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ONE-WAY INTERVALS OF CIRCLE MAPS

LAUREN W. ANCEL AND MICHAEL W. HERO

(Communicated by James West)

Abstract. An interval in the circle S1 is one-way with respect to a map
f : S1 → S1 if under repeated applications of f all points of the interval move
in the same direction. The main result is that every locally one-way interval
is either one-way or is the union of two overlapping one-way subintervals. An
example is given which illustrates that the latter case can occur; however, it is
proved that the latter case cannot occur if the interval is covered by the image
of the map. As a corollary, it is shown that if f has periodic points, then every
interval which contains no periodic points is either one-way or is the union of
two overlapping one-way subintervals.

1. Introduction

We orient the unit circle S1 counterclockwise, which allows us to speak of the
positive and negative directions in S1. If n ≥ 3 and x1, x2, . . . , xn ∈ S1, we write
x1 < x2 < · · · < xn if x1, x2, . . . , xn are distinct points and, if moving away from
x1 in S1 in the positive direction, one encounters the points x2, x3, . . . , xn in that
order before one encounters x1 again. If in the expression x1 < x2 < · · · < xn, one
or more of the <’s are replaced by ≤’s, then let this expression have the obvious
meaning.

Let a, b be distinct points of S1. The preceding notation allows us to define
(a, b) = {x ∈ S1 : a < x < b}, [a, b] = {x ∈ S1 : a ≤ x ≤ b}, (a, b] = {x ∈ S1 : a <
x ≤ b} and [a, b) = {x ∈ S1 : a ≤ x < b}. We call (a, b) an open interval and [a, b]
a closed interval.

Let f : S1 → S1 be a map, and let J be a connected open proper subset of S1.
J is free (with respect to f) if no iterate of a point of J returns to J (i.e., for every
x ∈ J and n ≥ 1, fn(x) /∈ J). J is positive (with respect to f) if J is not free and
whenever x ∈ J and fn(x) ∈ J for some n ≥ 1, then fn(x) 6= x and (x, fn(x)) ⊂ J .
J is negative (with respect to f) if J is not free, and whenever x ∈ J and fn(x) ∈ J
for some n ≥ 1, then fn(x) 6= x and (fn(x), x) ⊂ J . J is one-way (with respect to
f) if it is either free, positive, or negative. J is locally one-way (with respect to f)
if every point of J lies in a one-way open subinterval of J .

The dynamic behavior of a map on a one-way interval is relatively uncomplicated,
because all sequences of iterates {fn(x)}∞n=1 intersect the interval in monotone
subsequences moving in the same direction. The properties of one-way intervals for
maps of the real line are studied in [1] where it is proved (in Lemma 9 on page 75
of Chapter 4) that intervals containing no periodic points are one-way. This result
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fails for maps of the circle, as we show in an example. The notion of a one-way
interval for a map of the circle is introduced in [2] where dynamic properties of
circle maps are explored. In the present paper, we continue the study of one-way
intervals for maps of the circle. Our principal results are:

Example. There is a map f : S1 → S1 and points a1 < a2 < · · · < a5 in S1 such
that the connected open subset S1 − {a1} is locally one-way (and, thus, contains
no periodic points) but is not one-way. Moreover, (a1, a4) and (a3, a1) are free, and
(a1, a5) is negative and (a2, a1) is positive.

Theorem. If f : S1 → S1 is a map and (a, d) is a locally one-way open interval
in S1, then either (a, d) is one-way or there are points b and c in (a, d) such that
a < b < c < d and (a, c) is negative and (b, d) is positive. Furthermore, if (a, d) ⊂
f(S1), then (a, d) is one-way.

Corollary 1. If f : S1 → S1 is an onto map, then every locally one-way open
interval is one-way.

