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NUCLEAR MAGNETIC RESONANCE QUANTUM

COMPUTATION

J. A. Jones

Abstract

Nuclear Magnetic Resonance (NMR) is arguably both the best
and the worst technology we have for the implementation of small
quantum computers. Its strengths lie in the ease with which ar-
bitrary unitary transformations can be implemented, and the great
experimental simplicity arising from the low energy scale and long
time scale of radio frequency transitions; its weaknesses lie in the
difficulty of implementing essential non-unitary operations, most no-
tably initialisation and measurement. This course will explore both
the strengths and weaknesses of NMR as a quantum technology, and
describe some topics of current interest.

1 Nuclear Magnetic Resonance

Before describing how Nuclear Magnetic Resonance (NMR) techniques can
be used to implement quantum computation I will begin by outlining the
basics of NMR.

1.1 Introduction

Nuclear Magnetic Resonance (NMR) is the study of the direct transitions
between the Zeeman levels of an atomic nucleus in a magnetic field [1–7].
Put so simply it is hard to see why NMR would be of any interest1, and
the field has been largely neglected by physicists for many years. It has,
however, been adopted by chemists, who have turned NMR into one of the
most important branches of chemical spectroscopy [8].

Some of the importance of NMR can be traced to the close relationship
between the information which can be obtained from NMR spectra and the

1The interest in and importance of NMR is hinted at by the fact that research into
NMR has led to Nobel prizes in Physics (Bloch and Purcell, 1952), Chemistry (Ernst,
1991, and Wütrich, 2002) and Medicine (Lauterbur and Mansfield, 2003).

c© EDP Sciences, Springer-Verlag 1999
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information about molecular structures which chemists wish to determine,
but an equally important factor is the enormous sophistication of mod-
ern NMR experiments [3], which go far beyond simple spectroscopy. The
techniques developed to implement these modern NMR experiments are es-
sentially the techniques of coherent quantum control, an area in which NMR
exhibits unparalleled abilities. It is, of course, this underlying sophistication
which has led to the rapid progress of NMR implementations of quantum
computing.

The basis of NMR quantum computing will be described in subsequent
lectures, but I will begin by outlining the ideas and techniques underlying
conventional NMR experiments. This is important, not only to gain an
understanding of the key physics behind NMR quantum computing, but
also to understand the language used in this field. Throughout these lec-
tures I will use the Product Operator notation, which is almost universally
used in conventional NMR [2,6,9–11]. Although ultimately based on tradi-
tional treatments of spin physics this notation differs from the usual physics
notation in a number of subtle ways.

1.2 The Zeeman interaction and chemical shifts

Most atomic nuclei possess an intrinsic angular momentum, called spin, and
thus an intrinsic magnetic moment. If the nucleus is placed in a magnetic
field the spin will be quantised, with a small number of allowed orientations
with respect to the field. For both conventional NMR and NMR quantum
computing the most important nuclei are those with a spin of one half: these
have two spin states, which are separated by the Zeeman splitting

∆E = h̄γB (1.1)

where B is the magnetic field strength at the nucleus and γ, the gyromag-
netic ratio, is a constant which depends on the nuclear species. Among
these spin-half nuclei the most important species [5] are 1H, 13C, 15N, 19F
and 31P.

Transitions between the Zeeman levels can be induced by an oscillating
magnetic field with a resonance frequency ν = ∆E/h (the Larmor fre-
quency). As the Larmor frequency depends linearly on the magnetic field
strength it is usually desirable to use the strongest magnetic fields conve-
niently available. This is achieved using superconducting magnets, giving
rise to fields in the range of 10 to 20 Tesla. For 1H nuclei, which are the
most widely studied by conventional NMR, the corresponding resonance
frequencies are in the range of 400 to 800 MHz, lying in the radiofrequency
(RF) region of the spectrum, and the field strengths of NMR magnets are
usually described by stating the 1H resonance frequency.

The relatively low frequency of NMR transitions has great significance
for NMR experiments. The energy of a radio frequency photon (about 1
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µeV) is so low that it is essentially impossible to detect single photons,
and it is necessary to use fairly large samples (around 1 mg) containing
an ensemble of about 1019 identical molecules. Even then the signal is
weaker than one might hope, as the nuclei are distributed between the
upper and lower energy levels according to the Boltzmann distribution, and
the population excess in the lower level is less than 1 in 104.

From the description above one would expect all the 1H nuclei in a sam-
ple to have the same resonance frequency, but in fact variations are seen.
These arise from the chemical shift interaction [6], which causes the mag-
netic field strength experienced by the nucleus to differ from that of the
applied field. Atomic nuclei do not occur in isolation, but are surrounded
by electrons, and the applied field will induce circulating currents in the
electron cloud; these circulating currents cause local fields which will com-
bine with the applied field to give a total field which determines the NMR
frequency. Clearly the local fields will depend on the nature of the sur-
rounding electrons, and thus on the chemical environment of the nucleus.
Chemical shifts can in principle be calculated using quantum mechanics, but
in practice it is more useful to interpret them using semi-empirical methods
developed by chemists [5].

Three further points about chemical shifts should be considered. Firstly
the strength of the induced fields depends linearly on the strength of the
applied field, and so chemical shifts measured as frequencies increase linearly
with field strength. For this reason it is more useful to measure chemical
shifts as fractions, usually stated in parts per million (ppm). Secondly it is
usually impractical to define chemical shifts with respect to the applied field,
and so they are usually defined by the shift from some conventional reference
system. Thirdly the induced fields depend on the relative orientation of the
magnetic field and the molecular axes, and so chemical shift is a tensor,
not a scalar [6, 12]. In spectra from solid powder samples [12] one observes
the whole range of the tensor, and so very broad lines, but in liquids and
solutions molecular tumbling causes rapid modulation of the chemical shift
tensor. This averages the chemical shift interaction to its isotropic value.

1.3 Spin–spin coupling

When NMR spectra are acquired with better resolution, peaks split into
groups called multiplets. Patterns in these splittings clearly indicate that
they must come from some sort of coupling between spins. The most obvious
explanation is direct coupling between pairs of magnetic dipoles, but it is
easily seen that this cannot be the case. The dipole–dipole coupling strength
is given by

Dij ∝
3 cos2 θij − 1

r3ij
(1.2)
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where rij is the separation of nuclei i and j and θij is the angle between the
internuclear vector and the main magnetic field. In solid samples the dipolar
coupling is clearly visible [12], but in liquids and solutions the coupling is
modulated by molecular tumbling and averages to its isotropic value, which
is zero.

In fact the splittings arise from the the so-called J-coupling interaction,
also called scalar coupling [5, 6]. This additional coupling is related to the
electron-nuclear hyperfine interaction. It is mediated by valence electrons,
and thus only occurs between “nearby” spins; in particular it does not
occur between nuclei in different molecules. Like dipolar coupling J-coupling
is anisotropic, but unlike dipolar coupling it has a non-zero average (the
isotropic value) which survives the molecular motion.

J-coupling has the form of a Heisenberg interaction, but in practice it
is often truncated to an Ising form. For two coupled spins the total spin
Hamiltonian is given by

H = 1
2ω1σ1z + 1

2ω2σ2z + 1
4ωJ12

σ1 · σ2

≈ 1
2ω1σ1z + 1

2ω2σ2z + 1
4ωJ12

σ1zσ2z (1.3)

where all energies have been written in angular frequency units. Replac-
ing the Heisenberg coupling by an Ising coupling corresponds to first-order
perturbation theory, and is usually called the weak coupling approximation.

1.4 The vector model and product operators

NMR spectroscopy appears quite different from conventional optical spec-
troscopy, as NMR experiments are essentially always in the coherent con-
trol regime. This is because it is trivial to make intense coherent RF fields
and because NMR relaxation times are extremely long. For these reasons
incoherent NMR spectroscopy is essentially unknown: all modern NMR
spectroscopy is built round Rabi flopping and Ramsey fringes.

Simple NMR experiments are usually described using the vector model,
which is based on the Bloch sphere [3,5,9]. A single isolated spin in a pure
state |ψ〉 can be described by a density matrix

|ψ〉〈ψ| = 1
2 (1 + rxσx + ryσy + rzσz) (1.4)

and for a pure state r2x + r2y + r2z = 1 so r, the nuclear spin vector, lies on
the surface of the Bloch sphere. For a mixed state the situation is similar
but the Bloch vector is not of unit length.

The behaviour of a single isolated spin is exactly described by its Bloch
vector, and the behaviour of the Bloch vector is identical to that of a classical
magnetisation vector. Thus the average behaviour of a single isolated spin
can be described using the classical vector model. This is not true of coupled
spin systems, where it is essential to use quantum mechanics.
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The behaviour of coupled spin systems in NMR experiments is usually
described using product operators [2,6,9–11]. These are very closely related
to conventional angular momentum operators, but differ in normalisation
and other conventions. While they can seem strange is is essential to get
used to them! The state of a single spin is described as a combination
of four one-spin operators: 1

2E, Ix, Iy and Iz. (In NMR experiments the
first spin is traditionally called I, while later spins are usually called S, R
and T in that order.) The last three operators are simply related to the
conventional Pauli matrices by Ix = 1

2σx, and so on, while 1
2E = 1/2 is the

identity matrix normalised to have trace one (the maximally mixed state).
In this notation nuclear spin Hamiltonians will be subtly different from their
traditional forms: for a single spin H = ωIIz.

The initial state of an isolated nuclear spin at thermal equilibrium is
given by the usual Boltzmann formula

ρ = exp(−h̄ωIIz/kT )/ tr [exp(−h̄ωIIz/kT )]

≈ 1
2E − h̄ωIIz/kT (1.5)

The first term (the maximally mixed state) is not affected by subsequent
unitary evolutions and so is of little interest; for this reason it is usually
dropped. Similarly the factors in front of the Iz term simply determine the
size of the NMR signal, and are also usually neglected. Thus the thermal
state of a single state is usually described as Iz.

