
American Journal of Information Systems, 2016, Vol. 4, No. 2, 17-31
Available online at http://pubs.sciepub.com/ajis/4/2/1
© Science and Education Publishing
DOI:10.12691/ajis-4-2-1

ASP: Advanced Security Protocol for Security and
Privacy in Cloud Computing

Shyam Nandan Kumar1,*, Amit Vajpayee2

1M.Tech-Computer Science and Engineering, Lakshmi Narain College of Technology-Indore (RGPV, Bhopal), MP, India
2Department of Computer Science and Engineering, Lakshmi Narain College of Technology-Indore (RGPV, Bhopal), MP, India

*Corresponding author: shyamnandan.mec@gmail.com

Abstract Security concern has become the biggest obstacle to adoption of cloud because all information and data
are completely under the control of cloud service providers. To provide optimal services on cloud, this paper
introduces a new distributed and scalable data sharing scheme for data owners in clouds that supports anonymous
authentication. Proposed ASP (Advanced Security Protocol) protocol is a cryptographic access control protocol
based on key-updating scheme referred to as Advanced Key Update (AKU). The main advantage of the AKU
scheme its support for efficient delegation and revocation of privileges in hierarchies without requiring complex
cryptographic data structures. Proposed ASP protocol also includes a new digital signature scheme that enables
cloud providers to ensure that requests are submitted by authorized end-users, without learning their identities. User
Revocation facility is also supported by proposed ASP. In this paper various existing approaches and issues related
to data encryption and message authentications are also discussed. At last, experiment results are analyzed and
performances are evaluated. The main aim of the paper is to provide more visibility and control to the end-users and
close the gap between capabilities of existing solutions and new requirements of cloud-based systems.

Keywords: cloud computing, data sharing, decryption, encryption, concurrent access, distributed system, web,
message signing and verification, data confidentiality, message authentication, cloud security

Cite This Article: Shyam Nandan Kumar, and Amit Vajpayee, “ASP: Advanced Security Protocol for
Security and Privacy in Cloud Computing.” American Journal of Information Systems, vol. 4, no. 2 (2016): 17-31.
doi: 10.12691/ajis-4-2-1.

1. Introduction
Cloud computing is emerging from recent advances in

technologies such as hardware virtualization, Web
services, distributed computing, utility computing and
system automation. It is continuously evolving and
showing consistent growth in the field of computing [1].
With virtualization, one or more physical servers can be
configured and partitioned into multiple independent
"virtual" servers, all functioning independently and
appearing to the user to be a single physical device. Such
virtual servers are in essence disassociated from their
physical server, and with this added flexibility, they can
be moved around and scaled up or down on the fly
without affecting the end user. The difference with cloud
computing is that the computing process may run on one
or many connected computers at the same time, utilizing
the concept of virtualization [1]. With multiple users from
different organizations contributing to data in the Cloud,
the time and cost will be much less compared to having to
manually exchange data and hence creating a clutter of
redundant and possibly out-of-date documents. With
social networking services such as Facebook, the benefits
of sharing data are numerous such as the ability to share
photos, videos, information and events. Google Docs
provides data sharing capabilities as groups of students or

teams working on a project can share documents and can
collaborate with each other effectively. This allows higher
productivity compared to previous methods of continually
sending updated versions of a document to members of
the group via email attachments. Also in modern
healthcare environments, healthcare providers are willing
to store and share electronic medical records via the Cloud
and hence remove the geographical dependence between
healthcare provider and patient. Due to this need of Cloud
Mining [5] and security over web [4] is gaining popularity.

Cloud computing providers offer their services
according to several fundamental models [6]:
infrastructure as a service (IaaS), platform as a service
(PaaS), and software as a service (SaaS) where IaaS is the
most basic and each higher model abstracts from the
details of the lower models.

Layered architecture of cloud computing requires
different levels of security considerations. In this work we
are mainly concerned with the problem of identity
management and access control in application and service
level. In SaaS, users are provided access to application
software and databases. SaaS users have less control over
security among the three fundamental delivery models in
the cloud [1]. In the PaaS models, cloud providers deliver
a computing platform, typically including operating
system, programming language execution environment,
database, and web server. Application developers can
develop and run their software solutions on a cloud

18 American Journal of Information Systems

platform without the cost and complexity of buying and
managing the underlying hardware and software layers.
PaaS application security comprises two software layers:
Security of the PaaS platform itself (i.e., runtime engine),
and Security of customer applications deployed on a PaaS
platform [7]. PaaS providers are responsible for securing
the platform software stack that includes the runtime
engine that runs the customer applications. PaaS model
aims to protect data, which is especially important in case
of storage as a service. In case of congestion, there is the
problem of outage from a cloud environment. Thus the
need for security against outage is important to ensure
load balanced service. The data needs to be encrypted
when hosted on a platform for security reasons. Cloud
providers manage the infrastructure and platforms that run
the applications [1]. IaaS refers to the sharing of hardware
resources for executing services, typically using
virtualization technology. Potentially, with IaaS approach,
multiple users use available resources. Unlike PaaS and
SaaS, IaaS customers are primarily responsible for
securing the hosts provisioned in the cloud. Customers of
IaaS have full access to the virtualized guest VMs that are
hosted and isolated from each other by hypervisor
technology. Hence customers are responsible for securing
and ongoing security management of the guest virtual
machine (VM) [1]. However, finding an efficient and
secure way to share partial data in cloud storage is not
trivial. In a shared-tenancy cloud computing environment,
things become even worse. Data from different clients can
be hosted on separate virtual machines (VMs) but reside
on a single physical machine. Data in a target VM could
be stolen by instantiating another VM co-resident with the
target one [2].

The fundamental factor defining the success of any new
computing technology is the level of security it provides
[1]. The three basic requirements of security:
confidentiality, integrity and availability are required to
protect data throughout its lifecycle. Data must be
protected during the various stages of creation, sharing,
archiving, processing etc. However, situations become
more complicated in case of a public cloud where we do
not have any control over the service provider’s security
practices [8].

To enable data access control in the Cloud, it is
imperative that only authorized users are able to get access
to data stored in the Cloud. Various access control models
are in use, including the most common Mandatory Access
Control (MAC), Discretionary Access Control (DAC) and
Role Based Access Control (RBAC). All these models are
known as identity based access control models. In all these
access control models, user (subjects) and resources
(objects) are identified by unique names. Identification
may be done directly or through roles assigned to the
subjects. These access control methods are effective in
unchangeable distributed system, where there are only a
set of Users with a known set of services [1,2]. In DAC,
information may be accessed by unauthorized users
because there is no control on copies of objects. MAC
deals with information flow and solves this problem by
attaching security levels on both users and objects. All
users are required to obtain certain clearance to access
objects. Security labels propagate to derivative objects,
including copies. However, the policies in DAC and MAC
are fixed and there is no room for flexible access control.

RBAC emerged due to increasing practitioner
dissatisfaction with the then dominant DAC and MAC
paradigms, inspiring academic research on RBAC. Since
then RBAC has become the dominant form of access
control in practice. In enterprise settings, we see the rise in
demand for data outsourcing, which assists in the strategic
management of corporate data [1,2,3]. It is also used as a
core technology behind many online services for personal
applications.

Cloud security is an evolving sub-domain of computer
security, network security, and, more broadly, information
security. It refers to a broad set of policies, technologies,
and controls deployed to protect data, applications, and the
associated infrastructure of cloud computing. Most Cloud
service provider’s provide basic key encryption schemes
for protecting data or may leave it to the user to encrypt
their own data. Both encryption and key management are
very important to help secure applications and data stored
in the Cloud [1,3]. The stored data must be protected
against unauthorized access. Also, both the data and the
access to data need to be protected from cloud storage
service providers (e.g., cloud system administrators). In
these scenarios, relying on password and other access
control mechanisms is insufficient. Cryptographic
encryption mechanisms [2,3,4] are typically employed.
However, simply having encryption and decryption
implemented in the cloud database systems is insufficient.
In order to support both challenges, data should be
encrypted first by users before it is outsourced to a remote
cloud storage service and both data security and data
access privacy should be protected such that cloud storage
service providers have no abilities to decrypt the data, and
when the user wants to search some parts of the whole
data, the cloud storage system will provide the
accessibility without knowing what the portion of the
encrypted data returned to the user is about [1,2].

The Cloud however is susceptible to many privacy and
security attacks. The biggest obstacle hindering the
progress and the wide adoption of the Cloud is the privacy
and security issues associated with it. Evidently, many
privacy and security attacks occur from within the Cloud
provider themselves as they usually have direct access to
stored data and steal the data to sell to third parties in
order to gain profit [1,2,3]. Care should be taken to ensure
access control of the sensitive information. Performance
of sharing and accessing applications should be improved.

The main aim of the paper includes:
• To provide more visibility and control to the end-

users and close the gap between capabilities of
existing solutions and new requirements of cloud-
based systems.

• To introduce a new scalable and secure key-updating
scheme for access hierarchies.

• To design and implement a scalable and privacy-
preserving access control framework for existing
untrusted cloud services. Proposed framework
supports lazy revocation and access hierarchies.

