ONE-WAY INTERVALS OF CIRCLE MAPS

LAUREN W. ANCEL AND MICHAEL W. HERO

(Communicated by James West)

Abstract

An interval in the circle S^{1} is one-way with respect to a map $f: S^{1} \rightarrow S^{1}$ if under repeated applications of f all points of the interval move in the same direction. The main result is that every locally one-way interval is either one-way or is the union of two overlapping one-way subintervals. An example is given which illustrates that the latter case can occur; however, it is proved that the latter case cannot occur if the interval is covered by the image of the map. As a corollary, it is shown that if f has periodic points, then every interval which contains no periodic points is either one-way or is the union of two overlapping one-way subintervals.

1. Introduction

We orient the unit circle S^{1} counterclockwise, which allows us to speak of the positive and negative directions in S^{1}. If $n \geq 3$ and $x_{1}, x_{2}, \ldots, x_{n} \in S^{1}$, we write $x_{1}<x_{2}<\cdots<x_{n}$ if $x_{1}, x_{2}, \ldots, x_{n}$ are distinct points and, if moving away from x_{1} in S^{1} in the positive direction, one encounters the points $x_{2}, x_{3}, \ldots, x_{n}$ in that order before one encounters x_{1} again. If in the expression $x_{1}<x_{2}<\cdots<x_{n}$, one or more of the $<$'s are replaced by \leq 's, then let this expression have the obvious meaning.

Let a, b be distinct points of S^{1}. The preceding notation allows us to define $(a, b)=\left\{x \in S^{1}: a<x<b\right\},[a, b]=\left\{x \in S^{1}: a \leq x \leq b\right\},(a, b]=\left\{x \in S^{1}: a<\right.$ $x \leq b\}$ and $[a, b)=\left\{x \in S^{1}: a \leq x<b\right\}$. We call (a, b) an open interval and $[a, b]$ a closed interval.

Let $f: S^{1} \rightarrow S^{1}$ be a map, and let J be a connected open proper subset of S^{1}. J is free (with respect to f) if no iterate of a point of J returns to J (i.e., for every $x \in J$ and $\left.n \geq 1, f^{n}(x) \notin J\right)$. J is positive (with respect to f) if J is not free and whenever $x \in J$ and $f^{n}(x) \in J$ for some $n \geq 1$, then $f^{n}(x) \neq x$ and $\left(x, f^{n}(x)\right) \subset J$. J is negative (with respect to f) if J is not free, and whenever $x \in J$ and $f^{n}(x) \in J$ for some $n \geq 1$, then $f^{n}(x) \neq x$ and $\left(f^{n}(x), x\right) \subset J . J$ is one-way (with respect to $f)$ if it is either free, positive, or negative. J is locally one-way (with respect to f) if every point of J lies in a one-way open subinterval of J.

The dynamic behavior of a map on a one-way interval is relatively uncomplicated, because all sequences of iterates $\left\{f_{n}(x)\right\}_{n=1}^{\infty}$ intersect the interval in monotone subsequences moving in the same direction. The properties of one-way intervals for maps of the real line are studied in [1] where it is proved (in Lemma 9 on page 75 of Chapter 4) that intervals containing no periodic points are one-way. This result

[^0]fails for maps of the circle, as we show in an example. The notion of a one-way interval for a map of the circle is introduced in [2] where dynamic properties of circle maps are explored. In the present paper, we continue the study of one-way intervals for maps of the circle. Our principal results are:

Example. There is a map $f: S^{1} \rightarrow S^{1}$ and points $a_{1}<a_{2}<\cdots<a_{5}$ in S^{1} such that the connected open subset $S^{1}-\left\{a_{1}\right\}$ is locally one-way (and, thus, contains no periodic points) but is not one-way. Moreover, $\left(a_{1}, a_{4}\right)$ and $\left(a_{3}, a_{1}\right)$ are free, and $\left(a_{1}, a_{5}\right)$ is negative and $\left(a_{2}, a_{1}\right)$ is positive.
Theorem. If $f: S^{1} \rightarrow S^{1}$ is a map and (a, d) is a locally one-way open interval in S^{1}, then either (a, d) is one-way or there are points b and c in (a, d) such that $a<b<c<d$ and (a, c) is negative and (b, d) is positive. Furthermore, if $(a, d) \subset$ $f\left(S^{1}\right)$, then (a, d) is one-way.

