
Providing Quality of Service Guarantees without Per-Flow State

Jorge A. Cobb
Department of Computer Science (EC 31)

The University of Texas at Dallas
Richardson, TX 75083-0688

jcobb@utdallas.edu

Abstract

Two approaches have been proposed to improve the quality
of service provided by the Internet: integrated services and
differentiated services. Integrated services requires per-
flow state at each router. On the other hand, differenti-
ated services does not require per-flow state, but provides
a lower level of quality of service. We present a proto-
col which provides quality of service similar to that pro-
vided by integrated services, but without maintaining per-
flow state. To accomplish this, both the signaling proto-
col and the packet scheduling protocol must function with-
out per-flow state. Our signaling protocol maintains only
a constant amount of state at each router. In addition, it is
accurate, and it is resilient to process and link failures. Our
scheduling protocol is a combination of the dynamic packet
state technique and flow aggregation techniques. This ap-
proach combines the strengths of both techniques and elim-
inates their weaknesses. Furthermore, our approach is ap-
plicable across multiple domains.

1. Introduction

Currently, the Internet provides only best effort service.
A great deal of effort has been focused on improving the
quality of service (QoS) provided by the Internet, in order
to support future real-time applications such as voice and
video. Two approaches have been proposed: integrated ser-
vices [2][16][20] and differentiated services [10][11].

In integrated services, QoS is based on earlier packet
scheduling protocols, such as virtual clock [19][22] and fair
queuing [15]. To provide QoS to each flow, each router
maintains per-flow state. This raises questions about the
scalability of integrated services. Also, per-flow state is
difficult to maintain in a distributed environment. This
prompted the development of differentiated services.

In differentiated services, a few bits are reserved in each
packet to indicate its per-hop-behavior. At each router,

packets are classified and forwarded according to their per-
hop behavior. Thus, no per-flow state is required. The dis-
advantage of differentiated services is that high levels of
QoS and network utilization cannot be accomplished con-
currently [17].

Recently, there have been attempts to provide the QoS
level of integrated services, but without any per-flow state
at the routers of a core network [17][21]. To accomplish
this, both the signaling protocol and the packet scheduling
protocol must function without per-flow state.

In [17][21], packet scheduling is based on the notion of
dynamic packet state, where each packet carries enough in-
formation to reproduce its deadline at each router, without
per-flow state. This technique has the disadvantage of not
being able to compute the deadline accurately if a channel
has variable delay. An example of such a channel could be
a circuit through a packet switched network, such as ATM,
with no jitter control provided to the circuit. In [4][5] the
state is reduced at each router through flow aggregation.
However, in practice, this can only be used inside the core
of a network, and not across multiple domains.

Signaling methods with no per-flow state are in gen-
eral divided into observation methods and bandwidth bro-
ker methods. Observation methods [1][17] estimate the re-
source requirements by observing the traffic through the
router. This inherently leads to an inaccurate estimation
of the rates of flows traversing the router, since flows may
temporarily generate packets at a rate lower than their nor-
mal rate. In bandwidth broker techniques, resource reserva-
tion is managed by a bandwidth broker [14][21]. Central-
ized brokers are vulnerable to faults, and distributed brokers
have the difficulty of maintaining their state synchronized.

We present an alternative approach to provide QoS guar-
antees without per-flow state at each router. We present a
signaling protocol that maintains a constant amount of state
per router. Even though it has a constant amount of state, the
signaling protocol is accurate, and it is also resilient to pro-
cess and link failures. Our packet scheduling technique is a
combination of the dynamic packet state technique of [17]

and flow aggregation techniques of [4][5]. This approach
combines the strengths of both approaches and eliminates
the weaknesses of each. Furthermore, our approach is ap-
plicable across multiple domains.

The paper is organized as follows. Section 2 presents
the QoS model supported by our protocols. The signal-
ing protocol is presented in Section 3, and its fault-tolerant
properties are discussed in Section 4. Dynamic packet state
scheduling is reviewed in Section 5, and our approach com-
bining dynamic packet state with flow aggregation is dis-
cussed in Section 6. Concluding remarks are given in Sec-
tion 7.

2. Quality of Service Model

In this section, we define our network model, and also
define the QoS that the model assigns to each flow of pack-
ets. We base our model on the models of [4] and [9]. The
specific techniques that implement this QoS are presented
in later sections.