Corollary 2. If f : S1 → S1 is a map with a non-empty set P of periodic points,
then at most one component of S1 − cl(P ) is not one-way. Moreover, if (a, d) is
a component of S1 − cl(P ) which is not one-way, then there are points b and c in
(a, d) such that a < b < c < d and (a, c) is negative and (b, d) is positive.

Corollary 3. If f : S1 → S1 is an onto map with a non-empty set P of periodic
points, then every component of S1 − cl(P ) is one-way.

The hypothesis that the map has periodic points in Corollaries 2 and 3 cannot
be omitted. For consider an irrational rotation of S1. It has no periodic points. So
every subinterval of S1 is free of periodic points. However, no subinterval of S1 is
one-way.

Some of the results in this paper are from the second author’s Ph.D. thesis at the
University of Wisconsin-Milwaukee. Others are from a paper submitted by the first
author to the Westinghouse Science Competition when she was a senior at Nicolet
High School in Glendale, Wisconsin.

The remainder of the paper is divided into three sections. Section 2 establishes
some lemmas used in the proof of the Theorem and its corollaries. Section 3 contains
the proofs of the Theorem and corollaries. Section 4 presents the Example.

2. Preliminary lemmas

Lemma 1. If f : S1 → S1 is a map and (a, b) is a positive open interval in S1,
then for every x ∈ (a, b), there is a y ∈ (a, b) and an n ≥ 1 such that fn(y) ∈ (x, b).

Proof. Let e : R → S1 be the exponential covering map e(t) = e2πit. We can
assume there is a z ∈ (a, b) such that a < z < fn(z) ≤ x < b. Let a′ < z′ <
x′ < b′ < a′ + 1 be points of R such that e maps a′, z′, x′, and b′ to a, z, x, and b
respectively. Let g : R → R be a map which covers fn (i.e., e◦g = fn ◦e) such that
z′ < g(z′) ≤ x′. Since f |(a, b) has no fixed points, then t < g(t) for a′ < t < b′. So
(x′, b′) ⊂ g((z′, b′)). Hence, (x, b) ⊂ fn((z, b)).

The following result is Lemma 3.2 of [2].

Lemma 2. If f : S1 → S1 is a map, and J is an open interval in S1 which contains
no periodic points and is not one-way, then

⋃∞
n=0 f

n(J) = S1.



ONE-WAY INTERVALS OF CIRCLE MAPS 1193

Lemma 3. If f : S1 → S1 is a map, (a, b) is a positive open interval in S1,
a < x < y < b and n ≥ 1, then there is an i ≥ 1 such that f in(x) /∈ (a, y].

Proof. If not, the monotone increasing sequence {f in(x)}i≥0 converges to a point
z ∈ (a, y]. It then follows that fn(z) = z, contradicting the positiveness of (a, b).

Lemma 4. If f : S1 → S1 is a map, (a, b) is a positive open interval in S1, and
c ∈ (a, b), then there is an x ∈ (c, b) such that fn([c, x])∩ [c, x] = ∅ for every n ≥ 1.

Remark. The following proof is an adaptation to the circle of part of the proof of
Proposition 6 on pages 73–74 of [1]. A more complete adaptation of this proposition
to the circle appears in [3] as Proposition 2.1.

Proof. Assume that for each x ∈ (c, b), there is an n ≥ 1 such that fn([c, x])∩[c, x] 6=
∅. We will derive a contradiction.

Since (a, b) is positive, there is an x0 ∈ (c, b) such that no iterate of c lies in
(a, x0].