Clearly this approach must be used with caution as Iz is not a proper
density matrix: it corresponds to negative populations of some spin states!
These apparent negative populations arise simply because the maximally
mixed component has been neglected. The traditional NMR approach of
concentrating on the traceless part of the density matrix is usually not a
problem; in particular the evolution of an improper density matrix under a
Hamiltonian can be calculated using the standard Liouville–von Neumann
equation [2, 4], as unitary evolutions are linear. For simple Hamiltonians
the evolution can be calculated algebraically

Ix
ωtIz−→ e−iωtIzIxe

iωtIz = Ix cosωt+ Iy sinωt (1.6)

and the product operator notation has been developed to enable this alge-
braic approach to be used as far as possible.

The success of this approach relies on the properties of commutators
[6, 9–11]. Consider an initial density matrix ρ(0) = A evolving under a
Hamiltonian H = bB for a time t. Suppose that [A, B] = iC and that
[C, B] = −iA; in this case the three operators A, B and C form a triple,
and in general

ρ(t) = A cos bt− C sin bt (1.7)
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which can be summarised as

A
B
−→ −C

B
−→ −A

B
−→ C

B
−→ A. (1.8)

Clearly Ix, Iz and −Iy form such a triple, but many analogous triples ex-
ist, allowing many quantum mechanical calculations to be performed using
nothing more than elementary trigonometry and a table of commutators!

1.5 Experimental practicalities

Before proceeding to more sophisticated experiments it is useful to con-
sider the elementary experimental phenomena of excitation, detection, and
relaxation.

At thermal equilibrium the Bloch vector lies along the z-axis, and we
must begin by exciting the spins. This can be achieved by a magnetic field
of strength B1 which rotates around the z-axis at the Larmor frequency.
The situation is most simply viewed in a rotating frame which also rotates
around the z-axis at the Larmor frequency: thus the excitation field appears
static, along the y-axis for example. The Bloch vector will precess around
this excitation field at a rate ω1 = γB1 towards the x-axis of the rotating
frame. After a time t the Bloch vector has precessed through an angle
θ = ω1t, and particularly important cases are the π/2 and π pulses. The
magnetic field is obtained by applying RF radiation, and we can choose the
axis (in the rotating frame) about which the precession occurs by choosing
the RF phase. Thus we can talk about, for example, x and y pulses [3].

NMR signal detection is best described using a classical view [8]. The
ensemble average of the spins behaves like a classical magnetisation rotating
at the Larmor frequency, and the NMR detector is a coil of wire wrapped
around the sample. As the magnetisation cuts across the wires it induces an
EMF in the coil which can be detected. This detection method corresponds
to a weak ensemble measurement, rather than the hard projective measure-
ments more usually considered in quantum systems. This fact, which can
be ultimately traced back to the low energy of NMR transitions, has consid-
erable significance for both conventional NMR experiments and for NMR
quantum computing.

Another consequence of the low energy scale of NMR transitions is that
spontaneous emission is essentially negligible, and only stimulated processes
occur. Because of this NMR relaxation times can be very long (several
seconds). Stimulated emission requires a magnetic field oscillating at the
Larmor frequency, and modulation of the chemical shift and dipole–dipole
Hamiltonians by molecular motion is the main source of relaxation for spin-
half nuclei in liquids.

NMR relaxation of a single isolated spin is well described by two time
constants: T2 (the transverse relaxation time) is the time scale of the loss of
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xy-magnetisation, that is the decoherence time, while T1 (the longitudinal
relaxation time) is the time scale of recovery of the Boltzmann equilibrium
population difference, and determines the repetition delay between exper-
iments. For more complex spin systems the behaviour is broadly similar
but more complex. Relaxation effects (especially short T2 times) can be a
hindrance, but detailed studies of relaxation properties can provide useful
information on molecular motions.

1.6 Spin echoes and two-spin systems

Spin echoes [3,9,13] play a central role in almost all NMR pulse sequences.
In the one-spin case they are easily understood using the vector model.
Start off with magnetisation along the x-axis and allow it to undergo free
precession at the Larmor frequency ω for a time t: the magnetisation will
rotates towards the y-axis through an angle ωt. Now apply a πx pulse,
giving a 180◦ rotation around the x-axis, so that the magnetisation appears
to have rotated by −ωt. Allow the magnetisation to precess for a further
time t; it will now return back to the x-axis whatever the value of ω! This
behaviour can be easily calculated using product operators

Ix
ωtIz−→ Ix cosωt+ Iy sinωt

πIx−→ Ix cosωt− Iy sinωt

ωtIz−→ Ix cosωt cosωt+ Iy cosωt sinωt− Iy sinωt cosωt+ Ix sinωt sinωt

= Ix
[

cos2 ωt+ sin2 ωt
]

= Ix (1.9)

to get exactly the same result.
The situation is similar but slightly more complex in two spin systems.

These are described using 16 basic operators, formed by taking products of
the four I spin and S spin operators and multiplying by two:

1
2E Sx Sy Sz
Ix 2IxSx 2IxSy 2IxSz
Iy 2IySx 2IySy 2IySz
Iz 2IzSx 2IzSy 2IzSz

(1.10)

The (weak coupling) Hamiltonian for a two spin system is then

H = ωIIz + ωSSz + πJ2IzSz. (1.11)

Product operators have the extremely useful property that all pairs of op-
erators either commute or form triples, just like Ix, Iy and Iz; this means
that the method of commutators, described in section (1.4) can also be used
in two spin systems. For a table of the main commutators see Appendix A;
a more complete list is available in [11].
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Spin echoes can easily be performed in two-spin systems, but the result
depends on whether the system is heteronuclear (the two spins are of differ-
ent nuclear species, with very different Larmor frequencies) or homonuclear

(the two spins are of the same nuclear species, with very similar Larmor
frequencies). In a heteronuclear spin system only one spin (say I) will be
excited by the π pulse. In this case the I spin Zeeman interaction and the
spin–spin coupling are refocused by the spin echo but the S spin Zeeman
interaction is retained:

Ix + Sx
H
−→

πIx−→
H
−→ Ix + Sx cosωSt+ Sy sinωSt. (1.12)

In a homonuclear spin system, by contrast, both spins will normally be
excited by the π pulse. In this case both Zeeman interactions are refocused
but the spin–sin coupling is retained:

Ix+Sx
H
−→

π(Ix+Sx)
−→

H
−→ Ix cosπJt+2IySz sinπJt+Sx cosπJt+2IzSy sinπJt.

(1.13)
It is of course possible to perform a “homonuclear” spin echo in a heteronu-
clear spin system, by simply applying separate π pulses to spins I and S
at the same time. It also possible to perform a “heteronuclear” spin echo
in a homonuclear spin system by using low power selective pulses, which
will excite one spin while leaving the other untouched. A high power pulse
which excites all the spins of one nuclear species is usually called a hard

pulse.
More complex pulse sequences can be built up by combining spin echoes

and selective and hard pulses. This is a highly developed NMR technique
which has led to a host of conventional NMR experiments with whimiscal
names such as cosy, noesy and inept [6, 8, 11]. Using this approach one
can create a pulse sequence whose total propagator corresponds to all sorts
of unitary transformations—including quantum logic gates!

2 NMR and quantum logic gates

In this section I will describe how NMR techniques can be used to implement
the basic gates required for quantum computation.

2.1 Introduction

Quantum logic gates [14] are simply unitary transformations which imple-
ment some desired logic operation. It has long been know by the NMR
community that NMR techniques in principle provide a universal set of
Hamiltonians, that is they can be used to implement any desired unitary
evolution, including quantum logic gates. Building NMR quantum logic
gates is very similar to designing conventional NMR pulse sequences, and
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progress in this field has been very rapid. Furthermore many of the pulse
sequences used to implement quantum logic are in fact very similar to com-
mon NMR pulse sequences, and it could be argued that many conventional
NMR experiments are in fact quantum computations!

Although NMR techniques could be used to directly implement any de-
sired quantum logic gate, this is not a particularly sensible approach. In-
stead it is usually more convenient to implement a universal set of quantum
logic gates, and then obtain other gates by joining these basic gates together
to form networks [14]. However one should be careful not to take this process
too far. Theoreticians are often interested in implementing networks using
the smallest possible set of basic resources, and it is known that in principle
only one basic logic gate is required for quantum computation [15–18]. For
experimentalists gates usually come in families, such that the ability to im-
plement any one member of a family implies the ability to implement any
other member of the family in much the same way, and it is more sensible
to develop a fairly small set of simple but useful families of logic gates. For
NMR quantum computing [19–22] the best set seems to be a set containing
many (but not all) single qubit gates and the family of Ising coupling gates.

2.2 Single qubit gates

Single qubit gates correspond to rotations of a spin about some axis. The
simplest gates are rotations about axes in the xy-plane, as these can be
implemented using resonant RF pulses. The flip angle of the pulse (the
angle through which the spin is rotated) depends on the length and the
power of the RF pulse, while the phase angle of the pulse (and hence the
azimuthal angle made by the rotation axis in the xy-plane) can be con-
trolled by choosing the initial phase angle of the RF. Rotations about the
z-axis can be implemented using periods of precession under the Zeeman
Hamiltonian, while rotations around tilted axes can be achieved using off-
resonance RF excitation. It is, however, usually simpler not to use these
last two approaches: instead all single qubit gates are built out of rotations
in the xy-plane.