A network is a set of computers connected via point-
to-point communication channels. A flow is a sequence of
packets, all of which originate at the same source computer
and are addressed to the same destination computer. All the
packets of a flow must traverse the network along a fixed
path from the source to the destination. Each flow is char-
acterized by its packet rate and an upper bound on its end-
to-end delay. Before a source introduces a new flow to the
network, it reserves enough network resources to ensure the
flow’s delay bound is not violated.

scheduler

input
channel

input
channel

output
channel

output
channel

scheduler

Figure 1. Output channels and their sched-
ulers.

Each output channel of a computer is equipped with a
scheduler, as shown in Figure 1. Each scheduler maintains
a first-in-first-out packet queue for each flow it receives
from the input channels. A scheduler receives packets from

flows whose path traverses the output channel of the sched-
uler. Whenever its output channel becomes idle, the sched-
uler chooses a received packet and forwards it to the output
channel.

We say a packet exits a scheduler when the last bit of the
packet is transmitted by the output channel of the scheduler.
We adopt the following notation for each flow

�
and each

scheduler � along the path of
�

.���
bandwidth reserved for flow

�
.� ��� � 	�

�

packet of
�

,
	����

.����� �
length of packet � ��� � .���������� � maximum of

� ��� �
, where

��������	
.�������� maximum packet length at � . � � ��� � arrival time of � �!� � at scheduler � ." � � ��� � exit time of � �!� � from � .# � bandwidth of the output channel of � .$ � upper delay bound of the output

channel of � .
Consider a scheduler � and a flow

�
. We define the start-

time % � � ��� � and finish-time & � � ��� � of packet � �!� � at scheduler� as follows [4][9]. Assume � were to forward the packets
of
�

at exactly
� �

bits/sec.. Then, % � � �!� � is the time at which
the first bit of � ��� � is forwarded by � , and & � � ��� � is the time at
which the last bit of � ��� � is forwarded by � . More formally,
let
�

be an input flow of scheduler � . Then,% � � ���('*) � � �!�('% � � ��� �)
max + � � ��� ��, & � � �!�(-.�0/1'3204 , for every

	
,
	�5��& � � ��� �) % � � ��� �768� � � �!� �:9;�<�=, for every

	
,
	��>�

Each scheduler � will forward the packets of each input
flow

�
at a rate of at least

�<�
. Therefore, for each packet� ��� � , its exit time from the scheduler is close to its start

time, % � � ��� � . We refer to these schedulers as rate-guaranteed
schedulers [4][9][12]. More formally, a scheduler � is a
rate-guaranteed scheduler if and only if, for every input flow�

of � and every
	
,
	?�@�

," � � ��� ��� % � � ��� �A6CB � � ��� �
for some constant

B � � ��� � . We refer to
B � � ��� � as the delay of

packet � ��� � at scheduler � , and we refer to % � � ��� �A6DB � � �!� � as
the deadline of � ��� � at � . Throughout the paper, we assume
all schedulers are rate-guaranteed schedulers.

We next consider the delay of a packet across a sequence
of schedulers. Since the start-time of a packet determines
its exit time from a scheduler, then a bounded end-to-end
delay requires a bounded per-hop increase in the start-time
of the packet. This bound is as follows. Let E �F, EHG ,!I�I�I3, EHJ
be a sequence of J rate-guaranteed schedulers traversed by
flow

�
. For all

	
,%
�K � ��� ��� %
 '�� ��� �76 K /1'L�NM 'PO
Q� � ��� �76 K

/1'L�NM ' $
Q� (1)

where O � � ��� �)SRUTWV'�X � X7�QY B � � ��� �[Z
This bound was shown in [4][6][9], and it also follows from
the results in [23].

The above definition of delay is broad enough to encom-
pass the delay provided by many scheduling protocols. For
example, by choosing

B � � ��� �\) � ��� � 9F� � 68�������� 9 # � , B � � ��� �
becomes the rate-dependent delay of virtual-clock proto-
cols [15][19][22], since the delay is related to the rate of
the flow. Another example is the real-time channel proto-
col, [8][23] where each flow has constant packet size and
constant packet delay. This is represented above by havingB � � ��� � and

����� �
be constant for all

	
. In this protocol, the

packet delay can be any value. Thus, it is known as rate-
independent delay, since it unrelated to the rate of the flow.

