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ABSTRACT
Programmers have long used assertions to characterize properties
of code. An assertion violation signals a corruption in the program
state. At such a state, it is standard to terminate the program, debug
it if possible, and re-execute it. We propose a new view: instead
of terminating the program, use the violated assertion as a basis of
repairing the state of the program and let it continue.

We present a novel algorithm to repair complex data structures.
Given a structure that violates an assertion that represents its in-
tegrity constraints, our algorithm performs a systematic search based
on symbolic execution to repair the structure, i.e., mutate it such
that the resulting structure satisfies the given constraints. Heuris-
tics to prune search and minimize mutations enable efficient and
effective repair.

Experiments using libraries and applications, such as a naming
architecture and a database engine, show that our prototype effi-
ciently repairs complex structures while enabling systems to re-
cover from potentially crippling errors.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Symbolic
execution; D.2.5 [Software Engineering]: Testing and Debugging—
Error handling and recovery

General Terms
Reliability, Verification

Keywords
Data structure repair, Assertion-driven development, Symbolic ex-
ecution, Systematic search, Error recovery

1. INTRODUCTION
Software systems are steadily growing in complexity and size.

At the same time, reliability is becoming a more and more vital
concern. A commonly used methodology to develop reliable soft-
ware is software verification, which aims at detecting bugs and in
some cases showing their absence.
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Several verification techniques are based on the use of specifi-
cations. A form of specification that programmers use routinely is
assertions—statements that evaluate boolean expressions that rep-
resent desired properties. If an assertion evaluates to false at run-
time, the program is deemed to have reached an erroneous state.

Errors—however seemingly innocuous—in a program state, if
left untreated, can have serious consequences. The standard ap-
proach when an error is detected at runtime, is to terminate the
program, debug it if possible, and re-execute it. An alternative to
program termination is repair [10, 17, 28]: instead of terminating
the program, repair its state and let it continue. The aim of repair
is to generate a state that allows the program to recover on-the-fly
from an erroneous state and resume its operation.

1.1 Assertion-based repair
We present a new repair technique: assertion-based repair, which

uses a violated assertion as the basis of performing repair. We
present an algorithm that takes as inputs (1) an assertion that de-
scribes what properties the program state must satisfy and (2) a
state that violates them, and generates a new state that satisfies
the desired properties. Our repair algorithm performs a system-
atic state-space exploration of a neighborhood of the given state
and uses symbolic execution [25] as well as heuristics to perform
efficient and effective repair.

We focus on repairing structurally complex data, which pervade
object-oriented languages and are characterized by class invariants
that represent structural integrity constraints. Good programming
practice advocates the use of class invariants in assertions, by writ-
ing the invariants as predicates, often named repOk, which return
true if and only if their input satisfies its constraints [26].

Given a repOk predicate and a structure that violates the con-
straints, our algorithm performs repair actions that mutate the given
structure so that it satisfies the constraints. For efficient and effec-
tive repair, we employ (1) pruning techniques based on our previous
work on the Korat framework for assertion-based testing [3]; (2)
decision procedures for primitive data [24]; and (3) heuristics, such
as limiting the number of repairs when exploring field assignments.
To solve the path conditions that arise during symbolic execution,
we implement a solver for difference constraints [13], and use the
automatic theorem prover CVC Lite [2] for more complex ones. To
enable effective repair, we employ the following heuristic: preserve
reachability from the structure’s root, as much as possible.

We have implemented our repair algorithm and evaluated its ef-
ficiency on repairing a variety of structurally complex subjects, in-
cluding library classes from the Java Collection Framework [31]
as well as stand-alone applications, such as an intentional naming
architecture for dynamic networks [1] and a database engine [32].

Experimental results show that our prototype efficiently and ef-
fectively repairs corrupt structures with a small number of errors
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and up to a few thousand objects. In addition to repairing a corrupt
structure, our framework provides feedback to the user to point out
the fields that were repaired and an abstraction of the state of the
structures before and after repair.

Assertion-based repair enables a unified framework for software
verification and resilient computing—two methodologies that tra-
ditionally have employed very different algorithms for software re-
liability. For example, using Korat in conjunction with our repair
framework, a program annotated with assertions is (1) systemati-
cally tested before deployment and (2) trusted to execute without
corruption once deployed—using the very same assertions. The
unification has the potential to make a profound impact on im-
proving the quality of software by providing software verification
and resilient computing together at the cost of writing assertions—
which programmers are already familiar with.

We first introduced the idea of assertion-based repair in a work-
shop paper [22]. This paper builds on our previous work (Section 2)
and makes the following contributions:

• Algorithm Our algorithm repairs complex structures using
assertions that state what properties a valid structure should
have and are written in the programming language itself, and
handles all of the Java data-types. Our use of symbolic exe-
cution is non-conventional.

• Heuristics Our algorithm deploys various heuristics that en-
able efficient and effective repair.

• Abstractions (1) We abstract the repair to report a log, which
summarizes the repair actions and can assist with debugging
and (2) we allow abstraction functions to compare states be-
fore and after repair.

• Implementation We have implemented a repair framework
for Java programs. Our framework repairs Java data struc-
tures and uses the CVC Lite theorem prover.

• Evaluation Experiments using a variety of subjects, includ-
ing two stand-alone applications, show that it is feasible to
efficiently repair complex structures.