A simple example is provide by the composite z-pulse [23], which imple-
ments a z-rotation using x and y-rotations,

θz ≡ 90−xθy90x ≡ 90yθx90−y (2.1)

where the pulse sequence has been written using NMR notation, with time
running from left to right, rather than using operator notation, in which
operators are applied sequentially from right to left. A similar approach
can be used to implement tilted rotations, such as the Hadamard gate

H ≡ 180z90y ≡ 90y180x90−y90y ≡ 90y180x (2.2)
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Any desired single qubit gate can be built in this fashion.
Even this approach, however, is over complex, as there is a particularly

simple method of implementing z-rotations. Rather than rotating the spin,
it is simpler to rotate its reference frame. This can be achieved by passing
z-rotations forwards or backwards through a pulse sequence

ψzθφ ≡ θφ−ψψz (2.3)

and altering pulse phase to reflect the new reference frame. This technique,
often called abstract reference frames [22, 24] has the advantage that z-
rotations can be implemented without using any time or resources! Many
modern implementations of NMR quantum logic gates use only rotations in
the xy-plane and changes in reference frames to implement all single qubit
gates.

2.3 Two qubit gates

In addition to single qubit gates a design for a quantum computer must in-
clude at least one non-trivial two qubit gate. The most commonly discussed
two qubit gate is the controlled-not gate, but this is not the most natural
two qubit gate for NMR quantum computing. A controlled-not gate can be
replaced by a pair of Hadamard gates and a controlled-phase-shift gate [22]

t

i
≡

t

tH H
(2.4)

where the controlled-phase-shift gate acts to negate the state |11〉 while
leaving other states unchanged. Note that this gate acts symmetrically on
the two qubits; it does not have control and target bits. The asymmetry in
the controlled-not gate arises from the asymmetry in the placement of the
Hadamard gates.

The controlled-phase-shift gate is itself equivalent (up to single qubit
z-rotations, which can be adsorbed into abstract reference frames) to the
Ising coupling gate

ei(φ/2)2IzSz =









e−iφ/4 0 0 0
0 e−iφ/4 0 0
0 0 eiφ/4 0
0 0 0 eiφ/4









(2.5)

where the case φ = π forms the basis of the controlled-not gate. This
“gate” is nothing more than a period of evolution under the Ising coupling
Hamiltonian, which can be achieved using a homonuclear spin echo.
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2.4 Practicalities

The description above is adequate for simple two qubit systems, but sub-
tleties arise in larger spin systems. Foremost among these is the so-called
“do-nothing” problem. In a traditional quantum computer gates are imple-
mented by applying additional interactions when necessary, but in an NMR
quantum computer J-coupling is part of the background Hamiltonian. Thus
J-couplings are always active unless they are specifically disabled. This can
be done using heteronuclear spin echoes, but this means that a great deal
of effort is spent in a large NMR quantum computer ensuring that spins
which are not involved in a logic gate do not evolve while a gate is being
implemented.

In a fully coupled N -spin system there are roughly 1
2N

2 coupling inter-
actions, and the simplest method for turning off these interactions requires
O(2N ) pulses. Consider a two spin system with spins called I0 and I1; the
coupling between these spins can be eliminated using the sequence

I1

I0

(2.6)

where boxes correspond to 180◦ pulses. This sequence retains the Hamil-
tonian corresponding to the chemical shift of spin 0 (I0

z ), but this can be
dealt with later. Similarly the final 180◦ pulse (shown as a dashed box),
which is needed to restore spin 1 to its initial state, can often be omitted.
In larger systems it is not sufficient simply to place simultaneous 180◦ pulse
on all the spins except spin 0: while this will remove all couplings to spin 0
couplings between the remaining spins will survive. An obvious solution is
simply to nest spin echoes within one another

I3

I2

I1

I0

(2.7)

(once again the term I0
z survives) but this soon becomes unwieldy. Fortu-

nately more efficient schemes can be designed based on Hadamard matri-
ces [25,26].
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The effect of a 180◦ pulse on a spin system is, in effect, to negate the sign
of the Zeeman and spin coupling terms involving that spin; simultaneous
180◦ pulses on two spins will negate the coupling between these spins twice,
thus leaving it unchanged. This gives a simple way of analysing the effect
of spin echo sequences. Each interaction term in the Hamiltonian begins
the sequence with a relative strength of +1, and each 180◦ pulse on a spin
negates every term involving that spin. The effect of a spin echo sequence
on a Zeeman interaction can be determined by writing down a vector of +1
and −1 terms, and then summing along the components of the vector. The
effect on a J-coupling between two spins can be determined by multiplying
corresponding elements in the two vector and then summing them, that is
by taking the dot product of two vectors. A spin echo sequence refocuses
Zeeman interactions if vectors sum to zero, and refocuses J-couplings if
vectors are orthogonal.

This approach can be used to analyse existing spin echo schemes, but
it can also be used to design new ones: a set of vectors with the desired
properties is constructed, and then a pulse sequence is designed by applying
a 180◦ pulse to a spin every time to vector changes sign. Suitable vectors
can easily be obtained by taking rows from Hadamard matrices to obtain
efficient refocusing schemes. For example the four by four Hadamard matrix

H4 =









1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1









(2.8)

can be used to derive an efficient scheme for four spins:

I3

I2

I1

I0

(2.9)

The gain is not huge for small spin systems, but becomes dramatic in large
systems: Hadamard based schemes [25, 26] require only O(N2) pulses to
refocus all couplings in an N -spin system.

When building NMR quantum computers with more than three spins,
it may be easier to use “linear” spin systems, in which each spin is only
coupled to its immediate neighbours, or other partially coupled systems. A
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linear spin system can be used to implement any logic gate by using swap

gates to move qubits around the system; this imposes an overhead but this
is only linear in the number of spins in the system.

Whatever refocusing scheme is adopted, large NMR quantum computers
will require the use of selective pulses in homonuclear spin systems (it is
not possible to build a large fully heteronuclear spin system as there are
not enough spin half nuclei). One can selectively excite a single nuclear
spin in a homonuclear spin system, while leaving the others untouched,
by using long low-power pulses. The excitation bandwidth of a pulse is
given approximately by the inverse of its duration, and selective pulses are
usually shaped, that is amplitude and phase modulated, to give them better
excitation profiles. Many complicated shaped pulses have been designed [3],
which rely on sophisticated NMR hardware for their implementation, but
for NMR quantum computing some of the simplest types (Gaussian and
Hermite pulses) seem to be best.

An alternative scheme is to implement selective pulses using sequences of
hard pulses and delays [22,27]. During delay periods spins will evolve under
the background Hamiltonian, which is dominated by Zeeman interactions,
and so different spins will experience different z-rotations. Sandwiching
these z-rotations between 90◦±y pulses converts the varying z-rotations into
corresponding x-rotations, in effect implementing selective pulses [22,27].

The opposite approach, using selective pulses to implement two qubit
gates has also been demonstrated [28]. In this case it is necessary to use
extremely long low power pulses which excite one line in a multiplet while
leaving other lines untouched. This provides a simple method for imple-
menting multiply-controlled-not gates, such as toffoli gates, but it seems
unlikely that this approach will be generally useful.

Finally when considering quantum logic gates it is essential to remember
that writing down a Hamiltonian is not the same as implementing a gate!
Real experimental gates are vulnerable to both random and systematic er-
rors, and the effects of these must be considered. This point will be treated
in some depth in lecture 4.

2.5 Non-unitary gates

Although quantum computations are usually thought of as a sequence of
unitary gates, non-unitary gates also play a key role in quantum information
processing. The most obvious examples are projective measurements and
the initialisation of qubits, but as discussed in lecture 3 these processes are
difficult or impossible to implement in NMR systems. It is, however, possible
to implement other non-unitary gates, and these are extremely important.

In general a non-unitary gate can be implemented by using a unitary
gate to entangle the system with some aspect of the environment and then
tracing out this environmental information. The two basic non-unitary gates
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in NMR use the position of spins in the spatial ensemble or the time at which
an experiment was performed as the environmental label.

In modern NMR experiments the most common non-unitary is a gradient

pulse [11]. For a short time the magnetic field is made highly inhomoge-
neous, so that the Larmor frequency varies strongly over the sample. This
causes off-diagonal terms in the density matrix to dephase over the sample,
and thus to disappear when the final NMR signal is detected. The situation
is not, however, as simple as is sometimes described, as some off-diagonal
terms (known in NMR notation as homonuclear zero quantum coherences)
will survive the dephasing: these dephasing free subspaces are analogous to
the decoherence free subspaces [29, 30] suggested for building robust quan-
tum bits.

Gradient pulses are most commonly used as crush pulses; these convert
visible NMR terms, such as Ix and Iy, into the maximally mixed state,
in effect destroying them. Crush pulses are automatically applied to all
the spins in a spin system, but some spins may be unaffected because of
their initial state. The action of projecting spins onto the z-axis can be
used, for example, to render error terms invisible or to change the relative
polarisations of two spins

Iz + Sz
π/3Iy

−→ 1
2Iz +

√
3

2 Ix + Sz
crush
−→ 1

2Iz + Sz. (2.10)

It is important to realise that crush pulses are only apparently non-
unitary: the dephasing retains its spatial label and can be refocused. In
particular crush pulses will interact with spin echoes; this can be a problem
in sequences with many gradients, as it can lead to accidental refocusing of
supposedly crushed terms. One solution to this is to use gradients along dif-
ferent spatial axes, and well equipped spectrometers will have three orthog-
onal gradients (x, y, and z); similar effects can be achieved by dephasing the
spin system with inhomogeneous RF fields. More usefully the combination
of gradients and spin echoes gives a route to selective crush pulses

Ix + Sx
crush
−→

πIy

−→
crush
−→ Ix (2.11)

which only affect one spin in a mult-spin system.
If necessary it is possible to obtain a true non-unitary gate by destroying

the spatial label. This can be achieved by spatial diffusion of the spin system
within the ensemble, either during the crush pulse or between two crush
pulses. This approach is sometimes called engineered decoherence [30].

A second route to non-unitary processes in NMR is to use temporal
rather than spatial labels. This can be acheived by repeating the same
basic pulse sequence several times, making subtle changes each time, and
then taking linear combinations of the resulting NMR signals, so that some
terms add together while other terms cancel out. The simplest approach
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is to alter the relative phase of pulses, in which case it is known as phase
cycling [11]. Phase cycling techniques were very widely used in conventional
NMR experiments, but in recent years have been largely superseded by
gradients. They have, however, found new applications in NMR quantum
computing where they form the basis of the popular temporal averaging

schemes for initialisation.