To ensure packets exit by their deadline, a scheduling test
must be satisfied. For rate-dependent delay, the scheduling
test is simply the following.L � � � � # � (2)

That is, the channel is not over allocated. For rate-
independent delay [23], the scheduling test is more in-
volved. In addition to (2), the following test is required.
For all E , E 5^][,_ L � ,`B � � �a� E , _�b +cEed B � � � 4\f � ��hg?ikj� l 6m��n f � g\ikj� n

� E f # � (3)

where
B � � � is the delay of flow

�
at scheduler � . Test (3) is

infeasible since it requires an infinite number of tests, one
for every E . An equivalent version with only a finite number
of tests is given in [23]. However, the number of tests may
still be too large. Thus, the following test, which may be
implemented in linear time in the number of flows, is also
given in [23]. For every

�
,o L p ,`B � � q �8Bsr � t ,u� g\ikjq 6 + Bsr � t d Bvr � w 4�f � q!x� Bsr � t f # � (4)

3. Shadow Reservation State

We next present our signaling protocol to guarantee
QoS to each flow, without maintaining per-flow state at
each scheduler. We begin by examining each of the three
scheduling tests described earlier, and determine how much
information is needed to perform each test.

Consider first test (2). A scheduler must maintain only
the total of the reserved rates of its flows, and the rate of

its output channel. Consider next test (3). Note that the
contribution of two flows,

�
and

�7y
to the left-hand-side of

(3) is the same, provided
B � � �) B � � �Wz and

�<�) �<�Wz
. Thus,

each scheduler may define a set of (rate, delay) pairs which
are most frequently used by applications, and allow each
flow to only reserve resources equal to one of these (rate,
delay) pairs. Also, the maximum packet size may be set to
a common value for all flows. Although this reduces the
granularity of resource reservation, it significantly reduces
the amount of state required by the scheduler. In particular,
the scheduler must only maintain a count of input flows in
each (rate, delay) pair. Finally, case (4) is similar to case (3),
except that instead of a set of (rate, delay) pairs, only a set
of delays is necessary. The scheduler must only maintain,
for each delay value, a count of how many flows have this
delay, and the sum of their rates. We thus conclude that per-
flow state is not necessary to perform scheduling tests (2)
through (4).

The objective of the signaling protocol is to maintain the
above information current at each node, even though new
flows arrive to the scheduler and existing flows terminate.
To achieve this in a fault-tolerant way, soft-state is desired.
That is, information about a flow should be removed from
a scheduler in the event that the flow abnormally termi-
nates. To maintain soft-state, each flow periodically sends
Refresh messages along the path to its destination. These
messages contain the reservation information of the flow.
We assume that the network will forward Refresh mes-
sages with higher reliability than regular messages. This
can be accomplished in many ways, such as reliably trans-
ferring Refresh messages across each hop, or reserving
buffer space for Refresh messages. The reliable transfer
of Refresh messages will not be a performance drain for
the network, since they are sent infrequently.

For simplicity, we assume the scheduler uses rate-
dependent delay and scheduling test (2). The extension to
tests (3) and (4) is straightforward and discussed below.

Each scheduler � maintains a rate variable, %�{=| ��} EH~!� � ,
where it stores the sum of the reserved rates of its flows.
Thus, test (2) is replaced by %�{7| ��} EH~�� � � # � . In addi-
tion, � maintains a rate variable, %�� }����W� %�{=| ��} EH~!� � , and
a bit variable, % �<} �=� 	 EH� � . Every � seconds, where � is
a predefined constant, � updates its state in the following
way: %�{7| ��} EH~�� � := %e� }����W� %�{7| ��} EH~�� � ;%�� }����W� %�{=| ��} EH~!� � := 0;% ��} �7� 	 EH� � := �\% ��} �7� 	 EH� � ;
Each Refresh message from flow

�
contains

� �
. The ob-

jective is to add
� �

to %�� }��P�W� %�{7| ��} EH~�� � exactly once
before %�� }��P�W� %�{7| ��} EH~�� � is assigned to %�{7| ��} EH~�� � . In
this way,

�<�
is always included in %�{=| ��} EH~!� � .