2. RELATED WORK
Repair is not a new idea in the context of fault-tolerance and er-

ror recovery; developers have been incorporating dedicated repair
routines in software systems for a couple of decades. File system
utilities, such as fsck and chkdsk, routinely check and correct
the underlying file structure. Some commercially developed sys-
tems, such as the IBM MVS operating system [28] and the Lucent
5ESS telephone switch [17], have provided routines for monitoring
and maintaining properties of their data structures. These routines,
however, do not perform repair using a description of the data struc-
ture constraints, but implement special algorithms that can only re-
pair specific data structures.

The use of structural integrity constraints to perform repair is rel-
atively new. Demsky and Rinard [10, 12] present a framework that
repairs based on constraints written in a new declarative language
that is similar to the first-order relational language Alloy [21]. Re-
pair is performed by translating the constraints to disjunctive nor-
mal form and solving them using an ad hoc search. To help the
user formulate constraints, they have explored [11] integrating re-
pair with Daikon’s dynamic invariant generation [14].

Checkpointing and roll-back are standard database mechanisms
to recover data to the last known good state. DIRA [30] adapts
these mechanisms to detect buffer overflow attacks and repair the

structures damaged by the attack. While such mechanisms provide
protection against attacks and erroneous interactions with the envi-
ronment, they cannot correct the behavior of a buggy program.

Runtime verification (RV) [18] allows synthesizing monitors from
specifications for debugging as well as checking safety properties
at run-time. Monitoring-oriented programming (MOP) [5] gener-
alizes RV by supporting logic plug-ins that allow users to specify
both monitor deployment and error recovery. Our repair mecha-
nism enables MOP to provide automatic default error recovery.

A heuristic we use during repair is to bound the number of repair
actions to be performed and iteratively increase the bound (Sec-
tion 4.2). Such bounded searches are prevalent in AI. They are also
gaining popularity in the software verification community. For ex-
ample, beam search has shown to work efficiently in finding dead-
locks using the Java Pathfinder model checker [16]. More recently,
bounded context switching has been shown to be effective for sys-
tematic testing of multi-threaded programs [29].

We introduced a basic algorithm for assertion-based repair in a
workshop paper at SPIN 2005 [23]. Building on that work, this pa-
per makes several new contributions: all of the Java constructs in-
cluding arrays are handled; heuristics, abstractions and repair logs
are introduced; and repair algorithm is evaluated using subjects that
include stand-alone applications. Our framework can now handle
structures that are more than ten times larger than those that were
possible with our previous work.

Assertion-based repair is closely related to assertion-based test
input generation since both perform constraint solving. This paper
shows how to repair using state-space pruning that we developed
for test generation in the Korat framework [3]. Our recent work
on test generation shows how repair enables efficient generation
of large inputs [13]. Our key insight is that while the problem of
generating an input that satisfies all the given constraints is hard,
generating a structure at random, which may not satisfy the con-
straints but contains a desired number of objects is straightforward.
Indeed, a random structure is unlikely to satisfy any desired con-
straint. However, we can repair it to satisfy all desired constraints.

We are exploring a static analysis to enable more efficient repair.
The initial results suggest the practicality of using assertion-based
repair even when structures contain a hundred thousand nodes.

3. EXAMPLE
We present an example of repairing a circular doubly-linked list

to illustrate the repair algorithm. We illustrate how the repair al-
gorithm can on-the-fly repair faults in the structure as well as the
primitive fields of the list.

c l a s s D o u b l y L i n k e d L i s t {
Node h e a d e r ;
i n t s i z e ;

s t a t i c c l a s s Node {
i n t e l e m e n t ;
Node n e x t ;
Node prev ;

}
}
The above code snippet shows a declaration of a doubly linked

list. The DoublyLinkedList class declares an internal Node class
that models the nodes of the list. Each list has a header field, and
stores the number of nodes reachable from header in the size
field. Each Node instance holds two pointers, next and prev, and
an integer field, element.

The structural integrity constraints of DoublyLinkedList are:
(1) circular structure along next; (2) transpose relation between
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Figure 1: Repairing a circular doubly-linked list. The dashed arrows represent violations of the structural constraints. The bold
arrows represent repaired fields. (a) A corrupt structure with three corruptions: next field of node N2; prev field of node N3; and
size field of the DoublyLinkedList object. (b–i) Mutations that our repair algorithm performs to repair the corrupt structure.

next and prev fields; and (3) number of nodes reachable from
the header following next cached in size. An empty list has a
null header and its size is 0. The following repOk predicate
represents the class invariant:

boolean repOk ( ) {
i f ( h e a d e r == n u l l )

return ( s i z e == 0 ) ; / / empty
S e t v i s i t e d = new HashSet ( ) ;
v i s i t e d . add ( h e a d e r ) ;
Node c u r r e n t = h e a d e r ;
whi le ( t rue ) {

Node n = c u r r e n t . n e x t ;
i f ( n == n u l l ) return f a l s e ; / / c i r c u l a r i t y
i f ( ! v i s i t e d . add ( n ) ) {

i f ( v i s i t e d . s i z e ( ) != s i z e ) return f a l s e ;
e l s e break ;

}
/ / p rev i s t r a n s p o s e o f n e x t
i f ( n . p rev != c u r r e n t ) return f a l s e ;

c u r r e n t = n ;
}
return true ;

}
An assertion can invoke repOk to check the structural constraints.

For example, the following Java assert statement checks them at
the beginning of the add method in DoublyLinkedList:

O b j e c t add ( i n t e l e m e n t ) {
a s s e r t repOk ( ) ;
. . .

}
To illustrate repair, consider the structure shown in Figure 1 (a).

This list has three corruptions: (1) the next of N2 is N1 but the
prev of N1 is not N2; (2) the prev of N3 is N1 but the next of N1
is not N3; and (3) the value of size is not equal to the number of
nodes in the list.

