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Abstract. The theory of the convergence of Krylov subspace iterations for linear systems of

equations (conjugate gradients, biconjugate gradients, GMRES, QMR, Bi-CGSTAB, and so on) is
reviewed. For a computation of this kind, an estimated asymptotic convergence factor ρ ≤ 1 can
be derived by solving a problem of potential theory or conformal mapping. Six approximations are
involved in relating the actual computation to this scalar estimate. These six approximations are
discussed in a systematic way and illustrated by a sequence of examples computed with tools of
numerical conformal mapping and semidefinite programming.
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1. Introduction. Many of the large-scale matrix problems of computational
science and engineering are solved by Krylov subspace iterations. The most famous
of these methods is the conjugate gradient iteration for symmetric positive definite
matrices. Nonsymmetric generalizations of conjugate gradients are numerous and in-
clude iterations such as biconjugate gradients, GMRES, CGS, Bi-CGSTAB, QMR,
and TFQMR. For introductions to these methods see [1], [3], [25], [29], [34], [40],
[47], [53], [63], [77]. The importance of these iterations nowadays is enormous, and
it continues to grow as computers become faster, matrices get larger, and the O(N3)
operation counts associated with many direct methods become ever more unaccept-
able.

How fast does an iteration for solving a system of equations Ax = b converge? (If
the problem has been preconditioned, as is usually necessary for effective convergence,
then by Ax = b we mean the already preconditioned system.) Starting from an initial
guess x0, such an iteration generates a sequence of approximations x1, x2, . . . that
converge toward the solution A−1b. Convergence is typically measured by the ratio

(1)
‖rn‖
‖r0‖

, n = 1, 2, 3, . . . ,

where r0 = b − Ax0 is the initial residual and rn = b − Axn is the residual at step
n. (One may also be concerned with ratios ‖en‖/‖e0‖ of errors rather than residuals,
where en = A−1b− xn, but as rn and en are related by the formula rn = Aen and as
rn can be measured in the course of an iteration whereas en cannot, we shall consider
only residuals.) For simplicity we shall assume throughout this paper that ‖ · ‖ is the
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2-norm (square root of sum of squares). The question of most pressing importance in
any matrix iteration is, how fast do the numbers (1) decrease towards 0 ?

There is an elegant, fundamental idea that gives an approximate answer to this
question. Let the spectrum of A be approximated by a compact set S in the complex
plane C, with 0 6∈ S. Sets often considered in practice include intervals, ellipses,
polygons, isolated points, and combinations of these. Now ask, how small can a
polynomial p(z) of degree n be on S if it is normalized by p(0) = 1? Specifically, let
Pn denote the set of polynomials of degree at most n with p(0) = 1, and let the norm
‖ · ‖S associated with S be defined by

(2) ‖p‖S = max
z∈S
|p(z)|.

Then how small are the quantities

(3) En(S) = min
p∈Pn

‖p‖S , n = 1, 2, 3, . . . ?

A salient property of the sequence {En(S)} is that it decreases geometrically with n
at some rate ρ ≤ 1:

(4) ρ = lim
n→∞

(En(S))1/n ≤ 1.

This limiting value ρ, which we shall call the estimated asymptotic convergence factor,
always exists, and unless S completely surrounds the origin in the sense of separating
it from the point at infinity, it is strictly less than 1. Moreover, as we shall describe,
its value can be derived from potential theory, or equivalently by the consideration of
Green’s functions, and if S is connected, the derivation reduces to a conformal map
of the exterior of S to the exterior of a disk.

Implicitly or explicitly, the number ρ is the starting point of most attempts to
understand the behavior of the sequence (1). Specifically, in many cases the estimate

(5)
‖rn‖
‖r0‖

≈ ρn

is a reasonable approximation. The reason for the link is that Krylov subspace iter-
ations also involve polynomials—polynomials of matrices. The iterates produced by
these methods typically lie in the Krylov subspaces generated by the initial vector and
the matrix A,

(6) rn ∈ r0 + 〈Ar0, A
2r0, . . . , A

nr0〉,

where the angle brackets indicate the subspace spanned by the vectors inside. This is
equivalent to the statement that rn can be written in the form

(7) rn = p(A)r0

for some p ∈ Pn. (The error en satisfies en = p(A)e0 for the same polynomial p.) And
thus we see that the convergence of a Krylov subspace iteration can be expected to
be rapid if it manages to find polynomials p(A) that are effective at approximately
annihilating r0.

The aim of this paper is to introduce the reader to the subject of convergence of
Krylov subspace iterations, using the approximation (5) as our reference point. Little
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of what we say is mathematically new. For example, a shorter survey covering some
of the same ground as this one has been written by Greenbaum [32], and an extensive
analysis based on a different point of view can be found in the book by Nevanlinna
[55]. However, our presentation has some unusual features. One is that from start to
finish, everything is illustrated by computed examples based upon potential theory
or approximation theory problems in the complex plane. The computation of these
examples has been made possible by software developed by us for Schwarz–Christoffel
conformal mapping [9] and for finding polynomials p(z) that minimize norms ‖p(A)‖
[74]. The other is that our tour is organized in an unusual way. We have observed
that to get from the right-hand side of (5) to the left-hand side, one can proceed
in six steps, breaking the “≈ ” into a sequence of six approximations. All of these
approximations have been considered before in the literature. However, discussions
of this subject have not been structured explicitly in this way before.

Readers looking for an overview may turn to the summary at the end, where,
among other things, we list some of the many things not done in this paper.

2. Derivation of ρ via potential theory. Let S ⊆ C be a compact set with
0 /∈ S, and let ρ be the estimated asymptotic convergence factor (4) for S. To avoid
technical complications, we assume that S consists of a finite collection of simply
connected components, each of which is either an isolated point or a continuum with
a piecewise smooth boundary.

The derivation of ρ via potential theory can be explained in a few lines, if we
do not attempt to be rigorous. Consider a polynomial p(z) =

∏n
k=1(z − zk). The

absolute value of p(z) is

|p(z)| =
n∏
k=1

|z − zk|.

Our goal is to minimize |p(z)|/|p(0)| on S [17]. By the maximum modulus principle,
an equivalent problem is to minimize the same quantity on ∂S. Taking the logarithm
gives

log |p(z)| =
n∑
k=1

log |z − zk|.

This function can be thought of as the potential in the complex plane associated with
electric point charges of amplitude −1 at each of the points {zk}. (The potential
associated with a negative point charge in 3-space is −|z−zk|−1; for an infinite line of
charge, whose intersection with the plane is a point, the formula becomes log |z−zk|.)
Our aim is to locate these charges so as to minimize the quantity

(8) log |p(z)| − log |p(0)| = log
n∏
k=1

∣∣∣∣1− z

zk

∣∣∣∣
on ∂S.

For finite n, this minimization problem is difficult, but we can make it simpler by
taking the limit n→∞. First we rescale the problem, defining

g(z) = n−1
n∑
k=1

log |z − zk|+ C.
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g(z)− log |z| → C as |z| → ∞

FIG. 1. Determination of the estimated asymptotic convergence factor ρ in the case where the
set S0 has several connected components. In this sketch S0 consists of an arc, a disk, and another
region with interior. Think of these as electrical conductors that are electrically connected to one
another. Inject a charge of magnitude −1, so that the potential g adjusts to a constant value along
all of the boundaries, and add a constant C to g so as to make this value 0 (g is the Green’s function
for S0). The number ρ is determined by the value of the potential at the origin: ρ = exp(−g(0)).

This is the potential corresponding to point charges of strength −n−1 at each of the
points {zk}; the arbitrary constant C will be fixed in a moment. In the limit n→∞,
we now imagine a negative unit charge distributed in a continuous fashion in the
complex plane, and our aim is to minimize maxz∈S g(z)− g(0).

In passing to the limit n → ∞, a complication arises concerning treatment of
isolated points of S. It requires just a single root to make a polynomial zero at an
isolated point. As n→∞, this corresponds to a zero proportion of the total charge,
and thus we cannot expect a continuous charge distribution to handle isolated points
of S properly. One way to handle this matter is as follows. Let S0, assumed to be
nonempty, denote the subset of S in which any isolated points (necessarily finite in
number) have been removed. Denote the boundary of S by ∂S and the boundary of
S0 by ∂S0. We shall apply our potential theory to S0, and the results will be valid in
the nth-root asymptotic sense (4) for S too.

Figure 1 illustrates a typical setting for our discussion. The set S0 consists of the
union of an arc and two regions with interior. The set S might contain in addition
some isolated points, not shown in the figure.