Claim 1: For all j, k ≥ 1, f j(c) /∈ int(fk([c, x0])). Assume f j(c) ∈ int(fk([c, x0]))
for some j, k ≥ 1. fk([c, x0]) is a closed interval because c /∈ fk([c, x0]). Hence, there
are points z and z′ in S1 such that c < z < z′ < x0 and f j(c) ∈ int(fk([z, z′])).
The continuity of f provides a y ∈ (c, z) such that f i([c, y]) ∩ [c, x0] = ∅ for
1 ≤ i ≤ j and f j([c, y]) ⊂ int(fk([z, z′])). By hypothesis, there is an n ≥ 1
such that fn([c, y]) ∩ [c, y] 6= ∅. Then n > j, and there is a w ∈ [c, y] such that
fn(w) ∈ [c, y]. Since f j(w) ∈ fk([z, z′]), then f j(w) = fk(x) for some x ∈ [z, z′].
Therefore, fn−j+k(x) = fn(w) ∈ [c, y]. Since a < c < y < z < z′ < b, x ∈ [z, z′] and
fn−j+k(x) ∈ [c, y], we have contradicted the positiveness of (a, b). This establishes
Claim 1.

Set A = {n ≥ 1 : fn([c, x0]) ∩ [c, x0] 6= ∅}.
Claim 2: For each n ∈ A, fn([c, x0]) = [yn, d] where c < yn ≤ x0 < d; c <

yk < yj for j, k ∈ A and j < k; and {yn}n∈A converges to c. For each n ≥ 1, since
fn(c) /∈ int(fn([c, x0])), then fn(c) is one of the endpoints of the closed interval
fn([c, x0]). Let yn denote the other endpoint. For n ∈ A, since c /∈ fn([c, x0]),
fn(c) /∈ [c, x0] and fn([c, x0]) ∩ [c, x0] 6= ∅, then necessarily c < yn ≤ x0 < fn(c).
We claim that f j(c) = fk(c) for all j, k ∈ A. For if there are j, k ∈ A such that
x0 < f j(c) < fk(c), then f j(c) ∈ (yk, f

k(c)) = int(fk([c, x0])), contradicting Claim
1. Hence, there is a point d ∈ S1 such that fn(c) = d for every n ∈ A. Therefore,
c < yn ≤ x0 < d and fn([c, x0]) = [yn, d] for each n ∈ A.

Let j, k ∈ A such that j < k. We assert that c < yk < yj . For suppose c < yj ≤
yk. Then fk([c, x0]) ⊂ f j([c, x0]). It follows that the infinite union

⋃∞
n=1 f

n([c, x0])

is equal to the finite union
⋃k−1
n=1 f

n([c, x0]). Since the finite union is a closed set not
containing c, there is an x ∈ (c, x0) such that [c, x] is disjoint from

⋃∞
n=1 f

n([c, x0]).
However, by hypothesis, there is an n ≥ 1, such that [c, x] ∩ fn([c, x]) 6= ∅. Since
fn([c, x]) ⊂ fn([c, x0]), we have reached a contradiction. Our assertion follows.

If x ∈ (c, x0), then fn([c, x]) ∩ [c, x] 6= ∅ for some n ≥ 1. Since [c, x] ⊂ [c, x0], it
follows that n ∈ A and [yn, d] ∩ [c, x] 6= ∅. Consequently, yn ∈ [c, x]. This proves
{yn}n∈A converges to c, and completes Claim 2.

Set m = min{k − j : j, k ∈ A and j < k}.
Claim 3: fm((c, d]) = (c, d]. Choose i ∈ A such that i + m ∈ A, and set

S =
⋃
i≤n∈A fn([c, x0]). Then S =

⋃
i≤n∈A[yn, d]. Since c < yn < d for n ∈ A, and

since {yn}n∈A converges to c, then S = (c, d].
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We assert that {n ∈ A : n ≥ i} = {i + pm : p ≥ 0}. First let p ≥ 0. Since
i, i + m ∈ A, then Claim 2 implies f i+m([c, x0]) = [yi+m, d] ⊃ [yi, d] = f i([c, x0]).
Repeated application of fm yields f i+pm([c, x0]) ⊃ f i([c, x0]). Since f i([c, x0])
intersects [c, x0], so does f i+pm([c, x0]). Hence, i + pm ∈ A. On the other hand,
if n ∈ A and n ≥ i, then there is a p ≥ 0 such that i + pm ≤ n < i + (p + 1)m.
Then n = i + pm follows from the definition of m. This proves the assertion.
Consequently, S =

⋃∞
p=0 f

i+pm([c, x0]). Thus, fm(S) =
⋃∞
p=1 f

i+pm([c, x0]). Since

f i([c, x0]) ⊂ f i+m([c, x0]), it follows that fm(S) = S, proving Claim 3.
Since fm((c, d]) = (c, d], then fm(c) = c, contradicting the positiveness of (a, b).