The purpose of % ��} �7� 	 EH� � is to ensure
�<�

is added to

%e� }����W� %�{7| ��} EH~�� � only once before each state update.
The Refresh message from flow

�
contains a bit, � ��� � , for

each scheduler � in its path. Bit � ��� � indicates the last value
of % �<} �=� 	 EH� � encountered by a Refresh message from

�
.

Rate
�<�

is added to %e� }����W� %�{7| ��} EH~�� � only if the state
has been updated since the last Refresh message from

�
.

That is, the following is performed whenever � receives a
Refresh message from

�
.

if � ��� ���) % �<} �=� 	 EH� � then%�� }����W� %�{=| ��} EH~!� � :=%�� }����W� %�{=| ��} EH~!� � +
�<�

;� ��� � := % �<} �=� 	 EH� �
end if
forward Reserve towards the destination of

�
When the destination receives this message, it returns a

RefreshAck message back to the source of
�

, containing
all bits � ��� � accumulated during the traversal of the Refresh
message. A new Refresh message is not sent until a Re-
freshAck is received for the previous Refresh message.

The procedure is similar when a new flow
�

is cre-
ated. A Reserve message is sent towards the destina-
tion. This message collects in � ��� � the value of % ��} �=� 	 EH� �
as it traverses scheduler � . Rate

� �
is added to both%e� }����W� %�{7| ��} EH~�� � and %�{7| ��} EH~�� � , since

� �
is not in-

cluded in %�� }��P�W� %�{7| ��} EH~�� � . Thus, upon receiving a
Reserve message from

�
at � , the following is performed.

if %�{=| ��} EH~!� � 68� � � # � then%�� }����W� %�{=| ��} EH~!� � :=%�� }����W� %�{=| ��} EH~!� � 6D� � ;%�{7| ��} EH~�� � := %�{=| ��} EH~!� � 68� �
;� ��� � := % �<} �=� 	 EH� � ;

forward Reserve towards the
destination of

�
else

return a Reject message towards the
source of

�
end if

The destination returns a ReserveAck to the source of
�

including all bits � �!� � learned during the reservation. If not
enough bandwidth is available, � returns a Reject message
along the path to the source of

�
to release the resources of�

. Upon receiving a Reject message for flow
�

, scheduler� performs the following.

if % ��} �=� 	 EH� � = � ��� � then%�� }����W� %�{=| ��} EH~!� � :=%�� }����W� %�{=| ��} EH~!� � -
�<�

;%�{7| ��} EH~�� � := %�{=| ��} EH~!� � -
���

;
else %�{7| ��} EH~�� � := %�{=| ��} EH~!� � -

���
;

endif
forward Reject towards the source of

�

As an example, consider Figure 2. In Figure 2(a),
an existing flow

�
traverses scheduler � , and its rate is

included in %�{=| ��} EH~!� � and %�� }P���W� %e{=| ��} EH~�� � . In
Figure 2(b), the Reserve message of a new flow

p
is received. Since

p
is new,

��q
is added to both%�{7| ��} EH~�� � and %�� }����W� %�{=| ��} EH~!� � , and the source

of
p

learns the value of % ��} �=� 	 EH� � . In Figure 2(c),
a state update occurs: %�� }����W� %�{=| ��} EH~!� � is assigned
to %�{=| ��} EH~!� � , %�� }P���W� %e{=| ��} EH~�� � is set to zero, and% ��} �7� 	 EH� � is flipped. In Figure 2(d),

�
sends a Re-

fresh message, and since % �<} �=� 	 EH� � has changed,
� �

is added to %�� }P���W� %e{=| ��} EH~�� � . In Figure 2(e),
p

sends a Refresh message, and likewise,
� q

is added to%�� }����W� %�{=| ��} EH~!� � . Finally, in Figure 2(f), another state
update occurs.

We next address how often the source of a flow should
send a Refresh message. We assume signaling messages
include the time they were created. Furthermore, we as-
sume a bound, � , on the time for a signaling message to
traverse the network. A signaling message created at time t
is discarded by a scheduler if it is received at a time greater
than E 6 � . State updates of different schedulers are not
required to be synchronized. The only assumption is that
each scheduler performs updates at least � seconds apart.