Our goal is to minimize max g(z)− g(0) on S0. Now in the case of a continuous
charge distribution, it is plausible that the minimum should be achieved by a charge
distribution that has the property that g(z) is constant for all z ∈ ∂S0. The idea
is that if g(z) were not constant on ∂S0, then its maximum could be reduced by
redistributing the charge away from low-potential regions. In fact, it can be shown
that this idea is correct. Moreover, the minimum is achieved by a charge distribution
in which all the charge is confined to the boundary ∂S0. (The process of finding
a charge distribution on ∂S0 that is equivalent outside S0 to a continuous charge
distribution on S0 is known in potential theory as balayage [69], [78].)

We have arrived at the following physical picture. Think of S0 as a collection of
conductors in the plane that are electrically connected. Inject a quantity −1 of charge
into this system, and let it find an equilibrium. The charge will distribute itself along
the boundary ∂S0 in such a way that the potential g(z) it generates is constant
there. Add a constant C to this potential so that this constant value becomes 0. The
asymptotic convergence factor is now ρ = exp(−g(0)).
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FIG. 2. Determination of ρ in the case where S0 is connected. All that is required is a conformal
map Φ of the exterior of S0 to the exterior of the unit disk ∆. The estimated asymptotic convergence
factor is ρ = 1/|Φ(0)|.

Of course, these results can be stated mathematically, without recourse to physical
interpretations. The function g(z) is the Green’s function associated with S0, the
unique function defined in the exterior of S0 that satisfies ∇2g = 0 outside S0, g(z)→
0 as z → ∂S0, and g(z)− log |z| → C as |z| → ∞ for some constant C. The quantity
e−C is the logarithmic capacity of S0 (or equivalently of S), and C is Robin’s constant
[45], [78]. We can state the fundamental results about ρ as follows.

THEOREM 1. Let g(z) be the Green’s function for the set S0. The estimated
asymptotic convergence factor of S as defined by (1) and (2) is

(9) ρ = exp(−g(0)).

Moreover, for each n and any p ∈ Pn we have

(10) ‖p‖S ≥ ρn.

The lower bound (10) has an intuitive explanation. A polynomial of finite degree
n corresponds to the constraint that a quantity of charge must be distributed in n
points rather than allowed to spread around in a continuous fashion. The resulting
maximum potential on S can accordingly be worse than that for the continuous limit,
but not better. Rigorous proofs of this and other results mentioned here are not
difficult; one of the key tools is the maximum principle. For more information about
potential theory and polynomial minimization, see [27], [42], [45], [69], [78], [81], [82].
For more about the connection with matrix iterations, see [13], [14], [15], [20], [22],
[55], [56], [59].

3. If S0 is connected: Derivation of ρ via conformal mapping. The
picture just presented is conceptually simple, though calculating Green’s functions
may be a challenge. In the case where S0 is connected, the problem becomes still
simpler.

What happens in this case is that the potential g(z) can be viewed as a level
function of a conformal map. As illustrated in Fig. 2, suppose S0 is a simply connected
compact subset of C, not containing 0, with a piecewise smooth boundary. Since S0
is connected, the exterior of S0 is a simply connected set with respect to the extended
complex plane C ∪ {∞}. It follows that a harmonic function h(z) can be defined in
the exterior of S0 that is a harmonic conjugate of g(z) and is single-valued except for
increasing by 2πi with each counterclockwise circuit around S0. Consider now the
complex function

(11) Φ(z) = exp(g(z) + ih(z))
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FIG. 3. Simplest example of a set S: a disk in the z-plane disjoint from the origin. The map
to the exterior of the unit disk in the w-plane is just a translation and a scalar multiplication. The
estimated asymptotic convergence factor is ρ = (κ− 1)/(κ+ 1), the ratio of the radius of the disk to
the distance to the origin.

defined in the exterior of S0. This function is analytic, with nonvanishing derivative,
and it satisfies |Φ(z)| = exp(g(z)) → 1 for z → ∂S0 and |Φ(z)| ∼ |z|eC as |z| → ∞.
In other words, Φ(z) is a conformal map of the exterior of S0 onto the exterior of the
unit disk ∆, with Φ(∞) =∞. Just as h(z) is determined up to an additive constant,
Φ(z) is determined up to a multiplicative constant of modulus 1, corresponding to an
arbitrary rotation in the w-plane. For our purposes there is no need to specify this
constant of rotation.

Let Ψ denote the inverse of Φ, mapping the exterior of ∆ conformally onto the
exterior of S0. Thus Ψ maps the unit circle |w| = 1 onto ∂S0, and it maps concentric
circles |w| = r > 1 in the w-plane onto simple closed curves enclosing ∂S0 in the z-
plane. These are the level curves associated with Φ, defined by the condition |Φ(z)| = r
for various values of r.

By assumption, the point 0 is exterior to S0. Thus its image Φ(0) is exterior to ∆.
And now, combining (9) and (11), we obtain a formula for ρ.

THEOREM 2. Let S0 be connected, and let Φ(z) be a conformal map of the exterior
of S0 to the exterior of the unit disk ∆ with Φ(∞) = ∞. The estimated asymptotic
convergence factor of S is

(12) ρ =
1

|Φ(0)| .

In words, if S0 is connected, the estimated asymptotic convergence factor for a
matrix iteration depends on how far the origin is from S0—provided that this distance
is measured by level curves associated with the exterior conformal map.

4. Examples of regions S and convergence factors ρ. We shall illustrate
these results by three examples of the constant ρ associated with various sets S.
Subsequent sections will refine the picture by looking at the “six steps.”

The first example is mathematically trivial, but of enduring importance for ap-
plications. Suppose S = S0 is the disk |z − z0| ≤ R for some R < |z0|. To map the
exterior of S conformally onto the exterior of the unit disk as in Theorem 2, all that
is required is a translation and a scalar multiplication. A suitable pair of maps is
Φ(z) = (z − z0)/R, Ψ(w) = Rw + z0. Thus we see that when S is a disk of radius R
about z0, the estimated asymptotic factor is ρ = R/|z0|. Rapid convergence can be
expected if the disk is small relative to its distance to the origin. See Fig. 3.
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z w

0 Φ(0)

FIG. 4. Second-simplest example of a set S: an interval of the real axis, chosen here to have the
same condition number κ as in Fig. 3. Thanks to the sharp angle of ∂S at the end of the interval,
the distinguished point Φ(0) in the w-plane now lies much further from the unit disk. The estimated
asymptotic convergence factor changes to ρ = (

√
κ− 1)/(

√
κ+ 1), an improvement from 1−O(1/κ)

to 1−O(1/
√
κ ) for large κ.

For comparison with other examples, it is informative to restate this result in
terms of the “condition number” of the disk S: the ratio κ of its largest to smallest
points. Specifically, suppose ρ < 1 is given. Then any disk with ratio R/|z0| = ρ can
be defined by z0 = α(κ+1)/2 and R = |α|(κ−1)/2 for some constant α. The formula
for ρ as a function of κ becomes

(13) ρ =
κ− 1
κ+ 1

(disk).

Rapid convergence can be expected if κ is not too large. If it is large, then we have
ρ ∼ 1−2/κ, and we must expect to take ∼ κ/2 iterations to reduce the residual norm
by a factor e.

This first example illustrates the most basic property one might look for in an
effective preconditioner. A preconditioner is likely to be effective if (though not only
if) it moves the spectrum of the original problem, or at least all of the spectrum
except a few isolated points, into a disk whose radius is reasonably small relative to
the distance from its center to the origin.

Our second example is also elementary. If S = S0 is an interval, the conformal map
of its exterior onto the exterior of the unit disk is a Joukowski map, carrying circles to
ellipses (Fig. 4). To go directly to the κ notation, suppose S = [1, κ] for some κ > 1.
Then a suitable pair of maps is Φ(z) = (2z − κ− 1 + 2

√
z2 − (κ+ 1)z + κ )/(κ− 1),

Ψ(w) = [(w + w−1)(κ − 1)/2 + κ + 1]/2. Calculating Φ(0) as in (12) gives the
estimated asymptotic convergence factor

(14) ρ =
√
κ− 1√
κ+ 1

(interval).

This factor is famous as associated with the convergence rate of the conjugate gradient
iteration for a matrix with condition number κ. Note that whereas ρ ∼ 1 − 2/κ for
large κ in (13), ρ ∼ 1 − 2/

√
κ in (14), and this number is much further from 1. For

large κ, errors can be reduced by a factor e in ∼
√
κ/2 rather than ∼ κ/2 iterations.

