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Abstract

This paper considers the numerical simulation of 2D electromagnetic wave scattering problems and
describes the construction of a reduced–order approximation which enables the rapid prediction
of the scattering width distribution for a range of incident wave directions. Associated certainty
bounds ensure confidence in the results of the computed approximation. Numerical examples are
included to demonstrate the performance of the proposed procedure.

1 Introduction

The simulation of electromagnetic wave scattering problems is of importance in many practical
application areas where, typically, the interest lies in determining the scattering width distribution
for a new design. Computational methods can provide assistance in this area, provided that the
simulations allow the full problem parameter space of interest to be rapidly, and accurately,
investigated. In general, the parameter space will include changes in the direction of the incident
wave, changes in the wave frequency and changes in the geometry and structure of the scatterer.
It should also be noted that this requirement for the rapid computation of the scattering width for
a range of problem parameters also arises when the solution of inverse problems is considered [1].

The finite element method is a popular domain based approach for the solution of electromag-
netic wave scattering problems, in which an approximation to the scattering width distribution
may be obtained by post–processing the computed solution. With this approach, a new compu-
tation is necessary to produce the revised scattering width distribution following a change in any
of the problem parameters. The implication is that the associated computational costs will be
very high for a study involving a large number of parameter changes. In this paper, we present a
reduced–order approximation which addresses this problem and can lead to significant reduction
in the computational costs.

Reduced—order approximations operate in two stages. In an initial off–line stage, full solutions
are computed for a set of specified problem parameters and the results of these computations are
stored. In an on–line stage, specified outputs of interest are computed at low cost for new sets of
the problem parameters. In addition, for the outputs to be of practical use, it is important that
accuracy can be guaranteed. Reduced–order approximations with these properties have already
been successfully applied in the area of computational aerodynamics [2, 3], while sophisticated
methods for determining error bounds on the outputs produced by reduced–order approximations
have also been developed [4, 5].

We aim to apply a reduced–order approximation in the area of electromagnetic wave scattering.
For this initial study, we consider two dimensional wave scattering problems and we have restricted
the parameter space investigation to allow only variations in the direction of the incident wave.
The selected output of interest is the scattering width distribution and the implementation details
describe how it can be effectively computed. To assess the accuracy of the proposed reduced–
order approximation, a novel approach for obtaining certainty bounds on the computed output is
described. Here certainty is assessed with respect to a full solution computed for the parameter set.

1Corresponding Author: Civil and Computational Engineering Centre, University of Wales Swansea, Singleton

Park, Swansea SA2 8PP, Wales, U.K. Email: P.D.Ledger@swansea.ac.uk

1



It will be shown that these certainty bounds can be computed in the on–line stage, requiring little
additional computation and providing certainty on the scattering width distributions. For the
off–line stage of the approach, we achieve accurate solutions to two dimensional electromagnetic
wave scattering problems by employing a Galerkin finite element method in the frequency domain,
with the arbitrary order edge elements of Ainsworth and Coyle [6]. This has been shown to be
an effective approach for obtaining accurate scattering width distributions, over a large frequency
range, for a variety of different scatterers [7, 8].

The presentation of the work proceeds as follows: In Section 2, a brief description of the elec-
tromagnetic wave scattering problem, with a prescribed incident wave angle, is presented. Then,
the weak variational formulation of the problem is described and an overview of the arbitrary
order finite element discretisation is given, together with an outline of the approach employed for
the calculation of the scattering width distribution. This is followed, in Section 3, by the presen-
tation of the reduced–order approximation which will enable the rapid prediction of the scattering
width distribution for new incident wave directions. The approach adopted for obtaining certainty
bounds on the outputs produced by the reduced–order approximation is also described. In Sec-
tion 4, we discuss the computational costs of the reduced–order approximation and the associated
certainty bounds and, in Section 5, numerical examples are presented to illustrate the capability
of the proposed method. Finally, some concluding remarks are given.

2 The Scattering Problem for a Prescribed Incident Wave Angle

2.1 Problem Description

Our interest lies in the simulation of scattering problems, in which electromagnetic waves interact
with a general scatterer. We will restrict consideration to the case where the scatterer is a perfect
conductor, but the method that is proposed is readily extendable to enable the modelling of more
general scatterers. It is assumed that the scatterer is surrounded by a region of free space and that
waves are generated by a known source located in the far field. The unknowns for this problem
are the electric and magnetic field vectors, which are expressed relative to a Cartesian coordinate
system Oxyz in the form Et = (Et

x, Et
y, E

t
z)

T and Ht = (Ht
x, Ht

y, H
t
z)

T respectively. Here, the
superscripts t and T denote the total field and the vector transpose respectively. For scattering
simulations, these total fields may be decomposed, into incident and scattered components, as