Let P denote the set of periodic points of a map f : S1 → S1. Since a one-way
interval contains no periodic points, then every point of S1 which has a one-way
neighborhood lies in S1 − cl(P ). Conversely:

Lemma 5. If f : S1 → S1 is a map with a non-empty set P of periodic points,
and if a point x of S1 has no one-way neighborhood, then x ∈ cl(P ).

Proof. Assume x /∈ cl(P ). We will derive a contradiction. Lemma 2 implies that for
each open interval neighborhood J of x which is disjoint from cl(P ),

⋃∞
n=1 f

n(J)
covers S1 − J . It follows that f(S1) ⊃ S1 − {x}. Since f(S1) is a closed subset of
S1, we conclude that f is onto.

We now refer the reader to the third paragraph of the proof of Theorem A of [2].
That paragraph, with some cosmetic changes, completes the proof of the present
lemma.

3. Proof of the Theorem and corollaries

The Theorem will be derived from the following three propositions. In all three
propositions, f : S1 → S1 is a map and a < b < c < d are points of S1.

Proposition 1. If (a, c) is positive and (b, d) is one-way, then (a, d) is positive.
Also if (b, d) is negative and (a, c) is one-way, then (a, d) is negative.

Proof. Assume (a, c) is positive, (b, d) is one-way, and (a, d) is not one-way. We
will derive a contradiction.

Lemma 1 provides an x ∈ (a, c) and an m ≥ 1 such that fm(x) ∈ (b, c). Let
a′ ∈ (a, x) such that (a′, d) is not one-way. Then Lemma 2 provides a y ∈ (a′, d)
and an n ≥ 1 such that fn(y) = a′. It follows that a < fn(y) < x < fm(x) < y < d.
See Figure 1.

fm
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b

fn(y)

a

fm(x) c

y
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Figure 1
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We claim that there is an i ≥ 1 such that x < fm(x) ≤ f im(x) ≤ y < f (i+1)m(x).
If (b, d) is negative or free, then f2m(x) /∈ (a, d); and the claim follows if we set
i = 1. On the other hand, if (b, d) is positive, then Lemma 3 provides an i ≥ 1 such
that f (i−1)m(fm(x)) ⊂ (b, y] and f im(fm(x)) /∈ (b, y]; and the claim follows.

Since x /∈ f im([x, fm(x)]), then f im([x, fm(x)]) ⊃ [f im(x), f (i+1)m(x)]. Hence,
there is a z ∈ [x, fm(x)] such that f im(z) = y. See Figure 2. Therefore, f im+n(z) =
fn(y). So a < f im+n(z) < x ≤ z < c. This contradicts the positiveness of (a, c).

The situation in which (b, d) is negative and (a, c) is one-way can be transformed
into the preceding situation dealt with simply by reversing the orientation on S1.

Proposition 2. If (a, c) is free or negative, (b, d) is free or positive, and (a, d) is
not one-way, then there are points b′ in (a, b] and c′ in [c, d) such that (a, c′) is
negative and (b′, d) is positive.