These two examples are standard and well known. Now, let us consider a more
complicated example, for which the conformal map was computed numerically using
the Schwarz–Christoffel Toolbox [9]. The Schwarz–Christoffel Toolbox is a publicly
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z w

FIG. 5. Conformal map of the exterior of an irregular octagon S in the z-plane, indicating the
images in the w-plane of three distinguished points. The points lie at similar distances from S, but
their images lie at very different distances from the unit disk.
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FIG. 6. Estimated asymptotic convergence rates associated with the origin located at each of
the three points of Fig. 5. The convergence is very slow for the case I, corresponding to a matrix A
with spectrum approximately surrounding the origin.

available Matlab package that enables the user to draw a polygon and determine the
corresponding conformal map at the touch of a button.

Figures 5 and 6 present an estimated spectrum that illustrates several types of
behavior at once. Here S = S0 is the closed region bounded by a polygon with both
salient and reentrant corners. The figure shows a collection of concentric circles in
the w-plane and the corresponding level curves surrounding S in the z-plane. Three
points in the z-plane have been selected, with their conformal images marked in
the w-plane. The point marked by ∗ lies near a salient corner of S, and its image
under Φ(z) is accordingly far from the unit circle. It follows that if the origin in the
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FIG. 7. For an irregular pentagon S in the z-plane, the first two plots compare the level curves
(lemniscates) of optimal polynomials p of degrees n =∞ (the limit of a continuous charge distribu-
tion or Green’s function) and n = 10. The third shows the corresponding picture for a near-optimal
polynomial, the appropriately scaled Faber polynomial. From the fact that the inner lemniscates do
not quite enclose all of S, we see that the two finite-degree polynomials do not quite achieve the
lower bound ρn.

z-plane is located at ∗, the iteration will converge fast ( ρ ≈ 0.567). By contrast,
the point marked by I lies near a reentrant corner of S, and its image under Φ(z)
lies exceedingly close to unit circle. If the origin in the z-plane is located at I , the
iteration will converge slowly ( ρ ≈ 0.980). The point marked by •, lying close to a
straight side, is associated with behavior in-between ( ρ ≈ 0.723).

The lessons of Figs. 5 and 6 apply generally to matrix iterations for Ax = b. If
the spectrum “surrounds” the origin, approximately speaking, then the convergence is
likely to be slow. Like many of the phenomena encountered in the study of conformal
maps, this effect is exponentially strong; if the origin lies several channel widths deep
inside a channel in the spectrum, then ρ is likely to be almost equal to 1, so that
in practice, no useful convergence is achieved. The extreme situation occurs if the
spectrum completely surrounds the origin in the sense of disconnecting it from the
point at infinity. Then, by the maximum modulus principle, no polynomial p ∈ Pn
can satisfy |p(z)| < 1 everywhere on the spectrum, and there is no convergence at all.

5. Step 1: n→∞ vs. finite n. We now begin our discussion of the six steps
that can be taken to get from ρn to ‖rn‖/‖r0‖. We consider them in a natural order,
whose logic is summarized by a string of inequalities in Table 1 at the end.

The first step is the difference between nth root asymptotic behavior as n →
∞ and behavior for finite n, that is, between equations (4) and (3). According to
Theorem 1, the nth root behavior as n→∞ of minimal polynomials on the set S is
controlled by a Green’s function or, equivalently, a continuous charge distribution that
achieves a constant potential on ∂S0. For finite n, however, the charge is constrained
to lie in n points. In general, it cannot distribute itself so as to achieve a constant
potential on ∂S. We thus have the inequality

(STEP1) ρn ≤ min
p∈Pn

‖p‖S ,

whose generalization without the minimum over p was stated already in (10).
Figure 7 illustrates the phenomenon in question. The region S = S0 is a pentagon

in the z-plane with the origin located nearby on the left. The first plot shows level
curves of the map Φ from the exterior of S to the exterior of the unit disk; the levels
plotted are |Φ(z)| = 1 (the boundary of S), 1.2, and 1.4. This corresponds to the
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FIG. 8. Convergence curves associated with the approximations of Fig. 7. For this region S,
the gap between ρn and En(S) is not so great as to be very important in practice.

limit n → ∞; the polynomial zeros or electric charges are spread around ∂S in a
continuous fashion and the potential g(z) is constant there. This plot was generated
by computing the inverse conformal map Ψ(w) by the Schwarz–Christoffel Toolbox,
then plotting images under Ψ of circles in the w-plane.

The second plot of Fig. 7 is the corresponding picture for n = 10. Here the
optimal polynomial p ∈ P10 of (3) has been computed using the software described
in [74]. Note that the ten zeros are distributed near the boundary ∂S, though not
exactly on it. Note also how they avoid the reentrant corner. (The study of zeros of
minimal and near-minimal polynomials in C is a highly developed topic [66], [69].)
The level curves plotted are the lemniscates |p(z)| = ρ10, (1.2ρ)10, (1.4ρ)10. Away
from S, the level curves look almost the same as in the first figure, but the maximum
on S is greater: we have ρ10 = 0.0494 but E10(S) = 0.0599.

The third plot of Fig. 7 corresponds to a polynomial we shall not discuss in this
paper, but which is standard in complex approximation theory. The degree n Faber
polynomial for the region S is the analytic part of (Φ(z))n, that is, the polynomial
obtained if terms of negative degree are dropped from the Laurent series for (Φ(z))n;
the polynomial is then renormalized so that p(0) = 1. (This is not the standard
normalization.) Our computation is again based on the Schwarz–Christoffel Toolbox.
Faber polynomials are not optimal in the sense of (3), but as the figure illustrates,
they may come reasonably close, and they are much more tractable analytically. The
theory of Faber polynomials is presented in [7], [27], and [65], and among the papers
that employ them for designing matrix iterations are [12], [39], and [70].

Figure 8 shows norms as a function of n corresponding to the three plots of
Fig. 7. On the log scale, ρn is a straight line. The other two curves lie a small
distance above that line. For this example, we have En(S) ∼ ρn as n → ∞ for the
optimal polynomials but not for the Faber polynomials. For a connected region S
with a smooth boundary, the Faber polynomials too would have errors asymptotic
to ρn. If S had been an interval [1, κ] for some κ > 1, on the other hand, even the
optimal polynomials would have exhibited a gap in the limit ρ→∞: in that case we
have En(S) ∼ 2ρn as n→∞.
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FIG. 9. On the left, a region S with three-fold symmetry about the origin. On the right, the
corresponding plot of minimax norms En(S) as a function of n. The sawtooths do not go away as
n→∞; En(S)/ρn does not converge to 1.

Another way in which a gap between ‖p‖S and ρn may arise is if S has multiple
components. In Fig. 9, S consists of three disks located symmetrically with respect
to the origin. The effect on the convergence curve is easily deduced. For any S, the
minimax polynomial p of (3) is unique. By symmetry, on the other hand, it is clear
that if p(z) is a minimax polynomial for this set S, then so are p(ωz) and p(ω2z),
where ω = exp(2πi/3). We conclude that p must contain only powers 1, z3, z6, . . . .
(Where are the missing point charges in (8) when n is not a multiple of 3? At
z =∞.) This implies that the associated errors En of (3) must satisfy E0 = E1 = E2,
E3 = E4 = E5, and so on, which explains the staircase pattern in the figure.

In applications, a perfectly symmetrical region like this would be unlikely to
appear. (If it did, we would probably find a way to eliminate the symmetry and
reduce the dimension.) More general sets S that are disconnected, however, also lead
to lack of convergence of En/ρn as n→∞. An excellent account of this subject has
been given by Widom [82].

Our discussion up to now may seem to suggest that the distinction between
n → ∞ and finite n, though interesting mathematically, is not important in prac-
tice. However, there is a context where it may be very important: in the effect of
“outlier” eigenvalues on the convergence of a matrix iteration.

Suppose we have a matrix whose spectrum is known to lie in a continuum S0,
except for one or more isolated points. This is a common situation in practice. The
presence of isolated points in the larger set S increases the quantities En(S), in gen-
eral, compared with what they would be for S0 alone. On the other hand, according
to Theorems 1 and 2, the isolated points have no effect on the asymptotic conver-
gence factor ρ. The ready explanation of this is that any isolated eigenvalue can be
annihilated by a single zero of p; the rest of the zeros of p can then be devoted to
achieving minimal norm on the rest of S.

This explanation is correct, but it suggests a sharper version of the same idea
that is incorrect and, in fact, a common misconception. It is tempting to think that
each outlier eigenvalue “costs just one step” in a matrix iteration. This is not true.
As a rule, outliers of magnitude bigger than the rest of the spectrum cost about one
step, but outliers that are much smaller than the rest of the spectrum may cost many
steps. Indeed, the price one must pay to annihilate an outlier grows without bound
as it approaches the origin.
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FIG. 10. En(S) and En(S0) vs. n for the sets S = [1, 3] ∪ {20} and S = [1, 3] ∪ {0.001}. The
outlier near ∞ costs just one iteration, but the outlier near 0 costs about 6 iterations.