T T

t0 t2 t3

t1 + T - Dt1 t1 + T

Figure 3. Timing of Refresh messages

Consider Figure 3. Let � be a scheduler in the path of
flow

�
. A state update occurs in � at time E�� , and another

at time E�� . At time E ' , the source of
�

transmits a Refresh
message, which arrives at � in the interval +cE�� , EH� 4 . Thus,
at least one Refresh message from

�
must arrive at � in

the interval +�E � , E3� 4 . In the worst case, E ' is almost equal
to E � , which implies that the next Refresh message must
arrive at � no later than E ' 6 � , i.e., it must be sent no later
than E ' 6 ��d�� . Furthermore, the next Refresh cannot be
sent until a RefreshAck is received, which at the latest will
occur at time E ' 6 G f � . Thus, we require � f ���8� , and the
interval between the successive transmissions of Refresh
messages should be at most �DdC� .

We have assumed thus far that schedulers use rate-
dependent delay and scheduling test (2). For rate-
independent delay and scheduling test (3), we have two

f
s

SumRatess = Rf

ShadowSumRatess = Rf

SwapBits = 0

f f
s

SumRatess = Rf + Rg

ShadowSumRatess = Rf + Rg

SwapBits = 0

f

g g

f
s

SumRatess = Rf + Rg

ShadowSumRatess = 0
SwapBits = 1

f

g g

f
s

SumRatess = Rf + Rg

ShadowSumRatess = Rf

SwapBits = 1

f

g g

f
s

SumRatess = Rf + Rg

ShadowSumRatess = Rf + Rg

SwapBits = 1

f

g g

f
s

SumRatess = Rf + Rg

ShadowSumRatess = 0
SwapBits = 0

f

g g

a) b)

c) d)

e) f)

Figure 2. Signaling example

cases. If the rate-delay class of the flow is the same through-
out its path, then the rate-delay class is included in the Re-
fresh message. However, if the rate-delay class changes
along its path, the Refresh message must contain a list of
rate-delay classes, one for every hop in its path. The case of
scheduling test (4) is similar.

4. Fault Tolerance

We next examine the effect of network faults on our sig-
naling protocol. In particular, we consider the following: 1)
delayed or lost signaling messages, 2) link failure, 3) pro-
cess failure, 4) routing changes.

First, consider case 1). As mentioned in the previous sec-
tion, a signaling message that is excessively delayed (more
than � seconds) is discarded in the network. Thus, delayed
messages are equivalent to lost messages. If a source does
not receive a RefreshAck, then the source terminates the
flow. This should occur rarely, since signaling messages
are treated with higher reliability than regular messages.
Therefore, in general, this is not a problem for flow sources.
However, the network resources of the flow must be deal-
located. This happens automatically as follows. The termi-

nated flow ceases to send Refresh messages. At any sched-
uler � , within � seconds, %�� }����W� %�{=| ��} EH~!� � is assigned
zero, and in � more seconds, %�� }��P�W� %�{7| ��} EH~�� � is as-
signed to %e{=| ��} EH~�� � . Thus, within G f � seconds of the
failure, the reserved rate of

�
disappears from � . For exam-

ple, let � = 30 sec.. Thus, �S� �!]
sec., and the interval

between Refresh messages is less than 20 sec.. Further-
more, within a minute, the resources of a failed flow are
released.

Cases 2) and 3) are similar to 1). If a link or process
along a flow fails, then the flow’s source does not receive
RefreshAck’s, and case 1) applies. However, due to the
failure, the path from source to destination may change be-
fore the flow is terminated. For correctness, future Refresh
messages and data packets must follow the original path
where the resources are allocated.

There are multiple techniques to restrict a flow to a given
path, such as [3] and [18], among others. Due to lack of
space we do not discuss their application to our signaling
protocol. Instead, as an example, we present the following
simple technique. Let

�
be the destination of

�
. Each com-

puter � maintains a bit,
��� {�EH~v� � � , which is flipped every

time the routing table entry to destination
�

changes. The

source of
�

learns the value of
��� {�EH~ � � � when it reserves

resources for
�

, and stores the value in a bit, ��� � � , which is
included in every subsequent message (either signaling or
data) from

�
. Thus, each message carries a bitmap with a bit

for every computer along the path of
�

. If � receives a mes-
sage with

��� {�EH~v� � � �) �s� � � , then the message is dropped.
Thus, if the path of

�
changes, its messages are dropped

where the change occurred, causing the termination of
�

.
If routing changes are rare, this should not significantly af-
fect flow sources significantly. This technique requires that
the routing table entry of each destination not be allowed to
change more than once every � seconds.