Given the corrupt structure in Figure 1 (a), and the repOk predi-
cate, the repair algorithm first invokes repOk on the structure, and
then monitors the field accesses during the execution of repOk.
When repOk returns false due to a constraint violation, the repair
algorithm systematically mutates the last field accessed by repOk

(Section 4).

To illustrate, Figures 1 (b–i) show the sequence of mutations that
our repair algorithm performs on the corrupt structure. During the
first invocation of repOk, the last field accessed is next of N2.
Thus, the algorithm systematically mutates this field to: (1) null;
(2) a list node already encountered during repOk’s invocation (N0
and N2); and (3) a list node not yet encountered during repOk’s
invocation (N3). (Note that the algorithm does not use node N1,
since it is the original value of the next field, and it has already
been checked by the first execution of repOk.) After each muta-
tion the algorithm invokes the repOk predicate again to check for
constraint satisfaction. Setting N2.next to N3 allows execution of
repOk to proceed further. The algorithm then detects the corrup-
tion in the prev field of node N3, and repairs it similarly (Figures 1
(e-h)). Finally the algorithm detects and repairs the size field of
the DoublyLinkedList object.

To repair faults in the primitive fields of the structure, the re-
pair algorithm uses on-demand symbolic execution (Section 7.2)
where a corrupt field is treated symbolically, and a path condition
is computed for that field during the execution of repOk. Once the
path condition is computed, the algorithm then uses an automated
theorem prover, CVC-lite [2], to solve the path condition, and de-
termine the correct value to repair the field. In this example, the
repair algorithm sets the value of the size field to the number of
nodes visited during the execution of repOk and in turn generates
the repaired structure in Figure 1 (i).

For this example, the repair algorithm performed a total of seven
mutations to repair the violations in the structure of initial corrupt
list in addition to one mutation to repair the violation in the size

field. We term these mutations repair actions in the rest of the
paper.

4. REPAIR ALGORITHM
The problem of assertion-based repair is: given a structure s

and a predicate method repOk that represents desired structural in-
tegrity constraints such that !s.repOk(), perform repair actions,
on s to transform it into a structure s’ such that s’.repOk().

Figure 2 gives a high-level overview of the repair algorithm,
which performs a systematic search and uses symbolic execution [25].
Two key classes enable repair: Explorer and PathCondition.
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boolean r e p a i r ( Method repOk , O b j e c t s )
throws E x c e p t i o n {

E x p l o r e r . i n i t i a l i z e ( s ) ;
boolean done = f a l s e ;
do {

P a t h C o n d i t i o n . i n i t i a l i z e ( ) ;
i f ( repOk . invoke ( s ) ) {

i f ( ! P a t h C o n d i t i o n . i s F e a s i b l e ( ) ) cont inue ;
done = t rue ;
break ;

}
} whi le ( E x p l o r e r . n e x t S t a t e ( ) ) ;
return done ;

}

Figure 2: Repair algorithm.

The Explorer class provides a framework for state space explo-
ration. It implements an initialize method which takes an input
structure, and initializes the search space. To initialize the search
space, the initialize method traverses the structure, and for
each type T , primitive or reference, it records domain(T ) which
holds all the values of type T that are stored in the structure. The
recorded domains represent the candidates for repairing the corrupt
fields in the structure. The Explorer class also keeps track of the
current state of the search and provides the nextState method
which puts the search into the next possible state. The nextState
method returns false if the entire state space is explored. The
order through which the search candidates are enumerated is de-
scribed in Section 4.1.

The PathCondition class enables tracking the path conditions
that arise in symbolic execution. The path condition is a set of con-
straints on program variables that, when satisfied, enable the pro-
gram execution to take a specific program path. The initialize
method clears the path condition; isFeasible checks whether the
current path condition is satisfiable; and update adds a constraint
to the path condition.

The algorithm starts by initializing its search environment by
calling Explorer.initialize on the structure. This includes
traversing the structure, recording the datatypes, building domains
with objects (values) encountered for each type, and initializing
internal structures to keep track of the search progress. All the en-
countered objects and values are initially marked as non-visited.

The algorithm proceeds by repeatedly invoking repOk on the
given structure. During each invocation of repOk the repair algo-
rithm: (1) monitors the order of field accesses and (2) if repOk
returns false, non-deterministically updates the value of the last
field accessed—if all values have been checked, systematically back-
tracks to update the value of the second last field accessed and so
forth (Section 4.1).

The algorithm terminates when s is repaired, i.e., s.repOk()
returns true and the corresponding path condition is satisfiable,
or when the search is exhausted, i.e., all the field mutations fail to
repair the structure.

4.1 Non-deterministic field assignments
When repOk reads an object field or an array element for the first

time, our algorithm non-deterministically assigns it a value from
the domains computed during initialization, and marks the value as
visited. The case for array element is identical to that of an object
field, because each array index can be viewed as a unique field of
the array object [3].

Let repOk read field f of object o such that o.f == v for some
value v (at the time of read). There are two cases to consider: ref-
erence field access and primitive field access.

References. Let f be a reference field of type T . The algorithm
non-deterministically assigns o.f :

• v, i.e., its current value;

• null, if v �= null;

• a visited value w of a type T , such that v �= w and w has
already been encountered during repOk’s invocation;

• if T is a basic type, a new (non-visited) value of type T , if v
is not different from all values of type T already encountered
during repOk’s invocation;

• if T is an array type with element type S, a new array of type
S[] of non-deterministic length l ≥ 0.