Corollary 1. If $f: S^{1} \rightarrow S^{1}$ is an onto map, then every locally one-way open interval is one-way.

Corollary 2. If $f: S^{1} \rightarrow S^{1}$ is a map with a non-empty set P of periodic points, then at most one component of $S^{1}-\operatorname{cl}(P)$ is not one-way. Moreover, if (a, d) is a component of $S^{1}-\operatorname{cl}(P)$ which is not one-way, then there are points b and c in (a, d) such that $a<b<c<d$ and (a, c) is negative and (b, d) is positive.
Corollary 3. If $f: S^{1} \rightarrow S^{1}$ is an onto map with a non-empty set P of periodic points, then every component of $S^{1}-\operatorname{cl}(P)$ is one-way.

The hypothesis that the map has periodic points in Corollaries 2 and 3 cannot be omitted. For consider an irrational rotation of S^{1}. It has no periodic points. So every subinterval of S^{1} is free of periodic points. However, no subinterval of S^{1} is one-way.

Some of the results in this paper are from the second author's Ph.D. thesis at the University of Wisconsin-Milwaukee. Others are from a paper submitted by the first author to the Westinghouse Science Competition when she was a senior at Nicolet High School in Glendale, Wisconsin.

The remainder of the paper is divided into three sections. Section 2 establishes some lemmas used in the proof of the Theorem and its corollaries. Section 3 contains the proofs of the Theorem and corollaries. Section 4 presents the Example.

2. Preliminary lemmas

Lemma 1. If $f: S^{1} \rightarrow S^{1}$ is a map and (a, b) is a positive open interval in S^{1}, then for every $x \in(a, b)$, there is $a y \in(a, b)$ and an $n \geq 1$ such that $f^{n}(y) \in(x, b)$.
Proof. Let $e: \mathbb{R} \rightarrow S^{1}$ be the exponential covering map $e(t)=e^{2 \pi i t}$. We can assume there is a $z \in(a, b)$ such that $a<z<f^{n}(z) \leq x<b$. Let $a^{\prime}<z^{\prime}<$ $x^{\prime}<b^{\prime}<a^{\prime}+1$ be points of \mathbb{R} such that e maps $a^{\prime}, z^{\prime}, x^{\prime}$, and b^{\prime} to a, z, x, and b respectively. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a map which covers f^{n} (i.e., $e \circ g=f^{n} \circ e$) such that $z^{\prime}<g\left(z^{\prime}\right) \leq x^{\prime}$. Since $f \mid(a, b)$ has no fixed points, then $t<g(t)$ for $a^{\prime}<t<b^{\prime}$. So $\left(x^{\prime}, b^{\prime}\right) \subset g\left(\left(z^{\prime}, b^{\prime}\right)\right)$. Hence, $(x, b) \subset f^{n}((z, b))$.

The following result is Lemma 3.2 of [2].
Lemma 2. If $f: S^{1} \rightarrow S^{1}$ is a map, and J is an open interval in S^{1} which contains no periodic points and is not one-way, then $\bigcup_{n=0}^{\infty} f^{n}(J)=S^{1}$.

Lemma 3. If $f: S^{1} \rightarrow S^{1}$ is a map, (a, b) is a positive open interval in S^{1}, $a<x<y<b$ and $n \geq 1$, then there is an $i \geq 1$ such that $f^{i n}(x) \notin(a, y]$.

Proof. If not, the monotone increasing sequence $\left\{f^{i n}(x)\right\}_{i \geq 0}$ converges to a point $z \in(a, y]$. It then follows that $f^{n}(z)=z$, contradicting the positiveness of (a, b).

Lemma 4. If $f: S^{1} \rightarrow S^{1}$ is a map, (a, b) is a positive open interval in S^{1}, and $c \in(a, b)$, then there is an $x \in(c, b)$ such that $f^{n}([c, x]) \cap[c, x]=\varnothing$ for every $n \geq 1$.

Remark. The following proof is an adaptation to the circle of part of the proof of Proposition 6 on pages $73-74$ of [1]. A more complete adaptation of this proposition to the circle appears in [3] as Proposition 2.1.

Proof. Assume that for each $x \in(c, b)$, there is an $n \geq 1$ such that $f^{n}([c, x]) \cap[c, x] \neq$ \varnothing. We will derive a contradiction.

