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ABSTRACT 

Uncertainty parameters in risk assessment can be modeled by 

different ways viz. probability distribution, possibility 

distribution, belief measure, depending upon the nature and 

availability of the data. Different transformations exist for 

converting expression of one form of uncertainty to another 

form. They differ from one another substantially, ranging 

from simple ratio scaling to more sophisticated transformation 

based upon various principles. These transformations should 

satisfy certain consistency principles. Several researchers viz., 

Zadeh, Klir, Dubois & Prade have given such type of 

consistency laws. The weakest consistency rule that any 

probability-possibility transformation should satisfy is 

pro(A)  pos(A) i.e., probability of any event is less than or 

equal to possibility of that event. The strongest among such 

transformation law Pro(A) > 0Pos(A) =1. Though 

possibility and probability capture different types of 

uncertainty, still transformations are used because it is 

essential in solving many practical problems. In this paper, we 

reviewed the consistency principles as given by the above 

authors. Then we have made a comparative case study of 

uncertainty propagation by three different methods using 

probability- possibility transformation satisfying consistency 

conditions. 

Keywords 

Uncertainty, Risk Assessment, Hybrid method, Probability-

possibility transformation 

1. INTRODUCTION 

Risk assessment methods have become more and more 

popular support tools in decision making process. The goal of 

risk assessment is to estimate the severity and likelihood of 

harm to humans’ health from exposure to a substance or 

activity that under plausible circumstances can cause harm to 

human health. Uncertainty in risk assessment may arise from 

many different sources such as scarce or incomplete 

information or data, measurement error or data obtain from 

expert judgment or subjective interpretation of available data 

or information. Here we will consider four different types of 

uncertainties: firstly, random variable observed with total 

precision which can be represented by a classical probability 

measure. Secondly, deterministic parameters whose value is 

imprecisely known, which can be modeled in a natural way by 

possibility distribution. Thirdly, imprecisely known observed 

random variables which can be represented by a p-box. 

Fourthly, there may be a case in which we do not know the 

representation of the parameters. i.e., it is random variable or 

deterministic but we know only the range of the values of the 

parameter and the most likely value. That kind of uncertainty 

can be either modeled by a possibility distribution or a fuzzy 

number. As in the last type, where we do not have the proper 

idea about the representation of the parameter, so we can 

perform probability/possibility transformation. 

Human being is always exposed to radiation either from 

natural or anthropogenic sources in the environment. While 

there have been natural nuclides since the beginning the 

earth’s existence, manmade nuclides have been released from 

nuclear installations and fallouts from the nuclear test and 

nuclear accident. Also produced water is the most significant 

source of waste generated in the production phase of oil and 

gas operations. Once discharged into the ocean, a number of 

heavy metals and poly aromatic hydrocarbon in produced 

water may introduce toxicity and bioaccumulation in marine 

organisms. These compounds are harmful to fish and 

therefore human can be affected through intake of such fishes. 

Consequently, we can say that human health can also be 

indirectly (or directly) affected through different pathways 

such as inhalation, ingestion, submersion and dermal contact. 

For this purpose, risk assessment is performed to quantify the 

potential detriment to human and evaluate the effectiveness of 

proposed remediation measures. 

To demonstrate and make use of the transformations a 

hypothetical case study for non-cancer human health risk 

assessment is presented here by considering three scenarios 

and each scenario contains three cases. In the first case, the 

representation of the some parameters are taken to be 

possibilistic (fuzzy number) while some are taken to be 

probabilistic and some are considered as constants. In the 

second case, we transform the possibilistic distribution (fuzzy 

number) to triangular probability distribution. In the third 

case, we will consider the triangular fuzzy numbers as 

uniform probability distribution with the same support. All the 

calculations have been performed using Risk calc 4 [7]. 

2. PROBABILITY THEORY 

Probability theory frequently used in uncertainty analysis. If 

parameters used in prescribed models are random in nature 

and followed well define distribution, then probabilistic 

methods are most suitable and well accepted approach for risk 

assessment. 

A random variable is a variable in a study in which subjects 

are randomly selected. Let X be a discrete random variable.  