Et = Ei + E Ht = H i + H (1)

where the superscript i denotes the incident field and the vectors E and H are the scattered
electric and magnetic fields respectively. For a frequency domain approach, where a time variation
eiωt is assumed, the dimensionless Maxwell curl equations in free space can be expressed in the
form

curl E = iωH curl H = −iωE (2)

and the Maxwell divergence equations written as

div E = 0 div H = 0 (3)

In these expressions i2 = −1 and ω = 2π/λ, where λ is the wavelength of the incident wave. The
curl equations (2) may be combined to produce the reduced vector wave equation

curl curlE − ω2E = 0 (4)

for the scattered electric field. We now restrict consideration to two–dimensional transverse
electric (TE) problems, in which E and H are functions of x and y only and have the form,
E = (Ex, Ey, 0)

T and H = (0, 0, Hz)
T respectively. If one was to adopt a transverse magnetic

formulation (TM), then the fields would have the form H = (Hx, Hy, 0)
T and E = (0, 0, Ez)

T .
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2.2 Boundary Conditions

2.2.1 Perfect Magnetic Conductor (PMC)

At the surface of the PMC scatterer, the boundary conditions

n ∧ H = −n ∧ H i n · E = −n · Ei (5)

should be applied. The surface of the PMC is denoted by Γ1.

2.2.2 Perfect Electrical Conductor (PEC)

At the surface of the PEC scatterer, the boundary conditions are

n ∧ E = −n ∧ Ei n · H = −n · H i (6)

The surface of the PEC is denoted by Γ2. It should be noted that applying a PMC condition for
a TE problem is equivalent to applying a PEC condition for a TM problem.

2.2.3 Far Field Condition

The scattered fields E and H are required to satisfy the Silver–Müller radiation conditions [9]

er ∧ curl E − iωE = O(r−3/2) (7)

er ∧ curl H − iωH = O(r−3/2) (8)

as r → ∞, where (r, θ) are cylindrical polar coordinates and er denotes the unit radial vector.
With a finite element solution procedure in mind, we aim to approximate this condition by
truncating the free space region at a finite distance from the scatterer and then imposing an
appropriate boundary condition. This may be accomplished in a variety of different ways e.g. via
infinite elements [10, 9], using absorbing boundary conditions [11], applying DtN maps [12] or
coupling boundary and finite element methods [13]. Here, we choose to satisfy the condition by
adding an absorbing layer, denoted by Ωp, to the truncated free space region Ωf , as illustrated
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Figure 1: The addition of Ωp, the PML region, to the domain Ωf

in Figure 1. For the absorbing medium, we employ a curvilinear, anisotropic, perfectly matched
layer (PML) [14, 15, 7].

3



2.3 Strong Statement of the Problem

It follows that a strong statement of the problem can be formulated as: find E such that







curl curl E − ω2E = 0 in Ω
div E = 0 in Ω

n ∧ curl E = −n ∧ curlEi n · E = −n · Ei on Γ1

n ∧ E = −n ∧ Ei on Γ2

er ∧ curl E − iωE = O(r−3/2) as r → ∞

. (9)

This equation set can be shown to be equivalent to the problem description given in section 2.1
and the boundary conditions given in section 2.2 [16]. Note that the normal condition n · H

associated with Γ2 can be discarded because the normal condition n ·E = −n ·Ei on Γ1 implies
that n · H = −n · H i on Γ2.

2.4 Weak Variational Statement and Discretisation

A weak variational formulation of the scattering problem given in equation (9) may now be
expressed as [7, 8]: find E ∈ XD, such that

A(E, W ) = `(W ) ∀W ∈ X (10)

where the spaces XD and X are defined by

XD = {v |v ∈ H(curl; Ω); n ∧ v = −n ∧ Ei on Γ2; n ∧ v = 0 on Γ3} (11)

X = {v |v ∈ H(curl; Ω); n ∧ v = 0 on Γ2; n ∧ v = 0 on Γ3} (12)

and the operator A is defined by

A(E, W ) = a(E, W ) − ω2m(E, W ) (13)

The bilinear forms employed here are defined by

a(E, W ) =

∫

Ωf+Ωp

Λ−1
1 curlE · curlW dΩ m(E, W ) =

∫

Ωf+Ωp

Λ2E · WdΩ (14)

and the linear form is given by

`(W ) =

∫

Γ1

(
n ∧ Λ−1

1 curl Ei
)
· W dΓ (15)

In these expressions, Λ1 and Λ2 represent complex tensors of position in Ωp and are equal to the
identity tensor in Ωf [7], while an overbar denotes the complex conjugate. One might expect that
a Lagrange multiplier term should be included in equation (10) to enforce the zero divergence
condition. However, it can be shown that, for scattering problems with a prescribed non-zero ω,
the Lagrange multiplier turns out to be equal to zero and therefore can be omitted [8]. As the
normal boundary condition n · E = −n · Ei on Γ1 is associated with the divergence condition it
does not appear in the variational statement (10).