5 Dynamic Packet Scheduling

Thus far, we only addressed the signaling protocol to es-
tablish and maintain a flow. We next address how pack-
ets are scheduled without per-flow state. This can be done
using a technique presented in [7][17], known as dynamic
packet state. In [17], the technique was applied only for
rate-dependent delay, since their signaling protocol did not
allow flows to be counted. However, the technique is also
applicable to rate-independent delay, as shown next.

Consider two consecutive schedulers, � and E , of flow
�

.
From Equation (1) and the definition of % ,

 � �!� � � %
 � ��� � �% � � ��� � 6 O � � ��� � 6 $ � . Assume

 � ��� �e) % � � ��� � 6 O � � ��� � 6 $ �

for all � ��� � . Then, the following holds.%
 � ��� �e)
 � �!� ��) % � � ��� � 6 O � � �!� � 6 $ � (5)

Note that O � � ��� � is independent of other flows, and thus, � ��� �
could carry information to compute O � � ��� � . E.g., in rate-
dependent delay, O � � ��� �) ���������� � 9;�<��6>�?������ 9 # � . Thus,� ��� � could include

�?�������� � 9F�<� , since
�?������ 9 # � is known to� . In rate-independent delay, O � � ��� � is the constant delay of�

at � , namely
B � � � . Thus, � ��� � could include

B � � � for every
scheduler � along its path.

Before � forwards � �!� � to E , � computes %
 � ��� � as given in
Equation (5), and stores %
 � �!� � in � ��� � . Hence, E receives the
value of %
 � ��� � from � . However, Equation (5) is valid only
if

 � ��� �\) %
 � ��� � . To ensure this, if � �!� � arrives earlier than%
 � ��� � , it is kept in a buffer until time %
 � �!� � , then it is con-

sidered “arrived” and may be scheduled for transmission.
Thus, the deadline %
 � ��� � 6 O
 � ��� � of � ��� � at E is computed
without per-flow state.

In Equations (1) and (5), the start-time of each packet is
measured with respect to a single reference clock. Equation
(5) is valid if all schedulers have a common clock. For ex-
ample, all schedulers could take part of the Network Time
Protocol [13], and be part of the top levels in the clock hier-
archy. This is unlikely in a large network, and each sched-
uler is likely to have its own independent clock.

To solve this, an alternative is proposed in [17]. Sched-
uler � computes the early departure of � ��� � , denoted � � � ��� � ,

as follows. � � � ��� �) % � � ��� �76 O � � ��� � d " � � ��� �
Then, � includes � � � ��� � in � �!� � . At scheduler E , when � ��� � is
received, it is delayed � � � ��� � seconds in a buffer before being
considered as “arrived”. Immediately after these � ��� ��� � sec-
onds, E simply assigns the current value of its clock to %
 � ��� �
and

 � ��� � . Again, %
 � ��� � is computed at E without per-flow
information.

The above solution has a couple of disadvantages. First,
if the output channel has variable delay, then %
 � ��� � is not
computed accurately. There are several examples of chan-
nels with variable delay in large internetworks. E.g., token
ring networks guarantee an upper bound on delay, but may
transmit early if the token is received immediately. Another
example is an ATM virtual circuit that provides bounded de-
lay but no jitter control. Second, assume some schedulers
have clocks which run fast, and forward packets to a sched-
uler with a normal clock. This will cause excessive delays
to other flows of the normal scheduler. Note that this would
not occur in a network with per-flow state, since the normal
scheduler would assign to each packet a deadline which is
locally computed, independent of other schedulers.

In the next section, we propose a solution which uses
synchronized clocks to avoid the disadvantages mentioned
above. However, by taking advantage of the hierarchical
structure of internetworks, only a few computers need to be
involved in clock synchronization.