3 NMR quantum computers

In this section I will describe how NMR quantum computers overcome the
difficulties inherent in NMR to perform initialisation and readout. In par-
ticular I will describe the use of pseudo-pure states, and the implications
of this approach for the efficiency of NMR quantum computing. Finally I
will briefly describe the implementation of a quantum cloning on an NMR
quantum computer.

3.1 Introduction

From the description given in the previous lecture it would seem that NMR
was very well suited to the task of implementing quantum computers. There
are, however, substantial problems with NMR as a quantum information
processing technology [31], which stem from difficulties in initialising nuclear
spin states and in reading out the final result.

Conventional designs for quantum computers [32] use single quantum
systems which start in a well defined initial state. While details may vary,
this initialisation is usually achieved by cooling the system to its thermo-
dynamic ground state. NMR quantum computers [19–22], by contrast, use
an ensemble of molecules which start in a hot thermal state, because even
for the very large fields used in NMR spectrometers the Zeeman energy gap
between the two spin states is tiny compared to kT . One could imagine
lowering the temperature so that NMR enters the low temperature regime,
but this would require cooling the system well below 1 mK; although this
is possible the sample would certainly not remain in the liquid state. A
potentially better approach is to use non-Boltzmann initial populations,
as discussed in lecture 5. Almost all implementation of NMR quantum
computing, however, simply sidestep this issue by forming a “pseudo-pure”
initial state from the thermal state as discussed below.

Similar problems also occur with methods for reading out the final re-
sult. Conventional quantum computers achieve read out by hard (projec-
tive) measurements, while NMR quantum computers use weak ensemble
measurements, which do not project the spin system. This can be seen by
realising that a conventional NMR measurement (observation of the free
induction decay) can be described quantum mechanically as the continuous
and simultaneous observation of two non-commuting observables, Ix and Iy.
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This is also the approach used for readout in NMR quantum computers, and
a simple example is shown in Fig. 1

Fig. 1. NMR spectrum showing readout from a two qubit NMR quantum com-

puter based on the two 1H nuclei in cytosine [33]; the negative intensity on the

left hand multiplet indicates that the corresponding qubit was in state |1〉, while

the positive intensity indicates that this qubit was in state |0〉.

These weak measurements might seem more powerful than conventional
projective measurements, but in fact they are less useful for two reasons.
Firstly the use of projective measurements permits the use of measurements
followed by classical control; by contrast NMR quantum computers can only
use quantum control methods. More importantly, projective measurements
provide an excellent initialisation method: just measure a bit, and then flip
it if it has the wrong value! In particular reinitialisation of ancilla qubits
through the use of projective measurements plays a key role in quantum
error-correction protocols [34].

3.2 Pseudo-pure states

The history of NMR quantum computing in effect begins with the realisation
by David Cory and coworkers [19,20] that while it is difficult to form a pure
initial state it is easy to form states whose behavior is almost identical. Such
states, known a pseudo-pure states or effective pure states, take the form

ρ = (1 − ε)
1

2n
+ ε|0〉〈0|, (3.1)

that is mixtures of the maximally mixed state and the desired initial state
with purity ε. As the maximally mixed state does not evolve under any
unitary transformation it will be unchanged by any quantum computation.
Furthermore, all NMR observables are traceless [11], and so the maximally
mixed state gives no observable signal. For this reason the presence of the
maximally mixed state can, in effect, be ignored, and the behaviour of a
pseudo-pure state is identical to that of the corresponding pure state up to
a scaling factor [22].

As an example, consider a homonuclear spin system of two spin-half
nuclei. This has four energy levels with nearly equal populations, but the
population of the lowest level will of course be slightly greater than that of
any other level. This excess population provides the basis of pseudo-pure
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state formation, but the state as described is not a pseudo-pure state, as
the upper levels do not all have the same population. Suppose, however,
that some non-unitary process is applied which equalises the populations of
the upper levels, while leaving the lowest level untouched: the result will
be the desired pseudo-pure state [35]. To understand the behaviour of this
state imagine going through the ensemble, taking out molecules in groups
of four (one in each spin state) and placing them in a box; eventually there
will be a large box containing equal populations of all four spin states and
a small excess of the |00〉 spin state remaining. The NMR signals from the
molecules in the box will all cancel out, leaving only the signal from the
small excess: the pseudo-pure state.

Pseudo-pure states can also be described more accurately using the
product operator approach [22, 36]. The Boltzmann equilibrium state of
a homonuclear two-spin system is approximately

ρB ≈ 1
2E + δ(Iz + Sz) = 1

2E + δ{1, 0, 0,−1} (3.2)

where the braces indicate a diagonal density matrix described by listing its
diagonal elements. The ideal pure ground state takes the form

ρ0 = 1
2 ( 1

2E + Iz + Sz + 2IzSz) = {1, 0, 0, 0} (3.3)

and so forming a pseudo-pure ground state will require the creation of a
2IzSz component and the rescaling of other terms so that each term is
present in the correct relative quantity. Clearly this will require a combina-
tion of unitary and non-unitary processes, and three main approaches have
been described.

The original spatial avaeraging method of Cory et al. [19,20] for creating
a pseudo-pure state in a two spin system used a sequence of (unitary) pulses
and delays combined with (non-unitary) crush gradients. The method is
easily understood using product operators:

Iz + Sz
60◦Sx−→ Iz + 1

2Sz −
√

3
2 Sy

crush
−→ Iz + 1

2Sz
45◦Ix−→ 1√

2
Iz −

1√
2
Iy + 1

2Sz

Ising
−→ 1√

2
Iz + 1√

2
2IxSz + 1

2Sz

45◦Ix−→ 1
2Iz −

1
2Ix + 1

22IxSz + 1
2Sz + 1

22IzSz
crush
−→ 1

2 (Iz + Sz + 2IzSz). (3.4)

An widely used alternative, temporal averaging [37], uses permutation
operations to create different initial states

Iz + Sz
P0−→ {1, 0, 0,−1}
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Iz + Sz
P1−→ {1, 0,−1, 0}

Iz + Sz
P2−→ {1,−1, 0, 0} (3.5)

and averaging over these three separate experiments gives an effective pure
state

ρTA = {1,− 1
3 ,−

1
3 ,−

1
3}. (3.6)

This method has the advantage of being easy to understand and to gen-
eralise to larger spin system, but the disadvantage that several different
experiments are required. Indeed if the most obvious scheme, exhaustive
permutation, is implemented a very large number of experiments may be re-
quired; fortunately less profligate partial averaging schemes are known [37].

Finally the logical labelling approach of Gershenfeld and Chuang [21]
provides a conceptually elegant method for using naturally occurring subsets
of levels in larger systems as pseudo-pure states. As an example consider a
three spin system

Iz + Sz +Rz = 1
2{3, 1, 1,−1, 1,−1,−1,−3} (3.7)

and pick out the subset of four levels with relative populations 3, −1, −1
and −1, that is the levels |000〉, |011〉, |101〉 and |110〉. The most direct
approach is just to work in this subset, but it usually more convenient to
permute populations so that the levels |000〉, |001〉, |010〉 and |011〉 can be
used; this makes implementing logic gates much simpler.

Perhaps the most practical general scheme for preparing pseudo-pure
states is based on the use of “cat” states [24], which are states of the form

ψn± = |00 . . . 0〉 ± |11 . . . 1〉 (3.8)

for an n-qubit system, that is equally weighted superpositions of the state
in which all n qubits are in |0〉 and the state in which all qubits are in |1〉. It
is easy both to reach the state ψn+ starting from the ground state |00 . . . 0〉,
and to convert the cat state back to the ground state. This may not seem
useful, but it is relatively simple to design non-unitary filter schemes, using
either spatial or temporal averaging, which convert all states except ψn± into
the maximally mixed state. The Boltzmann equilibrium state can thus be
converted to a mixed state including a component of ψn±, and after filtration
the ψn+ state can be converted back to |00 . . . 0〉. The filter schemes, however,
also retain any ψn− component, and this is converted into |10 . . . 0〉. The
overall effect is to produce the state Iz ⊗ |0 . . . 0〉〈0 . . . 0|, that is a pseudo-
pure state of n− 1 qubits.

3.3 Efficiency of NMR quantum computing

The discussion so far has neglected any consideration of the level of purity
which can be achieved in a pseudo-pure state; this is most simply quantified
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by the value of ε in Eq. 3.1. At one level this is unimportant, as ε simply
determines the intensity of the observed NMR signal, but if ε becomes too
small this will render the NMR signal undetectable. Unfortunately for NMR
quantum computing, the value of ε drops exponentially with the number of
qubits in the system: for every additional qubit the available signal intensity
approximately halves [38].

This effect is not, as is sometimes suggested, a peculiar fault of NMR
quantum computers: rather it is a simple consequence of working in the high
temperature limit. It does, however, mean that pseudo-pure states extracted
from thermal equilibrium systems cannot provide a route to scalable NMR
quantum computers.

More controversially some authors have implied that NMR quantum
computers are not quantum computers at all! How this claim is assessed
depends on exactly what is meant by “NMR quantum computers”, and
even what is meant by “quantum computing”. However, while there is
substantial room for philosophical debates, the underlying science is now
relatively clear. On the one hand it is known that high temperature pseudo-
pure states cannot lead to provably entangled states [39], and that such
systems cannot give efficient implementations of Shor’s quantum factoring
algorithm [40]. On the other hand it so far proved impossible to develop
a purely classical model of pseudo-pure state NMR quantum computing:
while it is possible to describe the state of an NMR device at any point in a
computation using a classical model, it appears to be impossible to develop
a classical model of the transitions between these states [41].

