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ABSTRACT
Personal robots are becoming increasingly prevalent, which
raises a number of interesting issues regarding the design
and customization of interfaces to such platforms. The par-
ticular problem addressed by this paper is the use of learning
methods to improve the quality and effectiveness of human-
machine interaction onboard a robotic wheelchair. In sup-
port of this, we present a method for learning and adapting
probabilistic models with the aid of a human operator. We
use a Bayesian reinforcement learning framework, that al-
lows us to mix learning and execution, as well as take ad-
vantage of prior information about the world. We address
the problems of learning, handling a partially observable en-
vironment, and limiting the number of action requests. We
demonstrate empirical feasibility of our approach on an in-
terface for an autonomous wheelchair.
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INTRODUCTION
Robots are an example of personal agents which have be-
come increasingly ubiquitious over the last ten years. That
trend is unlikely to slow down. From robotic vehicles, to in-
telligent wheelchairs, to social and cognitive assistants, the
opportunities are immense. Designing personal robots how-
ever requires a profound paradigm shift, compared to their
industrial predecessors. In particular, it is imperative that
these robots be able to learn and adapt to the environment
and humans that surround them. Without the ability to learn,
robots are condemned to use preset models of the environ-
ment and humans, which are invariably brittle, incomplete,
and often inaccurate, especially when it comes to modelling
the humans in the environment. This clearly suggests there
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Figure 1. Autonomous Wheelchair

are exciting opportunities for developing learning methods
that can provide personal robots with the flexibility neces-
sary to adapt to their domain, as well as extension of the
lessons to other personal agents, such as software agents.

The particular problem addressed by this paper is the use of
learning methods to improve the quality and effectiveness
of human-machine interaction onboard a robotic wheelchair
such as in Figure 1. One of the most interesting challenges
raised by this problem is the customization of the interface to
the preferences of the user. Most previous interface designs
for intelligent wheelchair assumed a fixed model of the hu-
man’s behavior, which was used in the process of selecting
robot actions throughout the interaction.

In this paper, we provide a learning framework for infer-
ring user preferences directly from a user’s actions. This has
some similarity to the preference elicitation paradigm [3], as
well as imitation learning[1]. However the method we pro-
pose relies heavily on the Bayesian reinforcement learning
framework [4, 6, 16, 5]. This framework has a few key ad-
vantages for our target problem. First, as is characteristic
of all reinforcement learning methods, it allows us to inter-
leave execution and learning, thus the user’s preferences are
assessed in situ. This is in contrast to the preference elici-
tation paradigm, which requires the user to state preferences
about hypothetical situations. Second, the Bayesian formu-
lation is useful to generalize preference information between



users, thus the robot settings used for a new user need not be
completely agnostic, but can rely on what was learned from
previous users. This is useful for accelerating learning as
well as incorporating domain knowledge.

The method we propose extends the standard Bayesian re-
inforcement learning framework in several directions. First,
because our goal is to adapt the robot’s behavior to match
the user’s preferences, the learning method focuses on infer-
ence over the reward function (in contrast to inference over
the motion/observation models). Second, we must extend
the framework to handle partially observable environments.
Most Bayesian reinforcemet learning methods assume the
state (X) is observable. Yet in human-robot interaction, this
is rarely the case. We address this by changing the paradigm
substantially and focus on learning by example. The as-
sumption is that we can observe (upon request) a target ac-
tion (provided by an oracle, most often the user), and we
gradually learn a class of utility functions which are consis-
tent with this behavior. The actual method is substantially
more complicated, but described in full detail in the main
technical section of the paper.

The main contribution of this paper is to present a new learn-
ing paradigm for adaptable human-robot interaction systems.
The method provides scalability and generalizability (through
the Bayesian formulation), as well as low cognitive burden
on the user (through the use of in situ learning) and weak re-
quirements on the robot (through the partial state observabil-
ity assumption). Thus it is highly promising for deployment
onboard complex interactive robot systems. We evaluate the
method using test cases pertaining to the interaction inter-
face for an autonomous wheelchair.