• To present a signature scheme for Key-Policy
Attribute-Based Encryption [15]. Using proposed
signature scheme, users can prove that they own a
key that its policy satisfies with a set of attributes,
without revealing their identity or credentials.

The paper is organized as follows. Security issue with
cloud model is given in Section 2. Literature Review is

 American Journal of Information Systems 19

presented in Section 3. The mathematical background,
Access policies and assumptions are detailed in Section 4.
We present our privacy preserving access control scheme
ASP in Section 5. Section 6 has the idea about
Implementation and Operation of ASP protocol. The
security is analyzed and computation complexity is
discussed in Section 7. Conclusion and future work is
provided in Section 8.

2. Security issue with Cloud Model
As cloud computing is achieving increased popularity,

concerns are being voiced about the security issues
introduced through adoption of this new model. The
relative security of cloud computing services is a
contentious issue that may be delaying its adoption [1].
Security issues have been categorized into sensitive data
access, data segregation, privacy, bug exploitation,
recovery, accountability, malicious insiders, management
console security, account control, and multi-tenancy issues.
Solutions to various cloud security issues vary, from
cryptography, particularly public key infrastructure (PKI),
to use of multiple cloud providers, standardization of APIs,
and improving virtual machine support and legal support
[1].

In a public cloud enabling a shared multi-tenant
environment, as the number of users increase, security
risks get more intensified and diverse. It is necessary to
identify the attack surfaces which are prone to security
attacks and mechanisms ensuring successful client-side
and server-side protection [1,3,10]. Because of the
multifarious security issues in a public cloud, adopting a
private cloud solution is more secure with an option to
move to a public cloud in future, if needed [1,13]. A few
of the key security issues in a public cloud include:
• In case of a public cloud, the same infrastructure is

shared between multiple tenants and the chances of
data leakage between these tenants are very high.
However, most of the service providers run a
multitenant infrastructure. Proper investigations at
the time of choosing the service provider must be
done in order to avoid any such risk [1,8,46].

• The three basic requirements of security:
confidentiality, integrity and availability are required
to protect data throughout its lifecycle. Data must be
protected during the various stages of creation,
sharing, archiving, processing etc. However,
situations become more complicated in case of a
public cloud where we do not have any control over
the service provider’s security practices [1,8].

In a private cloud, customers have total control over the
network. Private cloud provides the flexibility to the
customer to implement any traditional network perimeter
security practice. Although the security architecture is
more reliable in a private cloud, yet there are issues/risks
that need to be considered: A few of the key security
issues in a public cloud include [1]:
• In a private cloud, users are facilitated with an option

to be able to manage portions of the cloud, and
access to the infrastructure is provided through a web
interface or an HTTP end point. There are two ways
of implementing a web-interface, either by writing a
whole application stack or by using a standard

applicative stack, to develop the web interface using
common languages such as Java, PHP, and Python
etc. As part of screening process, Eucalyptus web
interface has been found to have a bug, allowing any
user to perform internal port scanning or HTTP
requests through the management node which he
should not be allowed to do. In the nutshell,
interfaces need to be properly developed and
standard web application security techniques need to
be deployed to protect the diverse HTTP requests
being performed [1,47].

• Virtualization techniques are quite popular in private
clouds. In such a scenario, risks to the hypervisor
should be carefully analyzed. There have been
instances when a guest operating system has been
able to run processes on other guest VMs or host. In
a virtual environment it may happen that virtual
machines are able to communicate with all the VMs
including the ones who they are not supposed to. To
ensure that they only communicate with the ones
which they are supposed to, proper authentication
and encryption techniques such as IPsec [IP level
Security] etc. should be implemented [1,48].

Private clouds are considered safer in comparison to
public clouds; still they have multiple issues which if
unattended may lead to major security loopholes. Hybrid
cloud model is a combination of both public and private
cloud and hence the security issues discussed with respect
to both are applicable in case of hybrid cloud.

Various types of Attack on Cloud are increasing day by
day. Some of the common attack can be consider as
follows:

Cross Site Scripting (XSS) attacks: Cross-site
Scripting (XSS) refers to client-side code injection attack
wherein an attacker can execute malicious scripts (also
commonly referred to as a malicious payload) into a
legitimate website or web application. XSS is amongst the
most rampant of web application vulnerabilities and
occurs when a web application makes use of un-validated
or un-encoded user input within the output it generates. In
order for an XSS attack to take place the vulnerable
website needs to directly include user input in its pages.
An attacker can then insert a string that will be used
within the web page and treated as code by the victim’s
browser [1,2,26].

XML Signature Wrapping Attacks: Using different
kinds of XML signature wrapping attacks, one can
completely take over the administrative rights of the
Cloud user and create, delete, modify images as well as
create instances [2].

Data Stealing Attacks: A term used to describe the
stealing of a user account and password by any means
such as through brute-force attacks or over-the-shoulder
techniques. The privacy and confidentiality of user’s data
will be severely breached. A common mechanism to
prevent such attacks is to include an extra value when
authenticating. This value can be distributed to the right
user by SMS and hence mitigate the likelihood of data
confidentiality issues [2].

Flooding Attacks: A malicious user can send requests
to the Cloud; he/she can then easily overload the server by
creating bogus data requests to the Cloud. The attempt is
to increase the workload of the Cloud servers by
consuming lots of resources needlessly [2].

20 American Journal of Information Systems

Passive Attacks: This type of attacks includes
observation or monitoring of communication. A passive
attack attempts to learn or make use of information from
the system but does not affect system resources. The goal
of the opponent is to obtain information that is being
transmitted [3]. Types of passive attacks includes: Traffic
Analysis and Release of Message Contents.

Cloud computing security issues include preserving
confidentiality and privacy of data. Only encryption or
authentication cannot give suitable security service. They
having individual feature [1]. Confidentiality assures that
private or confidential information is not made available
or disclosed to unauthorized individuals over the clouds.
A loss of confidentiality is the unauthorized disclosure of
information. Message authentication assures that data
received are exactly as sent (i.e., contain no modification,
insertion, deletion, or replay). In many cases, there is a
requirement that the authentication mechanism assures
that purported identity of the sender is valid. It verifies the
integrity of message [1].

To achieve confidentiality, integrity and authentication
of data, there should be encryption and decryption along
with message signature and verification. Data
Confidentiality and Message Authentication together will
give better security than single encryption or single
authentication during data processing over the cloud. The
data objects should never be updated by unauthorized
clients and in order to achieve this limitation the system
ensures that only correct and authorized client are able to
perform the updates [1]. For optimal authentication,
signing and verifying of message is need. Message
authentication may also verify sequencing and timeliness.

3. Literature Review
When sensitive information is stored in cloud servers,

which is out of user‘s control in most cases, risks would
rise dramatically. Unauthorized users may also be able to
intercept someone‘s data (e.g. server compromise).

Sahai and Waters proposed a new type of IBE – Fuzzy
Identity-Based Encryption [14]. It is also known as
Attribute-Based Encryption (ABE). In their work, an
identity is viewed as a set of descriptive attributes.
Different from the IBE, where the receiver could decrypt
the message if and only if his identity is exactly the same
as what specified by the sender, this fuzzy IBE enables the
decryption if there are identity overlaps‘ exceeding a pre-
set threshold between the one specified by sender and the
one belongs to receiver. However, this kind of threshold-
based scheme was limited for designing more general [1].

In Key-policy ABE or KP-ABE (Goyal et al. [15]), the
sender has an access policy to encrypt data. Cipher-text is
associated with a set of attributes, which partially
represents the cipher-text‘s encryption policy. A writer
whose attributes and keys have been revoked cannot write
back stale information. The receiver receives attributes
and secret keys from the attribute authority and is able to
decrypt information if it has matching attributes.
Unfortunately, with a drawback that the access policy is
built into the secret key, the data owner in a KP-ABE
scheme cannot decide the one who can decrypt the cipher
text, and he can only choose a set of attributes to control
the access of cipher texts. Besides, the access structure is a

monotonic access structure which cannot express the
negative attribute to exclude the participants with whom
the data owner does not want to share data. Subsequently,
Ostrovsky et al. [16] proposed a scheme with a non-
monotonic access structure where the secret keys are
labeled with a set of attributes including positive and
negative attributes [1].

In 2007, using a monotonic access tree as access
structure, Bethencourt et al. [17] proposed the first CP-
ABE construction. Their scheme can support flexible
access control policies like the KP-ABE [15] scheme, but
the security proof is in the generic group model. Cheung
and Newport [18] provided a provably secure CP-ABE
scheme which is proved to be secure under the standard
model and their scheme supports AND gate on positive
and negative attributes as its access policy. In 2011,
Waters [19] proposed a new methodology for realizing
CP-ABE under concrete and non-interactive cryptographic
assumptions in the standard model. He expressed access
control by a linear secret sharing scheme (LSSS) matrix
over the attributes in the system (previously used
structures can be expressed succinctly in terms of an
LSSS). In this most efficient scheme, the cipher text size
and the encryption/decryption overheads increase linearly
with the complexity of the access formula. As a result, his
scheme achieves the same performance and functionality
as Bethencourt et al.’s [17]. Finally, Lewko et al. [20]
recently leveraged the encoding technique from Waters’s
scheme [19] to propose an ABE scheme that achieves
adaptive (nonselective) security. Their scheme is based on
the Composite order groups, which results in some loss of
practical efficiency when compared with Water’s. Emura
et al. [21] improved the efficiency and achieved hidden
policies [1].