It is also vital to remember that these arguments apply only to NMR
quantum computers built using pseudo-pure states, and that there are other
types of NMR quantum computing. For example some quantum algorithms
only require one pure qubit: the other qubits can be in maximally mixed
states [42]. Indeed, even the single “pure” qubit need not be pure: a pseudo-
pure state will suffice. This type of NMR quantum computing is clearly
scalable, although it can only be used for a limited range of algorithms. An
alternative approach is to use a scheme described by Schulman and Vazirani,
which allows a small number of nearly pure qubits to be distilled from a
large number of impure qubits using only unitary operations [43]. This
scheme needs O(ε−2) impure spins for each pure spin extracted: this is a
constant multiplicative overhead, and so has no scaling problem. Thus high
temperature states, such as those used in NMR, do allow true quantum
computing! Unfortunately the overhead for NMR systems of about 1010

means that this method has only theoretical interest.

3.4 NMR quantum cloning

Finally I will end this lecture by briefly describing an NMR implementa-
tion of approximate quantum cloning [44]. This experiment is complicated
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enough to be interesting, but simple enough that the basic ideas can be
described in a fairly straightforward manner.

The no-cloning theorem, which states that an unknown quantum state
cannot be exactly copied [45], is one of the oldest results in quantum infor-
mation theory. Approximate quantum cloning is, however, possible, and a
range of different schemes have been described. If one qubit is converted
into two identical copies, such that the fidelity of the copies is independent
of the initial state, then the maximum fidelity that can be achieved is 5

6 ,
and an explicit quantum circuit which achieves this is known [46]. If a state
|ψ〉 is cloned, the two copies take the form

5
6 |ψ〉〈ψ| +

1
6 |ψ

⊥〉〈ψ⊥| = 2
3 |ψ〉〈ψ| +

1
3 (1/2). (3.9)

This circuit can also be used to clone a mixed state, ρ producing even more
mixed clones of the form

2
3ρ+ 1

3 (1/2). (3.10)

In the language of vectors on Bloch spheres, the two clones have Bloch
vectors parallel to the original Bloch vector, but with only 2

3 the length [44].

The cloning circuit comprises two stages: preparation, which prepares
two qubits into an initial “blank paper” state, suitable for receiving a copy,
and copying, in which the initial qubit is copied onto these qubits. As the
preparation stage simply prepares two blank qubits, and is independent of
the state of the unknown qubit, the preparation stage can be replaced by
any other transformation which has the same effect, and the NMR imple-
mentation, which is shown in Fig. 2 does indeed use a modified preparation
stage. The copying stage, however, must implement the correct unitary
transformation, and the implementation used the conventional copying cir-
cuit.

Fig. 2. A modified version of the approximate quantum cloning network: the new

version is simpler to implement on the NMR system used. Filled circles connected

by control lines indicate controlled phase shift gates, empty circles indicate single

qubit Hadamard gates, while grey circles indicate other single qubit rotations.

The two rotation angles in the preparation stage are θ1 = arcsin
(

1/
√

3
)

≈ 35◦

and θ2 = π/12 = 15◦.
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The cloning circuit was implemented on a three-qubit NMR quantum
computer based on the molecule based on the single 31P nucleus (P ) and
the two 1H nuclei (A and B) in E-(2-chloroethenyl)phosphonic acid (Fig. 3)
dissolved in D2O. The NMR pulse sequence used is shown in Fig. 4. This

100 50 0 -50 -100

Hz

C

C

P

Cl OD

O

OD

HA

HB

Fig. 3. The three qubit system provided by E-(2-chloroethenyl)phosphonic acid

dissolved in D2O and its 1H NMR spectrum. Following standard NMR conven-

tions the spectrum has been plotted with frequencies measured as offsets from

the reference RF frequency, and with frequency increasing from right to left. The

broad peak near −50 Hz can be ignored.

comprises two main sections: an initial purification sequence (a), used to
generate an initial pseudo-pure state corresponding to Pz ⊗ |0A0B〉〈0A0B |,
and a preparation and cloning sequence (b), which implements the circuit
shown in Fig. 2, cloning the state of P onto A and B. Both of these are built
around the “echo” sequence (c), which implements the coupling element of
the PA and PB controlled phase shifts by evolution of the spin system
under the weak coupling Hamiltonian with undesirable Zeeman evolutions
refocused by spin echoes. This requires selective 90◦ pulses, which are built
out of hard pulses and delays as described in my second lecture. For further
details see the original paper [44].

The results of the cloning circuit can be observed by detecting the NMR
signal from the two 1H nuclei, A and B. The ideal spectrum should have
equal intensities on the two outer lines of each multiplet, and no signal on
the two central lines. Errors are seen in the experimental spectra, but the
overall behaviour is clearly observed: Fig. 5 shows the result of cloning the
state Px. Results of similar quality are obtained when cloning other initial
states [44].
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Fig. 4. The NMR pulse sequences used to implement quantum cloning. White

and black boxes are 90◦ and 180◦ pulses, while grey boxes are pulses with other

flip angles; pulse phases and gradient directions are shown below each pulse. All

RF pulses are hard, with 1H frequency selection achieved using “jump and return”

methods.
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Fig. 5. The experimental result from cloning the initial state Px; the receiver

phase was set using a separate experiment so that x-magnetization appears as

positive absorption mode lines.

4 Robust logic gates

In this section I will describe how techniques adapted from conventional
NMR experiments can be used to develop robust logic gates for NMR quan-
tum computers. Although developed and described within the context of
NMR, these robust gates could be used in other implementations of quan-
tum computing.



Jones: NMR Quantum Computing 25

4.1 Introduction

Quantum computers implement logic gates as periods of evolution under
Hamiltonians which can be external (e.g., RF pulses) or internal (e.g., Ising
couplings). Computation requires extremely accurate logic gates, and thus
extremely accurate control of evolution rates. Naive estimates suggest that
it may be difficult or impossible to control Hamiltonians with sufficient
accuracy, but fortunately robust logic gates can be designed to tolerate
small errors in these rates.

The approach described here is based on the NMR concept of composite

rotations [3, 9, 47, 48], which have long been used to reduce the impact of
systematic errors on conventional NMR experiments, but the basic idea
is general and can be applied in many other fields. As usual it is not
necessary to design robust versions of every conceivable logic gate: it suffices
to develop a complete set of one and two qubit gates.

When considering the accuracy of logic gates it is necessary to measure
the fidelity of the actual operation V in comparison with the desired oper-
ation U , and an obvious measure is provided by the propagator fidelity [49]

F =
| tr (V U†)|

tr (UU†)
(4.1)

where it is necessary to take the absolute value of the numerator to deal
with (irrelevant) differences in global phases. The propagator fidelity works
for any unitary operation, although it can be over complicated in practice
and alternative measures have been suggested.

4.2 Composite rotations

The use of composite rotations to reduce the effects of systematic errors in
conventional NMR experiments relies on the fact that any state of a single
isolated qubit can be mapped to a point on the Bloch sphere, and any uni-
tary operation on a single isolated qubit corresponds to a rotation on the
Bloch sphere. The result of applying any series of rotations (a composite ro-
tation) is itself a rotation, and so there are many apparently equivalent ways
of performing a desired rotation. These different methods may, however,
show different sensitivity to errors: composite rotations can be designed to
be much less error prone than simple rotations!

A rotation can go wrong in two basic ways: the rotation angle can be
wrong or the rotation axis can be wrong. In an NMR experiment (viewed
in the rotating frame) ideal RF pulses cause rotation of a spin through
an angle θ = ω1t around an axis in the xy-plane. So called pulse length

errors occur when the pulse power ω1 is incorrect, so that the flip angle θ
is systematically wrong by some fraction. This can be due to experimenter
carelessness, but more usually arises from the inhomogeneity in the RF field
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over a macroscopic sample. The second type of error, off-resonance effects

(Fig. 6), occur when the excitation frequency doesnt match the transition

Fig. 6. Effect of applying an off-resonance 180◦ pulse to a spin with initial state

Iz; the spin rotates around a tilted axis. Trajectories are shown for small, medium

and large off-resonance effects.

frequency, so that the Hamiltonian is the sum of RF and off-resonance terms.
This results in rotations around a tilted axis, and the rotation angle is also
increased.

The first composite rotation [47] was designed to compensate for pulse
length errors in an inversion pulse, that is a pulse which takes the state
Iz to −Iz. This can be achieved by, for example, a simple 180◦y pulse,
but this is quite sensitive to pulse length errors. The composite rotation
90◦x180◦y90◦x has the same effect in the absence of errors, but will also partly
compensate for pulse length errors. This is shown in Fig. 7 which plots the
inversion efficiency of the simple and composite 180◦ pulses as a function of
the fractional pulse length error g. (The inversion efficiency of an inversion
pulse measures the component of the final spin state along −Iz after the
pulse is applied to an initial state of Iz.)

Composite pulses of this kind are very widely used within conventional
NMR, and many different pulses have been developed [48], but most of
them are not directly applicable to quantum computing [50]. This is be-
cause conventional NMR pulse sequences are designed to perform specific
motions on the Bloch sphere (such as inversion), in which case the initial
and final spin states are known, while for quantum computing it is neces-
sary to use general rotations, which are accurate whatever the initial state
of the system. Perhaps surprisingly composite pules are known which have
the desired property, of performing accurate rotations whatever the initial
spin state.
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Fig. 7. The inversion efficiency of a simple 180◦ pulse (dashed line) and of the

composite pulse 90◦

x180◦

y90◦

x (solid line) as a function of the fractional pulse length

error g. The way in which the composite pulse works can be understood by

examining trajectories on the Bloch sphere, which are shown on the right for

three values of g.