Figure 10 illustrates this phenomenon, plotting En(S) against n for the sets

S = [1, 3] ∪ {20}, S = [1, 3] ∪ {0.001}.

In the first case, the outlier is far from the origin, and it delays the convergence by
almost exactly one step. In the second case, the outlier is very close to the origin, and
it delays the convergence by a little more than six steps. This phenomenon is easily
explained. These two outliers can be annihilated by polynomial factors 1− z/20 and
1− 1000z, respectively. The first of these factors has size ≈ 1 on S0 = [1, 3], but the
second has size greater than 1000 there. With κ = 3 and ρ = (

√
κ − 1)/(

√
κ + 1) ≈

0.268 for this problem, by (14), we have ρ5 ≈ 1.4×10−3, and this explains why it takes
a little more than five extra steps to undo the damage done by the factor 1− 1000z,
in addition to the sixth step associated with that factor itself.

Step 1 can be summarized as follows. Optimal finite-degree polynomials on a
set S may have norms En(S) somewhat larger than the estimate ρn suggested by
potential theory. In the case of outlier eigenvalues of a matrix that lie much closer
to the origin than the rest of the spectrum, the discrepancy may be great enough to
be of practical importance. Such outliers typically introduce a delay of a number of
steps near the beginning of an iteration, before the iteration “gets going.”

6. Step 2: Estimated vs. actual spectrum. Our second step is logically
trivial but of great importance in practice. Among other things, it can be viewed
as responsible for the phenomenon of superlinear convergence often observed in the
later stages of a matrix iteration [4], [55], [79], [83]. This is the gap between the
estimated spectrum S of the matrix A and its actual spectrum, which we denote by
Λ(A). Symbolically,

(STEP2) min
p∈Pn

‖p‖S >∼ min
p∈Pn

‖p‖Λ(A).

The mathematics of (STEP2) is immediate. If S is different from the spectrum
Λ(A), then in general the minimal polynomial norms on these two sets will be differ-
ent. Depending on the relationship of S and Λ(A), the inequality could go in either
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FIG. 11. Illustration of approximation of the spectrum Λ(A) by a simpler region S. Polygons
and ellipses are among the regions most often used for such approximations. If S strictly contains
Λ(A), then the approximation can be expected to increase the asymptotic convergence factor ρ.

direction. In practice, it is most common that Λ(A) is a subset of S, at least ap-
proximately, in which case the minimal norms will usually be smaller on Λ(A) than
on S. This is the meaning (or, rigorously speaking, lack of meaning!) of the expres-
sion “A>∼ B ” in (STEP2) and elsewhere in this paper: A ≥ B and A ≤ B are both
possible, but the former is typical. The symbol “<∼ ” is used analogously.

The spectrum Λ(A) of any matrix A is discrete, but from the beginning of this
subject in the 1950s, it has been a standard procedure in some circumstances to
approximate Λ(A) by a continuum. In a sense this is not even always an oversimplifi-
cation of the truth. Most large matrices of computational interest arise via discretiza-
tion of continuous problems. For example, A may be the preconditioned matrix Ah
corresponding to a particular choice of a mesh size h for a discretization of a partial
differential equation. In such a situation, though the spectrum of Ah is discrete for
any fixed choice of h, the spectrum of the family {Ah} may fill a continuous region S
in C. If one wants bounds on convergence rates that are independent of h, it may be
appropriate to work with S rather than with the spectrum of any individual matrix
Ah. This notion of the spectrum of a family of matrices is discussed in [2], [28], [61].

A related observation is that Krylov subspace iterations are applicable not just to
matrices but to bounded linear operators. This fact has also been appreciated since
the 1950s [8], [41] and is considered at an advanced level in the book by Nevanlinna
[55].

Let us first consider an example of a general kind. Suppose the matrix or operator
A has a spectrum Λ(A) that fills the cross in the complex plane displayed in the first
plot of Fig. 11. We might naturally look for the norms {En(Λ(A))} and convergence
factor ρ associated with this region. Some equipotential curves corresponding to
the appropriate conformal map are shown in the figure; the convergence factor is
ρ ≈ 0.518.

Now suppose that for one reason or another, we decide to approximate the cross
by a simpler region S ⊆ C. Typically we might enclose Λ(A) by S, in which case the
“>∼ ” of (STEP2) becomes a “≥ .” One choice for S might be the enclosing rectangle
illustrated in the middle plot. For this region, the asymptotic convergence factor
worsens by 35% (as measured by logarithms), to ρ ≈ 0.615. Another choice might
be the ellipse illustrated in the third plot. Here the asymptotic convergence factor
worsens by an additional 47%, to ρ ≈ 0.719.
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In the study of matrix iterations, polygons and ellipses arise commonly as esti-
mated regions S. For example, there is a large class of adaptive or hybrid iterations
that proceed by first estimating the spectrum Λ(A) by some set S, then iterating in
some fashion based on that approximation S; sometimes the estimate S is refined as
the iteration proceeds. The first such method, proposed by Manteuffel in the 1970s,
took S to be an ellipse, which has the advantage that an optimal iteration for S can
be derived analytically from Chebyshev polynomials [51]. Subsequent refinements on
this idea have often taken S to be a polygon, which some have suggested should be
transformed explicitly by a numerical Schwarz–Christoffel map [16], [52], [67], [70].
For a summary of the various strategies that had been proposed up to 1992, see [54].
Thus Fig. 11 is very much in the spirit of practical matrix computations, and it illus-
trates the price that may be paid by overestimating the spectrum. In more extreme
cases, where the convex hull of Λ(A) contains the origin, a nonconvex estimate S will
certainly be needed or there will be no convergence at all.

Hybrid matrix iterations are also related to the idea of polynomial preconditioning
of a problem Ax = b by a polynomial p(A) with coefficients derived from spectral or
other information [1], [21], [63].

Now let us switch tacks. Instead of generalities about approximating a spectrum
Λ(A) by a region S, let us turn to the specific context in which this issue arises most
often, alluded to at the beginning of this section. This is the business of approximating
a discrete spectrum by a continuum.

Such approximations are very familiar. Indeed, perhaps the most famous result
in matrix iterations is that the conjugate gradient iteration converges in O(

√
κ ) steps

to a fixed precision, as mentioned earlier in connection with (14). Such a statement
may be sharp for an operator or a family of matrices, but for an individual matrix,
it is necessarily an approximation. It will be sharp only insofar as Λ(A) “fills the
interval” by which it is approximated.

Typically, a Krylov subspace iteration behaves as if the spectrum is continuous
in the early stages, then begins to accelerate in the later stages. There is no mystery
about this behavior. The iteration depends upon polynomials p ∈ Pn that are small
throughout the spectrum Λ(A). When n is small, there may be no way to achieve this
except by being small throughout a wide neighborhood of Λ(A), i.e., a continuum. As
n increases, however, there may be enough degrees of freedom for p to take the strategy
of approximately annihilating certain eigenvalues of A while being larger in-between.
This phenomenon is related to the convergence of approximations to eigenvalues of
A computed by iterative methods for eigenvalue problems, notably the Lanczos and
Arnoldi iterations [6], [29], [62].

Complicated examples can generate very complicated behavior. We shall content
ourselves with just one simple example. Figure 12 shows En as a function of n
for the set Λ(A) = {1, 2, 3, . . . , 100} and the associated continuum approximation
S = [1, 100]. The upper curve shows the norms En(S), and the lower, downward-
bending curve corresponds to the norms En(Λ(A)). At first, there is little difference
between En(S) and En(Λ(A)). After 20 or so iterations, however, the polynomial
degree becomes high enough that some of the discrete points of Λ(A) begin to be
resolved. Individual eigenvalues begin to be annihilated in the fashion of outliers;
the iteration is free to concentrate its efforts on a smaller subset of [1, 100]. The
convergence accelerates, and at step 100, off the scale of this plot, En(Λ(A)) will be
exactly zero.

Plots analogous to Fig. 12 have been presented previously in [30].
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FIG. 12. Illustration of superlinear convergence in the later stages of an iteration, as the
iteration begins to take advantage of the fact that the spectrum is not continuous but discrete. Here
S = [1, 100] and Λ(A) = {1, 2, 3, . . . , 100}.

We must point out that given a spectrum Λ(A), there is no unique choice of a
set S that can be used to approximate it. In the example of Fig. 12, for example,
suppose we were to take S = {1} ∪ {2} ∪ {3} ∪ [4, 100] instead of S = [1, 100]. This
would not affect the curve of En(Λ(A)), but it would affect how we interpret it. We
would now describe some of the downward bend of this curve as caused by the finite
n phenomenon of Fig. 10 rather than by the gap between S and Λ(A).