Proof. Claim 1: If (a, c) is free and (b, d) is positive or free, then there is a point c′ ∈
[c, d) such that (a, c′) is negative. The union of all the one-way open subintervals
of (a, d) with left endpoint a is a one-way open interval (a, c′) where c ≤ c′ < d.
If (a, c′) is negative, we are done. If (a, c′) is positive, then (a, d) is one-way by
Proposition 1; so (a, c′) cannot be positive. Assume (a, c′) is free. There is a
point x ∈ (c′, d] such that fk([c′, x]) ∩ [c′, x] = ∅ for each k ≥ 1. (This follows
from Lemma 4 in the case that (b, d) is positive and from the freeness of (b, d)
otherwise.) Since (a, x) is not one-way, there is a y ∈ (a, x) and an m ≥ 1 such that
a < fm(y) < y < x. Since (a, c′) is free, then y ∈ (c′, x). Since (b, d) is positive,
then fm(y) ∈ (a, b]. Since (a, y) is not one-way, then Lemma 2 provides a point
z ∈ (a, y) and an n ≥ 1 such that fn(z) = y. Then z /∈ [c′, x]. Hence, z ∈ (a, c′)
and fm+n(z) = fm(y) ∈ (a, c′), contradicting the freeness of (a, c′). We conclude
that (a, c′) must be negative.

By reversing the orientation in Claim 1, we obtain:
Claim 2: If (a, c) is negative or free and (b, d) is free, then there is a point

b′ ∈ (a, b] such that (b′, d) is positive.
Clearly, an application of Claim 1, or of Claim 2, or of Claim 1 followed by Claim

2 yields a proof of Proposition 2.

Proposition 3. If (a, c) and (b, d) are one-way and (b, c) ⊂ f(S1), then (a, d) is
one-way.

Proof. By Proposition 1, we need only consider the situation in which (a, c) is
negative or free, and (b, d) is positive or free. Assume (a, d) is not one-way. We will
derive a contradiction.

Let x ∈ (b, c). Since x /∈ fn((a, x]) for every n ≥ 1, and x /∈ fn([x, d]) for every
n ≥ 1, then x /∈ fn((a, d)) for every n ≥ 1. By hypothesis, f(y) = x for some
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y ∈ S1. Lemma 2 provides a z ∈ (a, d) and an m ≥ 0 such that fm(z) = y. Hence,
x = f(y) = fm+1(z) ∈ fm+1((a, d)). We have reached a contradiction.

Proof of the Theorem. Let f : S1 → S1 be a map and let (a, d) be a locally one-way
interval in S1. Then (a, d) contains a one-way open interval (b′, c′). We enlarge
(b′, c′) to a maximal one-way open subinterval (b, c) of (a, d) by the following process.
First take the union of all the one-way open subintervals of (a, d) with right endpoint
c′ to obtain a one-way open subinterval (b, c′) of (a, d). Then take the union of all
the one-way open subintervals of (a, d) with left endpoint b to obtain a one-way
open subinterval (b, c) of (a, d).

Case 1. (b, c) is free. We prove b = a and c = d. For suppose b 6= a. Since (a, d)
is locally one-way, there is a one-way open subinterval (x, x′) of (a, d) such that
x < b < x′ < c. Since (b, c) is maximal, then Proposition 1 implies (x, x′) can’t be
positive, and Proposition 2 implies (x, x′) can’t be free or negative, a contradiction.
c = d is proved similarly. Hence, (a, d) is one-way.

Case 2. (b, c) is positive. We first prove that c = d. For if c 6= d, then there
is a one-way open subinterval (y, y′) of (a, d) such that b < y < c < y′. Then
Proposition 1 implies that (b, y′) is positive, contradicting the maximality of (b, c).

If b = a, then (a, d) is one-way and we are done. So assume b 6= a. Then there
is a one-way open subinterval (x′, x) of (a, d) such that x′ < b < x < d. Since
(b, d) is maximal, then Proposition 1 implies (x′, x) must be free or negative. Then
Proposition 2 allows us to assume (x′, x) is negative. The union of all the one-way
open subintervals of (a, d) with right endpoint x is a negative open subinterval
(x′′, x) of (a, d) which is the maximal one-way open subinterval of (a, d) with right
endpoint x. We claim that x′′ = a. For if x′′ 6= a, then there is a one-way open
subinterval (z, z′) of (a, d) such that z < x′′ < z′ < x. Then Proposition 1 implies
that (z, x) is negative, contradicting the maximality of (x′′, x). Thus, a < b < x < d
where (a, x) is negative and (b, d) is positive.