A probability mass function is a function such that 

(i) f(xi)  0,    (ii)

1

n

i

f


 (xi) = 1, (iii) f(xi) = p(x = xi) 
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The cumulative distribution function of a discrete random 

variable X, denoted as F(x) is 

( ) ( ) )(
i

i
F x P X x f

x x

x


     

Let X be a continuous random variable. A probability density 

function of X is a non-negative function f, which satisfies 

( ) ( )
B

P X B f x dx    

for every subset B of the real line. 

As X must assume some value, f must satisfy  

( ( , ) ( ) 1P X f x dx



      

This means the entire area under the graph of the PDF must be 

equal to unit. 

In particular, the probability that the value of X falls within an 

interval [a, b] is 

( ) ( )
b

a
P a X b f x dx     

The CDF of a continuous random variable X is 

( ) ( ) ( )
x

F x P X x f x dx


     

 A, B we have, P(A B) = P(A) + P(B) – P(P B) 

3. POSSIBILITY THEORY 

Possibility theory normally associated with some fuzziness, 

either in the background knowledge on which possibility is 

based or in the set for which possibility is asserted. This 

constitute a method of formalizing non-probabilistic 

uncertainties on events i.e., a mean of assessing to what extent 

the occurrence of an event is possible and to what extent we 

are certain of its occurrence, without knowing the evaluation 

of the possibility of its occurrence. 

A possibility distribution [1], denoted by , here is 

a mapping from the real line to the unit interval, unimodal and 

upper semicontinuous. A possibility distribution describe the 

more or less plausible values of some uncertain variable X. 

Possibility theory provides two evaluations of the likelihood 

of an event, for instance that the value of a real variable X 

should lie within a certain interval: possibility ∏ and the 

necessity N. Possibility measure ∏ and necessity measure N 

are defin 

( ) sup ( )x AA x    

( ) 1 ( )cA A   , Ac is the complement of A.
 

∏ satisfies the following conditions 

( ) max( ( ), ( )), ,A B A B A B R        

( ) min( ( ), ( )), ,A B A B A B R        

For triangular (trapezoidal) fuzzy numbers, possibility and 

necessity measures are straight lines. For example, if a 

continuous possibility distribution is a triangular fuzzy 

number say, [a, b, c] then possibility measure is given by 

,
x a

a x b
b a


 


 and necessity measure is given by

,
x b

b x c
c b


 


. 

In particular, consider a fuzzy number A = [10, 20, 30]. Then 

the possibility measure of the fuzzy number A is 

10
,10 20

10

x
x


   and necessity measure of the fuzzy 

number A is 20
,20 30

10

x
x


   . Which are depicted 

below: 

Figure 1: possibility and necessity measure of the fuzzy 

number A 

4. POSSIBILITY- PROBABILITY 

TRANSFORMATION 

Transforming possibility measure [3] into probability measure 

or conversely can be useful in any problem where 

heterogeneous uncertain and imprecise data must be dealt 

with (e.g. subjective, linguistic like evaluation and statistical 

data).The possibilistic representation is weaker because it 

explicitly handles imprecision (i.e., incomplete knowledge) 

and because possibility measure are based on ordering 

structure rather than additive one. Therefore, it can be 

concluded that transforming a probabilistic representation to 

possibilistic representation, some information is lost because 

we go from point value probabilities to interval values ones. 

The converse transformation from possibility adds 

information to some possibilistic incomplete Knowledge. 

           When information regarding some phenomenon is 

given in both probabilistic and possibilistic terms, the two 

descriptions should be in some sense consistent. That is, given 

probabilistic representation ip and possibilistic representation 

i on X, the two representations should satisfy some 

consistency condition. Although various consistency 

conditions may be required, the weakest one acceptable on 

intuitive groups can be expressed as follows: 

An event that is probable to some degree must be possible at 

least to the same degree. That is, the weakest consistency 

condition is expressed formally by the inequality  

i ip   

On the other hand, the strongest consistency condition would 

require that any event with nonzero probability must be fully 

possible. 

0 1.i ip     

0 10 20 30 40
0

0.5

1

 a
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Transforming probabilistic [6] data to possibilistic data is 

useful when weak source of information make probabilistic 

data unrealistic. Also, it is useful in order to explore the 

advantages of possibilistic theory at combination steps, or 

perhaps to reduce the complexity of the solution when 

computing with possibility values rather than with probability 

values. 