6. Region Aggregation

Our signaling and packet scheduling protocols require
messages to carry items for each hop along their path. For
each hop, signaling messages must carry a swap bit, a rout-
ing bit, and the delay class (if it varies per hop). Data pack-
ets must carry the routing bit, and the delay class (if it varies
per hop). Also, to deal with variable delay channels, sched-
ulers must synchronize clocks. To reduce this overhead,
we take advantage of the hierarchical structure of internet-
works. We assume the internetwork is divided into regions,
and that gateway routers interconnect regions, as shown in
Figure 4. In the Internet, a region would correspond to an
autonomous system.

Using packet switching techniques, such as [3], each
gateway in a region establishes a circuit to other gateways in
its region. Thus, with � neighboring regions, a maximum
of � � circuits cross an interior router. If rate-independent
delay is used, let be the number of delay classes. Each
gateway establishes circuits to each other gateway, and
thus at most f � � circuits cross an interior router. Note
that � and are likely to be small, so only a small number
of circuits may cross an interior router.

Gateway

Interior Router

Region

Figure 4. Regions in an inter-network

Using these circuits, from the perspective of our network
model of the previous sections, the gateways are nodes in
the network, and the circuits between gateways are output
channels with variable delay. We assume gateways have
synchronized clocks using the NTP protocol [13]. Each
packet � �!� � arriving at a gateway � contains the value of% � � ��� � computed at the previous gateway. Gateway � will
hold � �!� � in a buffer until time % � � ��� � . After time % � � �!� � , � ��� �
is considered arrived at � . Before forwarding � ��� � , gateway� computes the start time of %
 � ��� � at the next gateway E , and
includes it in � ��� � .

The packets of all the flows sharing the same circuit are
aggregated together to become a single flow

p
. The ag-

gregation should be done in a fair manner, as described in
[4][5], to ensure each individual flow has a fair share of the
aggregate flow. This aggregation may be done using the
start time % � � ��� � included in the packet. At a gateway � , a
packet � ��� � of an individual flow

�
encounters a delay of� ��� � 9F� � 6>�������q 9;� q 6>�?������ 9 # � seconds [5], where

� q
is the sum of the rates of the individual flows comprised byp

. After � , the circuit is treated as a single flow
p

, and the
per-hop delay of its packets depends on the setup of the cir-
cuit. Packets of the circuit are transmitted using traditional
state-full techniques.

We have shown in [4][5] that by aggregating flows to-
gether, a lower per-hop delay is possible for the aggregate

flow than for the individual flows. Thus, by reducing the
amount of state at the schedulers we increase the ability to
satisfy the delay requirements of flows, at the expense of
only adding

�?�����q 9F� q
of delay at the entrance to the re-

gion.
Since each circuit is handled using traditional state-full

protocols, only the gateway is involved in handling Refresh
messages from individual flows, and maintaining shadow
state, e.g., %�{7| ��} EH~�� � and %e� }����W� %�{7| ��} EH~�� � , for each
of the � f circuits it originates. Therefore, each signal-
ing message carries only one swap bit per region. Also,
for each region, each packet and signaling message carries
the label indicating the circuit used to cross the region. In
the event that at all times each gateway has only a single
circuit to each destination, then only a single routing bit
per region is necessary, as described in Section 4. When
a gateway receives a Reserve message for a new flow, its
state (%�{=| ��} EH~!� � and %e� }����W� %�{7| ��} EH~�� �) is updated as
usual, and the resources for the circuit are upgraded using a
traditional state-full approach.

7. Concluding Remarks

We presented an alternative approach to provide QoS
guarantees without per-flow state at each router. We pre-
sented a signaling protocol that maintains a constant amount

of state per router. Even though it has a constant amount
of state, the signaling protocol is accurate, and it is also
resilient to process and link failures. Our packet schedul-
ing technique is a combination of the dynamic packet state
technique of [17] and flow aggregation techniques of [4][5].
This combines the strengths of both approaches and elimi-
nates the weaknesses of each.

If rate-dependent delay is chosen, then the scheduling
test of the proposed approach will be the same as that of
the state-full approach. Thus, both approaches support the
same set of flows. However, for the rate-independent de-
lay, the granularity of the rate and delay allocation must be
reduced. Otherwise, the each flow could request a differ-
ent (rate, delay) pair, which would require per-flow state.
We plan to investigate through simulation the tradeoffs be-
tween increasing the granularity of resource reservation in
our protocol versus the call blocking probability.