Case 3: (b, c) is negative. We can transform Case 3 to Case 2 by simply reversing
the orientation on S1.

We have now proved the first conclusion of the Theorem: either (a, d) is one-way
or there are points b and c in (a, d) such that a < b < c < d and (a, c) is negative
and (b, d) is positive.

To complete the proof of the Theorem suppose (a, d) ⊂ f(S1) and (a, d) is not
one-way. Then there are points b and c in (a, d) such that a < b < c < d and
(a, c) and (b, d) are one-way. But then Proposition 3 implies (a, d) is one-way, a
contradiction.

Corollary 1 is an obvious consequence of the Theorem.

Proof of Corollaries 2 and 3. Let f : S1 → S1 be a map with a non-empty set P of
periodic points. Lemma 5 implies that each component of S1−cl(P ) is a locally one-
way open interval. If f is onto, then by Corollary 1 each component of S1 − cl(P )
is one-way. So assume f is not onto. Since P ⊂ f(S1), then cl(P ) ⊂ f(S1). Let
x ∈ S1 − f(S1), and let (a, d) be the component of S1 − cl(P ) which contains x.
Then a, d ∈ cl(P ) ⊂ f(S1). Since f(S1) is connected and contains a and d but
not x, then [d, a] ⊂ f(S1). Hence, every component of S1 − cl(P ) except (a, d) is
contained in f(S1). Thus, every component of S1−cl(P ) with the possible exception
of (a, d) is one-way. Furthermore, by the Theorem, either (a, d) is one-way or there
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are points b and c in (a, d) such that a < b < c < d and (a, c) is negative and (b, d)
is positive.

4. The example

Let a1 < a2 < a3 < a4 < a5 be points of S1. Let f : S1 → S1 be a map such
that f([a5, a2] ∪ [a3, a4]) = {a1}, f((a2, a3)) = [a5, a1) and f((a4, a5)) = (a1, a2].
See Figure 3. It is easily verified that (a1, a4) and (a3, a1) are free, (a1, a5) is neg-
ative and (a2, a1) is positive. Thus S1 − {a1} is locally one-way but not one-way.
Moreover, S1 − {a1} is covered by two overlapping free intervals, by overlapping
negative and free intervals, by overlapping free and positive intervals, and by over-
lapping negative and positive intervals. Since S1 − {a1} is not covered by f(S1)
and is not one-way, then these four types of overlapping interval pairs (free-free,
negative-free, free-positive, and negative-positive) are the only types of overlapping
interval pairs that are allowed by the proof of the Theorem. Moreover, the phenom-
enon described in Proposition 2 is illustrated here: the free-free, negative-free and
free-positive overlapping interval pairs enlarge to a negative-positive overlapping
interval pair.

a1

a5

a4

a3

a2

f

thickened arc = f ¡1({a1})

Figure 3

References

1. L. S. Block and W. A. Coppel, Dynamics in One Dimension, Lecture Notes in Mathematics,
1513, Springer-Verlag, Berlin, 1991. MR 93g:58091

2. E. M. Coven and I. Mulvey, Transitivity and the center for maps of the circle, Ergodic Theory
and Dynamical Systems 6 (1986), 1–8. MR 87j:58074

3. M. W. Hero, A characterization of the attracting center for dynamical systems on the interval
and circle, Ph.D. Thesis, University of Wisconsin-Milwaukee, 1990.

Department of Biological Sciences, Stanford University, Stanford, California 94305

E-mail address: ancel@charles.stanford.edu

Equable Securities Corporation, 300 N. 121 Street, Milwaukee, Wisconsin 53226