7. Step 3: Normal vs. nonnormal A. A matrix is normal if it has a complete
set of orthogonal eigenvectors, or equivalently, if it can be unitarily diagonalized:
A = UDU∗, where U is unitary and D = diag(λ1, . . . , λN ). From this formula it
follows that for a normal matrix, ‖p(A)‖ is equal to the maximum of |p(z)| on the
spectrum of Λ(A). For general matrices, however, all we have is the inequality

(STEP3) min
p∈Pn

‖p(z)‖Λ(A) ≤ min
p∈Pn

‖p(A)‖.

This is the third in our sequence of approximations.
The degree of nonnormality of a matrix—a notion we shall not attempt to define

precisely—can vary arbitrarily. In particular, most estimates such as (STEP3) that
are based on the eigenvalues of a matrix can fail to be sharp to an arbitrary degree,
for certain matrices [75]. As an elementary example, consider the norms of powers
‖An‖ for an N ×N Jordan matrix of the form

(15) A =


0 2

0 2
0 2

0 2
0

 .

For n < N we have ‖An‖ = 2n, even though zn is identically zero on the spectrum
of A (the origin). Nor does this discrepancy depend on A being nondiagonalizable.
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FIG. 13. Convergence curves for the tridiagonal Toeplitz matrix (16) and for a normal matrix
with the same eigenvalues. Nonnormality slows down the convergence by about a factor of five.

For example, if we replace the zeros on the diagonal of (15) by distinct numbers
of magnitude less than 1, the matrix becomes diagonalizable, but ‖An‖ still grows
exponentially for n < N , while ‖zn‖Λ(A) shrinks exponentially.

Over the years, analysis of eigenvalues has been the basis of most studies of
convergence of matrix iterations. The justification for this kind of analysis has been
that although non-normality may introduce certain transient effects, the asymptotic
behavior as n → ∞ of a function such as An or p(A) is determined by eigenvalues.
This reasoning is flawed, however, since matrix iterations are concerned with n� N .
A better explanation of the success of eigenvalue analysis in practice is the fact that
in most applications, the degree of nonnormality is mild.

For another example where it is not mild, consider the matrix of the form

(16) A =


0.5 0.7
−0.3 0.5 0.7

−0.3 0.5 0.7
−0.3 0.5 0.7

−0.3 0.5


of dimension N = 50. Since the entries are constant along diagonals, A is, like (15),
a Toeplitz matrix. Its eigenvalues are a set of 50 distinct numbers in the complex
interval [ 1

2 − 0.917i, 1
2 + 0.917i]. A computation based on Theorem 2 reveals that the

estimated asymptotic convergence factor associated with this interval is ρ ≈ 0.594.
Figure 13, however, shows that the actual convergence of minimal polynomials for
this matrix is about five times slower, at a rate approximately (0.913)n. Only when
we plot the convergence curve for a normal matrix with the same eigenvalues do we
see behavior like (0.594)n.

An explanation of this behavior is suggested in Fig. 14. The spectrum of a
matrix, Λ(A), is the set of points in C where the resolvent of A, (zI − A)−1, does
not exist. Let us adopt the convention that the norm of the resolvent at such points



POTENTIAL THEORY AND MATRIX ITERATIONS 563

0 1

−1

0

1

FIG. 14. Partial explanation of Fig. 13. The solid dots are the eigenvalues of A, filling an
interval that corresponds to ρ ≈ 0.594. The dashed ellipse is the image of the unit circle under the
symbol −0.3w−1 + 0.5 + 0.7w of this Toeplitz matrix, corresponding to ρ ≈ 0.913. The other curves
are the boundaries of the ε-pseudospectra Λε(A) for ε = 10−2, 10−3, 10−4, 10−5.

is infinite; ‖(zI − A)−1‖ = ∞. The matrix (16) has the property that in regions of
C where ‖(zI −A)−1‖ is finite, it may still be exceedingly large. For each ε ≥ 0, the
ε-pseudospectrum of A is the subset of the complex plane defined by

(17) Λε(A) = { z ∈ C : ‖(zI −A)−1‖ ≥ ε−1 }.

The matrix (16) has ε-pseudospectra that extend far beyond the spectrum, even when
ε is very small [60]. For ε = 10−5, for example, Λε(A) extends a distance about 0.4
away from Λ(A). The pseudospectra of a matrix can also be defined in another
equivalent fashion:

(18) Λε(A) = { z ∈ C : z ∈ Λ(A+ E) for some E with ‖E‖ ≤ ε}.

Thus in Fig. 14, a perturbation of norm 10−5 could move some of the eigenvalues a
distance about 0.4.

Banded Toeplitz matrices such as (16) represent extreme examples of nonnormal-
ity in the sense that the ε-pseudospectra depend only weakly on ε. For a different
kind of example, consider the 30× 30 matrix of the form

(19) A =


1 α

1 α/2
1 α/3

1
. . .
. . .

 ,

where α is a parameter. The spectrum of this matrix is the single point {1}, cor-
responding to an estimated asymptotic convergence factor ρ = 0. Figure 15 shows,
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FIG. 16. Boundaries of the ε-pseudospectra of the matrix (19) with α = 1 for ε = 10−0.5, 10−1,
10−1.5, . . . , 10−3. The pseudospectra shrink significantly with ε.

however, that a Krylov subspace iteration for this matrix takes many steps to converge,
starting slowly and then accelerating. Some insight into this behavior is suggested by
the ε-pseudospectra of Fig. 16, which shrink substantially as ε decreases.

A connection can be made between pseudospectra and convergence of Krylov
subspace iterations via the contour integral p(A) = (1/2πi)

∫
Γ(zI−A)−1 p(z) dz, valid

for any polynomial p and any simple closed integration contour Γ enclosing Λ(A) [53],
[71], [75]. If p(z) is small on a region where ‖(zI−A)−1‖ is not too large, then taking
absolute values in this formula may give a reasonable bound on ‖p(A)‖. For example,



POTENTIAL THEORY AND MATRIX ITERATIONS 565

if Γ is taken as the boundary of Λε(A) for some ε, we get

(20) ‖p(A)‖ ≤ 1
2π

Lε−1‖p(z)‖Λε(A),

where L is the arc length of the boundary of Λε(A). This estimate suggests that if
A is far from normal, then the convergence of a Krylov subspace iteration may be
determined approximately by the size of minimal polynomials on the pseudospectra
rather than the spectra. Often this approximation is about right, though not always,
as (20) is only an inequality. What is clear is that in extreme cases of nonnormality,
the spectrum may give no useful information. A general theorem to this effect has
been proved by Greenbaum, Ptak, and Strakoš [36].

A user who suspects that a matrix iteration is converging slowly because of non-
normality may investigate this possibility in various ways. Computation of pseu-
dospectra by the obvious method of evaluating resolvent norms on a grid may be too
expensive, but several acceleration devices are available, including projection onto a
lower-dimensional invariant subspace [73], preliminary reduction to triangular form
followed by inverse or Lanczos iteration [50], or the use of Arnoldi iteration [73].
Speedups by factors of hundreds may sometimes be obtained by applying these de-
vices in combination. An alternative approach is to perturb the matrix A at random,
say, by a perturbation of relative norm 10−3, and see if the effect on the eigenvalues
is pronounced. If the dominant eigenvalues prove to be highly sensitive to perturba-
tions, there is a risk that analysis of convergence based on eigenvalues alone may be
misleading.

8. Step 4: ‖p(A)‖ vs. ‖p(A)r0‖/‖r0‖. Krylov subspace iterations work with
vectors generated from the initial vector r0, not with matrices. Indeed, it is this prop-
erty that makes them so powerful. Yet the standard ideas for investigating convergence
are matrix ones, independent of r0. This is our fourth step:

(STEP4) min
p∈Pn

‖p(A)‖ ≥ min
p∈Pn

‖p(A)r0‖
‖r0‖

.

We shall see that this inequality is responsible for the phenomenon of sublinear con-
vergence often observed in the early stages of a matrix iteration [55].

The mathematics of (STEP4) is elementary. From the definition of the matrix
norm, we have ‖p(A)‖ ≥ ‖p(A)r0‖/‖r0‖, for any r0 6= 0, and (STEP4) follows by
minimizing over p ∈ Pn. We have written “min” instead of “inf,” for it can be shown
that for any A and n, there exists a unique polynomial p ∈ Pn that minimizes ‖p(A)‖,
known as the ideal GMRES polynomial for the given matrix A and step n [38]. Such
polynomials can be computed numerically by methods of semidefinite programming
[71,74], and computations of this kind are the basis of many of the figures of this
paper.

Krylov subspace iterations approximately minimize the right-hand side of (STEP4),
not the left-hand side. Accordingly, to understand their behavior, we need to know
how these two may differ. An important part of the answer can be stated imme-
diately. To achieve a reduction in ‖r0‖, a matrix p(A) need not reduce all of the
eigencomponents of r0, just some of them.