Multi-authority ABE schemes [22,23] can be divided
into two types. One needs a central authority (CA, for
short) which is used to guarantee the proper decryption
and can also decrypt all cipher texts, such as schemes
[22,24], while the other does not need a CA, such as
schemes [25,26]. Paper [55] proposes the threshold-based
key generation approach (TKGA) for ciphertext-policy
attribute-based encryption (CP-ABE). TKGA is a multi-
authority approach which utilize the technologies of
functional encryption and (n, k)-secret sharing. TKGA
could efficiently impede collusion attacks because no
single authority can directly generate secret keys.

In 2009, Attrapadung and Imai [27] presented a new
ABE scheme called the Dual-Policy ABE. Basically, it is
a conjunctively combined scheme of Goyal et al.’s KP-
ABE scheme [15] and Waters’ CP-ABE scheme [19]. It
allows simultaneously two access control mechanisms
over encrypted data. One involves policies over objective
attributes ascribed to data and the other involves policies
over subjective attributes ascribed to user credentials.
These two access control mechanisms can only allow
either functionality above one at a time. What is more, the
security proof is based on decisional bilinear Diffie-
Hellman exponent (DBDHE) assumption [1].

 To achieve the hierarchical access control and improve
update efficiency, the revocable attribute based encryption
scheme with hierarchical revocation based on multi-linear
maps is proposed in [57]. Hierarchical attribute-based
encryption scheme (HABE) [28] by combining a
hierarchical identity-based encryption (HIBE) system and

 American Journal of Information Systems 21

a cipher text-policy attribute-based encryption (CP-ABE)
system, so as to provide not only fine-grained access
control, but also full delegation and high performance. It
supports a scalable revocation scheme by applying proxy
re-encryption (PRE) and lazy re-encryption (LRE) to the
HABE scheme, so as to efficiently revoke access rights
from users. Based on the key-policy attribute-based
encryption (KP-ABE), combined with the idea of
hierarchical ID-Based encryption (HIBE), a hierarchical
authority key-policy attribute-based encryption (HA-KP-
ABE) scheme is presented in [58]. It uses hierarchical
multi-authority to distribute private keys to users. Here
private keys are computed for users according to random
polynomials.

To make data sharing more efficient, proxy re-
encryption (PRE) is proposed. Introduced by Mambo and
Okamoto [29] and first defined by Blaze et al. [30], PRE
extends the traditional public key encryption (PKE) to
support the delegation of decryption rights. It allows a
semi-trusted party called proxy to transform a cipher text
encrypted under Alice’s public key into another cipher
text of the same plaintext intended for Bob. The proxy,
however, learns neither the decryption key nor the
underlying plaintext [1]. Paper [56] paper presents a novel
cipher text-policy attribute-based multi-use unidirectional
proxy re-encryption scheme. In this scheme, the tree
access policy can be used to handle and (¡Ä), or (¡Å) and
threshold (of) operators.

Digital content is easily spread out in the era of cloud
computing. [53] Proposed a novel identity-based access
control approach for digital content based on ciphertext-
policy attribute-based encryption (iDAC). In iDAC, the
access control still works even the digital content is
duplicated to another content server. Moreover, only one
copy of encrypted digital content is required to share with
multiple users. This could efficiently reduce the overhead
of content servers.

In [54], for achieving access control and keeping data
confidential, the data owners could adopt attribute-based
encryption to encrypt the stored data. Users with limited
computing power are however more likely to delegate the
mask of the decryption task to the cloud servers to reduce
the computing cost. This scheme achieves security against
chosen-plaintext attacks under the k-multi-linear
Decisional Diffie-Hellman assumption.

4. Background Work
In this section, Access Policies, Mathematical

Background, assumptions and KP-ABE [15] scheme are
presented.

4.1. Assumptions
Following assumptions are made [2]:
1) The cloud is honest-but-curious, which means that

the cloud administrators can be interested in
viewing user‘s content, but cannot modify it. This is
a valid assumption that has been made in [2,34].
Honest-but-curious model of adversaries do not
tamper with data so that they can keep the system
functioning normally and remain undetected.

2) Users can have either read or write or both accesses
to a file stored in the cloud.

3) All communications between users/clouds are
secured by Secure Shell Protocol, SSH.

4.2. Formats of Access Policies
Access policies can be in any of the following formats:

1) Boolean functions of attributes, 2) Linear Secret
Sharing Scheme (LSSS) matrix, or 3) Monotone span
programs. Any access structure can be converted into a
Boolean function [2,35]. An example of a Boolean
function is 1 2 3 4 5 6 7(() ()) ())a a a a a a a∧ ∧ ∨ ∧ ∧ ∨ , where

1 2 7, ,...,a a a are attributes. Consider an access structure
for which there exists a linear secret-sharing scheme that
realizes it. It is known that for every LSSS realizable
access structure, there exist a monotone span program
(MSP) that computes the corresponding Boolean functions
and vice versa. Thus, such an access structure can be
represented by a monotone span program.

Secret-Sharing Schemes: Secret-sharing schemes (SSS)
are used to divide a secret among a number of parties. The
information given to a party is called the share (of the
secret) for that party. Every SSS realizes some access
structure that defines the sets of parties who should be
able to reconstruct the secret by using their shares.

Let { } { }n: 0,1 0,1Y → be a monotone Boolean function
[2,36]. A monotone span program for Y over a field F is
an l t× matrix M with entries in F, along with a labeling
function : [1] []a n→ that associates each row of M with
an input variable of Y , such that, for every

() { }n
1 2 nx , x ..., x 0,1∈ , the following condition is

satisfied:

()
[]

1 2 n
1

a(i)

x , x , . . . , x 1

F : M 1, 0, 0, . . . , 0
and (: x 0 0)

l

i

Y

v v
i v

×

=

⇔ ∃ ∈ =

∀ = ⇒ =

In other words, ()1 2 nx , x ,..., x 1Y = if and only if the

rows of M indexed by { }()| x 1a ii = span the vector

[1,0,0,...,0] .

4.2.1. Access Tree
Let T be a tree representing an access structure. Each

non-leaf node of the tree represents a threshold gate,
described by its children and a threshold value. If xnum is
the number of children of a node x and xk is its threshold
value, then 0 x xk num< ≤ . When 1xk = , the threshold
gate is an OR gate and when x xk num= , it is an AND
gate. Each leaf node x of the tree is described by an
attribute and a threshold value 1xk = .

Here the parent of the node x in the tree is denoted by
parent(x). The function att(x) is defined only if x is a leaf
node and denotes the attribute associated with the leaf
node x in the tree. The access tree T also defines an
ordering between the children of every node, that is, the
children of a node are numbered from 1 to num. The
function index(x) returns such a number associated with

22 American Journal of Information Systems

the node x . Here the index values are uniquely assigned
to nodes in the access structure for a given key in an
arbitrary manner.

4.3. Mathematical Background
Bilinear pairings on elliptic curves is used. Let G be a

cyclic group of prime order q generated by g. Let G2 be a
group of order q. We can define the map 1 1 2:e G G G× → .
The map satisfies the following properties [3]:

1) (,) (,)a b abe P Q e P Q= for all 1,P Q G∈ and
, qa b Z∈ , { }0,1,2,..., 1qZ q= − .

2) Non-degenerate: e(g,g) 1≠ .
Bilinear pairing on elliptic curves groups is used. The

choice of curve is an important consideration because it
determines the complexity of pairing operations.

4.4. Key Policy-Attribute Based Encryption
(KP-ABE)

Key Policy - Attribute Based Encryption [15] scheme
consists of four algorithms, proceeds as follows:

4.4.1. System Setup
This is a randomized algorithm that takes no input other

than the implicit security parameter. It outputs the public
parameters PK and a master key MK.

Let G1 be a bilinear group of prime order p, and let g be
a generator of G1. In addition, let 1 1 2:e G G G× → denote
the bilinear map. A security parameter, k, will determine
the size of the groups. We also define the Lagrange
coefficient ,i s∆ for qi Z∈ and a set, S, of elements in

, j s, j i: () (x j) / (i j)q i sZ x ∈ ≠∆ = Π − − . We will associate

each attribute with a unique element in *
qZ .

Consider T be an access tree with root r . Consider xT
as the subtree of T rooted at the node x . Hence T is the
same as rT . If a set of attributes γ satisfies the access tree

xT , it can be denoted as () 1xT γ = . ()xT γ can be
computed recursively as follows:
• If x is a non-leaf node, evaluate ' ()xT γ for all

children 'x of node x . ()xT γ returns 1 if and only if
at least xk children return 1. If x is a leaf node, then
Tx()γ returns 1 if and only if att()x γ∈ .