An approximate solution EH ∈ XD
H ⊂ XD to the problem expressed by the variational

statement of equation (10) is obtained by employing the Galerkin procedure. Initially, the domain
Ωf + Ωp is discretised using an unstructured assembly of triangular and quadrilateral elements.
Then, the scattered field is approximated, to a degree p, as [6]

ÊH =
4∑

i=1

p
∑

j=0

ei
jφ̂

i

j +

p
∑

j=0

p
∑

k=1

e
Iξ

j,kφ̂
Iξ

j,k +

p
∑

j=0

p
∑

k=1

e
Iη

j,kφ̂
Iη

j,k (16)
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over a master quadrilateral element and as

ÊH =

3∑

i=1

p
∑

j=0

ei
jφ̂

i

j +

3∑

i=1

p−2
∑

j=0

ePI
i,j φ̂

PI

i,j +

p−3
∑

j=0

p−3
∑

k=0
︸ ︷︷ ︸

j+k≤p−3

e
GIξ

j,k φ̂
GIξ

j,k +

p−3
∑

j=0

p−3
∑

k=0
︸ ︷︷ ︸

j+k≤p−3

e
GIη

j,k φ̂
GIη

j,k (17)

over a master triangular element. The vectors φ̂, expressed relative to a master element coordinate
system, denote the hierarchic edge element basis functions, while the scalars e are the unknown
coefficients. These scalar coefficients are related to weighted moments of the tangential component
of the field and continuity of these coefficients is enforced on inter–element edges. This results
in a scheme which has continuous tangential components between elements, whilst allowing for
discontinuous normal components.

The basis functions can be generated numerically through recursive relations [6]. Element
integrals can be evaluated by employing a covariant mapping [17] and Gauss quadrature [7].
Following this approach, the Galerkin approximation is obtained as the solution of a discrete
problem which can be expressed as: find EH ∈ XD

H such that

A(EH , W ) = `(W ) ∀W ∈ XH ⊂ X (18)

The complex linear equation system
AEH = L (19)

which results from equation (18) is solved using a LINPACK banded solver. Here, we use the no-
tation EH to denote the vector of unknown coefficients associated with a pth order discretisation.

2.5 Scattering Width Evaluation

The computed scattering width distribution σ̂(EH ; φ) is a function of the finite element solution
EH and the far field viewing angle φ. To evaluate the scattering width distribution, the form of
the solution on a collection surface Γc, which totally encloses the scatterer, is determined. It is
convenient to express the scattering width distribution in the form [18]

σ̂(EH ; φ) = LO(EH ; φ)LO(EH ; φ) (20)

where

LO(EH ; φ) =

∫

Γc

(n ∧ EH · V ) dΓ +
∑

∫

k

(
ω2EH · Y H − curlEH · curl Y H

)
dΩ (21)

Here, the summation extends over all elements k ∈ Ω, such that ∂k ∪ Γc 6= ∅ and

V = −[0, 0, 1]T exp
{
iω

(
x′ cos φ + y′ sin φ

)}
(22)

Y =
1

iω
[sin φ,− cos φ, 0]T exp

{
iω

(
x′ cos φ + y′ sin φ

)}
(23)

The quantity Y H is the finite element interpolant of Y . It should be noted that equation (21)
follows from adopting the approach of Monk and co–workers [19, 20, 21], who suggested using
an area integral approach to evaluate the flux term which appears in the basic scattering width
expression. The scattering width distribution is generally displayed in decibels and, in this case,
it is the quantity

σ = 10 log10

(ω

4
σ̂(EH ; φ)

)

(24)

that is plotted against the viewing angle φ.
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3 Reduced Order Approximation

3.1 Computing the Reduced Order Approximation

Consider now the development of a reduced–order approximation for the prediction of the scat-
tering width distribution for an electromagnetic scattering problem. We take incident waves of
the form

Ei =





− sin θ
cos θ

0



 exp{iω(x cos θ + y sin θ)} (25)

where θ is the angle between the direction of propagation of the incident wave and the x axis. We
return to the standard Galerkin statement of equation (18), but now expressed in the form [4]:
find EH(θ) ∈ XD

H such that

A(EH(θ), W ) = ` (W ; θ) ∀W ∈ XH (26)

for a given incident wave direction, θ. Our goal is to develop a reduced–order approximation for
a parameterised solution EH(θ). The computed output is selected to be sH(θ; φ) ∈ C, where

sH(θ, φ) = LO(EH(θ); φ) (27)

and LO is defined in equation (21). We introduce the associated adjoint solution, ΨH(φ) ∈ XH ,
which is defined to satisfy the requirement