4.3 Quaternions and single qubit gates

Quaternions provide a simple and powerful way of describing rotations (sin-
gle qubit gates), as they can be easily formed, combined, and compared. The
quaternion corresponding to a θ rotation around an axis at an azimuthal
angle φ in the xy-plane is given by

qθφ = {s,v} = {cos(θ/2), sin(θ/2)(cos(φ), sin(φ), 0)} (4.2)

where s is a scalar depending on the rotation angle, and v is a vector whose
length depends on the rotation angle and which lies parallel to the rotation
axis. The result of applying two rotations is given by the quaternion product

q1 ∗ q2 = {s1 · s2 − v1 · v2, s1v2 + s2v1 + v1 ∧ v2} (4.3)

and two quaternions can be compared using the quaternion fidelity

F(q1, q2) = |q1 · q2| = |s1 · s2 + v1 · v2|. (4.4)

As a simple example consider a not gate, that is a 180◦x rotation. The
quaternion for an ideal rotation is

q0 = {0, (1, 0, 0)} (4.5)

while the quaternion representing this rotation in the presence of a fractional
pulse length error g is

q1 = {cos[(1 + g)π/2], (sin[(1 + g)π/2], 0, 0)} (4.6)
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and so the quaternion fidelity is

F1 = | sin((1 + g)π/2)| = | cos(gπ/2)| ≈ 1 −
π2g2

8
(4.7)

As an alternative consider the conventional composite pulse sequence for a
180◦x rotation, 90◦y180◦x90◦y, which has the quaternion form

q2 = {sin2[gπ/2], (cos[gπ/2],− sin[gπ]/2, 0)} (4.8)

and gives exactly the same fidelity, F2 = | cos(gπ/2)| = F1. This confirms
that the conventional sequence does not actually correct for errors when
considered as a general rotation: the good behaviour for certain initial states
is obtained at the cost of poor behaviour for other initial states.

An example of a not gate which does give genuine improvement [51,52]
is provided by the sequence 90◦0180◦φ360◦3φ180◦φ90◦0, with φ = arccos(−1/4).
The quaternion for this composite rotation in the presence of errors is com-
plicated, but its fidelity is given by

F3 ≈ 1 −
5π6g6

1024
(4.9)

showing that the second and fourth order error terms are completely can-
celled. This BB1 sequence was originally developed by Wimperis for con-
ventional NMR experiments [51], and later rederived using quaternions in
the context of NMR quantum computing [52]. As shown in Fig. 8 the BB1
gate outperforms a naive not gate for all pulse length errors g, especially
for errors in the range ±25%. Its behaviour is essentially perfect for errors
of less than 1%.

Similar gates can be developed to tackle off-resonance effects. Intrigu-
ingly the sequence 90◦x180◦y90◦x provides some compensation for off-resonance
effects as long as the pulse length is correct, but as before this compensa-
tion only occurs for inversion, and so the composite pulse is not suitable for
quantum computing. However suitable composite rotations are known: an
early result by Tycko [53] has been refined and extended [52, 54]: a simple
θx rotation should be replaced by the corpse sequence of three rotations
along x, −x and x with

θ1 = 2π +
θ

2
− arcsin

(

sin(θ/2)

2

)

θ2 = 2π − 2 arcsin

(

sin(θ/2)

2

)

θ3 =
θ

2
− arcsin

(

sin(θ/2)

2

)

. (4.10)

The simultaneous correction of pulse length errors and off-resonance effects
is still being studied [52].
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Fig. 8. The infidelity (1 − F) of simple and BB1 composite pulses to perform a

not gate in the presence of a fractional pulse length error g; note that both axes

are plotted on log scales. The BB1 gate can achieve an infidelity of 10−6 with an

error in ω1 of up to 10%, in contrast with the 0.1% accuracy required for a simple

gate.

With any proposal for a “robust” gate it is vital to check that the errors
take the form expected [55]. For a BB1 gate it is not necessary to get the
absolute lengths of the pulses right, but it is essential to get the relative
lengths correct. For a BB1 not gate (90◦0180◦φ360◦3φ180◦φ90◦0) this is simple
as all pulses are multiples of 90 degrees, but other cases may be more tricky.
The BB1 gate also requires very accurate control of pulse phases, and it is
likely that phase errors will dominate in experimental implementations.

4.4 Two qubit gates

To obtain a complete set of robust gates it is also necessary to develop a
family of robust two qubit gates, and the Ising coupling gate is the obvious
choice [22]. The Ising gate is implemented by evolution under the Ising
coupling Hamiltonian

HIS = πJ 2IzSz (4.11)

for a time τ = φ/πJ , where J is the coupling strength and φ is the desired
evolution angle. In order to implement accurate controlled phase-shift gates
it is necessary to know J with corresponding accuracy. Remarkably a very
similar approach to that used for one qubit gates can also be used to tackle
systematic errors in Ising coupling gates [56]; in effect Ising coupling cor-
responds to rotation about the 2IzSz axis, and errors in J correspond to
errors in a rotation angle about this axis. These can be parameterised by a
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Fig. 9. Pulse sequence for an Ising gate to implement a controlled-not gate

which is robust to small errors in J . Boxes correspond to single qubit rotations

with rotation angles of φ = arccos(−1/8) ≈ 97.2◦ applied along the ±y axes

as indicated; time periods correspond to free evolution under the Ising coupling,

πJ 2IzSz for multiples of the time t = 1/4J . The naive Ising gate corresponds to

free evolution for a time 2t.

fractional error

ε =
Jreal

Jnominal
− 1. (4.12)

and can be compensated by rotating about a sequence of axes tilted from
2IzSz towards another axis, such as 2IzSx. Defining

θφ ≡ exp[−i× θ × (2IzSz cosφ+ 2IzSx sinφ)] (4.13)

permits the naive sequence θ0 to be replaced by a BB1 style sequence of the
form

(θ/2)0 πφ 2π3φ πφ (θ/2)0 (4.14)

with φ = arccos(−θ/4π). Note that the BB1 not gate described previ-
ously is simply a special case of this with θ = π. The tilted evolutions are
implemented by sandwiching a 2IzSz rotation (evolution under the Ising
Hamiltonian) between φ∓y pulses applied to spin S. After combining and
cancelling pulses the final sequence for the case θ = π/2 (which forms the
basis of the controlled-not gate [22]) is shown in Fig. 9.

The BB1 Ising gate outperforms the naive gate much as before: once
again the error is sixth order in g. The robust gate can tolerate errors in J
of around 10% with an infidelity of 10−6 [55,56]. To perform a robust gate
it is necessary to get the relative lengths of the coupling periods correct, but
this is fairly simple as all times are multiples of 1/4J . It is also important
to use accurate pulses between the delays, but these can be achieved using
robust single qubit gates.

4.5 Suppressing weak interactions

This approach can easily be adapted to tackle another problem: developing
a composite rotation which suppresses the effect of weak rotations. When
converted to the two qubit equivalent, this gives a controlled phase-shift gate
which effectively suppresses evolution under small Ising couplings [57]. This
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Fig. 10. Pulse sequence for a PB1 Ising gate to implement a controlled-not gate.

Boxes are single qubit rotations with angles of φ = arccos(−1/16) ≈ 93.6◦.

can be achieved using the same basic sequence as before, and comparing the
composite quaternion with the null quaternion

q0 = {1, {0, 0, 0}} (4.15)

and then using the Maclaurin series expansion around the point g = −1.
The first order error terms can be removed by choosing φ2 = −φ1 and
φ1 = arccos(−θ/4π) as before.

Although derived independently, this sequence is in fact essentially iden-
tical to the NB1 composite rotation previously described by Wimperis [51].
The NB1 sequence does effectively suppress weak interactions, but this sup-
pression is achieved at the cost of decreased robustness to small errors in
strong interactions [57]. Clearly it would be desirable to gain similar sup-
pression effects without this increased sensitivity to errors. Amazingly an-
other composite rotation developed by Wimperis [51], this time called PB1,
provides an excellent solution. This takes the form

(θ/2)x360φ1
720φ2

360φ1
(θ/2)x (4.16)

with φ2 = −φ1 and φ1 = arccos(−θ/8π). The pulse sequence for the two
qubit version corresponding to a controlled-not gate is shown in Fig. 10 and
its performance is compared with simple, BB1 and NB1 composite rotations
in Fig. 11 This shows that the PB1 Ising gate outperforms a simple gate
both in suppressing small couplings and in robustness to small errors in
coupling strengths. If, however, only one of these effects is important, even
better results can be obtained by using the NB1 or BB1 gate as appropriate.

5 An NMR miscellany

In this final section I will describe a variety of miscellaneous topics relevant
to NMR quantum computers. In particular I will relax my previous restric-
tion of considering only spin-half nuclei in liquids and solutions, and only
spins systems beginning at thermal equilibrium.

5.1 Introduction

In the final lecture I will address a range of topics in the general field
of NMR quantum computing. I will begin by describing how geometric
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Fig. 11. Calculated fidelity of simple (dashed line), PB1 (solid line), and NB1

or BB1 (dotted line) 90◦ rotations as a function of the fractional error in the

rotation rate g. The left hand plot shows the fidelity defined against the identity

operation, with the dotted line showing the NB1 sequence; the right hand plot

shows the fidelity defined against a 90◦ rotation, with the dotted line showing the

BB1 sequence. Note that the horizontal axes differ in the two plots.

phases (Berry phases) can be used to implement logic gates in NMR systems
[58]. I shall then consider the limits to NMR quantum computing [31], and
whether these can be overcome with some of the more exotic schemes which
have been suggested for performing NMR quantum computing, in particular
those based on systems in the solid state or systems with nuclear spins
greater than one half. Finally I shall discuss some of the non-Boltzmann
methods which could in principle be used to perform initialisation of spin
states, in particular those based on para-hydrogen.