Primitives. Let f be a primitive field of type T . The algorithm
non-deterministically assigns o.f :

• v, i.e., its current value;

• a new symbolic value V , and adds the constraint V �= v to
the current path condition.

Notice that a primitive field access may introduce symbolic (inte-
ger) values. For these values, invocations of repOk follow forward
symbolic execution [24,25], and we check satisfiability of path con-
ditions using CVC Lite [2]. Since all fields initially have concrete
values, the first execution of repOk follows standard Java seman-
tics for these values. Thus, if the structure is initially not corrupt,
repOk simply returns true indicating that the structure is valid.

Our repair algorithm builds on our previous work on the Korat
test input generator [3] and symbolic execution [23, 24], and ex-
plores only non-isomorphic structures [3].

4.2 Heuristics
In this section, we describe some heuristics that the repair algo-

rithm incorporates to perform data structure repair.
Bounded number of repairs. The repair algorithm bounds the

number of repairs it performs on any invocation of repOk and it-
eratively relaxes the bound. Doing so provides two benefits: (1)
the perturbations to the structure (in terms of number of mutations)
are minimized; and (2) repair is more efficient. Moreover, as we
discuss in Section 7.1, we expect the given structure to contain a
small number of errors. Therefore, we do not expect the algorithm
to go through a large number of iterations.

Domains for primitive values. Due to the enormous number of
values that primitive variables can generally take and the arbitrary
nature of constraints that programs can impose on their values, our
algorithm bounds the possible values for a variable by defining do-
mains. For a primitive type T , the algorithm computes domain(T )
by: (1) traversing the given (corrupt) structure and collecting all
values of type T encountered during the traversal; and (2) generat-
ing at random a fixed number of new values of type T . Doing so
allows the algorithm to re-use old values as much as possible and
introduce new ones only when necessary. We also support user-
defined domains.

On-the-fly path condition simplifications. CVC Lite provides
a C++ API for checking validity of formulas over several inter-
preted theories including linear arithmetic on integers and reals, ar-
rays and uninterpreted functions. Since CVC Lite is implemented
in C++, it can be expensive to make calls to it from a Java program.

67



Our algorithm implements on-the-fly simplifications of path con-
ditions. The simplifications not only allow it to generate smaller
path conditions but also, in some cases, let it decide satisfiability
without having to call the CVC Lite routines. The simplifications
include transforming constraints in a path condition to a canoni-
cal form, performing subsumption checking for simple cases, and
propagating constants.

4.3 Abstraction
To enable the user to understand the mutations performed during

repair, we provide them an abstraction of the repair performed, if
they so desire. The abstraction specifies the set of fields that are
mutated. Such information can help the user debug their program
(if the corrupt structure was a result of a bug in the program). More-
over, we also provide the user a pair of abstract values that represent
the structure before and after repair. The users can choose to pro-
vide their own abstraction functions if they like. As a default, we
provide a function, α, that counts the number of values of each type
reachable from root o: α(o) = {〈n, T 〉|n is number of values of
type T}. We also report the new object count for each type.

To see the utility of this feedback, consider structure s that is
repaired to s′. Let T be a type, n be the number corresponding
to T in α(s), and m be the number corresponding to T in α(s′).
If m == n and the algorithm reports that no new objects of type
T were allocated, the user knows that the repair only re-structured
original values of T , while re-using all of them without introducing
any new ones.

5. IMPLEMENTATION
We have implemented the repair algorithm for Java programs.

To enable non-deterministic field assignments and symbolic execu-
tion, (1) we provide library classes that implement the data struc-
tures for backtracking, path conditions and algebraic expressions
over integers, and (2) we instrument the given repOk predicate into
a functionally equivalent predicate that uses our libraries to enables
repair. We use the Bytecode Engineering Library (BCEL) [8] and
the Java Programming Assistant (Javassist) [6] for performing the
instrumentation at the bytecode level. We used a similar approach
in previous work with source-code instrumentation to perform test
generation [3, 24]. We next illustrate the code instrumentation and
implementation in detail.

5.1 State Space Exploration
We have briefly described the Explorer class that enables state

space exploration in Section 4. This section provides more details.
To support non-deterministic choices, the Explorer class pro-

vides a choose method that takes an integer which represents the
number of non-deterministic choices and returns an integer which
represents one of these choices. For example, the assignment

x = E x p l o r e r . choose ( 3 ) ;

non-deterministically assigns the values 0, 1, 2, 3 to x. Such non-
deterministic choice operators are an essential feature of software
model checkers [19, 33].

To keep track of the current choice, Explorer holds a counter
for each call site for the method choose in the program. At each
call site, the first call to choose adds a counter in the Explorer
class and initializes its value to 0. Further calls at a call site return
the value of the counter. Explorer also provides a nextState
method that increments the value of the last added counter. Once
all the possible choices for a counter are explored, the correspond-
ing counter is deleted. The nextState returns true if a counter
is incremented, and false when all the counters are deleted (this

c l a s s D o u b l y L i n k e d L i s t {
s t a t i c S e t v i s i t e d L i s t s , n o n V i s i t e d L i s t s ;
s t a t i c S e t v i s i t e d N o d e s , n o n V i s i t e d N o d e s ;