References

[1] W. Almesberge, T. Ferrari, J. L. Boudec, “SRP: A
Scalable Resource Reservation Protocol for the Inter-
net”, Proceedings of The International Workshop on
Quality of Service (IWQOS) 1998.

[2] Braden, R., Clark, D., Shenker, S., “Integrated Ser-
vices in The Internet Architecture”, Internet RFC
1633.

[3] R. Callon, P. Doolan. N. Fieldman, A Fredette, G.
Swallow, A. Viswanathan. “A Framework for Multi-
Protocol Label Switching”, Nov. 1998. Internet draft,
draft-ietf-mpls-framework-02.txt.

[4] Cobb J, “Preserving Quality of Service Guarantees In-
Spite of Flow Aggregation”, Proceedings of the IEEE
InternationalConference on Network Protocols, 1998.

[5] Cobb J., “An In-Depth Look at Flow Aggregation”,
Proceedings of the IEEE International Conference on
Network Protocols, 1999.

[6] Cobb J., Gouda M., “Flow Theory”, IEEE/ACM
Transactions on Networking, October 1997.

[7] Cruz R. L., “SCED+: Efficient Management of Qual-
ity of Service Guarantees”, Proceedings of the IEEE
INFOCOM Conference, 1998.

[8] D. Ferrari, D. Verma, “A Scheme for Real-Time Chan-
nel Establishment in Wide-Area Networks”, IEEE
Journal on Selected Areas in Communications, 8(3),
April 1990.

[9] Figueira N., Pasquale J., “Leave-in-Time: A New Ser-
vice Discipline for Real-Time Communications in a

Packet-Switching Data Network”, Proceedings of the
ACM SIGCOMM Conference, 1995.

[10] J. Heinanen, F. Baker, W. Weiss, J. Wroclawski, “As-
sured Forwarding PHB Group”, Internet RFC 2597.

[11] V. Jacobson, K. Nichols, K. Poduri, “An Expedited
Forwarding PHB”, Internet RFC 2598.

[12] Goyal P, Lam S., Vin H., “Det. End-to-End Delay
Bounds in Heterogeneous Networks”, Proceedings of
the Workshop on Network and Operating System Sup-
port for Digital Audio and Video (NOSSDAV), 1995.

[13] Mills, D.L. “Improved algorithms for synch. com-
puter network clocks”, IEEE/ACM Transactions on
Networking 3 (3) (June 1995).

[14] K. Nichols, V. Jacobson, L. Zhang, “A Two-Bit Diff.
Serv. Architecture for The Internet”, Internet RFC
2638.

[15] Parekh A. K. J., Gallager R., “A Generalized Pro-
cessor Sharing Approach to Flow Control in Inte-
grated Services Networks: The Single Node Case”,
IEEE/ACM Transactions on Networking, 1(3):344-
357, June 1993.

[16] Shenker, S., Partridge, C., Guerin, R, “Specification of
Guaranteed Quality of Service”, Internet RFC 2212.

[17] Stoica I, Zhang H, “Providing Guaranteed Services
without Per-Flow Management”, Proceedings of the
ACM SIGCOMM Conference, 1999.

[18] I. Stoica, H. Zhang, “LIRA: A Model for Service Dif-
ferentiation in the Internet”, Proceedings of the Work-
shop on Network and Operating System Support for
Digital Audio and Video (NOSSDAV) 1998.

[19] Xie G., Lam S., “Delay Guarantee of Virtual Clock
Server”, IEEE/ACM Trans. on Networking, Dec. 1995.

[20] Wroclawski, J, “Specification of Controlled-load Net-
work Element Service” Internet RFC 2211, 1997.

[21] Z. L. Zhang, Z. Duan, L. Gao, Y. T. Hou, “Decoupling
QoS Control from Core Routers: A Novel Bandwidth
Broker Architecture for Scalable Support of Guaran-
teed Services”, Proceedings of the ACM SIGCOMM
Conference, 2000.

[22] Zhang L., “Virtual Clock: A New Traffic Control Al-
gorithm for Packet-Switched Networks”, ACM Trans-
actions on Computer Systems, Vol. 9, No. 2, May
1991.

[23] Zheng Q., Shin K.G., “On the Ability of Estab-
lishing Real-Time Channels in Point-to-Point Packet-
Switched Networks”, IEEE Transactions on Commu-
nications, Vol 42, No. 2/3/4, 1994.