5.2 Geometric phase gates

Classical geometric phases arise from motion of an object in a curved space
[59]. For example, when an object is transported on the surface of a sphere,
it can undergo a rotation arising solely from the curvature of the surface.
Berrys phase [60], the simplest example of a geometric phase in quantum
mechanics, arises in a quantum system when the Hamiltonian is varied
adiabatically along a cyclic path. In NMR experiments it is usually simplest
to apply a cyclic excursion to the Hamiltonian in the rotating frame. The
two states of a spin-half nucleus will acquire equal and opposite geometric
phases, in addition to any dynamic phases acquired during the evolution.

These geometric phases can be used to implement quantum logic gates
[58]. This has the potential advantage that the Berry phase depends only
on the geometry of the path, and not how it is traversed, and so should
be insensitive to certain errors. Note, however, that a careful distinction
should be made between geometric phase gates, such as those described
here, and topological phase gates, which should exhibit extreme robustness
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[61]. Topological phase gates are an exciting idea, but have not yet been
demonstrated experimentally.

To see how geometric phases can be implemented in NMR, recall that
off-resonance excitation gives rise to a Hamiltonian which is tilted in the
rotating frame. The tilt angle can be controlled by varying the off-resonance
fraction, which can be achieved either by changing the frequency offset or
by changing the RF intensity. The phase angle can be controlled by simply
changing the phase of the RF. Thus the Hamiltonian can be moved around
the Bloch sphere at will. The simplest scheme is to begin by raising the RF
intensity slowly from 0 up to some maximum value, so that the Hamiltonian
is tilted away from the z-axis to some final tilt angle θ, changing the phase
of the RF so that the Hamiltonian rotates around a cone with cone angle θ,
and finally reducing the RF intensity back to zero. The geometric phases
picked up during this process are

±γ = ±Ω/2 = ±π(1 − cos θ) (5.1)

where the ± sign corresponds to the phase picked up by the ± 1
2 spin states,

which correspond to qubits in states |0〉 and |1〉.
The geometric phase is most conveniently observed in NMR experiments

by applying the adiabatic sweep to a spin in a superposition state, such
as Ix; the phases are then seen as a shift 2γ in the relative phase of the
superposition, that is as a 2γIz rotation. However if the experiment is
carried out as described the desired geometric phase will be completely
swamped by the dynamic phase which arises simply from the integrated
size of the Hamiltonian. Even worse, this dynamic phase will vary over
the sample, as a result of RF inhomogeneity, and so when the final signal
is averaged over the macroscopic ensemble the dynamic phase will cause
extensive dephasing. It is, therefore, essential to refocus the dynamic phase,
and as usual this can be achieved by using spin echoes: two adiabatic sweeps
are applied with the second sweep sandwiched between a pair of 180◦ pulses.
It might seem that the geometric phase would also be refocussed by this
approach, but this can be overcome by reversing the direction of the phase
rotation in the second sweep: the geometric term is reversed twice, and so
adds up, while the dynamic term cancels out.

The description given so far has neglected the effects of spin–spin cou-
plings. These can be assumed to take the Ising form, and so mean that the
transition frequency of a spin depends on the spin state of its coupling part-
ners. Thus the off-resonance frequency, the tilt angle, and so the geometric
phase acquired, all depend on the state of the other spin (the control spin).
(Note that in a heteronuclear spin system the control spin is very far from
resonance and so not directly affected by the RF field.) The results of an ex-
periment implementing this approach [58] are shown in Fig. 12. This shows
the geometric phases acquired as a function of the maximum RF intensity
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Fig. 12. Controlled geometric phases in 1H13CCl3. Filled and empty circles show

the phase acquired by the 1H nucleus when the 13C nucleus is in |0〉 and |1〉, while

stars show the difference between these (the controlled phase); solid lines show

theoretical predictions.

applied. As the maximum RF intensity is increased so are the cone angles,
and thus the geometric phase acquired. More subtle behaviour is seen for
the controlled geometric phase shift, ∆γ, which first rises then falls. The
extremely broad maximum in ∆γ indicates that this is a robust method
for generating differential phase shifts; the position and height of the max-
imum (here chosen to be 180◦) is determined by the average off-resonance
frequency [58].

5.3 Limits to NMR quantum computing

Nuclear magnetic resonance is in many ways the leading quantum technol-
ogy available to us for building small quantum computers [22]. Although
it has been clear from the beginning that current NMR approaches are not
scalable, and so cannot be used to build practical large scale devices, there is
still substantial interest in the question of what the limits to NMR quantum
computing really are.

The most commonly cited difficulty with current NMR approaches is
their apparent inability to access pure initial states [38], leading to the use
of non-scalable pseudo-pure state methods. This difficulty could in principle
be overcome by using non-Boltzmann initial states [31], as described below.
Note that schemes of this kind would also permit the creation of genuine
entangled states, removing any concern about how “quantum” NMR ap-
proaches really are [39]. One serious problem might, however, remain: most
of the non-Boltzmann schemes suggested would only allow the spin state
to be initialised at the start of the computation; they would not allow the
reinitialisation which lies at the heart of error correction schemes [34].

Another issue worth considering is the complexity of implementing pulse
sequences with very large numbers of spins. This problem can be addressed
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mathematically by determining how the number of pulses necessary to im-
plement a logic gate scales with the size of the spin system; the development
of efficient refocussing schemes [25, 26] means that the problem scales only
quadratically, which is reasonable. It is also, however, important to consider
practical questions, such as how individual qubits can be addressed. NMR
quantum computing uses the different Larmor frequencies of different spins
to achieve this, and this approach does not scale well, as the frequency space
available is quite limited [31].

Finally it is necessary to consider issues of decoherence. Although NMR
decoherence times can be extremely long compared with other techniques,
what matters is not the absolute length of the decoherence time, but rather
the ratio of the decoherence time to the gate time. Furthermore when es-
timating this number it is essential to use the time needed for the slowest

gate in the system, which in NMR systems will correspond to the smallest
coupling used. Experience to date suggests that NMR quantum compu-
tations are limited to around 500 gates before the effects of decoherence
become overwhelming [50, 62]. Note that this number lies well below the
value required for effective error correction schemes [34].

Putting all these issues together, it seems that the limit to current NMR
approaches lies around 10–15 qubits. While this is far beyond the abilities
of any currently competing technology, it is not enough to make NMR a
practical quantum technology.

5.4 Exotica

Throughout these lectures NMR has been used to refer solely to studies of
spin-half nuclei in liquids and solutions. This restricted field dominates both
conventional NMR studies and NMR implementations of quantum comput-
ing for a number of related reasons. There is an obvious way to map qubits
onto spin-half nuclei, and the spin-half Hamiltonian in the liquid state takes
a particularly nice form, which is powerful enough to be computationally
universal, but simple enough to be easy to work with. Experience from
conventional NMR means that the field is extremely well understood, and
the available technology is highly sophisticated. It is, however, worth briefly
relaxing these restrictions and seeing what the rest of NMR might have to
offer.

Studying spin-half nuclei in the solid state [12] appears to have many
advantages. The solid state permits access to very low temperatures, and
so the preparation of pure initial states by simple Boltzmann means. This
does not, however, solve the detection problem, or provide a method of
reinitialisation. Solid state samples also retain the full dipolar coupling
Hamiltonian, which is much larger than the isotropic scalar coupling, and
so should allow much faster gates. On the down side, however, dipolar
coupling networks are much more extended than scalar coupling networks,
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as the dipolar coupling falls off only slowly with distance. Furthermore the
homonuclear dipole-dipole coupling Hamiltonian is not truncated to the
(convenient) Ising form. These effects make multiplets extremely broad,
rendering selective excitation of individual qubits difficult or impossible.
One extreme possibility which has been suggested is to adopt techniques
from magnetic resonance imaging to select spins according to their positions
in space, but implementing this will not be easy.

Between liquid and solid state NMR lies the study of molecules in liquid
crystal solvents. These combine some of the features of both extremes,
and in particular give some access to dipole-diploe couplings in a controlled
manner. This approach has been used in implementations of NMR quantum
computing [63,64], but while intriguing it is unlikely to prove important.

Another possibility which has been suggested is to use nuclei with spin
greater than one half, usually in the solid state. Such nuclei have both a
magnetic dipole moment and a nuclear quadrupole moment, and are often
called quadrupolar nuclei [12]. The quadrupole moment will interact with
electric field gradients, and the behaviour of quadrupolar nuclei is dominated
by the interplay between this interaction and the interaction with magnetic
fields. This can become quite complex, as the relative importance of the
two interactions varies greatly for different nuclei and for different chemical
environments, and the electric field gradient and magnetic field are usually
attached to quite different reference frames. While this interplay could, in
principle, be useful, it can also lead to many difficulties, the most obvious
example being rapid dephasing.

Quadrupolar nuclei also have more than two spin states, whcih obviously
suggests using one spin to store more than one qubit. It is in principle
possible to build a two-qubit device in a single nucleus with spin-3

2 , or even
a three-qubit device in a spin-7

2 nucleus. The problem with this approach
is, of course, that it does not scale beyond three qubits.

Going beyond nuclei, electrons are spin-half particles, and it should be
possible to perform NMR like experiments using electron spin resonance,
or ESR, studies of unpaired electrons in radicals [65]. (ESR is sometimes
known as electron paramagnetic resonance, or EPR.) The electron magnetic
moment is much larger than nuclear moments, and so ESR is usually a mi-
crowave technique. This also means that pure spin states could be reached
by cooling too the temperature of liquid helium. The theory of ESR looks
very similar to that of NMR, but the experiments are as yet much less de-
veloped. Another problem is that radicals with multiple unpaired electrons
are very rare, and for this reason most proposals have concentrated on arti-
ficial nanostructures. Although this field will be challenging, it is certainly
worth a look.

In the long term one of the most promising techniques is ENDOR, or
electron nuclear double resonance [66], which combines NMR and ESR tech-
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niques. NMR and ESR have very different energy scales, which makes the
experiments tricky, but may also prove very useful, allowing the high en-
ergy scale of ESR to be used for quantum gates, and the low energy scale
of NMR to be used for storage. This is, of course, the ultimate basis of the
Kane proposal for a large scale quantum computer [67].

