entire attribute set and X as 
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the number of nodes in a tree pT . Table 3 shows the 
complexity comparisons of proposed approach with 
existing approaches proposed in [9] and [26].  

Table 3. Complexity Comparisons 

Phase Chase et al. [26] Yu et al. [9] ASP 

System Setup O(1) O(I) O(1) 

KeyGen O(N + I) O(X) O(N + I) 

Encryption O(I) O(I) O(X · K) 

Decryption O(N · I) O(max(X, I)) O(X) 

Revocation  O(I) O(X · K) 

System Setup: 
When the system is setup, kYΠ  is computed by any 

one of the authorities and sent to others, whose 
complexity is ( )O N . Then, secret parameters ’sxk  are 
calculated within the clusters. The complexity of that 
calculation is ( 2 ) ( )O C NC O C N=・ ・ , but C is a constant 
number, so ( )( )O C N O N=・ . Therefore, the total 
complexity is O(N). However, since we have N authorities 
per system, the complexity per authority is O(1). 
KeyGen 

In the Attribute Key Generation, VigΣ  is computed by 

N authorities, and ( ( ))ri
iD H att i= . VigΣ  is computed for 

I times by one attribute authority. Therefore, the total 
complexity of Attribute Key Generation is ( )2 .O N I N+ . 
In the Aggregation of Two Keys, a user aggregates the I 
components, thus the computation complexity of this 

operation is ( )O I . So, the complexity per authority is 

( )O N I+ . 
Encryption 

In this phase at every non-leaf node, a polynomial is 
chosen and 1xk −  numbers are to be found to determine the 
polynomial, where x  is the threshold value. Therefore, 
denoting the average threshold value to be K , the 
computation complexity of this process is ( ).O X K . 
Decryption 

Decryption is a recursive algorithm, and it is executed 
exactly once at every node in a Breadth-First-Search 
manner, therefore the computation complexity of this 
process is ( )O X . 
Revocation 

Revocation operation has the same complexity as the 
addition of Encryption and Decryption. Its complexity is 
( ).O X K . 
The comparison between proposed ASP protocol and 

the different multi-authority schemes is shown in Tables 4 
and 5. By U , UA , and CA , we denote the number of 
the universal attributes, the attributes held by user U, and 
the attributes required by the cipher text, respectively. IU 
and IC denote the index set of the authorities. By E and P, 
we denote one exponential and one paring operation, 
respectively. By LG1 and LG2, we denote one element in 
group G1 and one element in group G2, respectively. N 
denotes the number of the authorities in the systems. Table 
4 shows the ideas about operation cost for various MA-
ABE schemes while Table 5 shows the working ideas 
comparison of existing MA-ABE technologies. 

Table 4. Comparison of computational cost 
Schemes Authority setup KeyGen Encryption Decryption 

Chase’s [22] (|U|+1)E (|AU|+1)E (|AC|+2)E |AC|E+(|AC|+1)P 

Han et al.’s [23] (|U|+2N)E (|AU|+3|IU|)E (|AC|+3)E |AC|E+(|AC|+|IC|+1)P 

Chase and Chow [26] (|U|+2N)E (|U|+|IU|2)E (|AC|+2)E |AC|E+(|AC|+1)P 

Our ASP (|U|+2N)E (|U|+|IU|2+1)E (|AC|+3)E |AC|E+(|AC|+1)P 

Table 5. Working Idea Comparison for MA-ABE 
Scheme Security Model Used ABE Cipher text Length Central Authority Authenticity 

Chase’s [49] Selective KP-ABE (|AC|+1)LG1 + LG2 Yes No 

Han et al.’s [50] Selective KP-ABE (|AC|+2)LG1 + LG2 No Yes 

Lin et al.’s [51] Selective FIBE (|AC|)LG1 + LG2 No No 

Chase and Chow [52] Selective KP-ABE (|AC|+1)LG1 + LG2 No No 

Our ASP Selective KP-ABE (|AC|+2)LG1 + LG2 Yes Yes 

7.2. Security Analysis  
In this section we state the security guarantees provided 

by ASP protocol.  
Confidentiality: Our solution ensures that only the 

users who have the most recent version of the access key 
of the data object or one of its ancestor directories can 
decrypt it. The confidentiality of stored data is protected 
under our protocol because writers always encrypt the data 
objects by their path and most recent read access revision 
(RAR) vector according to AKU scheme. The cloud 
provider or other unauthorized users cannot gain any 

information that helps them to guess the access key of 
unauthorized data objects.  

Integrity: The integrity of stored data is preserved. 
This guarantee is realized by requiring writers to sign the 
data by their write access key using AB-SIGN scheme. 
We require readers to validate writer's signature to ensure 
that it is produced by an authorized writer (i.e. a user with 
write access to that data object or on of its parent 
directories). Because meta-data entries stored in the Meta-
data Directory are also required to be signed by the end-
users, any unauthorized change in Meta-data Directory is 
detectable by the reader. 
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Authenticity and Anonymity: The end users are 
anonymous to each other and to the cloud providers. The 
signatures used in proposed authorization do not contain 
any identify information. During the course of protocol, 
the end-users do not reveal any information about their 
credentials. AB-SIGN signatures bound to the data objects 
and requests; include only attributes related to the location 
and global time of those objects. 

Collusion-resistance: Security of KP-ABE guarantees 
that unauthorized users and malicious cloud service 
providers cannot collude to guess access key to an 
unauthorized data object. 

8. Conclusion and Future Work 
As people are becoming more concerned about their 

privacy these days, the privacy-preserving is very 
important over the cloud. Security issues can be 
categorized into sensitive data access, data segregation, 
privacy, bug exploitation, recovery, accountability, 
malicious insiders, management console security, account 
control, and multi-tenancy issues. The three basic 
requirements of security: confidentiality, integrity and 
availability are required to protect data throughout its 
lifecycle. Data must be protected during the various stages 
of creation, sharing, archiving, processing etc. However, 
situations become more complicated in case of a public 
cloud. 

In this paper, Advanced Security Protocol (ASP) is 
presented that supports Hierarchical Key-Updating 
scheme. This protocol illustrates how recent cryptographic 
schemes can be utilized to develop an effective client-side 
access control protocol for protecting confidentiality and 
integrity of data stored in untrusted cloud storage. 
Proposed ASP protocol also includes an attribute based 
signature(AB-SIGN) scheme that enables cloud providers 
to ensure that requests are submitted by authorized end-
users, without learning their identities. Using the key-
updating and signature schemes, proposed idea is 
developed, implemented, and evaluated. Presented 
protocol is a scalable cryptographic access control 
protocol for hierarchically organized data. Proposed ASP 
protocol achieves Confidentiality, Data Integrity and 
Authenticity as well as reduces the overhead on web by 
restricting fake users.  

In future, work can be done on security systems for 
various web based services. 
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