Since (a, b) is positive, there is an $x_{0} \in(c, b)$ such that no iterate of c lies in (a, x_{0}].

Claim 1: For all $j, k \geq 1, f^{j}(c) \notin \operatorname{int}\left(f^{k}\left(\left[c, x_{0}\right]\right)\right)$. Assume $f^{j}(c) \in \operatorname{int}\left(f^{k}\left(\left[c, x_{0}\right]\right)\right)$ for some $j, k \geq 1$. $f^{k}\left(\left[c, x_{0}\right]\right)$ is a closed interval because $c \notin f^{k}\left(\left[c, x_{0}\right]\right)$. Hence, there are points z and z^{\prime} in S^{1} such that $c<z<z^{\prime}<x_{0}$ and $f^{j}(c) \in \operatorname{int}\left(f^{k}\left(\left[z, z^{\prime}\right]\right)\right)$. The continuity of f provides a $y \in(c, z)$ such that $f^{i}([c, y]) \cap\left[c, x_{0}\right]=\varnothing$ for $1 \leq i \leq j$ and $f^{j}([c, y]) \subset \operatorname{int}\left(f^{k}\left(\left[z, z^{\prime}\right]\right)\right)$. By hypothesis, there is an $n \geq 1$ such that $f^{n}([c, y]) \cap[c, y] \neq \varnothing$. Then $n>j$, and there is a $w \in[c, y]$ such that $f^{n}(w) \in[c, y]$. Since $f^{j}(w) \in f^{k}\left(\left[z, z^{\prime}\right]\right)$, then $f^{j}(w)=f^{k}(x)$ for some $x \in\left[z, z^{\prime}\right]$. Therefore, $f^{n-j+k}(x)=f^{n}(w) \in[c, y]$. Since $a<c<y<z<z^{\prime}<b, x \in\left[z, z^{\prime}\right]$ and $f^{n-j+k}(x) \in[c, y]$, we have contradicted the positiveness of (a, b). This establishes Claim 1.

Set $A=\left\{n \geq 1: f^{n}\left(\left[c, x_{0}\right]\right) \cap\left[c, x_{0}\right] \neq \varnothing\right\}$.
Claim 2: For each $n \in A, f^{n}\left(\left[c, x_{0}\right]\right)=\left[y_{n}, d\right]$ where $c<y_{n} \leq x_{0}<d ; c<$ $y_{k}<y_{j}$ for $j, k \in A$ and $j<k$; and $\left\{y_{n}\right\}_{n \in A}$ converges to c. For each $n \geq 1$, since $f^{n}(c) \notin \operatorname{int}\left(f^{n}\left(\left[c, x_{0}\right]\right)\right)$, then $f^{n}(c)$ is one of the endpoints of the closed interval $f^{n}\left(\left[c, x_{0}\right]\right)$. Let y_{n} denote the other endpoint. For $n \in A$, since $c \notin f^{n}\left(\left[c, x_{0}\right]\right)$, $f^{n}(c) \notin\left[c, x_{0}\right]$ and $f^{n}\left(\left[c, x_{0}\right]\right) \cap\left[c, x_{0}\right] \neq \varnothing$, then necessarily $c<y_{n} \leq x_{0}<f^{n}(c)$. We claim that $f^{j}(c)=f^{k}(c)$ for all $j, k \in A$. For if there are $j, k \in A$ such that $x_{0}<f^{j}(c)<f^{k}(c)$, then $f^{j}(c) \in\left(y_{k}, f^{k}(c)\right)=\operatorname{int}\left(f^{k}\left(\left[c, x_{0}\right]\right)\right)$, contradicting Claim 1. Hence, there is a point $d \in S^{1}$ such that $f^{n}(c)=d$ for every $n \in A$. Therefore, $c<y_{n} \leq x_{0}<d$ and $f^{n}\left(\left[c, x_{0}\right]\right)=\left[y_{n}, d\right]$ for each $n \in A$.