Define the universe of attributes { }1,2, , nu = …… .
Now, for each attribute i u∈ , choose a number it
uniformly at random from qZ . Finally, choose y

uniformly at random in qZ . The published public
parameters PK are

 ()1 t| |
1 | |, .. , , , yt u

uT g T g Y e g g= … = =

The master key MK is:

 1 | |, ., , .ut t y……

4.4.2. Encryption (M, γ, PK)

This is a randomized algorithm that takes as input a
message M, a set of attributes γ , and the public
parameters PK. It outputs the cipher text E.

To encrypt a message 2M G∈ under a set of attributes
γ , choose a random value qs Z∈ and publish the cipher
text as:

 s s
i(, ' ,{ T }).i iE E MY E γγ ∈= = =

4.4.3. Key Generation (T, MK, PK)
This is a randomized algorithm that takes as input –

Access Tree T (an access structure A), the master key MK
and the public parameters PK. It outputs a decryption key
D.

The algorithm outputs a key that enables the user to
decrypt a message encrypted under a set of attributes γ if
and only if () 1T γ = . The algorithm proceeds as follows.
First choose a polynomial xq for each node x (including
the leaves) in the tree T. These polynomials are chosen in
the following way in a top-down manner, starting from the
root node r.

For each node x in the tree, set the degree xd of the
polynomial xq to be one less than the threshold value xk
of that node, that is, 1x xd k= − . Now, for the root node
r , set (0)rq y= and rd other points of the polynomial qr
randomly to define it completely. For any other node x ,
set ()(0) (index())x parent xq q x= and choose xd other

points randomly to completely define xq .
Once the polynomials have been decided, for each leaf

node x , we give the following secret value to the user:

 (0)/ , where att()qx ti
xD g i x= =

The set of above secret values is the decryption key D.

4.4.4. Decryption (E, D, PK)
This algorithm takes as input - the cipher text E that

was encrypted under the set γ of attributes, the
decryption key D for access tree T (access control
structure A) and the public parameters PK. It outputs the
message M if Aγ ∈ .

Decryption procedure is specified as a recursive
algorithm. For ease of exposition, the simplest form of the
decryption algorithm is presented. Let consider a recursive
algorithm DecryptNode(E, D, x) that takes as input the
cipher text { }(, ',)i iE E E γγ ∈= , the private key D (we

assume the access tree T is embedded in the private key),
and a node x in the tree. It outputs a group element of

2G or ⊥ .
Consider i = att(x). If the node x is a leaf node then:

 (0)/ . . (0)

(, ,) Either (,)

(,) (,) if
Or otherwise

x i
qx ti s ti s qx

DecryptNode E D x e D E

e g g e g g i γ

=

= = ∈
⊥

Now consider the recursive case when x is a non-leaf
node. The algorithm DecryptNode(E, D, x) then proceeds
as follows:

 American Journal of Information Systems 23

For all nodes z that are children of x , it calls
DecryptNode(E, D, x) and stores the output as zF . Let xS
be an arbitrary kx-sized set of child nodes z such that

zF ≠⊥ . If no such set exists then the node was not
satisfied and the function returns ⊥ .

Otherwise, compute following and return the result:
i,s ' x(0)

x z sx zF F ∆
∈= Π , where index(z)i = and

' {index(z) : }x xs z s= ∈
. (0) i,s ' x(0)((,))s qz

z sx e g g ∆
∈= Π

. ()(()) i,s ' x(0)((,))s qparrent z index z
z sx e g g ∆
∈= Π (by construction)

. () i,s ' x(0)((,))s qx i
z sx e g g ∆
∈= Π

() . (0), s qxe g g= (using polynomial interpolation)
The decryption algorithm simply calls the function on

the root of the tree. It can be observed that
ys s(, ,) (,) YDecryptNode E D x e g g= = if and only if the

cipher text satisfies the tree. Since, ' MYsE = the
decryption algorithm simply divides out sY and recovers
the message M .

5. Proposed Methodology
In this section, ASP (Advanced Security Protocol) is

presented which is a privacy-preserving cryptographic
access control Protocol that enables end-users to securely
store, share, and manage their sensitive data in untrusted
cloud storage anonymously. ASP is scalable and supports
lazy revocation. It can be easily implemented on top of
existing cloud services and APIs. Its prototype can be
demonstrated based on Amazon S3 [37] API.

Advanced Security Protocol (ASP) supports
cryptographic key-updating scheme, referred to as AKU
(Advanced Key Update) as well as Authentication and
data Integrity scheme, referred to as AB-SIGN. The main
advantage of the AKU scheme its support for efficient
delegation and revocation of privileges in hierarchies
without requiring complex cryptographic data structures.
Authentication Scheme is attribute based which enables
the verifier to ensure that a signature is produced by a
sender/creator/writer whose access policy is satisfied by a
set of attributes without learning the signer's identity.

First, a formal definition for secure key-updating
schemes for hierarchical access is provided. Then, we give
a concrete construction of a key-updating scheme based
on ABE scheme. It supports both key revocation and
hierarchical delegation of secret access keys.

5.1. Hierarchical KU Scheme: Model and
Definition

Let T = (V, E, O) be a tree that represent a hierarchical
access structure. More general access class hierarchies in
which partially ordered access classes are represented by a
DAG are studied in [34]. In our work, we are only
interested in a special case where DAG is a tree. Each
vertex iv in { }0 1 2, , , ., nV v v v v= … corresponds to an
access class. 0v is the root and an edge (,)i je v v E= ∈

implies that iv class is the parent of class jv . O is a set of

sensitive data objects, each object o is associated with
exactly one access class ()V o . In this model, any subject
that can assume access rights at class iv is also permitted
to access any object assigned to a vertex that is a
descendant of iv .

Definition 1 The local time at vertex iv is an integer it
that increases (elapses) every time access rights of a
subject to that class is revoked.

Definition 2 The global time associated with node iv is
a vector 0(, , , .,)i i jT t t t= … … where jt is the local time

of thj vertex on the path from root to vertex iv on the
access tree T .

Two instances of global time are comparable only if the
vertices that they belong to are identical or one of them is
the ancestor of the other one; We say i jT T< if and only if

iT and jT are comparable and all common components of

iT are less than the corresponding components in jT .
Similarly, we define comparative operators =,>,≤, and ≥.

Definition 3 A Hierarchical Key-Updating (HKU)
Scheme consists of a root user and end users. An end user
may be a reader, a writer, or both. There are five
polynomial time algorithms HKU = (Init, Derive, Encrypt,
Decrypt, Update) defined as follows:
• Init (1 ,)k T is a randomized process run by the root

user which takes as input a security parameter k and
an access hierarchy tree T and then generates and
publishes a set of public parameters Pub and outputs
the root key 0Kv , ⊥ . It also initializes the state
parameters including the value of local time at each
vertex.

• Derive (,) j(, ,)vi TiT K v is a randomized process run
by the root user, reader or writer which using the
private key (,)vi TiK of iv at time iT derives a private

key of target class vj at its current global time jT
according to T. Derive computes the requested key
only if iv is an ancestor of vj and j iT T= ; otherwise,
it outputs null (⊥).

• Revoke (,)iT v run by the root user, reader or writer,
increments the local time it of iv by one, updates
other state variables, and returns the updated tree 'T .

• Encrypt (,)kT o is a randomized algorithm called by
writer that encrypts the data object ko and returns
the encrypted object C .

• Decrypt (,)(,)vi TiK C is a deterministic process run
by reader which takes a key and an encrypted object
as inputs and returns the corresponding object in
plaintext. This function can decrypt C only if it
belongs to the same or a descendant of the access
class that the key belongs to and the time that ok is
encrypted at is less than or equal to iT ; otherwise, it
outputs null (⊥).

Definition 3 is a generalization of the definition of key-
updating schemes in [38] and the definition of key
allocation schemes for hierarchies in [39]. If we assign to
T a tree of depth 1 where its leaves are a set of groups (i.e.,

24 American Journal of Information Systems

remove hierarchies), our definition reduces to a key-
updating scheme defined in [38] and if we remove the
update process and the time dimension, our scheme reduces
to key allocation scheme for hierarchies defined in [39].
Intuitively, a hierarchical key-updating scheme is secure if
all polynomial time adversaries have at most a negligible
advantage to break the cipher-text encrypted with the
current-time key of a target class, assuming that the
adversaries do not belong to higher (ancestor) target classes
in the hierarchy, or possess keys for earlier time periods.
In this model the adversary chooses her target at the beginning
of the game and then adaptively queries the scheme.

We define the security model of hierarchical key-
updating schemes as follows:

Definition 4 A hierarchical key-updating schemes is
secure if no polynomial time adversary A has a non-
negligible advantage (in the security parameter k) against
the challenger in the following game (HKU game):

Choosing target: The adversary declares an access
object v and a time instance vT

 that she wishes to guess
its corresponding private key (i.e. '(', ')K v T).

Setup: The challenger runs Init (1 ,)k T , and gives the
resulting public parameters Pub and T to the adversary.

Key-Extraction Query: The adversary adaptively
queries the private keys of polynomial number of vertices
at any time that she wishes subject to the restriction that
either the queried vertices are not an ancestor of (or equal
to) v or the time instance that they are being queried at is
earlier than or equal to vT

.
Challenge: The adversary submits two equal length

objects 0o and 1o belonging to the access class v . The
challenger flips a random coin b , and encrypts bo for
time vT

 and submits the result to the adversary.
The adversary issues more Key-Extraction queries.
Guess: The adversary outputs a guess 'b of b .
Adversary's advantage is the probability that her guess

is correct: [']AAdv Pr b b= = . The HKU scheme is secure
if the adversary's probability compared to random
guessing (1/2) is negligible.