BACKGROUND
POMDPs
Partially ObservableMarkov Decision Processes (POMDPs) [7]
are stochastic models used to model non-deterministic decision-
making problems and have been shown as well suited for a
variety of domains, particularly dialogue management[17].
POMDPs consist of a set of states, S, a set of actions, A,
and a set of observations, Z. When an action, a, is execute
in state s, the system transitions to state s′ with probability
P (s′|s, a). The agent then receives a reward, R(s, a) and an
observation z is emitted with probability P (z|s′). The agent
has an initial belief distribution across the states, P (st=0).
The belief state, b, is updated using recursively as actions
and observations are recieved.

Given a POMDP, an action-selection policy, π, can be de-
termined which maps belief states to actions. Efficient ap-
proximate solution methods are available to solve this op-
timization problem, though details of these algorithms are
beyond the scope of this paper. For our experiment, we use
the Point-Base Value Iteration (PBVI) algorithm which ap-
proximates the policy by using stochastic trajectories to se-
lect belief points [18, 12]. This method allows us to solve
relatively large POMDPs in a reasonable amount of time.

The algorithms presented here focus on learning the reward

function R(s, a). It is well-known that the optimal policy
π∗ is invariable to linear transformations in the reward func-
tion. Thus, without loss of generality, we can assume the
target reward function R(s, a) → [0, 1]. Furthermore, we
can also assume (again, without loss of generality), that the
reward function is in reality stochastic, and drawn from a
Bernoulli distribution: P (R(s, a) = 1) = psa, where psa is
the expected reward when applying action a in state s.

The Beta distribution is the conjugate prior of the Bernoulli
distribution. This fact will be useful to maintain a Bayesian
posterior over the parameters psa, as required by the Bayesian
reinforcement learning framework.

Bayesian Reinforcement Learning
The aim of Bayesian reinforcement learning is to maintain
a posterior distribution over possible model parameters, and
to compute an action selection policy which is optimal with
respect to this posterior.

A key step in all Bayesian RL methods is thus to compute
the posterior over the transition and reward parameters that
define an MDP model. This is usually done by maintaining
Dirichlet distributions over possible models and updating the
hyper-parameters of the Dirichlet as new events are experi-
enced. A separate Dirichlet distribution is maintained for ev-
ery (s, a) transition (and in the case of POMDPs, for every
observation probability distribution). It is straight-forward
to update the posterior over this distribution whenever new
experience is acquired.

While updating the posterior can be done easily in closed-
form, it is not so easy to compute an optimal policy with
respect to this posterior. Existing methods take different ap-
proaches to this problem. Some of the most recent meth-
ods [6, 5] approximate the posterior by sampling a small
set of candidate models, and solving those. The posterior
over models continues to be updated, as new experience is
acquired. Periodically, the set of sampled models can be
resampled. Thus there are two mechanisms for learning: up-
dating of the hyper-parameters, and re-sampling of models.

A BAYESIAN APPROACH FOR ONLINE LEARNING
The approach we propose follows the usual bayesian rein-
forcement learning paradigm. Recall that our primary moti-
vation is to infer a reward function describing the user’s pref-
erence, from direct interaction between the robot and user.

The overall approach
The overall structure of our algorithm is described in algo-
rithm 1. There are four key steps. First, the system initializes
a prior (i.e. Beta distributions) containing a rough model of
the user’s preferences. Next, a set of candidate n candidate
reward functions are sampled and an optimal policy is ob-
tained corresponding to each. During the learning phase, an
oracle (most often the user, but this could also be an outside
human operator) is queried to know the most desired action.
This action is then executed, and a posterior over the reward
function is computed. Periodically, models are removed and
new models are resampled.