Node h e a d e r ; boolean h e a d e r i s i n i t i a l i z e d ;
S y m b o l i c I n t s i z e ; boolean s i z e i s i n i t i a l i z e d ;

void h e a d e r ( Node n ) { . . . } / / added s e t method
Node h e a d e r ( ) { . . . } / / added g e t method

void s i z e ( S y m b o l i c I n t i ) { . . . } / / added s e t method
S y m b o l i c I n t s i z e ( ) { . . . } / / added g e t method

s t a t i c c l a s s Node {
S y m b o l i c I n t e l e m e n t ; boolean e l e m e n t i s i n i t i a l i z e d ;
Node n e x t ; boolean n e x t i s i n i t i a l i z e d ;
Node prev ; boolean p r e v i s i n i t i a l i z e d ;

void n e x t ( Node n ) { . . . } / / added s e t method
Node n e x t ( ) { . . . } / / added g e t method

void prev ( Node n ) { . . . } / / added s e t method
Node prev ( ) { . . . } / / added g e t method

}
}

Figure 3: The instrumented DoublyLinkedList class. A
boolean field and two accessor methods are added for refer-
ence fields (to support non-deterministic field assignment) and
for primitive fields (to support symbolic execution). Two sets
are added for each reference type to keep track of the visited
and non-visited objects of that type.

indicates that the state space is explored). To illustrate, consider the
following example:

void s p a c e E x p l o r a t i o n ( ) {
L1 . E x p l o r e r . i n i t i a l i z e ( ) ;
L2 . do {
L3 . i n t i = E x p l o r e r . choose ( 1 ) ;
L4 . i n t j = E x p l o r e r . choose ( 2 ) ;
L5 . System . o u t . p r i n t l n ( i + " " + j ) ;
L6 . } whi le ( E x p l o r e r . n e x t S t a t e ( ) ) ;

}
The calls to the choose method at lines L3 and L4 set the search

space by creating two counters that count from 0 to 1 and 0 to 2
respectively. The nextState increments the value of the coun-
ters. The do..while loop executes until both counters reach their
maximum value and the nextState returns false. The output of
executing the method spaceExploration is:

0 0
0 1
0 2
1 0
1 1
1 2

By associating field domain values with integer indices the choose
method enables non-deterministic field assignments.

5.2 Structure Mutation
Our repair algorithm mutates the structure based on repOk’s ex-

ecutions. To enable non-deterministic field assignments we instru-
ment the Java bytecode of both the structure classes and the predi-
cate method.

Class instrumentation: For each field in the structure, we add
a boolean variable field is initialized that indicates whether
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boolean repOk ( ) {
i f ( h e a d e r ( ) == n u l l )

return ( s i z e ( ) . ifEQ ( new I n t C o n s t a n t ( 0 ) ) ;
S e t v i s i t e d = new HashSet ( ) ;
v i s i t e d . add ( h e a d e r ( ) ) ;
Node c u r r e n t = h e a d e r ( ) ;
whi le ( t rue ) {

Node n = c u r r e n t . n e x t ( ) ;
i f ( n == n u l l ) return f a l s e ;
i f ( ! v i s i t e d . add ( n ) ) {

/ / s y m b o l i c check ; u p d a t e s t h e p a t h c o n d i t i o n
i f ( s i z e ( ) . ifNEQ ( v i s i t e d . s i z e ( ) ) ) return f a l s e ;

e l s e break ;
}
i f ( n . p rev ( ) != c u r r e n t ) return f a l s e ;
c u r r e n t = n ;

}
return true ;

}

Figure 4: The instrumented repOk method. All the field ac-
cesses are transformed into method invocations. Operations on
primitive values are changed into operation on symbolic prim-
itives. Conditional statements are changed into method invoca-
tions that update the path condition.

a field is being accessed for the first time. To monitor field ac-
cesses and allow non-deterministic assignment, we add get and set
methods for each field. These methods provide the functionality for
accessing and setting field values, and enable an observer to note
the order of accesses. Additionally, for each class type, we use two
new java.util.Set fields that represent the sets of visited and
non-visited objects so far.

To illustrate, the instrumented DoublyLinkedList from Sec-
tion 3 is displayed in Figure 3.
repOk instrumentation: To monitor the order of field accesses

in repOk, we instrument the method’s bytecode by changing all the
field accesses to method invocations of the added accessor meth-
ods. To illustrate, the following bytecode corresponds to the state-
ment “Node current = header;” from the DoublyLinkedList:

2 6 : a l o a d 0
2 7 : g e t f i e l d #24 ; / / F i e l d header :
L DoublyL inkedL is t \$Node ;
3 0 : a s t o r e 2

The instrumented bytecode is:

3 2 : a l o a d 0
3 3 : i n v o k e v i r t u a l #165 ; / / Method header : ( )
L DoublyL inkedL is t \$Node ;
3 6 : a s t o r e 2

For ease of understanding, Figure 4 illustrates the instrumented
code at the source-code level.

The non-deterministic assignment is performed by the methods
added during class instrumentation. Figure 5 shows an example of
the added methods for the next field of the DoublyLinkedList
class. The first method (the set method) simply sets the value
of next and marks it as accessed (initialized) by assigning the
next is initialized variable to true. The second method (the
get method) returns the current value of next if it is previously ac-
cessed (initialized). If it is not, the get method non-deterministically
chooses a value for next. The first choice is the original (possibly
corrupt) value. This choice reflects the normal behavior of a field
access and is made to maintain the normal execution of the struc-
ture in case there is no error. The other choices are null, a visited

/ / s e t method f o r n e x t
void n e x t ( Node n ) {

n e x t = n ;
n e x t i s i n i t i a l i z e d = t rue ;

}

/ / g e t method f o r n e x t
Node n e x t ( ) {

i f ( ! n e x t i s i n i t i a l i z e d ) {
n e x t i s i n i t i a l i z e d = t rue ;