5.2. AKU: Confidentiality Scheme
In this section, a concrete construction for HKU scheme

called Advanced Key Update (AKU) is presented. This
scheme is based on the use of bilinear map and the
difficulty of the Decisional Bilinear Diffie-Hellman
problem. Our solution is realized on top of the Key-Policy
Attribute-Based Encryption scheme (KP-ABE) [15] and
invokes KP-ABE operations including Setup ABE,
KeyGen ABE for private key generation, Encrypt_ABE
for data encryption, and Decrypt_ABE for decryption.

5.2.1. Init(1k, T)
The root user runs the Setup Attribute Based Encryption

process with 1k as security parameter to generate ABE
public parameters and the master key MK. Publishes the
ABE public parameters as Pubabe.

Invoke KeyGen_ABE procedure using MK as the
secret key and 0 0" "L v= as its policy. Outputs the result
as the root key ((0,)vK ⊥ = Key- Gen_ABE(MK, 0 0L v=)).

To each vertex in T adds a local time variable it
initialized to zero.

5.2.2. Derive(T, K(vi, Ti), vj)
It is run by a user (root user, reader, or writer) with secret

key (,)vi TiK at time iT to obtain the private key for node

jv .

If class jv is not a descendant of class iv , or the time

iT is not equal to current time jT associated with jv ,

then return null. Otherwise, denote 1 2(, , .,)nu u u… as the
list of vertices in the path from iv to jv ; denote

1 2(, , , ,)u u un vjt t t t…… on T as the list of current local time

values of intermediate vertices (including jv); and let d

represent the depth of iv .
The user performs the following operations:
1) Construct the access tree 'T which corresponds to

the following Boolean expression: (.dL v attribute
represents vertex in d-th level, .dL t represents its

current local time and ∧ is conjunction operator.).

(1) 1 ()

(1)

(1) 1 ()

()

(.

.)

(.

.)

d d n n

d n

d u d n

vj

L v u L v u

L v vj

L t T L t Tun

L t Tvj

∧ ∧
+ +

∧ ∧
+ +

∧ ∧
+ +

∧

= =

=

= =

≤

 This Boolean expression restricts access to objects
that belong to node vj or its descendants and are
created at current time or before.

2) Denote the access tree of (,)vi TiK by T . Using the
procedure for delegation of private key in [15], add
the access tree 'T to the root of (,)vi TiK , increase
its threshold by one, update and calculate the
private parameters associated to the root according
the protocol. In implementation section we provide
more details on this procedure.

3) Output the resulting access tree and parameters as a
private key (,)vj TjK for jv .

5.2.3. Encrypt(T, ok)
Encryption of data is performed using key. Denote vi as

the access class that object ko belongs to. (())i kv V o= .
Denote 0 1 2(, , , ., ,)n iv u u u v… as 'siv path and

0 1 2(, , , .., ,)i v u u un viT t t t t t= … as its current time according
to T. A writer encrypts ko as follows:

The attribute set is used as the public key for encryption.
Set the attribute set γ as follows:

 0 0 1

0 0 1

{ . ,......, . , . ;
. , ., . , . }

n n n i

v n un n vi

L v v L v v L v v
L t t L t t L t t
γ +

+

= = = =

= …… = =

Use ABE encryption procedure to encrypt ko with
attribute set γ and return the resulting encrypted object.
(_ (, ,))kC Encrypt ABE Pubabe oγ= .

 American Journal of Information Systems 25

5.2.4. Decrypt(K(vi, Ti), C)
After encryption of the data using key, we get cipher

text that is transmitted to receiver end. Receiver or reader
decrypts the cipher text as follows:
• If the encrypted object C does not belong to the same

access class vi as the key (,)vi TiK or one of its
descendants, or the time when C is encrypted is later
than the time iT when the key is generated, then
return null (⊥).

• Otherwise, run ABE decryption procedure and return
its result as output (,)(Decrypt _ ABE((,))k vi Tio K C= .

5.2.5. Revoke(T, vi)
It is run by a user to increment the local time of vi by

one and then returns the updated tree 'T .)
The correctness of AKU scheme follows the

correctness of the key policy ABE scheme [15].
Theorem 1 Assuming the hardness of the Decisional

BDH, AKU is a secure hierarchical key-updating scheme.
Proof 1 Sketch. It suffices to show that an adversary,

who can play HKU game for AKU with non-negligible
advantage, can also win KP-ABE game with a non-
negligible probability, and thus break the security of KP-
ABE and subsequently the Decisional BDH. Let A be an
adversary who can win HKU game with non-negligible
advantage 1/ 2 €+ . She can play KP-ABE Selective-Set
model game as follows:

Init: A declares the set of attributes that corresponds to
vertex v and time vT

 as γ , the set of attributes that she
wishes to be challenged upon.

Setup: This step is identical to Setup step in HKU game.
Phase 1: In this phase the adversary queries for the

private keys for access structures (trees) Tj which
correspond to that of keys that she would query in HKU
game. Since, according to the protocol of HKU game,
these keys belong to vertices that are not an ancestor of v
or their time is less than vT

, their access trees will not
satisfy with attributes in γ (γ does not belong to jT) and
therefore they are legitimate queries.

Challenge: Identical to the Challenge step in HKU game.
Phase 2: Repeat Phase 1.
Guess: The adversary guesses b using the same strategy

that she uses in HKU game. Since the data is encrypted
under the same set of attributes and using the same
procedure, she has the same non-negligible advantage to
make the correct guess. This concludes our proof.

5.3. AB-SIGN: Authentication and Integrity
Scheme

Proposed ASP protocol supports message authentication
and data integrity using AB-SIGN scheme. Our design for
AB-SIGN is based on the same technique introduced by
by Moni Naor (Section 6 of [40]) for Identity Based
Encryption and then extended in [41] for HIDS signature
scheme. However, the original paper which introduces
KP-ABE [15] does not present any signature scheme.

AB-SIGN scheme is an attribute based signature
scheme which

1) Enable the readers to verify the integrity of data and
ensure that it is produced by an authorized writer,

2) Enable the cloud service providers to validate
incoming requests and block unauthorized accesses.

Definition 5 AB-SIGN is a signature scheme for KP-
ABE [15] that it’s signing and verification methods are
defined as follows. Let's say that the signer has a key K for
policy P, and wants to sign message M. The verifier needs
to verify that the signature is generated by a signer whose
key policy satisfies attribute set A:

Signature: From K derive a key ()'K which
corresponds to a policy which is the concatenation of P
and ()@ S M= (@ S is a reserved attribute for
signatures). Send the derived key to the verifier as the
signature.

Signature Verification: Generate a random token and
encrypt it using the attribute set { }U @A S M= and then
decrypt the result using a key which is equal to the
signature. If the result is equal to the original token the
signature is valid (i.e. the attribute set A satisfies the
signer's key policy.)

To prevent an attacker from using the signature method
to derive a valid access key, we need to reserve the
attribute `@ 'S for signature.

Theorem 2: Assuming the hardness of the Decisional
BDH, AB-SIGN is a secure signature scheme.

Proof 2: Enforceability of AB-SIGN scheme follows
immediately from the security of KP-ABE scheme. In
AB-SIGN, a signature is a derived key from the actual
write access key. Therefore, based on the security of KP-
ABE derive operation; the only entity who can generate the
signature is the owner of the write access key. Moreover,
security of derive operation guarantees that the verifier
cannot guess the original access key from the derived key.

6. Implementation and Operation
The ASP protocol runs between the root user, end-user

(reader or writer), and the cloud providers. The root user
may be a system administrator in the data owner's
organization, who can specify the access privileges of
end-users. The end-users may further delegate their access
privileges to other individuals for easy sharing. We
achieve the revocation of privilege by encoding the
validity period in the private keys of users and advancing
time with respect to the target hierarchy or data object.
Another advantage of our ASP framework for use in cloud
storage is the support of anonymous access.

ASP protocol requires three repositories: Meta-data
Directory, Data Store and Key-store as shown in Figure 1.

Meta-data Directory: All meta-data associated with
hierarchies and data objects are maintained in this
repository. ASP requires two properties for each object:
Read Access Revision (RAR) and Write Access Revision
(WAR). These two properties play the role of local time in
AKU for read and write access, respectively. In order to
compute Read/Write Access Revision Vectors (which
correspond to global time instances in ASP), the cloud
provider that hosts Meta-data Directory needs to provide
an API for querying RAR and WAR values of multiple
directories in a single request. All existing cloud-based
databases (also known as `NoSQL systems’ or `schema-
free database’ such as Amazon SimpleDB [43], Microsoft
Azure SQL [42], and Google's AppEngine [44] database

26 American Journal of Information Systems

(Bigtable [45])) satisfy this requirement and therefore
qualify to host an ASP Meta-data Directory. For our
experiments we use Amazon SimpleDB [43].