           Transforming from possibility [6] to probability may 

be meaningful in the case of decision making where a precise 

outcome is often preferred, such that, the decision maker is 

interested to know “what is likely to happen in future”, 

instead of “what is possible in future”. 

4.1. Transformation consistency principles 

In this section different consistency principles [2], [4], [5], [8] 

are reviewed  

4.1.1. Zadeh consistency principle 

Zadeh defined the probability-possibility consistency 

principle such as “a high degree of possibility does not imply 

a high degree of probability, nor does a low degree of 

probability imply a low degree of possibility” (Zadeh 1978). 

Let U be a finite set. X is a variable taking a value in U. i  

and ip are possibility and probability that X = ui ϵ U 

respectively. Then, Zadeh’s consistency principle can be 

expressed by  

0 0i ip    and i > 
j  

i jp p  . 

He defined the degree of consistency between a probability  

                     and a possibility distribution 

1 2 3( , , .... )n      as: 

1

........(1)
n

i i

i

r p


  

From (2), it can be check that 

(i) if 0,i i    then 0r  , no consistency available. An 

impossible event cannot be probable. 

(ii) If 1,i i    then  1r   , the maximum consistency 

value is reached. Any probability measure is still consistent 

with this probability measure. 

Maximizing the degree of consistency, however, poses us a 

very restrictive condition that;
 

1 0.i ip   
  

4.2.2: Klir consistency principle 

Let 1 2{ , ,.... }nX w w w  be a finite universe, let 

( )i i ip p w  and ( )i i iw  . Assume that the 

elements of X  are ordered in such a way that:

11,2,... : 0,i i ii n p p p      and 

10,i i i      with  1 0np    and 1 0n   . 

According to Klir the transformation from ip  to i  must 

preserve some appropriate scale and the amount of 

information contained in each distribution (Klir 1993).The 

information contained in p or can be expressed by the 

equality of their uncertainties. Klir has considered the 

principle of uncertainty preservation under two scales. 

The ratio scale: This is a normalization of the 

probability distribution. The transformation p   and 

p  are named the normalized transformations and they 

are defined by 

1

1

, ........(2)i i
i i n

i

i

p
p

p
n







 


 

The log-interval scales: the corresponding transformation 

p   and p   are define by: 

1

1

1

1

( ) , ........(3)i i
i i n

i

i

p
p

p












 


 

These transformations are known as Klir transformation 

satisfying the uncertainty preservation principle defined by 

Klir (1993).   is a parameter that belongs to the open 

interval (0, 1). According to Klir any transformation should be 

based on the following three assumptions: 

- A scaling assumption that forces each value ( i ) i to be a 

function of pi/p1 (where p1≥p2≥……≥pn) that can be ratio 

scale, interval scale, log-interval scale transformation etc. 

- An uncertainty invariance assumption according to which the 

entropy H(p) should be numerical equal to the measure of 

information E( i ) contained in the transformation i  to p. 

- The transformation should satisfy the consistency condition 

  (u) ≥p(u),  i, starting that what is probable must 

be possible. 

Dubois and Prade gave an example to show that the scaling 

assumption of Klir may some time lead to violation of the 

consistency principle that requires P  for all events. 
The second assumption is also debatable because it 
assumes possibilistic and probabilistic information 
measures are commensurate. 

4.2.3: Dubois and Prade consistency Principle: 

The transformation p   is guided by the principle of 

maximum specificity, which aims at finding the most 

informative possibility distribution. While the transformation 

p  is guided by the principle of insufficient reason 

which aims at finding the possibility distribution that contains 

as much as uncertainty as possible but that retains the features 

of possibility distribution (Dubois 1993). This leads to write 

the consistency principle of Dubois and Prade such as: 

: ( ) ( ).......(4)A X A p A    

The transformation p   and p   are define by  

 



International Journal of Computer Applications (0975 – 8887) 

Volume 35– No.11, December 2011 

50 

1( )
; .......(5)

n n
j j

i j i

j i j i

p p
j

 




 


    

The two transformations define by (5) are not converse of 

each other because they are not based on same informational 

principle. Therefore, the transformation defined by (5) can be 

named as asymmetric. Dubois and Prade suggested a 

symmetric p   transformation which is define by: 

min( , )............(6)
n

i i j

j i

u p p


  

Dubois and Prade proved that the symmetric transformation

p  , define by (6), is the most specific transformation 

which satisfies the condition of consistency of Dubois and 

Prade define by (4). 