Let $j, k \in A$ such that $j<k$. We assert that $c<y_{k}<y_{j}$. For suppose $c<y_{j} \leq$ y_{k}. Then $f^{k}\left(\left[c, x_{0}\right]\right) \subset f^{j}\left(\left[c, x_{0}\right]\right)$. It follows that the infinite union $\bigcup_{n=1}^{\infty} f^{n}\left(\left[c, x_{0}\right]\right)$ is equal to the finite union $\bigcup_{n=1}^{k-1} f^{n}\left(\left[c, x_{0}\right]\right)$. Since the finite union is a closed set not containing c, there is an $x \in\left(c, x_{0}\right)$ such that $[c, x]$ is disjoint from $\bigcup_{n=1}^{\infty} f^{n}\left(\left[c, x_{0}\right]\right)$. However, by hypothesis, there is an $n \geq 1$, such that $[c, x] \cap f^{n}([c, x]) \neq \varnothing$. Since $f^{n}([c, x]) \subset f^{n}\left(\left[c, x_{0}\right]\right)$, we have reached a contradiction. Our assertion follows.

If $x \in\left(c, x_{0}\right)$, then $f^{n}([c, x]) \cap[c, x] \neq \varnothing$ for some $n \geq 1$. Since $[c, x] \subset\left[c, x_{0}\right]$, it follows that $n \in A$ and $\left[y_{n}, d\right] \cap[c, x] \neq \varnothing$. Consequently, $y_{n} \in[c, x]$. This proves $\left\{y_{n}\right\}_{n \in A}$ converges to c, and completes Claim 2.

Set $m=\min \{k-j: j, k \in A$ and $j<k\}$.
Claim 3: $f^{m}((c, d])=(c, d]$. Choose $i \in A$ such that $i+m \in A$, and set $S=\bigcup_{i \leq n \in A} f^{n}\left(\left[c, x_{0}\right]\right)$. Then $S=\bigcup_{i \leq n \in A}\left[y_{n}, d\right]$. Since $c<y_{n}<d$ for $n \in A$, and since $\left\{y_{n}\right\}_{n \in A}$ converges to c, then $S=(c, d]$.

We assert that $\{n \in A: n \geq i\}=\{i+p m: p \geq 0\}$. First let $p \geq 0$. Since $i, i+m \in A$, then Claim 2 implies $f^{i+m}\left(\left[c, x_{0}\right]\right)=\left[y_{i+m}, d\right] \supset\left[y_{i}, d\right]=f^{i}\left(\left[c, x_{0}\right]\right)$. Repeated application of f^{m} yields $f^{i+p m}\left(\left[c, x_{0}\right]\right) \supset f^{i}\left(\left[c, x_{0}\right]\right)$. Since $f^{i}\left(\left[c, x_{0}\right]\right)$ intersects $\left[c, x_{0}\right]$, so does $f^{i+p m}\left(\left[c, x_{0}\right]\right)$. Hence, $i+p m \in A$. On the other hand, if $n \in A$ and $n \geq i$, then there is a $p \geq 0$ such that $i+p m \leq n<i+(p+1) m$. Then $n=i+p m$ follows from the definition of m. This proves the assertion. Consequently, $S=\bigcup_{p=0}^{\infty} f^{i+p m}\left(\left[c, x_{0}\right]\right)$. Thus, $f^{m}(S)=\bigcup_{p=1}^{\infty} f^{i+p m}\left(\left[c, x_{0}\right]\right)$. Since $f^{i}\left(\left[c, x_{0}\right]\right) \subset f^{i+m}\left(\left[c, x_{0}\right]\right)$, it follows that $f^{m}(S)=S$, proving Claim 3.

Since $f^{m}((c, d])=(c, d]$, then $f^{m}(c)=c$, contradicting the positiveness of (a, b).

Let P denote the set of periodic points of a map $f: S^{1} \rightarrow S^{1}$. Since a one-way interval contains no periodic points, then every point of S^{1} which has a one-way neighborhood lies in $S^{1}-\operatorname{cl}(P)$. Conversely:
Lemma 5. If $f: S^{1} \rightarrow S^{1}$ is a map with a non-empty set P of periodic points, and if a point x of S^{1} has no one-way neighborhood, then $x \in \operatorname{cl}(P)$.
Proof. Assume $x \notin \mathrm{cl}(P)$. We will derive a contradiction. Lemma 2 implies that for each open interval neighborhood J of x which is disjoint from $\operatorname{cl}(P), \bigcup_{n=1}^{\infty} f^{n}(J)$ covers $S^{1}-J$. It follows that $f\left(S^{1}\right) \supset S^{1}-\{x\}$. Since $f\left(S^{1}\right)$ is a closed subset of S^{1}, we conclude that f is onto.