Data Store: This repository contains the actual content
of each data object. Any cloud key-value based storage
system such as Amazon S3 [37] can be used as ASP Data
Store. In ASP, keys are hierarchical path name of data
objects and values are the actual content of corresponding
data objects. Cloud key-value storage providers are tuned
for high throughput and low storage cost; these features
make them a good candidate for ASP Data Store.

Key-store: Key-Store is a secure local repository which
having all read/write access keys of end-users. Each key-
store contains all public parameters as well as read/write
access key entries of all data-objects and categories that
the end user has access to. Each access key entry contains
the following fields: object path, access type (read/write),
granter's identity, and secret key. The Key-store provides
an API that given user's credential and a path, returns the
first key entry that its path is a prefix of the input path.

Figure 1. ASP Working Environment

All major participants of ASP protocol are shown in
Figure 1. In ASP protocol, end-users can enforce access
control on their own data without fully trusting or relying
on the cloud providers. Here keys are distributed and
managed in a distributed fashion. Solid arrows represent
access delegation.
Working with ASP
• To work with ASP, the root user needs to follow the

following steps:
• Sign up for cloud services required for hosting Meta-

data Directory and Data Store.
• Run Init procedure according to AKU scheme to

generate public parameters and the master key.
• Save the master key and public parameters in the

root's Key-store.
• Share the public parameters with the cloud service

providers that support ASP request authorization.
• Create an entry in Meta-date Directory that

corresponds to the root directory. The WAR and
RAR numbers of the root directory entry are
initialized to zero.

6.1. ASP Operation

The basic operations supported by ASP include: write,
read, delegate, and revoke. Each basic operation leads to
calls to Meta-data directory and/or Data Store. Other
operations such as create, remove, rename, update for
directories and data objects can be defined similarly. AB-
SIGN Scheme is needed before performing the basic
operations to maintain the authenticity and data integrity.
Requirement of AB-SIGN of ASP to perform operations
enables cloud providers to block unauthorized request.

6.1.1. Write Operation
Figure 2 shows the idea about write operation using

ASP protocol. To write into a specific data object, the end-
user needs to perform the following steps:

1) Retrieve the required write access key from the local
Key-store.

2) Query Meta-data directory to get read access
revision (RAR) vector of the target object.

3) Using AKU scheme, encrypt the data by the
retrieved RAR vector and its path.

4) Using AB-SIGN scheme, sign the data by his write
access key.

5) Construct a key-value pair where the key is equal to
the path of data object and the value is the
encrypted data and corresponding signature. Store
the pair in Data Store.

6) To prevent destructive writes by unauthorized users,
the Data Store can query write access revision
(WAR) vector of that object from the Meta-data
Directory to validate the signature of request.

Figure 2. Write Operation

6.1.2. Read Operation
Figure 3 shows the idea about read operation using ASP

protocol. To ensure the data is produced by an authorized
writer, the reader needs to validate the corresponding
signature using AB-SIGN signature scheme. Then the
reader can decrypt the data using its read access key and
AKU scheme. To read a specific data object stored using
ASP protocol, the end-user needs to do the following steps:

1) Retrieve the required read access key from the local
Key-store.

 American Journal of Information Systems 27

2) Using AKU scheme and the read access key,
decrypt the encrypted data.

3) Using AB-SIGN signature scheme, validate the
signature to ensure that data is produced by a user
who has the proper write access.

4) Return the decrypted data.

Figure 3. Read Operation

6.1.3. Delegation Operation
Delegation operation can be run by a user to authorize

another user a subset of his access privileges as shown in
Figure 1. It requires three input parameters: the identity of
the delegate, the resource path, and access type (read/write).
The steps required for this operation are listed below:

1) From the local Key-store, get the access key that
matches the target resource path and access type.

2) Query Meta-date Directory to get the read/write
access revision (RAR/WAR) vector of target
resource.

3) Run Derive operation, as defined in AKU scheme,
to generate the required access key.

4) Send the generated access key to the delegate
through a secure communication channel.

6.1.4. Revocation Operation
This facility reduces the overhead on the data center by

restricting fake user. To revoke a user's access on a
specific directory or data object, the authorized user needs
to make a signed request to the Meta-data Directory to
increase the corresponding access revision number. To
ensure the integrity of access revision numbers, these
entries should be signed by the requester.

7. Analysis of Proposed Technique
In this section, some experimental results are provided

which show the performance overhead of our ASP protocol.
Pre-computation and caching: As discussed in the

previous sections, to overcome the limitation of fixed
attributes, we adopted large universe construction of KP-
ABE. However, in this construction the process of
mapping an attribute to the bilinear group

(. .{1,0}*)G i e G→ is very expensive (on average 22 ms
per attribute). In our KP-ABE library every bit of a

numerical attribute gets translated into a symbolic
attribute. For example, a 10-bit representation of the
numerical attribute li = 352 gets translated into a list of
symbolic attributes shown in Table 1.

Table 1. Symbolic representation of attribute li = 352
[li@0=1, li@1=1, li@2=0, li@3=0, li@4=0,
li@5=1, l i@6=1, li@7=0, li@8=1, li@9=0]

Also, all numerical comparisons get translated into
symbolic matching policies. For example, Table policy 2
corresponds to the numerical comparison li < 356.

Table 2. KP-ABE policy for li < 356
(2 li@9=0 (1 (2 li@7=0 (1 (1 (2 li@4=0 (2 li@3=0 (1

li@1=0 li@2=0))
) li@5=0) li@6=0)) li@8=0))

In ASP, every level of an object's path has two numbers
associated with it – read access revision number and write
access revision number. Therefore, these numerical
attributes lead too many symbolic attributes which their
mapping cost create a significant over-head. Since the
value of each bit is either zero or one, we pre-compute the
mapped values of these symbols and during the startup
process load them into the framework. Moreover, at
runtime, we cache the mapped value of each path segment
in a hash table so that it can be reused. Using the
described pre-computation and caching techniques, we
were able to significantly reduce the computational cost
associated with required KP-ABE crypto operations.

Security Process: In ASP the actual content of data is
encrypted using either a symmetric-key or asymmetric-
key encryption scheme based on user choice. And only the
corresponding symmetric/asymmetric keys are encrypted
by KP-ABE scheme. By default our framework uses AES
(Advanced Encryption Standard) [4,12] for symmetric
encryption with the default key length of 128 bits.
Similarly, AB-SIGN signature scheme is performed on
fixed-length digest of data. Our framework, by default,
uses SHA-1 [4,11] as the digest hash function. SHA-1
generates 160-bit message digest of data.

Figure 4. Encryption Analysis

The Figure 4 and Figure 5 show the overhead of
encryption and decryption schemes while Figure 6 and
Figure 7 show signature and sign verification schemes of
ASP protocol on top of underlying symmetric-key
encryption and hashing schemes. In our experiments
numerical attributes are of size 10 bits.

Figure 4 shows how the cost of ASP encryption relates
to the user's access level and hierarchy level of the data

28 American Journal of Information Systems

object. In KP-ABE the encryption time is only a function
of number of attributes, which linearly increases as the
object level increases. As a result, ASP encryption cost
linearly increases as the hierarchy level of the object
increases, but it is independent of the user's access level.

By contrast, as Figure 5 shows, decryption time is just a
function of user's access level. That is because in KP-ABE,
decryption time is a function of complexity of access
structure that linearly increases as user's access level
increases. Decryption time is independent of hierarchy
level of the encrypted object.

Figure 5. Decryption Analysis

Figure 6 and Figure 7 show the overhead of ASP
signing and signature verification on signed objects in
different hierarchy levels for users with different access
levels respectively. In ASP, as Figure 6 illustrates,
signature cost is independent of the hierarchy level of data
objects; it only depends on access level of the user. This is
because proposed AB-SIGN signature scheme is based on
KP-ABE derive operation which its complexity linearly
increases as the complexity of the access structures
increases.

Figure 6. Message Signing Analysis

In AB-SIGN scheme, each signature verification operation
requires KP-ABE encryption and decryption, therefore its
computational cost depends on the user's access level as
well as the hierarchy level of data object. Figure 7 shows
how the time required for signature verification increases
linearly as the access level of user decrease and the
hierarchy level of data object increases.

Figure 7. Signature Verification Analysis

Figure 8 and Figure 9 show the combined overhead cost
of read and write operations in ASP. To perform ASP
write operation, a user needs to encrypt and sign the data
objects. The portion of cost below the white indicator is
related to encryption and the rest is the cost associated
with signature as shown in Figure 8.

Figure 8. Write Operation Analysis

ASP read operation includes cost of decryption and
signature verification. If we divide the graph given in
Figure 9 by horizontal line, portion below and above of
that line, shows the overhead cost for decryption and
signature verification, respectively.

Figure 9. Read Operation Analysis

7.1. Complexity Analysis
In this section, we denote N as the number of attribute

authorities, I as the size of the entire attribute set and X as

 American Journal of Information Systems 29

the number of nodes in a tree pT . Table 3 shows the
complexity comparisons of proposed approach with
existing approaches proposed in [9] and [26].