5.5 Non-Boltzmann initial states

Although the problem of initialisation is the not the only factor limiting
NMR implementations of quantum computing, it remains an important
and annoying problem. The low polarisation of Boltzmann states is also
an important issue in conventional NMR studies, as it results in a low
signal strength, greatly limiting the sensitivity of NMR as an analytical
technique. For this reason there has long been interest in developing ways
to enhance NMR polarisations, and many different techniques have been
developed [31]. Of these, however, only two have any realistic prospect of
preparing essentially pure states: optical pumping, and the use of para-
hydrogen.

Optical pumping is, of course, widely used to prepare atoms and ions
in desired electronic states, and these techniques can be extended to pre-
pare essentially pure nuclear spin states. Two systems dominate optically
pumped NMR: 3He, which can be pumped directly, and 129Xe and 131Xe,
which are pumped indirectly via rubidium atoms. In both cases it is pos-
sible to achieve extremely high polarisations, close to unity. However these
near pure spin states are almost useless for quantum computing, as each
atom can only hold one qubit (or two in the case of the quadrupolar nu-
cleus 131Xe), and the atoms do not interact to form molecules. It is possible
in principle to transfer these high polarisations to other nuclei [68], but so
far the efficiency of such transfers has been too low to be useful.

An intriguing alternative is provided by para-hydrogen. This relies on
the fact that the rotational and nuclear spin states of homonuclear diatomic
molecules such as hydrogen are inextricably connected by the Pauli prin-
ciple; in particular the even rotational states of hydrogen must have anti-
symmetric nuclear spin states. Cooling hydrogen to the rotational ground
state would give pure para-hydrogen with a singlet spin state. As the inter-
conversion of ortho and para-hydrogen is forbidden, it is necessary to use a
catalyst, but this means that the enhancement will be retained on warming
if the catalyst is removed. Thus it is possible to obtain a bottle of hydrogen
gas at room temperature with essentially pure nuclear spin states!

It is, of course, not possible to implement quantum computing with
para-hydrogen directly because the hydrogen molecule is too symmetric: it
is essential to break the symmetry so that the two nuclei can be addressed
individually. This is easily achieved by adding the para-hydrogen to some
other molecule, such as Vaska’s catalyst, to produce a complex where the two
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1H nuclei have different chemical shifts and so can be separately addressed
[69–71]. The addition reaction occurs with retention of nuclear spin state,
and so the purity is conserved. In most studies to date, however, the reaction
occurs quite slowly in comparison with the Zeeman frequency difference
of the two spins, leading to dephasing of the off-diagonal elements of the
density matrix, converting the singlet state to an incoherent mixture of |01〉
and |10〉. In conventional para-hydrogen studies this dephasing is accepted,
but for NMR quantum computing it is necessary to have fully coherent
addition. One approach used to date [72] is to apply an isotropic mixing

pulse sequence [3], such as mlev-16, which removes the dephasing Zeeman
interaction and preserves the pure singlet spin state. Early experiments
using this approach have achieved a purity of around 10% in a two qubit
system [72], significantly below the entanglement threshold. A more recent
experiment has generated systems with a purity of around 86% [73].

6 Summary

Nuclear Magnetic Resonance (NMR) is arguably both the best and the worst
technology we have for the implementation of small quantum computers.
Its strengths lie in the ease with which arbitrary unitary transformations
can be implemented, and the great experimental simplicity arising from
the low energy scale and long time scale of radio frequency transitions;
its weaknesses lie in the difficulty of implementing essential non-unitary
operations, most notably initialisation and measurement.

The debate over whether NMR quantum computers are “real” quantum
computers has generated much heat, but also some useful light. It is now
clear that NMR is indeed quantum mechanical, and can in principle be
used to build quantum computers, but that the current approach based on
pseudo-pure states will never lead to true quantum computing.

Current NMR techniques are not a serious candidate for real quantum
computing, but NMR remains a great technique for playing around with
small numbers of qubits. The unparalleled sophistication of NMR will al-
most certainly prove a rich source of insights which will find their ultimate
applications in other fields.

A Commutators and product operators

The product operator formalism allows the behaviour of spin systems un-
dergoing complicated NMR pulse sequences to be calculated using nothing
more that elementary trigonometry and a table of commutators. A table
of the most important commutators in a two spin system is given below.
As an example consider the element in the row labelled Ix and the column
labelled Iz; the commutator [Ix, Iz] = −iIy and this is entered in the table.
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Ix Iy Iz Sx Sy Sz 2IzSz
Ix 0 +iIz −iIy 0 0 0 −i2IySz
Iy −iIz 0 +iIx 0 0 0 +i2IxSz
Iz +iIy −iIx 0 0 0 0 0
Sx 0 0 0 0 +iSz −iSy −i2IzSy
Sy 0 0 0 −iSz 0 +iSx +i2IzSx
Sz 0 0 0 +iSy −iSx 0 0

2IxSx 0 +i2IzSx −i2IySx 0 +i2IxSz −i2IxSy 0
2IxSy 0 +i2IzSy −i2IySy −i2IxSz 0 +i2IxSx 0
2IxSz 0 +i2IzSz −i2IySz −i2IxSy +i2IxSx 0 −iIy
2IySx −i2IzSx 0 +i2IxSx 0 +2iIySz −i2IySy 0
2IySy −i2IzSy 0 +i2IxSy −i2IySz 0 +i2IySz 0
2IySz −i2IzSz 0 +i2IxSz +i2IySy −i2IySx 0 +iIx
2IzSx +i2IySx −i2IxSx 0 0 +i2IzSz −i2IzSy −iSy
2IzSy +i2IySy −i2IxSy 0 −i2IzSz 0 +i2IzSx +iSx
2IzSz +i2IySz −i2IxSz 0 +i2IzSy −i2IzSx 0 0

From this element one can immediately deduce that

Ix
θIz−→ Ix cos θ + Iy sin θ.

In the same way the next element in the table can be used to deduce that
Ix commutes with Sx, and so

Ix
θSx−→ Ix.

These rules permit easy calculation of the evolution of any state of a
two spin system under any one of the product operators found in simple
Hamiltonians, but real Hamiltonians will contain several terms at once:
for example the weak coupling Hamiltonian of a two spin system contains
terms proportional to Iz, Sz and 2IzSz. When, as in this case, the terms all
commute the situation is simple, and the total evolution can be calculated
by applying the terms sequentially in any desired order. A similar situa-
tion occurs when pulses are applied simultaneously to two or more spins:
as one-spin operators on different spins all commute the pulses can be ap-
plied separately. Note, however, that pulse Hamiltonians do not commute
with the background Hamiltonian, and it is necessary to neglect this during
pulses: this is a good approximation for short high power hard pulses. In
the same way the three components contributing to a Heisenberg coupling
(2IxSx, 2IySy, and 2IzSz) do not commute, and so the product operator ap-
proach can only be used in the weak coupling regime where the Heisenberg
coupling is truncated to the Ising (2IzSz) form.
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[46] V. Bužek and M. Hillery. Phys. Rev. A, 54:1844–1852, 1996.

[47] M. H. Levitt and R. Freeman. J. Magn. Reson., 33:473, 1979.

[48] M. H. Levitt. Prog. Nucl. Magn. Reson. Spectrosc., 18:61–122, 1986.

[49] M. D. Bowdrey, D. K. L. Oi, A. J. Short, K. Banaszek, and J. A. Jones. Phys. Lett.

A, 294:258–260, 2002.

[50] H. K. Cummins and J. A. Jones. New J. Phys., 2:1–12, 2000.

[51] S. Wimperis. J. Magn. Reson. A, 109:221–231, 1994.

[52] H. K. Cummins, G. Llewellyn, and J. A. Jones. Phys. Rev. A, 67:042308, 2003.

[53] R. Tycko. Phys. Rev. Lett., 51:775, 1983.

[54] H. K. Cummins and J. A. Jones. Contemp. Phys., 41:383–399, 2000.

[55] J. A. Jones. Phil. Trans. Roy. Soc. Lond. A, 361:1429–1440, 2003.

[56] J. A. Jones. Phys. Rev. A, 67:012317, 2003.

[57] J. A. Jones. Phys. Lett. A, 316:24–28, 2003.

[58] J. A. Jones, V. Vedral, G. Ekert, and G. Castagnoli. Nature, 403:869–871, 2000.

[59] A. Shapere and F. Wilczek, editors. Geometric Phases in Physics. World Scientific,
Singapore, 1989.

[60] M. V. Berry. Proc. Roy. Soc. Lond. A, 392:45, 1984.

[61] A. Y. Kitaev. Annals Phys., 303:2–30. E-print quant-ph/9707021.

[62] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and
I. L. Chuang. Nature, 414:883–887, 2001.

[63] M. Marjanska, I. L Chuang, and M. G. Kubinec. J. Chem. Phys., 112:5095–5099,
2000.

[64] B. M. Fung. J. Chem. Phys., 115:8044–8048, 2001.

[65] A. Schweiger and G. Jeschke. Oxford University Press, Oxford, UK, 2001.

[66] M. Mehring, J. Mende, and W. Scherer. Phys. Rev. Lett., 90:153001, 2003.

[67] B. E. Kane. Nature, 393:133–137, 1998.

[68] A. S. Verhulst, O. Liivak, M. H. Sherwood, H. Vieth, and I. L. Chuang. Appl. Phys.

Lett., 79:2480–2482, 2001.



42 The title will be set by the publisher.

[69] C. R Bowers and D. P. Weitekamp. Phys. Rev. Lett., 57:2645–2648, 1986.

[70] J. Natterer and J. Bargon. Prog. Nucl. Magn. Reson. Spectrosc., 31:293–315, 1997.

[71] S. B. Duckett and C. J. Sleigh. Prog. Nucl. Magn. Reson. Spectrosc., 34:71–92,
1999.
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