We now refer the reader to the third paragraph of the proof of Theorem A of [2]. That paragraph, with some cosmetic changes, completes the proof of the present lemma.

3. Proof of the Theorem and corollaries

The Theorem will be derived from the following three propositions. In all three propositions, $f: S^{1} \rightarrow S^{1}$ is a map and $a<b<c<d$ are points of S^{1}.

Proposition 1. If (a, c) is positive and (b, d) is one-way, then (a, d) is positive. Also if (b, d) is negative and (a, c) is one-way, then (a, d) is negative.
Proof. Assume (a, c) is positive, (b, d) is one-way, and (a, d) is not one-way. We will derive a contradiction.

Lemma 1 provides an $x \in(a, c)$ and an $m \geq 1$ such that $f^{m}(x) \in(b, c)$. Let $a^{\prime} \in(a, x)$ such that $\left(a^{\prime}, d\right)$ is not one-way. Then Lemma 2 provides a $y \in\left(a^{\prime}, d\right)$ and an $n \geq 1$ such that $f^{n}(y)=a^{\prime}$. It follows that $a<f^{n}(y)<x<f^{m}(x)<y<d$. See Figure 1.

Figure 1

Figure 2

We claim that there is an $i \geq 1$ such that $x<f^{m}(x) \leq f^{i m}(x) \leq y<f^{(i+1) m}(x)$. If (b, d) is negative or free, then $f^{2 m}(x) \notin(a, d)$; and the claim follows if we set $i=1$. On the other hand, if (b, d) is positive, then Lemma 3 provides an $i \geq 1$ such that $f^{(i-1) m}\left(f^{m}(x)\right) \subset(b, y]$ and $f^{i m}\left(f^{m}(x)\right) \notin(b, y]$; and the claim follows.

Since $x \notin f^{i m}\left(\left[x, f^{m}(x)\right]\right)$, then $f^{i m}\left(\left[x, f^{m}(x)\right]\right) \supset\left[f^{i m}(x), f^{(i+1) m}(x)\right]$. Hence, there is a $z \in\left[x, f^{m}(x)\right]$ such that $f^{i m}(z)=y$. See Figure 2. Therefore, $f^{i m+n}(z)=$ $f^{n}(y)$. So $a<f^{i m+n}(z)<x \leq z<c$. This contradicts the positiveness of (a, c).

The situation in which (b, d) is negative and (a, c) is one-way can be transformed into the preceding situation dealt with simply by reversing the orientation on S^{1}.

Proposition 2. If (a, c) is free or negative, (b, d) is free or positive, and (a, d) is not one-way, then there are points b^{\prime} in $(a, b]$ and c^{\prime} in $[c, d)$ such that $\left(a, c^{\prime}\right)$ is negative and $\left(b^{\prime}, d\right)$ is positive.

Proof. Claim 1: If (a, c) is free and (b, d) is positive or free, then there is a point $c^{\prime} \in$ $[c, d)$ such that $\left(a, c^{\prime}\right)$ is negative. The union of all the one-way open subintervals of (a, d) with left endpoint a is a one-way open interval $\left(a, c^{\prime}\right)$ where $c \leq c^{\prime}<d$. If $\left(a, c^{\prime}\right)$ is negative, we are done. If $\left(a, c^{\prime}\right)$ is positive, then (a, d) is one-way by Proposition 1; so (a, c^{\prime}) cannot be positive. Assume $\left(a, c^{\prime}\right)$ is free. There is a point $x \in\left(c^{\prime}, d\right]$ such that $f^{k}\left(\left[c^{\prime}, x\right]\right) \cap\left[c^{\prime}, x\right]=\varnothing$ for each $k \geq 1$. (This follows from Lemma 4 in the case that (b, d) is positive and from the freeness of (b, d) otherwise.) Since (a, x) is not one-way, there is a $y \in(a, x)$ and an $m \geq 1$ such that $a<f^{m}(y)<y<x$. Since $\left(a, c^{\prime}\right)$ is free, then $y \in\left(c^{\prime}, x\right)$. Since (b, d) is positive, then $f^{m}(y) \in(a, b]$. Since (a, y) is not one-way, then Lemma 2 provides a point $z \in(a, y)$ and an $n \geq 1$ such that $f^{n}(z)=y$. Then $z \notin\left[c^{\prime}, x\right]$. Hence, $z \in\left(a, c^{\prime}\right)$ and $f^{m+n}(z)=f^{m}(y) \in\left(a, c^{\prime}\right)$, contradicting the freeness of $\left(a, c^{\prime}\right)$. We conclude that (a, c^{\prime}) must be negative.