Table 3. Complexity Comparisons

Phase Chase et al. [26] Yu et al. [9] ASP

System Setup O(1) O(I) O(1)

KeyGen O(N + I) O(X) O(N + I)

Encryption O(I) O(I) O(X · K)

Decryption O(N · I) O(max(X, I)) O(X)

Revocation O(I) O(X · K)

System Setup:
When the system is setup, kYΠ is computed by any

one of the authorities and sent to others, whose
complexity is ()O N . Then, secret parameters ’sxk are
calculated within the clusters. The complexity of that
calculation is (2) ()O C NC O C N=・ ・ , but C is a constant
number, so ()()O C N O N=・ . Therefore, the total
complexity is O(N). However, since we have N authorities
per system, the complexity per authority is O(1).
KeyGen

In the Attribute Key Generation, VigΣ is computed by

N authorities, and (())ri
iD H att i= . VigΣ is computed for

I times by one attribute authority. Therefore, the total
complexity of Attribute Key Generation is ()2 .O N I N+ .
In the Aggregation of Two Keys, a user aggregates the I
components, thus the computation complexity of this

operation is ()O I . So, the complexity per authority is

()O N I+ .
Encryption

In this phase at every non-leaf node, a polynomial is
chosen and 1xk − numbers are to be found to determine the
polynomial, where x is the threshold value. Therefore,
denoting the average threshold value to be K , the
computation complexity of this process is ().O X K .
Decryption

Decryption is a recursive algorithm, and it is executed
exactly once at every node in a Breadth-First-Search
manner, therefore the computation complexity of this
process is ()O X .
Revocation

Revocation operation has the same complexity as the
addition of Encryption and Decryption. Its complexity is
().O X K .
The comparison between proposed ASP protocol and

the different multi-authority schemes is shown in Tables 4
and 5. By U , UA , and CA , we denote the number of
the universal attributes, the attributes held by user U, and
the attributes required by the cipher text, respectively. IU
and IC denote the index set of the authorities. By E and P,
we denote one exponential and one paring operation,
respectively. By LG1 and LG2, we denote one element in
group G1 and one element in group G2, respectively. N
denotes the number of the authorities in the systems. Table
4 shows the ideas about operation cost for various MA-
ABE schemes while Table 5 shows the working ideas
comparison of existing MA-ABE technologies.

Table 4. Comparison of computational cost
Schemes Authority setup KeyGen Encryption Decryption

Chase’s [22] (|U|+1)E (|AU|+1)E (|AC|+2)E |AC|E+(|AC|+1)P

Han et al.’s [23] (|U|+2N)E (|AU|+3|IU|)E (|AC|+3)E |AC|E+(|AC|+|IC|+1)P

Chase and Chow [26] (|U|+2N)E (|U|+|IU|2)E (|AC|+2)E |AC|E+(|AC|+1)P

Our ASP (|U|+2N)E (|U|+|IU|2+1)E (|AC|+3)E |AC|E+(|AC|+1)P

Table 5. Working Idea Comparison for MA-ABE
Scheme Security Model Used ABE Cipher text Length Central Authority Authenticity

Chase’s [49] Selective KP-ABE (|AC|+1)LG1 + LG2 Yes No

Han et al.’s [50] Selective KP-ABE (|AC|+2)LG1 + LG2 No Yes

Lin et al.’s [51] Selective FIBE (|AC|)LG1 + LG2 No No

Chase and Chow [52] Selective KP-ABE (|AC|+1)LG1 + LG2 No No

Our ASP Selective KP-ABE (|AC|+2)LG1 + LG2 Yes Yes

7.2. Security Analysis
In this section we state the security guarantees provided

by ASP protocol.
Confidentiality: Our solution ensures that only the

users who have the most recent version of the access key
of the data object or one of its ancestor directories can
decrypt it. The confidentiality of stored data is protected
under our protocol because writers always encrypt the data
objects by their path and most recent read access revision
(RAR) vector according to AKU scheme. The cloud
provider or other unauthorized users cannot gain any

information that helps them to guess the access key of
unauthorized data objects.

Integrity: The integrity of stored data is preserved.
This guarantee is realized by requiring writers to sign the
data by their write access key using AB-SIGN scheme.
We require readers to validate writer's signature to ensure
that it is produced by an authorized writer (i.e. a user with
write access to that data object or on of its parent
directories). Because meta-data entries stored in the Meta-
data Directory are also required to be signed by the end-
users, any unauthorized change in Meta-data Directory is
detectable by the reader.

30 American Journal of Information Systems

Authenticity and Anonymity: The end users are
anonymous to each other and to the cloud providers. The
signatures used in proposed authorization do not contain
any identify information. During the course of protocol,
the end-users do not reveal any information about their
credentials. AB-SIGN signatures bound to the data objects
and requests; include only attributes related to the location
and global time of those objects.

Collusion-resistance: Security of KP-ABE guarantees
that unauthorized users and malicious cloud service
providers cannot collude to guess access key to an
unauthorized data object.

8. Conclusion and Future Work
As people are becoming more concerned about their

privacy these days, the privacy-preserving is very
important over the cloud. Security issues can be
categorized into sensitive data access, data segregation,
privacy, bug exploitation, recovery, accountability,
malicious insiders, management console security, account
control, and multi-tenancy issues. The three basic
requirements of security: confidentiality, integrity and
availability are required to protect data throughout its
lifecycle. Data must be protected during the various stages
of creation, sharing, archiving, processing etc. However,
situations become more complicated in case of a public
cloud.

In this paper, Advanced Security Protocol (ASP) is
presented that supports Hierarchical Key-Updating
scheme. This protocol illustrates how recent cryptographic
schemes can be utilized to develop an effective client-side
access control protocol for protecting confidentiality and
integrity of data stored in untrusted cloud storage.
Proposed ASP protocol also includes an attribute based
signature(AB-SIGN) scheme that enables cloud providers
to ensure that requests are submitted by authorized end-
users, without learning their identities. Using the key-
updating and signature schemes, proposed idea is
developed, implemented, and evaluated. Presented
protocol is a scalable cryptographic access control
protocol for hierarchically organized data. Proposed ASP
protocol achieves Confidentiality, Data Integrity and
Authenticity as well as reduces the overhead on web by
restricting fake users.

In future, work can be done on security systems for
various web based services.

References
[1] Shyam Nandan Kumar, and Amit Vajpayee, “A Survey on Secure

Cloud: Security and Privacy in Cloud Computing.” American
Journal of Systems and Software, vol. 4, no. 1 (2016): 14-26.

[2] Shyam Nandan Kumar, “Cryptography during Data Sharing and
Accessing Over Cloud.” International Transaction of Electrical
and Computer Engineers System, vol. 3, no. 1 (2015): 12-18.

[3] Shyam Nandan Kumar, “DecenCrypto Cloud: Decentralized
Cryptography Technique for Secure Communication over the
Clouds.” Journal of Computer Sciences and Applications, vol. 3,
no. 3 (2015): 73-78.

[4] Shyam Nandan Kumar, “Review on Network Security and
Cryptography.” International Transaction of Electrical and
Computer Engineers System, vol. 3, no. 1 (2015): 1-11.

[5] Shyam Nandan Kumar, “World towards Advance Web Mining: A
Review.” American Journal of Systems and Software, vol. 3, no. 2
(2015): 44-61.

[6] "The NIST Definition of Cloud Computing". National Institute of
Standards and Technology. Retrieved 24 July 2011.

[7] Mather T, Kumaraswamy S, Latif S (2009) Cloud Security and
Privacy. O’Reilly Media, Inc., Sebastopol, CA.

[8] A. Verma and S. Kaushal, “Cloud Computing Security Issues and
Challenges: A Survey”, Proceedings of Advances in Computing
and Communications, Vol. 193, pp. 445-454, 2011.

[9] Shucheng Yu, Cong Wang, Kui Ren, and Wenjing Lou.
“Achieving secure, scalable and fine-grained data access control in
cloud computing”. In Proceedings of the 29th conference on
Information communications, INFOCOM'10, pp. 534-542,
Piscataway, NJ, USA, 2010. IEEE Press.

[10] Wayne Jansen, Timothy Grance, “NIST Guidelines on Security
and Privacy in Public Cloud Computing”, Draft Special
Publication 800-144, 2011.

[11] RFC 3174, US Secure Hash Algorithm 1 (SHA1)
http://www.ietf.org/rfc/rfc3174.txt.

[12] Joan Daemen and Vincent Rijmen. Rijndael/aes. “In Encyclopedia
of Cryptography and Security”. 2005.

[13] Jon Marler, “Securing the Cloud: Addressing Cloud Computing
Security Concerns with Private Cloud”, Rackspace Knowledge
Centre, March 27, 2011, Article Id: 1638.

[14] A. Sahai and B. Waters, “Fuzzy identity-based encryption”, in
EUROCRYPT, ser. Lecture Notes in Computer Science, vol. 3494.
Springer, pp. 457-473, 2005.

[15] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-Based
Encryption for Fine-Grained Access Control of Encrypted data,”
in Proceedings of the 13th ACM Conference on Computer and
Communications Security (CCS ’06). ACM, 2006, pp. 89-98.

[16] R. Ostrovsky, A. Sahai, and B. Waters, “Attribute-based
encryption with non-monotonic access structures,” in Proceedings
of the 14th ACM Conference on Computer and Communications
Security (CCS '07), pp. 195-203, November 2007.