6. THE COMPARATIVE STUDY 

In this section we discuss a hypothetical case study to 

demonstrate and make use of the transformations for non-

cancer human health risk assessment. 

A lot of organic and inorganic pollutants exist in produced 

water. However, in this paper we consider only the heavy 

metal arsenic (As) because of its toxicity and high 

concentration in produced water. 

The general form of a comprehensive food chain risk 

assessment model as provided by EPA, 2001 [9] is follows: 

..........(7)
fC FIR FR EF ED CF

CDI
BW AT

    



 

Where CID = Chronic daily intake (mg/kg-day), FIR = fish 

ingestion rate (g/day), FR = fraction of fish from 

contaminated source, EF = exposure frequency (day/year), ED 

= exposure duration (years), CF = conversion factor (= 10-9), 

BW = body weight (kg), AT = averaging time (days) and Cf = 

chemical concentration of fish tissue (mg/kg). The chemical 

concentration in fish tissue (Cf) can be computed as  

..........(8)fC PEC BCF 
 

Where PEC = predicted environmental concentration (mg/l) 

and BCF is the chemical bioaccumulation factor in fish (l/kg).

 

The non-cancer risk model for fish ingestion is expressed as:
 

............(9)non cancer

CDI
Risk

Rfd
   

Where, Rfd is the reference dose. 

Scenario1:  

In this scenario, non-cancer human health risk assessment is 

performed by considering three cases.  

Here, the parameters fish ingestion rate (FIR) and reference 

dose (Rfd) are  considered in normal probabilistic mode with 

mean 170 and standard deviation 50 (because ingestion rate 

varies person to person) and triangular probabilistic mode 

respectively. Also representation of the parameters predicted 

environmental concentration (PEC) and chemical 

bioaccumulation factor (BCF) are considered to be fuzzy 

number. Other parameters are taken to be constant.  

Case 1:  

Values of the parameters for the calculation of non-cancer risk 

are given in the table 1. 

Table 1: Parameters used in the risk assessment 

parameter Units 
Type of 

variable 
Value/distribution 

Average Time 

(AT) 
days constant 25550 

Body Weight 

(BW) 
Kg constant 70 

Exposure 
Duration (ED) 

Years constant 30 

Exposure 

frequency (EF) 
Days/year constant 350 

Fraction of 
contaminated 

Fish (FR) 

- constant 0.5 

Fish Ingestion 

Rate (FIR) 
g/day Random Normal( 170,50) 

Conversion 

Factor (CF) 
- constant 1E-09 

PEC for As ug/l Fuzzy [1.5,4.7,9.0] 

BCF for As l/kg Fuzzy [30, 44, 60] 

Oral Rfd for As mg/(kg.day) Random 
[2.0E-04,3.0E-

04,4.0E-04] 

 

Results of the calculation is 

 

Figure 2: Risk estimation with hybrid parameters 

Case 2:  

In this case, we have transformed the triangular possibility 

distribution to triangular probabilistic distribution. i.e., 

parameters PEC and BCF are transformed to triangular 

probability distribution. Other parameters are kept same. 

A fuzzy number can be transform to triangular probability 

distribution as follows. Consider a triangular fuzzy number 

A= [a, b, c] whose membership function is given as: 

,

,
A

x a
a x b

b a

c x
b x c

c b




  

 
  

 

  ………… (10) 

0 0.001 0.002 0.003
0

0.5

1

 Risk1
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Integrating the Fuzzy set    with respect to x on [a, c] we 

have,   

1 1
( ) ( )

b c

a b

x a dx c x dx
b a c b

   
  

  
2 21 1

2 2

b c

a b

x x
ax cx

b a c b

   
      

    

 

2 2 2 2
2 21 1

2 2 2 2

b a c b
ab a c bc

b a c b

   
          

        

2 2 2 21 1 1 1
( ) ( ) ( ) ( )