By reversing the orientation in Claim 1, we obtain:
Claim 2: If (a, c) is negative or free and (b, d) is free, then there is a point $b^{\prime} \in(a, b]$ such that $\left(b^{\prime}, d\right)$ is positive.

Clearly, an application of Claim 1, or of Claim 2, or of Claim 1 followed by Claim 2 yields a proof of Proposition 2.

Proposition 3. If (a, c) and (b, d) are one-way and $(b, c) \subset f\left(S^{1}\right)$, then (a, d) is one-way.

Proof. By Proposition 1, we need only consider the situation in which (a, c) is negative or free, and (b, d) is positive or free. Assume (a, d) is not one-way. We will derive a contradiction.

Let $x \in(b, c)$. Since $x \notin f^{n}((a, x])$ for every $n \geq 1$, and $x \notin f^{n}([x, d])$ for every $n \geq 1$, then $x \notin f^{n}((a, d))$ for every $n \geq 1$. By hypothesis, $f(y)=x$ for some
$y \in S^{1}$. Lemma 2 provides a $z \in(a, d)$ and an $m \geq 0$ such that $f^{m}(z)=y$. Hence, $x=f(y)=f^{m+1}(z) \in f^{m+1}((a, d))$. We have reached a contradiction.

Proof of the Theorem. Let $f: S^{1} \rightarrow S^{1}$ be a map and let (a, d) be a locally one-way interval in S^{1}. Then (a, d) contains a one-way open interval $\left(b^{\prime}, c^{\prime}\right)$. We enlarge $\left(b^{\prime}, c^{\prime}\right)$ to a maximal one-way open subinterval (b, c) of (a, d) by the following process. First take the union of all the one-way open subintervals of (a, d) with right endpoint c^{\prime} to obtain a one-way open subinterval $\left(b, c^{\prime}\right)$ of (a, d). Then take the union of all the one-way open subintervals of (a, d) with left endpoint b to obtain a one-way open subinterval (b, c) of (a, d).

Case 1. (b, c) is free. We prove $b=a$ and $c=d$. For suppose $b \neq a$. Since (a, d) is locally one-way, there is a one-way open subinterval $\left(x, x^{\prime}\right)$ of (a, d) such that $x<b<x^{\prime}<c$. Since (b, c) is maximal, then Proposition 1 implies (x, x^{\prime}) can't be positive, and Proposition 2 implies (x, x^{\prime}) can't be free or negative, a contradiction. $c=d$ is proved similarly. Hence, (a, d) is one-way.

Case 2. (b, c) is positive. We first prove that $c=d$. For if $c \neq d$, then there is a one-way open subinterval $\left(y, y^{\prime}\right)$ of (a, d) such that $b<y<c<y^{\prime}$. Then Proposition 1 implies that $\left(b, y^{\prime}\right)$ is positive, contradicting the maximality of (b, c).

If $b=a$, then (a, d) is one-way and we are done. So assume $b \neq a$. Then there is a one-way open subinterval $\left(x^{\prime}, x\right)$ of (a, d) such that $x^{\prime}<b<x<d$. Since (b, d) is maximal, then Proposition 1 implies $\left(x^{\prime}, x\right)$ must be free or negative. Then Proposition 2 allows us to assume $\left(x^{\prime}, x\right)$ is negative. The union of all the one-way open subintervals of (a, d) with right endpoint x is a negative open subinterval $\left(x^{\prime \prime}, x\right)$ of (a, d) which is the maximal one-way open subinterval of (a, d) with right endpoint x. We claim that $x^{\prime \prime}=a$. For if $x^{\prime \prime} \neq a$, then there is a one-way open subinterval $\left(z, z^{\prime}\right)$ of (a, d) such that $z<x^{\prime \prime}<z^{\prime}<x$. Then Proposition 1 implies that (z, x) is negative, contradicting the maximality of ($x^{\prime \prime}, x$). Thus, $a<b<x<d$ where (a, x) is negative and (b, d) is positive.

Case 3: (b, c) is negative. We can transform Case 3 to Case 2 by simply reversing the orientation on S^{1}.