Algorithm 1 Algorithm
Initialize Beta Distribution
Sample n POMDPs P1, P2, ...Pn from Beta
Solve P1, P2, ..., Pn using approximate POMDP method
loop
Get action from oracle
Execute Action
Obtain Observation
Update Belief States
For each POMDP,Mi whose policy agreed with the oracle action
α0(s, a) ← α0(s, a) + λ[b(s)(1 − psa

M )]

α1(s, a) ← α1(s, a) + λ[b(s)psa
M ]

if resample POMDP() then
Remove least likely POMDP
Sample new POMDP from Beta
Find policy for new POMDP

end if
end loop

We now discuss those sections of the approach which raise
the most interesting technical issues.

Policy Oracle
We note that our approach relies on having an oracle which
indicates the optimal action upon request. The learning com-
ponent of our approach uses the information to update the
posterior over reward functions.

Previous work on learning using an oracle [6] relied on the
oracle for full state information. While this is sometimes
feasible, in many scenarios it is not realistic to have an or-
acle to provide such detailed information. Especially in the
case of human-robot interaction tasks, we believe it is much
more reasonable to request that the user indicate a suitable
action at any point in time. Consider the case where the task
requires joint human-robot control of the navigation func-
tions. In cases where the robot is unsure of the user’s pref-
erences, it is perfectly natural to ask the user to indicate the
proper navigation action, yet it is much more difficult for
the user to provide precise localization information. In con-
trast, in a task centered around verbal interaction between
the robot and human user, it be quite natural to conceive of
the oracle as a back-up operator (as many automated phone
systems currently operate) which is available during an ini-
tial training period. With our particular wheelchair platform,
there is always a human operator (in addition to the primary
user) present during training phases, to monitor performance
of the robot. It is much easier for this operator to substitute
for the robot by providing optimal actions whenever needed,
than it would be to reveal the state (which can be a very ab-
stract notion in the case of dialogue interactions).

Note that we assume that the oracle and the agent have ac-
cess to the same model of the world, thus sharing a common
belief state. At any time, the agent can request an action
from the oracle. The oracle will return the optimal action,
ao, for the current belief state. The agent will then execute
the action and use the information to learn as described in
the following section.

Representing and Learning Reward
Throughout this work, we focus on the case where the mo-
tion and sensor models are known, but information about
the reward model is missing. Thus, P (s′|s, a) and P (z|s′),
but not R(s, a). are known. The objective is for the agent
to learn a reward function which results in a robot policy
matching that of the oracle.

We first note that a linear transformation can be applied to
the reward function of an MDP or POMDP without affecting
the resulting policy. For our work, we will be assuming all
rewards are within the range [0 1]. We will associate each
R(s, a) with a Beta distribution with two hyperparameters,
α0 and α1, which will act as a prior over a Bernoulli distri-
bution. When creating a new POMDP, M , we first sample
a distribution for each RM (s, a) from the Beta distribution.
This provides us with a Bernoulli distribution. We can then
set RM (s, a) to be the expected value over that Bernoulli
distribution, psa

M : RM (s, a) = psa
M .

Because the environment is partially observable, and rewards
are never truely observed by the agent, we must do a prob-
abilistic update of the Beta parameters. To do this, we use
the Bernoulli distribution sampled from the model as well
as the belief state. After quering the oracle, for each model,
Mi, which agreed with the oracle, we perform the following
update:

α0(s, a) ← α0(s, a) + λ[b(s)(1 − psa
M )] (1)

α1(s, a) ← α1(s, a) + λ[b(s)psa
M ] (2)

where λ is the learning rate. This can also be seen as a gra-
dient update over the class of models. The intutition be-
hind this update is that models which agree with the oracle
have captured some information about the world correctly
and should have an influence on the direction of the learn-
ing.

WHEELCHAIR INTERACTION MANAGER
To validate our algorithm, experiments were conducted on
a wheelchair interaction management system. Learning was
focused on inferring the correct reward functions (or a linear
transformation thereof). These interaction problems repre-
sent real challenging problems grounded in real human con-
versational data. We believe these are a powerful validation
of our method.