An example makes the point. In Fig. 17, polynomials have been computed corre-
sponding to the 202× 202 diagonal matrix

(21) A = diag(1.00, 1.01, 1.02, . . . , 2.99, 3.00, 0.001).
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FIG. 17. The difference between minimizing ‖p(A)‖ and minimizing ‖p(A)r0‖/‖r0‖ for the
matrix (21) and a random starting vector r0. The outlier eigenvalue causes initial stagnation in the
upper curve, as illustrated already in Fig. 10(b). It has negligible effect at first on the lower curve,
however, since ‖p(A)r0‖/‖r0‖ can be reduced considerably by polynomials p that pay no attention to
the outlier. Eventually, further progress requires attention to the outlier, and the stagnation phase
appears.

This set of eigenvalues is densely distributed in [1, 3], with an additional outlier
at 0.001; the spectrum is a finite analogue of the set [1, 3] ∪ {0.001} considered in
Fig. 10(b). The upper curve of Fig. 17, corresponding to the left-hand side of (STEP4),
is essentially the same as the upper curve in Fig. 10(b). The lower curve corresponds
to the right-hand side of (STEP4) and a random choice of r0.

Here is what is going on in Fig. 17. An initial random r0 with ‖r0‖ = 1 has
roughly equal “energy” in each of the 202 eigencomponents. By this we mean that
if r0 is expanded in the basis of eigenvectors (which in this case happens to be the
canonical basis {ej}, since A is diagonal), then a typical expansion coefficient is of
order (202)−1/2. Now suppose a polynomial p is found that approximately annihilates
201 of these 202 components, without changing very much the component correspond-
ing to the outlier. The result is that the norm is reduced from 1 to order (202)−1/2.
This is just what we see in the figure. At first, polynomials p ∈ Pn are found that are
small on [1, 3] but approximately 1 at 0.001, and this suffices to bring the norm down
by an order of magnitude. Then the iteration stagnates; further progress cannot be
achieved without taking the outlier into consideration. Eventually n is large enough
that polynomials p ∈ Pn can be found that are small at the outlier too; and from here
on, the convergence proceeds essentially as in Fig. 10(b).

The reader may wonder, why did we use a continuum [1, 3] for Fig. 10(b) but a
discrete set of 201 points in that interval for Fig. 17? The answer is that the effect
just illustrated does not make sense in the continuum limit. For an N × N matrix,
we expect a coefficient approximately N−1/2 associated with the outlier eigenvalue,
making the level of the plateau in the lower curve of Fig. 17 approximately N−1/2.
In the limit N →∞, the outlier would have a zero proportion of the total energy and
the appearance of the plateau would be deferred forever.

Continuum limits make sense in this context, however, so long as we do not try
to balance intervals against isolated points of finite multiplicity. Fig. 18 shows an
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FIG. 18. The difference between minimizing ‖p(A)‖ and minimizing ‖p(A)r0‖/‖r0‖ for the
spectrum [0.01, 1] and a starting vector r0 with equal energy in all eigencomponents. Faster initial
convergence is achieved with a uniform distribution of eigenvalues in that interval than with a
Chebyshev distribution, though the behavior as n→∞ is the same.

example. Here, the spectrum of A fills the interval [0.01, 1] continuously. The upper
curve shows the corresponding minimal norms ‖p(A)‖, computable analytically for
this simple spectrum. The lower curves show the minimal norms ‖p(A)r0‖/‖r0‖ for
two particular choices of initial vector r0. In one case, the lowest curve, the energy
in r0 is uniformly distributed throughout the interval [0.01, 1]. In the second case,
the middle curve, it is distributed according to a Chebyshev distribution, i.e., with
density of type (1− x2)−1/2 rescaled appropriately to [0.01, 1]. (Both of these curves
were computed via discretizations of the interval involving 500 points.) The curve
corresponding to Chebyshev points is higher than the other one because Chebyshev
points are more densely clustered near the boundary x = 0.01 than uniform points,
forcing polynomials p to take greater pains to be small near there.

Figure 18 can also be interpreted as showing results (with probability 1) for
random initial vectors r0 but for two matrices A, again in the continuum limitN →∞.
In one case the spectrum is uniformly distributed in [0.01, 1], and in the other it
lies in a Chebyshev distribution. To put it concisely, when it comes to minimizing
‖p(A)r0‖/‖r0‖ for random vectors r0, as opposed to minimizing ‖p(A)‖, multiplicities
matter. More generally we may say that even when the eigenvalues effectively fill a
certain region of the complex plane, the density with which they do so may affect the
rate of convergence.

Sometimes algorithms are designed to take advantage of this fact. An example is
presented in a recent paper of Fischer and Freund [21], where the density distribution
of the eigenvalues is explicitly estimated in order to design a polynomial preconditioner
for a hermitian positive definite matrix. Actually, many of the adaptive and hybrid
methods alluded to in the discussion of Step 2 have the property that they adapt to
densities as well as locations of eigenvalues, though in most cases this is a fortunate
accident rather than a part of the authors’ design concept [54].

Figures 19 and 20 show another set of curves illustrating the significance of eigen-
value multiplicities in Krylov subspace iterations. Here, the spectrum is in the shape
of a cross. If the eigenvalues are distributed uniformly on the boundary, the conver-
gence is slower than if they are distributed uniformly in the interior. We used 670
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FIG. 19. A cross located in the right half-plane. For the results of potential theory, it does not
matter whether the region is the boundary alone or the boundary together with the interior.
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FIG. 20. The minimal value of ‖p(A)r0‖/‖r0‖ for the problem of Fig. 19, however, depends
significantly on how the eigenvalues are distributed within the cross.

and 3000 uniformly distributed discrete points, respectively, for these computations,
but the curves would have been little different if these numbers had been infinite.

The reader may suspect that in the last few pages, we have really been discussing
the distinction between the ∞-norm and a weighted 2-norm of polynomials p over
a set S. If A is normal, this is true, for in that case ‖p(A)‖ = ‖p‖Λ(A), whereas
‖p(A)r0‖/‖r0‖ is given by the formula

(22)
‖p(A)r0‖
‖r0‖

=
( N∑
j=1

|αj |2|p(λj)|2
)1/2

/( N∑
j=1

|αj |2
)1/2

,

where λ1, . . . , λN are the eigenvalues of A and αj is the expansion coefficient of r0
with respect to the jth eigenvector. If all of these coefficients are equal, which will
be approximately true if r0 is random, then the norm reduces to the unweighted 2-
norm of p(z) on Λ(A), implying that the ratio of ‖p(A)‖ to ‖p(A)r0‖/‖r0‖ can be no
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greater than
√
N . This observation applies to the initial stages of Figs. 18 and 20, for

example, since the matrices involved in those examples were normal.
If A is normal but r0 is not random, (22) indicates that ‖p(A)‖ and ‖p(A)r0‖/‖r0‖

may differ in other ways. A favorable r0 might make ‖p(A)r0‖/‖r0‖ arbitrarily small.
If r0 is a multiple of a single eigenvector of A, for example, then convergence may
occur in one step. It can be shown that the worst-case r0, by contrast, having all its
energy appropriately concentrated at points where the minimax polynomial p(z) on
Λ(A) achieves its maximum, eliminates the gap between ‖p(A)‖ and ‖p(A)r0‖/‖r0‖
entirely, making (STEP4) an equality [35], [46].

Does (STEP4) become an equality even for nonnormal matrices A, for some worst-
case choice of r0? Greenbaum and Trefethen conjectured in [38] that the answer was
yes. Subsequently, a counterexample was found by Faber et al., showing that it is in
general no [18]. If we maximize over r0 in (STEP4), we get the inequality

(23) min
p∈Pn

max
r0 6=0

‖p(A)r0‖
‖r0‖

≥ max
r0 6=0

min
p∈Pn

‖p(A)r0‖
‖r0‖

.

The example of Faber et al. established that the inequality is sometimes strict; the two
quantifiers do not commute. More recently, Toh has shown that for certain matrices,
the ratio of the right-hand side to the left-hand side can be arbitrarily small [72].

The lack of equality in (23) never seems to be an issue in practice. Experiments
with various matrices indicate that although the ratio of the two sides might be 10−1

or 10−6 in principle, it is usually more like 0.99 or exactly 1 [71]. Thus, in practice,
it is reasonable to think of Step 4 as the difference between worst-case and actual
initial vectors r0, even when A is not normal. In some applications, for example
with some linear iterations imbedded in larger nonlinear calculations, initial guesses
will be available that are significantly better than random, making Step 4 especially
significant.