We have now proved the first conclusion of the Theorem: either (a, d) is one-way or there are points b and c in (a, d) such that $a<b<c<d$ and (a, c) is negative and (b, d) is positive.

To complete the proof of the Theorem suppose $(a, d) \subset f\left(S^{1}\right)$ and (a, d) is not one-way. Then there are points b and c in (a, d) such that $a<b<c<d$ and (a, c) and (b, d) are one-way. But then Proposition 3 implies (a, d) is one-way, a contradiction.

Corollary 1 is an obvious consequence of the Theorem.
Proof of Corollaries 2 and 3. Let $f: S^{1} \rightarrow S^{1}$ be a map with a non-empty set P of periodic points. Lemma 5 implies that each component of $S^{1}-\operatorname{cl}(P)$ is a locally oneway open interval. If f is onto, then by Corollary 1 each component of $S^{1}-\operatorname{cl}(P)$ is one-way. So assume f is not onto. Since $P \subset f\left(S^{1}\right)$, then $\operatorname{cl}(P) \subset f\left(S^{1}\right)$. Let $x \in S^{1}-f\left(S^{1}\right)$, and let (a, d) be the component of $S^{1}-\operatorname{cl}(P)$ which contains x. Then $a, d \in \operatorname{cl}(P) \subset f\left(S^{1}\right)$. Since $f\left(S^{1}\right)$ is connected and contains a and d but not x, then $[d, a] \subset f\left(S^{1}\right)$. Hence, every component of $S^{1}-\operatorname{cl}(P)$ except (a, d) is contained in $f\left(S^{1}\right)$. Thus, every component of $S^{1}-\mathrm{cl}(P)$ with the possible exception of (a, d) is one-way. Furthermore, by the Theorem, either (a, d) is one-way or there
are points b and c in (a, d) such that $a<b<c<d$ and (a, c) is negative and (b, d) is positive.

4. The example

Let $a_{1}<a_{2}<a_{3}<a_{4}<a_{5}$ be points of S^{1}. Let $f: S^{1} \rightarrow S^{1}$ be a map such that $f\left(\left[a_{5}, a_{2}\right] \cup\left[a_{3}, a_{4}\right]\right)=\left\{a_{1}\right\}, f\left(\left(a_{2}, a_{3}\right)\right)=\left[a_{5}, a_{1}\right)$ and $f\left(\left(a_{4}, a_{5}\right)\right)=\left(a_{1}, a_{2}\right]$. See Figure 3. It is easily verified that $\left(a_{1}, a_{4}\right)$ and $\left(a_{3}, a_{1}\right)$ are free, $\left(a_{1}, a_{5}\right)$ is negative and $\left(a_{2}, a_{1}\right)$ is positive. Thus $S^{1}-\left\{a_{1}\right\}$ is locally one-way but not one-way. Moreover, $S^{1}-\left\{a_{1}\right\}$ is covered by two overlapping free intervals, by overlapping negative and free intervals, by overlapping free and positive intervals, and by overlapping negative and positive intervals. Since $S^{1}-\left\{a_{1}\right\}$ is not covered by $f\left(S^{1}\right)$ and is not one-way, then these four types of overlapping interval pairs (free-free, negative-free, free-positive, and negative-positive) are the only types of overlapping interval pairs that are allowed by the proof of the Theorem. Moreover, the phenomenon described in Proposition 2 is illustrated here: the free-free, negative-free and free-positive overlapping interval pairs enlarge to a negative-positive overlapping interval pair.

Figure 3

References

1. L. S. Block and W. A. Coppel, Dynamics in One Dimension, Lecture Notes in Mathematics, 1513, Springer-Verlag, Berlin, 1991. MR 93g:58091
2. E. M. Coven and I. Mulvey, Transitivity and the center for maps of the circle, Ergodic Theory and Dynamical Systems 6 (1986), 1-8. MR 87j:58074
3. M. W. Hero, A characterization of the attracting center for dynamical systems on the interval and circle, Ph.D. Thesis, University of Wisconsin-Milwaukee, 1990.

Department of Biological Sciences, Stanford University, Stanford, California 94305
E-mail address: ancel@charles.stanford.edu
Equable Securities Corporation, 300 N. 121 Street, Milwaukee, Wisconsin 53226

[^0]: Received by the editors January 31, 1995 and, in revised form, January 10, 1996.
 1991 Mathematics Subject Classification. Primary 54H20, 34C35, 58F03.