The goal of the Smartwheeler[2] project is to develop an au-
tonomous wheelchair to aid individuals with mobility im-
pairments. This includes individuals with impairments such
as spinal cord injuries or multiple sclerosis, as well as in-
dividuals who suffer from fatigue and sensory impairment
which may limit their use of standard electric wheelchairs.
Our aim is to develop a system which reduces the cogni-
tive and physical load required to operate the wheelchair for
these users. To achieve this, a standard electric wheelchair
was outfitted with sensors and motor controls. Basic robot
control such as navigation, obstacle avoidance, and map build-
ing are handled by the CARMEN robot control software[10].
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Figure 2. Wheelchair Interaction Manager

Our research focuses primarily on the higher-level interac-
tion and decision-making elements of the system. For mul-
timodal interaction, a touch screen display and microphone
were mounted on the wheelchair to provide input in addition
to the joystick.

This system poses many challenges. The interaction must
be natural and comfortable for the user, requiring minimal
technical expertise. The user should be able to communicate
with the wheelchair as if he was talking to a human assis-
tant. Any physical interaction through the touch screen or
joystick should require minimal cognitive and physical ef-
fort. The user should not be required to physically guide the
wheelchair, instead offering high level goals and intentions
which are then executed by the wheelchair itself. This leads
to issues such as determining the user’s true intention in light
of a very noisy speech recognition system, maintaining the
context of the system over time, and making decisions given
pieces of information from multiple sources.

To handle these problems, an interactive system was de-
signed consisting of several components. A user speaks to
a speech recognition system which attempts to transcribe
the audio. This transcription is passed to a semantic parser
which attaches semantic and grammar information if possi-
ble. This annotated information is now handled by the Inter-
action Manager, which is the decision-making component
of the system and will be the focus of these experiments.
Feedback is provided to the user through a mounted display.
Details of this system are beyond the scope of this paper and
can be found in [2].

As with the previous dialogue management system, the In-
teraction Manager is modelled using a POMDP. A set of
25 actions were selected for testing, including many basic
wheelchair functions such as ”move forward one meter,” ”turn
the controller one,” and ”turn right ninety degrees.” Each of
these actions represents a user intention and defines the state
space. Observations are handled dynamically based on the
output from the semantic parser. If the phrase was success-
fully parsed, the belief state is updated using statistics based

on the semantic assignments. If the parse failed, the phrase is
treated as a bag-of-words. Statistics for both of these meth-
ods were obtained from a previously gathered data set. For
each state, there is a corresponding ”correct” action which
can be executed by the wheelchair. In addition, there are four
additional query actions, one general query action which
requests a phrase to be repeated, and three action-specific
queries which request parameter clarification for a class of
action. For this set, there are classes of actions: movement
actions, hardware actions (such as tilting the seat), and con-
figuration actions (such as setting the drive mode).

Seven test subjects were asked to perform a series of tests.
A test administrator presented them with a task from the
Wheelchair Skills Test (WST)[8]. The subject was required
to issue a verbal command to the system to complete the
tasks. The command was transcribed, parsed, and an action
was selected by a basic handcrafted POMDP acting as the
Interaction Manager. Each subject was presented with 20-
25 tasks. Transcripts of the audio and decision-making were
recorded, resulting in 263 phrases and selected actions. De-
tails and results of the UI experiments are documented else-
where[2]. We will focus on the application of the collected
data towards learning a model.

By considering the recorded transitions as observations and
the selected actions as the action oracle, a set of experi-
ments were run to attempt to learn the reward model of the
POMDP. Learning was performing by iterating over the data
set repeatedly. Because the size of this preliminary data set is
rather small, a tied parameter approach was used for learn-
ing the model. It is assumed that the cost of an incorrect
action and correct action are known, allowing learning to
focus balancing the costs of the various queries. The cost
of queries can be decomposed into three sets: the cost of
the general query, the cost of making an appropriate action-
specific query, and the cost of making an inappropriate action-
specific query.