/ / non−d e t e r m i n i s t i c c h o i c e based
/ / on t h e number o f v i s i t e d nodes
i n t i = E x p l o r e r . choose ( v i s i t e d N o d e s . s i z e ( ) + 2 ) ;

/ / r e t u r n t h e o r i g i n a l v a l u e and
/ / add t h e node o b j e c t t o t h e v i s i t e d node s e t
i f ( i == 0) {

i f ( n e x t != n u l l )
i f ( v i s i t e d N o d e s . add ( n e x t ) )

n o n V i s i t e d N o d e s . remove ( n e x t ) ;
}
/ / a s s i g n n u l l t o n e x t
e l s e i f ( i == 1) {

i f ( n e x t == n u l l )
E x p l o r e r . b a c k t r a c k ( ) ;

n e x t = n u l l ;
}
/ / a s s i g n an a l r e a d y v i s i t e d node t o n e x t
e l s e i f ( i > 1 && i < v i s i t e d N o d e s . s i z e ( ) + 2) {

Node temp = g e t V i s i t e d N o d e A t ( i − 2 ) ;
i f ( n e x t == temp )

E x p l o r e r . b a c k t r a c k ( ) ;
n e x t = temp ;

}
/ / a s s i g n a new non−v i s i t e d node t o n e x t
e l s e i f ( i == v i s i t e d N o d e s . s i z e ( ) + 2 ) {

Node temp = getANonVis i tedNode ( ) ;
i f ( temp != n u l l ) {

n e x t = temp ;
v i s i t e d N o d e s . add ( n e x t ) ;
n o n V i s i t e d N o d e s . remove ( n e x t ) ;

}
}
e l s e

E x p l o r e r . b a c k t r a c k ( ) ;
}
return n e x t ;

}

Figure 5: The added accessor methods for next. The set
method sets the value of next and updates the status of the next
field by setting the next is initialized variable to true.
The get method returns the value of next if the field is initial-
ized, and it performs non-deterministic choice and changes the
value of next according to the selected choice otherwise.

Node, and a new non-visited Node (as described in Section 4). Note
that the algorithm keeps track of the visited and non-visited nodes
for each field so that the correct choices are made according to the
order in which the fields are accessed in repOk.

5.3 Symbolic Execution
To enable symbolic execution, instrumentation replaces (1) type

declarations of primitive integer fields and variables with library
class SymbolicInt and (2) expressions over primitive integer val-
ues with invocations of library methods. A conservative reachabil-
ity analysis allows us to determine which expressions to instrument.
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Data structure repOk source
(ncnb LOC) (ncnb LOC)

Singly-linked acyclic list 10 58
Doubly-linked circular list 21 317
Binary tree 26 128
Red-black tree 129 851
Disjoint set 51 138
Intentional name 21 36,919
Relational database 87 72,140

Table 1: Subjects. Structures, non-comment non-blank (ncnb)
lines of code (LOC) in the repOk, and ncnb LOC in the sub-
ject’s implementation (excluding repOk).

To allow symbolic execution to explore different program paths, we
use a non-deterministic boolean choice whenever there’s a branch
in bytecode that cannot be deterministically resolved on-the-fly.

5.4 Limitations
Since repOk is an arbitrary Java method, finding an input for

which the method returns true is undecidable. In fact, non-linear
constraints over integers are undecidable. We have not found this
to be a problem in practice. A reason for that is that repOk pred-
icates are special methods that focus on structural integrity and
the constraints of commonly used data structures seldom involve
complex arithmetic. Even when a repOk uses complex arithmetic,
bounded enumeration enables exhaustive exploration of a bounded
input space.

Repairing data values in a structure requires care. For exam-
ple, in repairing DoublyLinkedList, while we expect repair to re-
establish structural constraints of a doubly linked list, we do not ex-
pect repair to modify any particular element. If repair introduces
spurious elements or arbitrarily re-assigns values to elements, it is
not likely to be useful. We mitigate this by allowing users to specify
fields that should not be mutated by repair. By declaring element
as unmodifiable, the user is assured that repair will only re-structure
the existing tree entries to satisfy the invariants.

6. EXPERIMENTS
We evaluate our algorithm by applying it to seven subjects, in-

cluding two from standard Java libraries, as well as two stand-alone
applications. For each subject structure, we evaluate the perfor-
mance of our repair routine by injecting errors, i.e., corrupting ob-
ject fields and repairing them as follows. Given s, the desired size
of a structure, and e the desired number of fields to corrupt:

1. Generate a structure of size s;

2. Corrupt e fields at random in the structure; a corruption is a
triple 〈o, f, v〉, where object o’s reference field f is assigned
value v, which is either null or a reference to an object of a
compatible type. Primitive fields are similarly corrupted.

3. Repair the corrupt structure

For each subject, we repeat these steps for 50 different random-
ization seeds and report the average of repair times.

We next describe the subjects, and the repair results. All experi-
ments used a 2.0GHz Pentium 4 with 512MB of RAM.

6.1 Subjects
Table 1 lists the subjects, and the lines of code in repOk and sub-

ject’s implementation. Doubly-linked circular lists and red-black

trees [7], which implement balanced binary search trees using node
colorings, respectively follow the declarations of java.util classes
LinkedList and TreeMap. Red-black trees, with the most com-
plex constraints, have the longest repOk. For applications, such
as intentional naming (INS [1]), a naming architecture for dynamic
network, and relational database (HSQLDB [32]), a popular open-
source database, repOk focuses on the most complex data struc-
tures and its length is a small fraction of the length of the im-
plementation. In particular, the repOk for INS specifies the name
specifiers, which are rooted trees that represent service descriptions
in dynamic networks, and the repOk for HSQLDB specifies AVL
trees [7] that store records using balanced binary search trees.