9. Step 5: Minimization vs. quasi minimization. At step n, a typical
Krylov subspace iteration for solving Ax = b constructs an iterate xn whose residual
rn lies in the nth Krylov subspace generated by the initial residual r0, as indicated
in (6): rn ∈ r0 + 〈Ar0, A

2r0, . . . , A
nr0〉. Such an xn satisfies (7) for some p ∈ Pn:

rn = p(A)r0. But which such xn do these iterations construct? The simplest principle
is that it should be the (unique) choice that minimizes ‖rn‖, where ‖ · ‖ is, as always,
the 2-norm. Some methods achieve this, but some do not, and this is our fifth step:

(STEP5) min
p∈Pn

‖p(A)r0‖
‖r0‖

≤ ‖p(A)r0‖
‖r0‖

.

The standard algorithm that minimizes ‖rn‖ for general matrices is GMRES
[64]. The algorithm constructs a sequence of orthonormal vectors {qk} that span the
successive Krylov subspaces 〈r0, Ar0, . . . , A

n−1r0〉 and then solves the minimization
problem, involving a Hessenberg matrix, by standard orthogonal matrix operations
for least-squares problems. All this seems straightforward now, but it was not so
obvious a generation ago; GMRES was not developed until the 1980s. Before that,
other methods were published that minimized ‖rn‖, notably GCR, ORTHOMIN, and
ORTHODIR, but they had restrictions concerning the classes of applicable matrices
and numerical stability.

There are two reasons why ‖rn‖ may not be minimized at step n. The first is that
some methods minimize something different from ‖rn‖. In the conjugate gradient
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(CG) iteration [43], for example, which is restricted to symmetric positive definite
matrices A, it is the A-norm of the error that is minimized: ‖en‖A = (eTnAen)1/2,
where en = xn − A−1b. (The difference is visible in the lower curves of Figs. 22
and 23, below.) This makes sense for symmetric positive definite matrices but not for
general ones. Alternatively, ‖rn‖ may be minimized but over a different space than
the standard Krylov subspace (6). The method known as CGNR, for example, which
consists of the application of CG to the normal equations A∗Ax = A∗b, makes use of a
Krylov subspace based on A∗A instead of A. (In such cases (STEP5) is not a correct
description of the nature of the approximation under consideration, since the actual
rn is not of the form p(A)r0.)

Variations of this kind may significantly affect the convergence rate of an iteration.
In the case of a change of norm, say from ‖rn‖ to ‖en‖A, the effect is typically bounded
by a number such as

√
N or

√
κ(A). In the case of a change of Krylov subspace, it

may be unbounded. For example, for some N ×N matrices CGNR converges in one
step while GMRES takes N steps; for others, GMRES converges in two steps, while
CGNR takes N steps [53].

The other reason why ‖rn‖ is not always minimized is more interesting, for it
touches a deeper issue and is a topic of current concern and imperfect understand-
ing. For some problems, each iterate of GMRES is dauntingly expensive to compute.
Consequently, other methods have been devised that require much less work per it-
eration, but at the cost of delivering potentially larger residuals rn. Two classic
examples that employ the Krylov subspace (6) are biconjugate gradients (BCG) [23],
[48] and quasi-minimal residuals (QMR) [25], [26]. Other methods employing different
Krylov subspaces include conjugate gradients squared (CGS) [68], Bi-CGSTAB [80],
and transpose-free QMR (TFQMR) [24]. The behavior of these “quasi-minimization”
methods is generally more complicated and less well understood than that of GMRES,
but they are very fast and very popular.

What makes GMRES expensive is that to compute the new iterate xn at step n,
it manipulates a recurrence relation involving n + 1 vectors, potentially requiring a
great deal of work and memory. This is no problem at the beginning of an iteration,
when n is small, and thus GMRES is often the best method for problems that are well
enough preconditioned that they converge fast. It may also be no problem, relatively
speaking, in cases where matrix-vector multiplications of the form Ax are so costly
as to dominate all the costs of manipulating n + 1 vectors at step n. For many
applications, however, these conditions do not hold, and it is safe to say that the cost
of GMRES typically begins to be distressing by n = 20 and prohibitive by n = 100.

One way of coping with this problem is to restart GMRES intermittently, throwing
away the information accumulated in the Krylov subspace and retaining only the
current iterate xn. The other, deeper idea is to employ alternative algorithms based
on three-term recurrence relations such as those mentioned above. Typically such an
algorithm employs two Krylov sequences rather than one, making use of the transpose
AT or adjoint A∗ as well as A itself, and enforces a biorthogonalization condition that
can be implemented by three-term recurrences. However, no known methods of this
type minimize ‖rn‖. Indeed, in response to a $100 challenge posed by Golub in the
early 1980s, it was proved by Faber and Manteuffel in 1984 that within a certain class
of methods based on a three-term recurrence, there is none that minimizes ‖rn‖ for
general problems Ax = b [19].

The field of quasi-minimization algorithms is very large, and we shall make no
attempt to survey it. Instead, we present an example to give some flavor of the typical
performance of these methods. Figure 21 shows convergence curves corresponding to



POTENTIAL THEORY AND MATRIX ITERATIONS 571

0 5 10 15 20 25 30 35 40
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

FIG. 21. Comparison of GMRES (residual norm minimization) with QMR and BCG (quasi
minimization) for a 201 × 201 matrix and a random initial vector r0. The GMRES convergence
curve is optimal in the sense of minimizing ‖rn‖ at each step, but the other methods require less
work per step.

GMRES, QMR, and BCG applied to a certain 201 × 201 matrix A with a random
initial vector r0. To construct A, we began with the diagonal matrix D with 200
evenly spaced entries from 1 to 9. This was modified by a similarity transformation
by a random 200×200 matrix, and then a 201st row and column were added consisting
of all zeros except for the entry 1/2 on the diagonal. All told, A is thus a modestly
nonnormal 201× 201 matrix with spectrum in [1, 9] except for an outlier at 1/2.

The main feature to note in Fig. 21 is that the GMRES convergence curve rep-
resents a lower bound, with the QMR convergence curve lying above it and the BCG
curve lying mainly, though not entirely, above that. This behavior is typical. It is
also noteworthy that whereas the GMRES curve is monotonically nonincreasing, the
other curves are not, though the QMR curve comes close. For practical problems
the convergence of BCG is often far more erratic than this, and other methods that
may be faster, such as CGS, may converge more erratically still. An analysis of the
erratic nature of these convergence curves is presented in [5]; some of the mathematics
involved appeared earlier in [24].

The reader may find it an interesting exercise to explain the shape of the GMRES
curve of Fig. 21 based on the previous sections of this paper. The initial stagnation
is due to nonnormality (Step 3). The rapid convergence around n = 5 is made
possible by the difference between vector and matrix norms (Step 4). The stagnation
around n = 10 is the finite n effect caused by the outlier eigenvalue (Step 1). Finally,
around n = 15, we enter a phase of steady linear convergence at the rate ρn = 2−n

appropriate to the region S0 = [1, 9]. If the computation were carried a bit further,
we would begin to observe acceleration caused by the discreteness of the spectrum
(Step 2).

10. Step 6: Exact vs. floating-point arithmetic. Our final approximation
is the one that arises throughout scientific computing. On a computer, a Krylov
subspace iteration will be implemented in floating-point arithmetic, and rounding
errors will be introduced. The result is that rn will not be exactly equal to p(A)r0
for any polynomial p ∈ Pn. In principle, the error could go in either direction, but
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for statistical reasons, rounding errors will almost always hurt rather than help, and
thus we write this step with the symbol <∼ :

(STEP6)
‖p(A)r0‖
‖r0‖

<∼
‖rn‖
‖r0‖

.

Rounding errors play an important role in matrix iterations. Of course, one effect
they have is the obvious one of preventing convergence of ‖rn‖/‖r0‖ below the level of
machine precision, or sometimes machine precision times the condition number of A.
But they have another effect that is different from this, which might be summed up
by the idea that three-term recurrences executed in floating-point arithmetic suffer
from loss of memory.

Methods involving three-term recurrences invariably depend upon certain orthog-
onality properties. For example, the CG and Lanczos iterations produce a sequence
of residuals and search directions that are orthogonal in various senses, and the BCG
and QMR iterations produce pairs of sequences of vectors that are mutually biorthog-
onal. Mathematically speaking, these orthogonality properties are consequences of
identities based on, for example, the symmetry of A in the case of CG or Lanczos. In
floating-point arithmetic, however, these properties typically cease to hold accurately
after a number of steps have been taken. Nearby vectors in a sequence may be nearly
orthogonal to one another, but they are typically far from orthogonal to vectors earlier
in the sequence.