[17] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy
attribute-based encryption,” in Proceedings of the IEEE
Symposium on Security and Privacy (SP '07), pp. 321-334, May
2007.

[18] L. Cheung and C. Newport, “Provably secure ciphertext policy
ABE,” in Proceedings of the 14th ACM Conference on Computer
and Communications Security (CCS '07), pp. 456-465, November
2007.

[19] B. Waters, “Ciphertext-policy attribute-based encryption: an
expressive, efficient, and provably secure realization,” in Public
Key Cryptography (PKC '11), pp. 53-70, Springer, Berlin, Germany,
2011.

[20] A. Lewko, T. Okamoto, A. Sahai, and B. Waters, “Fully secure
functional encryption: attribute-based encryption and (hierarchical)
inner product encryption,” in Advances in Cryptology:
EUROCRYPT 2010, vol. 6110 of Lecture Notes in Computer
Science, pp. 62-91, Springer, Berlin, Germany, 2010.

[21] K. Emura, A. Miyaji, K. Omote, A. Nomura, and M. Soshi, “A
ciphertext-policy attribute-based encryption scheme with constant
ciphertext length,” International Journal of Applied Cryptography,
vol. 2, no. 1, pp. 46-59, 2010.

[22] M. Chase, “Multi-authority attribute based encryption,” in Theory
of Cryptography, vol. 4392 of Lecture Notes in Computer Science,
pp. 515-534, Springer, Berlin, Germany, 2007.

[23] J. Han, W. Susilo, Y. Mu, and J. Yan, “Privacy-preserving
decentralized key-policy attribute-based encryption,” IEEE
Transactions on Parallel and Distributed Systems, vol. 23, no. 11,
pp. 2150-2162, 2012.

[24] V. Bozovic, D. Socek, R. Steinwandt, and V. I. Villanyi, “Multi-
authority attribute-based encryption with honest-but-curious
central authority,” International Journal of Computer Mathematics,
vol. 89, no. 3, pp. 268-283, 2012.

[25] H. Lin, Z. Cao, X. Liang, and J. Shao, “Secure threshold multi
authority attribute based encryption without a central authority,”
Information Sciences, vol. 180, no. 13, pp. 2618-2632, 2010.

[26] M. Chase and S. S. M. Chow, “Improving privacy and security in
multi-authority attribute-based encryption,” in Proceedings of the
16th ACM Conference on Computer and Communications
Security (CCS '09), pp. 121-130, Chicago, Ill, USA, November
2009.

 American Journal of Information Systems 31

[27] N. Attrapadung and H. Imai, “Dual-policy attribute based
encryption,” in Applied Cryptography and Network Security, pp.
168-185, Springer, Berlin, Germany, 2009.

[28] Guojun Wang, Qin Liu, Jie Wu and Minyi Guo, “Hierarchical
attribute-based encryption and scalable user revocation for sharing
data in cloud servers”, 2011.

[29] M. Mambo and E. Okamoto, “Proxy cryptosystems: delegation of
the power to decrypt ciphertexts,” IEICE Transactions on
Fundamentals of Electronics, Communications and Computer
Sciences, vol. 80, no. 1, pp. 54-62, 1997.

[30] M. Blaze, G. Bleumer, and M. Strauss, “Divertible protocols and
atomic proxy cryptography,” in Proceedings of the International
Conference on the Theory and Application of Cryptographic
Techniques (EUROCRYPT '98), pp. 127-144, Espoo, Finland,
1998.

[31] Tatsuaki Okamoto and Katsuyuki Takashima, “Decentralized
Attribute-Based Signatures” , Public-Key Cryptography – PKC
2013, Springer Berlin Heidelberg, pp 125-142.

[32] Xiaofeng Chen, Jin Li, Xinyi Huang, Jingwei Li, Yang Xiang and
Duncan S. Wong, “Secure Outsourced Attribute-Based
Signatures”, pp: 3285-3294, IEEE, vol. 25, (2014).

[33] Wenyi Liu, Uluagac, A.S. and Beyah, R., “MACA: A privacy-
preserving multi-factor cloud authentication system utilizing big
data”, IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), 2014, pp. 518-523, Toronto,
ON.

[34] S. Yu, C. Wang, K. Ren, and W. Lou, “Attribute based data sharing
with attribute revocation” in ACM ASIACCS, pp. 261-270, 2010.

[35] A. B. Lewko and B. Waters, “Decentralizing attribute-based
encryption”, in EUROCRYPT, ser. Lecture Notes in Computer
Science, vol. 6632. Springer, pp. 568-588, 2011.

[36] H. K. Maji, M. Prabhakaran, and M. Rosulek, “Attribute-based
signatures”, in CT-RSA, ser. Lecture Notes in Computer Science,
vol. 6558. Springer, pp. 376-392, 2011.

[37] Amazon S3 . http://aws.amazon.com/s3/.
[38] Michael Backes, Christian Cachin, and Alina Oprea. “Secure Key-

Updating for Lazy Revocation”,. In Research Report RZ 3627,
IBM Research, pages 327-346. Springer, 2005.

[39] Marina Blanton, Nelly Fazio, and Keith B. Frikken. “Dynamic and
Efficient Key Management for Access Hierarchies”. In
Proceedings of the ACM Conference on Computer and
Communications Security, 2005.

[40] Dan Boneh and Matthew Franklin. “Identity-based encryption
from the weil pairing”. SIAM J. Comput., 32: 586-615, March
2003.

[41] Craig Gentry and Alice Silverberg. “Hierarchical ID-based
cryptography”. In ASI- ACRYPT, pp. 548-566, 2002.

[42] SQL Data Services/Azure Services Platform.
http://http://www.windowsazure.com.

[43] Amazon SimpleDB. http://aws.amazon.com/simpledb/.
[44] Google App Engine. http://appengine.google.com.

[45] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh,
Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew
Fikes, and Robert E. Gruber. Bigtable: “A distributed storage
system for structured data”. In Proceedings of the 7th symposium
on Operating systems design and implementation - volume 7, pp.
205-218, 2006.

[46] P. Sharma, S. K. Sood, and S. Kaur, “Security Issues in Cloud
Computing”, Proceedings of High Performance Architecture and
Grid Computing, Vol. 169, pp. 36-45, 2011.

[47] Alessandro Perilli, Claudio Criscione, “Securing the Private
Cloud”, Article on Secure Networks, Virtualization.info.
http://virtualization.info/en/security/privatecloud.pdf.

[48] Thomas W. Shinder, “Security Issues in Cloud Deployment
models”, TechNet Articles, Wiki, Microsoft, Aug, 2011.

[49] Craig Gentry, A FULLY HOMOMORPHIC ENCRYPTION
SCHEME”, PhD Thesis, STANFORD UNIVERSITY, September
2009.

[50] Cloud Security Alliance (2012), “SecaaS implementation guidance,
category 1: identity and Access management”. Available:
https://downloads.cloudsecurityalliance.org/initiatives/secaas/Seca
aS_Cat_1_IAM_Implementation_Guidance.pdf.

[51] Ron Rivest (2002-10-29). "Lecture Notes 15: Voting,
Homomorphic Encryption.

[52] B. R. Kandukuri, P. V. Ramakrishna, and A. Rakshit, “Cloud
security issues”, in Proceedings of the IEEE International
Conference on Services Computing (SCC '09), pp. 517-520,
September 2009.

[53] Win-Bin Huang and Wei-Tsung Su, “Identity-based access control
for digital content based on ciphertext-policy attribute-based
encryption”, International Conference on Information Networking
(ICOIN), IEEE, pp. 87-91, Cambodia, 2015.

[54] Jie Xu, Qiaoyan Wen, Wenmin Li, Zhengping Jin, “Circuit
Ciphertext-Policy Attribute-Based Hybrid Encryption with
Verifiable Delegation in Cloud Computing”, IEEE Transactions
on Parallel and Distributed Systems, vol. 27, issue: 1, pp. 119-129,
2015.

[55] Win-Bin Huang, Wei-Tsung Su, and Chiang-Sheng Liang, “A
threshold-based key generation approach for ciphertext-policy
attribute-based encryption”, Seventh International Conference on
Ubiquitous and Future Networks (ICUFN), IEEE, pp. 908-913,
Sapporo, 2015.

[56] Juanjuan Li, Zhenhua Liu, and Longhui Zu, “Chosen-Ciphertext
Secure Multi-use Unidirectional Attribute-Based Proxy Re-
Encryptions”, Ninth Asia Joint Conference on Information
Security (ASIA JCIS), IEEE, pp. 96-103, Wuhan, 2014.

[57] Han Yiliang, Jiang Di , Yang Xiaoyuan, “The Revocable Attribute
Based Encryption Scheme for Social Networks”, International
Symposium on Security and Privacy in Social Networks and Big
Data (SocialSec), IEEE, pp. 44-51, Hangzhou, 2015.

[58] Lin You, and Lijun Wang, “Hierarchical authority key-policy
attribute-based encryption”, IEEE 16th International Conference
on Communication Technology (ICCT), pp. 868-872, Hangzhou,
2015.