Throughout these experiments, 20 POMDPs are sampled and
maintained from the Beta distribution. Planning on the sam-
pled POMDPs is executed for 10 minutes. Every 1000 steps,
the three POMDPs with the least likelihood are removed,
and three new POMDPs are sampled from the current Beta.
Experiments were repeated 5 times, with the average results
reported. The initial set of experiments assume the oracle is
queried at every step. This allows us to explore the effects of
the learning on the system.

For these experiments, the ground truth POMDP acts as the
oracle, the goaling being to determine if the ground truth
model can be approaching starting with noisy models. The
policy for the POMDP is determined, and the belief state
maintained during execution. When the oracle is queried
for the policy information, the action for the current belief
state of the ground truth POMDP is returned. Initial Beta
parameters are generated by taking the ground truth model,
perturbing the values with Gaussian noise, and converting
the results into corresponding α counts. This approximates
a situation where a rough model of the world is known.



Because the reward functions cannot be directly compared,
the policies must be judged based on their behavior. Peri-
odically, a simple evaluation phase is run. Beginning with
the initial belief state, at every step, an action is selected by
the oracle, the action executed, an observation is returned,
and the belief state is updated. The action which would have
been selected at each step by the sampled POMDPs is com-
pared to the true action. The number on which they agree
is tallied. For our experiments, this simulation is run every
1000 iterations, and is run for 1000 steps.

Figure 2 shows the results of learning on the wheelchair in-
teraction manager. The results show that learning is clearly
occurring. As more data is gathering, the learning POMDP
models behavior more like the ground truth model (ie. the
oracle). However, the performance of the system suffers
for the very limited amount of data. As more user exper-
iments are conducted and data gathered, the performance
overall is expected to improve. Additionally, a better in-
formed prior would address some of these issues. These ex-
periments used a relatively uninformed prior. Future exper-
iments will take advantage of more prior information, pos-
sible estimated from an initial data set and refined through
experience and deployment of the system. Overall, it is en-
couraging that learning is in fact occuring, even with such a
limited data set for a very complex POMDP.

RELATED WORK
The goal of this work is to develop a method to learn the
user’s preferences during execution, by observing the tar-
get behavior. We adopt the Bayesian reinforcement learning
framework [4, 6, 13, 16, 5]. Extensions to partially observ-
able domains have been proposed, yet continue to rely on
state information to ground learning [6]. Instead, our method
focuses on learning a reward model that results in the same
behavior as that the target policy. This does not necessarily
have to be the same reward function, just one which results
in the same policy.

This idea of imitation learning has been explored in recent
literature [1], however the focus is often on matching the
behavior, rather than learning a reward function. We be-
live there are many benefits to learning an actual value func-
tion, in particular for generalization (between similar users,
or between similar tasks.) Inverse Reinforcement Learning
(IRL)[11] also shares some similarity with our work. The
maximum margin planning is particularly interesting [15].
However many of the above mentioned method assume full
state observability and/or low stochasticity.

Other methods have been examined for learning in POMDPs.
It is relatively straightforward to apply the Baum-Welch[14]
training algorithm to learn the transition and observation pa-
rameters. A real-time memory-constrained version has been
implement for robots navigation, as a robot learns parame-
ters while traveling through an environment [9]. These sys-
tems require a significant amount of training data and learn
the characteristics of the environment. Instead, our method
focuses directly on learning the reward function, by match-
ing the policy of the user.

The work on preference elicitation [3] is also closely re-
lated, although as pointed out in the introduction, it assumes
that the user can directly state his/her preference (or reward
function), including for states which are not experiences.
There is substantial documentation in the psychology liter-
ature which suggests that data acquired in this way is very
subjective, and inconsistent, and thus produces very unreli-
able reward functions.
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