For all subjects, except the database, we re-used repOk predi-
cates that were developed previously [3, 9]. Re-use of specifica-
tions is a key strength of assertion-based repair. Indeed, if a repOk
is already available for a subject, say because it was tested with Ko-
rat [3] or automatically generated (Section 7.5), it is used in repair
for free.

6.2 Results
We evaluate how the repair time varies with the structure size

and the number of corrupt fields.
Table 2 tabulates the results for all seven subjects. For each

subject, we tabulate different structure sizes and the time to repair
when there are 1, 5, 10, 15 and 20 errors injected. We chose these
numbers of errors because in a real situation, we expect a small
number of corruptions (Section 7.1).

We label the last five columns [#errors ≤ n] since it is possible
(though unlikely) for a randomly generated error to set the value of
a field to its original value. The repair times for sizes less than 50
are negligible and not shown here.

For singly-linked acyclic list, Table 2 shows times for [#errors ≤
1] only as a singly-linked list either has zero or exactly one cycle,
irrespective of how many next fields are mutated. Since at most
one fault can occur is the structure of a singly linked list, our repair
algorithm can handle lists with 100,000 objects within 2 seconds.

Among the other subjects, the binary tree and the intentional
naming structures are the easiest to repair as the structural con-
straints are acyclicity, single parent, and reachability from the root.
For these structures our algorithm can handle structures with up to
5,000 nodes within ten seconds.

Red-black and AVL trees have more complex constraints than
the binary tree and international names and almost always take
more time to repair. Despite their complex constraints, our algo-
rithm repairs efficiently. This is in part due to the effectiveness of
our heuristics.

Doubly-linked circular lists and disjoint set are the most difficult
among the above subjects for our program to repair. The com-
plexity of these structures is in preserving reachability since each
node must be reachable from any node in the structure. The first
valid structure might not have the same number of nodes as the
corrupt structure, and thus, the repair algorithm keeps searching
for a valid structure with the original size, if possible. For these
structures, the algorithm can repair structures with 400 nodes and
[#errors ≤ 20] in around nineteen seconds.

Notice, in some cases, the essentially linear growth in repair time
as size is increased while number of errors is kept constant. Notice
also the essentially linear growth in repair time as the number of
errors is increased while the size of a structure is kept constant.
Figure 6 plots the repair times for red-black trees.

We point out that the injected errors cripple the subject imple-
mentations, causing failures ranging from unhandled exceptions,
such as ArrayIndexOutOfBoundsException, to functionally in-
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Subject Size Repair (ms) Repair (ms) Repair (ms) Repair (ms) Repair (ms)
[#errors≤1] [#errors≤5] [#errors≤10] [#errors≤15] [#errors≤20]

100 ≤ 2
Singly-linked acyclic list 1,000 12 not not not not

10,000 138 applicable applicable applicable applicable
100,000 1,466

50 11 42 83 147 293
Doubly-linked circular list 100 37 129 239 451 751

200 84 619 1,241 2,417 3,922
400 175 2,502 3,321 6,032 9,906
100 ≤ 2 12 27 38 55

Binary tree 500 14 63 144 210 292
1000 33 127 341 484 643
5000 163 844 2,012 3,199 4,560
250 58 238 581 931 1,190

Red-black tree 500 126 627 1,522 2,441 3,291
1,000 312 1,430 3,316 4,736 6,323
2,000 782 3,120 7,218 10,224 14,298

50 32 167 337 516 793
Disjoint set 100 102 488 1,017 1,682 2,014

200 467 1491 2,979 5,241 7,377
400 1,233 5,066 10,735 14,726 19,438
100 6 39 88 131 171

Intentional name 500 33 192 327 624 808
1,000 71 422 774 1,212 1,709
5,000 402 2,088 4,630 6,849 8,709

250 74 381 787 1,026 1,499
Relational database 500 165 739 1,692 2,215 3,155

1,000 377 1,837 3,309 4,629 6,800
2,000 832 3,620 6,844 9,318 13,641

Table 2: Results for applying the repair algorithm on seven subjects including five library structures and two stand-alone applica-
tions. Times tabulated are in milliseconds. For some structures, the repair time grows essentially linearly as the size increases for a
fixed number of errors.
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Figure 6: Red-black tree results. (a) Time to repair ≤ 10 corrupt fields as tree size increases. (b) Time to repair trees with 2000
nodes as number of corrupt fields increases.

correct outputs, to infinite loops. To illustrate, a cycle in a name
specifier structure causes an infinite loop in INS’s method to add
new advertisements to a name-tree. HSQLDB’s execution also
goes in an infinite loop or raises a NullPointerException on
structures that are not acyclic or have an incorrect value for parent.

We note that for all these seven subjects, our repair algorithm
successfully repaired the corrupt structures and enabled the respec-
tive applications to continue to execute. The repaired structures
satisfy their integrity constraints, contain no spurious values, and
preserve the reachability of nodes.

7. DISCUSSION
We next discuss some characteristics of our approach and present

some promising future directions.

7.1 Why assertion-based repair works
There are two key dimensions across which we can compare re-

pair methodologies: ease of application and scalability. Assertion-
based repair offers benefits across both.

Ease of application Assertion-based repair requires the user to
provide assertions. Indeed, any repair technique has an associated
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cost, e.g., the cost of writing a repair routine. We argue that writing
assertions poses minimal burden.