2 2
b a a b a b c c b c

b a c b

   
              

 

1 1 1 1
( ) ( ) ( ) ( )

2 2
b a b a a c b b c c

b a c b

   
                

1 1
( ) ( )

2 2

1
( )

2

b a b c

c a

   

 

 

Dividing the Fuzzy set (8) by  1
( )

2
c a  , we get  

2( )
,

( )( )
( | , , )

2( )
,

( )( )

x a
a x b

b a c a
f x a b c

b x
b x c

c b c a


   

 
  

  

 

Which is a probability distribution function (pdf) of a 

triangular probability distribution with lower limit ‘a’, mode 

‘b’ and upper limit ‘c’. This transformation follows 

consistency principle of Dubois and Prade as well as that of 

Zadeh.   

Result of the calculation for non-cancer human health is 

depicted below: 

 

 

Figure 3: Risk estimation after possibility- probability 

transformation form triangular fuzzy number to triangular 

probability distribution. 

Case 3:  

It has been already proved that [3] the triangular probability 

distribution is a legitimate transformation of the uniform 

probability distribution with the same support, and that is 

upper bounds of all possibility transformations associated 

with all bounded symmetric unimodal probability distribution 

with the same support. Also a possibility measure encodes a 

family of probability measures. Therefore, we can consider a 

triangular possibility distribution as uniform probability 

distribution with the same support. Result of the calculation is 

depicted below: 

 

Figure 4: Risk estimation after possibility-probability 

transformation from fuzzy number to uniform probability 

distribution. 

On Superimposition of the three graphs we obtain 

the following diagram: 

 

 

Figure 5 Superimposition of the three cases. 

Scenario2: 

In this, scenario the parameter fish ingestion rate (FIR) and 

chemical bioaccumulation factor (BCF) are considered in 

normal probabilistic mode with mean 170 and standard 

deviation 50 and triangular probabilistic mode respectively. 

Also the parameters reference dose (Rfd) and predicted 

environmental concentration (PEC) are considered to be fuzzy 

number. Other parameters are taken to be constant. 

Case 1:  

Values of the parameters for the calculation of non-cancer risk 

are given in the table 2. 

Table 2: Parameters used in the risk assessment 

parameter Units 
Type of 

variable 
Value/distribution 

Average Time 

(AT) 
days constant 25550 

Body Weight 

(BW) 
Kg constant 70 

Exposure 

Duration (ED) 
Years constant 30 

Exposure 

frequency (EF) 
Days/year constant 350 

0 0.001 0.002 0.003
0

0.5

1

 Risk2

0 0.001 0.002 0.003
0

0.5

1

 Risk3

0 0.001 0.002 0.003
0

0.5

1

 Risk3

 Risk2

 Risk1
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0 0.001 0.002 0.003
0

0.5

1

 Risk1

0 0.001 0.002 0.003
0

0.5

1

 Risk2

0 0.001 0.002 0.003
0

0.5

1

 Risk3

0 0.001 0.002 0.003
0

0.5

1

 Risk3

 Risk2

 Risk1

Fraction of 

contaminated 

Fish (FR) 

- constant 0.5 

Fish Ingestion 

Rate (FIR) 
g/day Random Normal( 170,50) 

Conversion 
Factor (CF) 

- constant 1E-09 

PEC for As ug/l Fuzzy [1.5,4.7,9.0] 

BCF for As l/kg Random [30, 44, 60] 

Oral Rfd for As mg/(kg.day) Fuzzy 
[2.0E-04,3.0E-

04,4.0E-04] 

 

Result of the calculation is depicted below 

 

 

 

 

 

 

      

 

 

 

Figure 6: Risk estimation with hybrid parameters 

Case 2:  

In this case, we have transformed the triangular possibility 

distribution to triangular probabilistic distribution. i.e., 

parameters PEC and Rfd are transformed to triangular 

probability distribution. Other parameters are kept same. 

Result of the non-cancer human health risk assessment is 

given below. 

 

 

 

 

 

 

 

 

 

Figure 7: Risk estimation after possibility- probability 

transformation form triangular fuzzy number to triangular 

probability distribution. 