At a qualitative level, it is easy to see what causes this loss of orthogonality.
Small errors are introduced at each step of a recurrence, and these may then grow
exponentially as the iteration proceeds. One may take the view, for example, that
the component of rn corresponding to a particular eigenvalue of A is never exactly
annihilated by a root of a polynomial p(A); at best it is annihilated to machine
precision. The residue that remains may grow in succeeding iterations until it becomes
very large, and eventually it may have to be annihilated again. Such effects may delay
convergence of matrix iterations by a number of steps. In the case of Lanczos iterations
for finding eigenvalues (not discussed here), they result in the phenomenon of multiple
computed copies of eigenvalues known as “ghosts.” Note that such effects result from
having isolated points in the spectrum; for a linear operator whose spectrum has no
isolated points, or for a matrix at an early enough stage in the iteration that the
spectrum does not behave as if it has isolated points, ghosts and related phenomena
do not appear.

Establishing theorems to quantify these effects is not an easy matter. In some
areas, a good deal is known; examples are Paige’s analysis of loss of orthogonality in
the Lanczos iteration [57] and Greenbaum’s analysis of the convergence of conjugate
gradients [31]. Another example is a result of Greenbaum to the effect that if an
iteration is erratic enough that some iterates have norms ‖xn‖ much larger than the
exact norm ‖A−1b‖, then the attainable accuracy suffers accordingly [33]. Overall,
however, the completeness of the understanding of the effect of rounding errors on
Krylov subspace iterations falls short of what numerical analysts have come to expect
for the more classical direct methods in linear algebra [29, 44]. Readers interested in
learning something of this subject should begin with Greenbaum’s book [34].

Figure 22 illustrates a typical effect of rounding errors in a three-term recur-
rence. The matrix, of dimension N = 24, is taken from [37]. We start with D =
diag(λ1, . . . , λN ), where λj = 0.001 + 0.999(j − 1)2j−N/(N − 1) for j = 1, 2, . . . , N .
We then set A = UDUT , where U is a random orthogonal matrix. The matrix A is
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FIG. 22. Comparison of MINRES (three-term recurrence) and GMRES ( (n + 1)-term recur-
rence) for a 24 × 24 symmetric positive definite matrix. The curves would be identical in exact
arithmetic.

thus dense and symmetric, with eigenvalues lying in the interval [0.001, 1] but very
strongly clustered near 0.001.

Figure 22 shows two convergence curves for this matrix A and a random initial
vector r0. The GMRES curve is not significantly affected by rounding errors. (Ex-
ercise: why does it have the shape it does?) Since A is symmetric, however, each
residual rn is computable by a three-term recurrence instead of an (n + 1)-term re-
currence, and a standard algorithm for this is known as MINRES [58]. The figure
shows that although the MINRES curve would be identical to the GMRES curve in
exact arithmetic, in floating-point arithmetic it begins to deviate very early. (The
computer has machine epsilon 2−52 ≈ 2.2× 10−16.) Convergence to high accuracy is
not prevented, but it is substantially delayed.

Figure 23 presents the same comparison for a different pair of algorithms. One
curve corresponds to CG as implemented in the usual way by a three-term recur-
rence. Note that since ‖rn‖ is plotted, whereas it is ‖en‖A that CG minimizes, the
convergence curve does not decrease monotonically. What is striking is that after
step n = 10, the behavior begins to be strongly affected by rounding errors. The
comparison curve labeled “exact CG” was computed by an (n + 1)-term recurrence,
following [37], so that the orthogonality property of CG was maintained explicitly.

11. Summary. Our six steps represent a chain of inequalities stretching from
ρn to ‖rn‖/‖r0‖, the two sides of (5). They are collected in Table 1.

Obviously, the inequalities do not all point in the same direction. The convergence
of a matrix iteration can be faster or slower than the estimate ρn based on potential
theory, depending on what effects are dominant.

Here is a brief recapitulation of the principal effect of each of the steps.
Step 1 is the difference between nth root n→∞ asymptotics and finite n potential

theory for a set S. If S has isolated points near the origin, corresponding to outlier
eigenvalues of A, these may delay convergence by many steps without affecting the
asymptotic rate.
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FIG. 23. For the same matrix as in Fig. 22, comparison of CG implemented in floating-point
and in exact arithmetic. The exact CG curve is simulated by implementing CG with an explicit
(n+ 1)-term recurrence.

TABLE 1
Summary of the six steps.

ρn

≤ n→∞ vs. finite n 1
minp∈Pn ‖p‖S

>
∼ Estimated vs. actual spectrum 2

minp∈Pn ‖p‖Λ(A)

≤ Normal vs. nonnormal A 3
minp∈Pn ‖p(A)‖

≥ ‖p(A)‖ vs. ‖p(A)r0‖/‖r0‖ 4
minp∈Pn ‖p(A)r0‖/‖r0‖

≤ Minimization vs. quasi minimization 5
‖p(A)r0‖/‖r0‖

<
∼ Exact vs. floating-point arithmetic 6

‖rn‖/‖r0‖

Step 2 is the approximation of the spectrum Λ(A) by the continuum S. As an
iteration proceeds, it typically begins to discover that Λ(A) is not a continuum after
all. Isolated eigenvalues begin to be “peeled off,” and the convergence accelerates.
This is sometimes called a phase of “superlinear convergence.”

Step 3 is the difference between normal and nonnormal matrices. If A is normal,
its spectrum determines everything, but in the nonnormal case, the convergence may
be arbitrarily much slower than can be explained on the basis of the spectrum alone.
Sometimes the ε-pseudospectra of A provide a better understanding of convergence
behavior. As the iteration proceeds, smaller ε may become relevant, representing a
second potential cause of acceleration of convergence in the later stages of the iteration.

Step 4 is the difference between matrix and vector norms, which is roughly the
difference between a worst-case initial vector r0 and the actual r0. For an arbitrary
r0, an iteration can usually manage to ignore troublesome eigenvalues in the early
stages. Convergence later slows down when it is forced to take them into account.
This is sometimes called a phase of “sublinear convergence.”
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Step 5 is the difference between methods that minimize ‖rn‖ at each step (notably
GMRES) and those that do not (BiCG, CGS, Bi-CGSTAB, QMR, TFQMR, etc.).
These quasi-minimization methods require more iterations, but each iteration may
require much less work, especially in cases of slow convergence where the cost of the
computation is not dominated by the cost of matrix-vector products.

Step 6 is the approximation of exact by floating-point arithmetic. The effects of
rounding on matrix iterations are complicated and not fully understood, especially
for methods based on three-term recurrences. Most often rounding errors delay con-
vergence without preventing it, but the latter is possible too.

Let us emphasize some things we have not done in this paper.
We have not given any details of Krylov subspace iterations and their imple-

mentation. Some of these methods, like conjugate gradients, are elementary and are
described in numerous books. Others, like QMR with look-ahead, are complicated
and perhaps best used in software form rather than programmed for oneself.

We have not, for that matter, said anything about software. For a start on this
subject, see [3].

We have not given examples of matrices obtained from scientific or engineering
applications, preferring to construct examples artificially to illustrate each point.

As mentioned in the introduction, we have not studied errors, only residuals. For
ill-conditioned matrices A, some of the effects we have described look different if one
examines ‖en‖/‖e0‖ rather than ‖rn‖/‖r0‖. For example, the initial Step 4 sublinear
convergence effect may be weakened, since ‖en‖/‖e0‖ is more strongly dominated by
troublesome eigenvalues near the origin. Relatedly, somewhat different effects may be
observed if x0 and e0 are random than if r0 is random.

We have not addressed the crucial problem of preconditioners. If a matrix iter-
ation is converging slowly, our study may help to explain why, but it will probably
not point the way to a cure. The cure is a better preconditioner—but finding good
preconditioners is a proverbial art, not a science.

We have not considered the use of Krylov subspace iterations for purposes other
than solving systems of equations. The most conspicuous other area of application is
eigenvalue problems [62]. In addition, these methods are also used for further purposes
such as evaluation of exp(tA) or other matrix functions [10,11].

Finally, we have certainly not presented the only valid way to analyze the conver-
gence of Krylov subspace iterations. To some degree the ordering of our six steps could
be different. For example, the matrix-vector inequality (STEP4) could be formulated
for arbitrary p rather than minimal p. In some areas, entirely different approaches
might be possible. For example, isolated points in the spectrum could be treated
differently; not all quasi-minimization methods fit the inequality (STEP5); and our
assignment of all rounding errors to the equality (STEP6) at the end of the chain is
somewhat artificial.

In closing, on the other hand, let us emphasize what we have done. We have
reviewed, systematically and with concrete examples, the fundamental phenomena
that govern convergence of Krylov subspace matrix iterations for solving systems of
equations Ax = b. We believe we have touched upon all the main phenomena that
arise in this subject.
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