An assertion describes what a desired state should be, i.e., its
properties. A repair routine describes how to generate a desired
state. Writing the repair routine already requires knowledge of
desired properties. Moreover, it requires translating them into a
procedure that correctly establishes them. Assertion-based repair,
in contrast, requires writing the properties using the programming
language. To illustrate, consider red-black trees. Writing a repair
routine involves implementing complex re-balancing operations to
satisfy the constraints on height, color, etc. In contrast, writing an
assertion requires writing conceptually simple tree traversals that
check the constraints.

In some cases, code already contains assertions, as is advocated
by defensive programming [26]. For example, the SGLIB C li-
brary [34] comes with annotated class invariants.

Scalability Repair routines need to be efficient. Manually writ-
ten routines can be highly optimized. We draw an analogy with
propositional satisfiability (SAT) to argue why our approach is also
likely to be efficient in practice.

Assertion-based repair considers the problem of generating one
possibly large structure that satisfies the assertion. A related prob-
lem, which arises in test generation, is enumeration of a large num-
ber of small structures that satisfy an assertion. Our previous work
on Korat [3] presents a feasible solution to the enumeration prob-
lem. Results from SAT indicate that repair should be easier than
enumeration. The analog for enumeration in SAT is model count-
ing, and the analog for repair is finding one solution, which is be-
lieved to be easier than model counting [35].

Furthermore, when repairing a deployed system, we expect that
with high probability the repaired structure lies in a small neigh-
borhood of the corrupt structure. This is because if the corruption
was due to a major implementation flaw, it would likely have been
uncovered during systematic testing before deployment, and if the
corruption was due to an external event, such as cosmic radiation,
only a few field values are likely to have been corrupted. Repair,
therefore, is analogous to the problem of finding one solution for a
SAT formula that is satisfiable with high probability. For this SAT
problem, local search is expected to work well [20].

7.2 On-demand symbolic execution
Our use of symbolic execution is non-conventional not only in

our application to data structure repair, but also in how we perform
it. Symbolic execution is usually performed either by treating all
program inputs as symbolic [25] or by a priori determining which
inputs to treat as symbolic and which to treat as concrete (e.g., sym-
bolic primitives and concrete references [24]).

We take a different approach. Our algorithm starts by invoking
repOk on a structure, all of whose fields have concrete values. Dur-
ing subsequent invocations of repOk, the algorithm makes values
of certain fields symbolic. However, these values do not have to
stay symbolic during all subsequent invocations. A field regains
a concrete value once a concrete value that satisfies the data con-
straints is computed. The hybrid approach enables exploration of a
neighborhood of a given structure and efficient generation of a new
structure that is heuristically similar to the one given.

While our hybrid approach aims at repair, a combination of con-
crete and symbolic executions has recently been explored in soft-
ware testing with significant success [4, 15].

7.3 Sensitivity of repair to repOk

Repair actions performed by our algorithm depend on how repOk

is formulated. Recall that the algorithm backtracks on the last field

accessed by repOk and modifies that field. This means that for
the same corrupted structure, two different repOk implementations
that access fields in different orders may cause our algorithm to
produce different structures. Even though this sensitivity to the
way constraints are written may be considered a limitation, in fact,
it allows the user to control how the structure may be repaired. By
ordering constraints appropriately the user can ensure that the al-
gorithm will not perturb the values of certain fields (that the user
deems unlikely to get corrupted) unless absolutely necessary.

7.4 Incremental repair
Even though the experiments show the feasibility of assertion-

based repair for structures that have a few thousands of objects
and a small number of errors, repairing larger structures, say those
with tens of thousands of nodes, is still time consuming. We be-
lieve an incremental approach to performing repair holds much
promise. One example of incremental repair is to implement a
stateful search, which allows real backtracking similar to that in
the Java PathFinder model checker [33] and obviates the need of
repeated invocations of repOk from the beginning. Another exam-
ple is to build a summary of field writes as a program executes so
that when there’s an assertion violation, repair can focus on repair-
ing first the fields that were modified last.

7.5 Constraint generation
Our repair algorithm expects the user to provide the integrity

constraints by writing the repOk predicate. For complex constraints,
writing a precise predicate is error-prone. Existing constraint gen-
eration tools can be used to help users formulate the predicates cor-
rectly. We have recently developed Deryaft [27], a tool that special-
izes in generating constraints of complex data structures. Deryaft
takes as input a handful of concrete data structures of small sizes
and generates a repOk predicate that represents their structural in-
tegrity constraints. The constraints generated by Deryaft can di-
rectly be used for repair using our framework. For example, for all
our benchmarks except red-black trees and disjoint set, Deryaft can
generate the precise repOk’s using five sample structures for each
subject. Even in cases when Deryaft is unable to output a com-
plete repOk predicate, Deryaft’s output helps the users correctly
formulate the predicate, say by using the output as a skeletal imple-
mentation.

8. CONCLUSION
We have presented a novel assertion-based repair algorithm that

uses systematic search and symbolic execution to repair corrupt
program states. Experiments with our prototype on a variety of sub-
jects including library classes and stand-alone applications show
that it can feasibly repair complex structures, even those with a few
thousand nodes.

Assertion-based methodologies can have a significant impact on
improving software quality. Programmers are already comfortable
with writing assertions. Providing new analyses for them can make
them even more attractive.

The use of assertions in hardware is already immensely popular.
Assertion-based verification—a design verification methodology—
is an integral part of modern-day chip design. We believe the time
has also come to realize the benefits that assertions have long of-
fered in software.
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