Case 3: 

In this case, we have considered a triangular possibility 

distribution as uniform probability distribution with the same 

support. Result of the calculation is depicted below: 

 

 

 

 

 

 

 

 

 

 

Figure 8: Risk estimation after possibility-probability 

transformation from fuzzy number to uniform probability 

distribution. 

On superimposition of the results of the non-cancer human 

health risk assessments are depicted below: 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Superimposition of the three cases. 

Scenario3: 

Here, the parameters fish ingestion rate (FIR), chemical 

bioaccumulation factor (BCF) and predicted environmental 

concentration (PEC) are considered in probabilistic mode. 

Only the parameter reference dose (Rfd) is considered to be 

fuzzy number. Other parameters are taken to be constant. 

Case 1:  

Values of the parameters for the calculation of non-cancer risk 

are given in the table 3. 

Table 3: Parameters used in the risk assessment 

parameter Units 
Type of 

variable 
Value/distribution 

Average Time 

(AT) 
days constant 25550 

Body Weight 
(BW) 

Kg constant 70 

Exposure 

Duration (ED) 
Years constant 30 

Exposure 
frequency (EF) 

Days/year constant 350 

Fraction of - constant 0.5 
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0 0.001 0.002 0.003
0

0.5

1

 Risk1

0 0.001 0.002 0.003
0

0.5

1

 Risk2

0 0.001 0.002 0.003
0

0.5

1

 Risk3

0 0.001 0.002 0.003
0

0.5

1

 Risk3

 Risk2

 Risk1

contaminated 

Fish (FR) 

Fish Ingestion 
Rate (FIR) 

g/day Random Normal( 170,50) 

Conversion 

Factor (CF) 
- constant 1E-09 

PEC for As ug/l Random [1.5,4.7,9.0] 

BCF for As l/kg Random [30, 44, 60] 

Oral Rfd for 

As 
mg/(kg.day) Fuzzy 

[2.0E-04,3.0E-

04,4.0E-04] 

 

Result of the calculation is depicted below 

 

 

 

 

 

 

 

 

 

  

 

Figure 10: Risk estimation with hybrid parameters 

Case 2:  

In this case, we have transformed the triangular possibility 

distribution to triangular probabilistic distribution. i.e., 

parameter Rfd is transformed to triangular probability 

distribution. Other parameters are kept same. Result of the 

non-cancer human health risk assessment is given below. 

 

 

 

 

 

 

 

 

 

Figure 11: Risk estimation after possibility- probability 

transformation form triangular fuzzy number to triangular 

probability distribution. 

Case 3: 

 In this case, we have considered a triangular possibility 

distribution as uniform probability distribution with the same 

support. Result of the calculation is depicted below: 

 

 

 

 

 

 

 

 

 

 

Figure 12: Risk estimation after possibility-probability 

transformation from fuzzy number to uniform probability 

distribution 

On superimposition of the results of the non-cancer human 

health risk assessments we have: 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Superimposition of the three cases. 

Where 

Black: Hybrid approach (when representation of parameters 

are probabilistic as well as possibilistic) 

Blue: Taking fuzzy numbers as uniform distribution 

Red: Transforming fuzzy numbers to triangular probability 

distribution 

7. CONCLUSION 

The motivation for study of probability-possibility 

transformations arises not only from a desire to comprehend 

the relationship between the two theories of uncertainty, but 

also for some practical problems. For example: to construct a 

membership grade function of a fuzzy set from statistical data, 

to construct a probability measure from a given possibility 

measure in the context of decision making or system 

modeling, to combine probabilistic and possibilistic 

information in expert systems, or to transform probabilities to 

possibilities to reduce computational complexity. To deal with 

these problems, various probability-possibility 

transformations satisfying different consistency principles 

have been suggested in the literature. In this paper we have 

used two such transformations to study uncertainty 

propagation of a single case. First we transformed triangular 

fuzzy number to triangular probability distribution which 

satisfies the consistency condition i ip 
 
. In another case, 
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we have transformed triangular fuzzy number to uniform 

probability distribution. This uniform probability distribution 

is a legitimate representative of the fuzzy number from which 

it is obtained. The superimposition of the results of three cases 

in each scenario show that bound obtained from the hybrid 

method encodes that obtained when transformation is used. In 

other words, using probability-possibility transformation we 

obtain more precise result. 
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