A(W ,ΨH(φ)) = −LO(W ; φ) ∀W ∈ XH (28)

Note that here we prefer to use LO(W ; φ) for the adjoint computation, rather than the lin-
earised form of σ̂ which we previously proposed when evaluating a–posteriori error bounds on the
scattering width [18]. The reasons for this choice are

1. Use of the the linearised form of σ̂ results in asymptotic bounds, which although applicable
in the case of evaluating a–posteriori error bounds is not in the case of this reduced order
model. Indeed, if the linearised form of σ̂ is employed for this reduced order model we would
lose the guarantee of being able to prove that the bounds we obtain are strict;

2. Use of the linearised form of σ̂ as the output adjoint for a reduced–order approximation
would, in the approach to be followed, necessitate the calculation of a large number of
additional adjoint solutions, since the linearised adjoint then depends on the solution EH .

The discrete adjoint problem, given in equation (28), may be written in matrix notation as

ATΨH = −g (29)

where g is the right hand vector which results from the linear form LO(W ; φ).
To construct reduced–order spaces, we adopt a parameter set {θ1, · · · , θNθ

} of incident wave
angles and a parameter set {φ1, · · · , φNφ

} of viewing angles of the scattering width. Corresponding
solutions EH(θ1), · · · , EH(θNθ

) and adjoints Ψ(φ1), · · · ,Ψ(φNφ
) are computed, and the spaces

WNθ
= span{EH(θi); i = 1, · · · , Nθ} WNφ

= span{ΨH(φi); i = 1, · · · , Nφ} (30)

are defined. If we are presented with a new incident angle, θ, the approach is then to look for
ẼH(θ) ∈ WNθ

⊂ XD
H such that

A(ẼH , W ) = ` (W ; θ) ∀W ∈ WNθ
(31)

For this angle of incidence, we compute Ψ̃H(φ) ∈ WNφ
⊂ XH , for a given φ, such that

A(W , Ψ̃H) = −LO(W ; φ) ∀W ∈ WNφ
(32)
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Here, ẼH denotes a reduced–order approximation to EH(θ) and Ψ̃H is a reduced–order approx-
imation to ΨH(φ).

With the viewing angle, φ, and the incident wave direction, θ, specified, equation (27) may
be expressed as

sH(θ, φ) = LO(EH(θ); φ) = LO(ẼH ; φ) + LO(EH(θ) − ẼH ; φ) (33)

since LO(E; φ) is linear in E. Then, using equations (28) and (26), it follows that we can write

sH(θ, φ) = s̃H(θ, φ) + r(θ, φ) (34)

Here
s̃H(θ, φ) = LO(ẼH ; φ) −

[

`(Ψ̃H) −A(ẼH , Ψ̃H)
]

(35)

is computable from the known data, while the term

r(θ, φ) = A(EH(θ) − ẼH ,ΨH(φ) − Ψ̃H) (36)

is not computable without prior knowledge of EH(θ) or ΨH(φ). Although this term is not com-
putable, we will see below that it may be bounded, and this enables us to deduce the magnitude
of the error made when we employ s̃H as a reduced order approximation to sH . We note that this
approach differs to the direct method of employing LO(ẼH ; φ) as the reduced order approximation
to sH and results in a much improved approximation.

To summarise this process, the steps involved in the off–line and on–line stages of the reduced–
order approximation procedure are presented in algorithmic form in Table 1.

3.2 Bounding the Error in the Reduced Order Approximation

Certainty bounds may be constructed for the reduced–order approximation to the output, with
the bounds being measured with respect to the output given by the finite element solution. From
equations (34)–(36), it can be seen that the error in the reduced order approximation may be
written as

sH − s̃H = r(θ, φ) = A(e, ε) (37)

where
e = EH − ẼH ε = ΨH − Ψ̃H (38)

Given the reduced order approximations ẼH and Ψ̃H , we define residuals RU (W ) : XH → R and
RΨ(W ) : XH → R according to

RU (W ) = `(W ) −A(ẼH , W ) RΨ(W ) = −LO(W ) −A(W , Ψ̃H) (39)

and we note that
RU (ε) = RΨ(e) = A(e, ε) (40)

For the space XH , we introduce a norm ‖ · ‖∗, defined by

‖W ‖∗ = n(W , W ) ≥ 0 (41)

where n is a coercive bilinear form and the particular choice adopted for n will be described below.
For the residuals RU (W ) and RΨ(W ), we also define the dual norm ‖ · ‖−∗ of ‖ · ‖∗ according to

‖R‖−∗ = sup
W ∈XH

R(W )

‖W ‖∗
(42)

From this dual norm definition, it follows that

|R(W )| ≤ ‖R‖−∗‖W ‖∗ ∀ W ∈ XH (43)
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Off–Line Stage:

Select {θ1, · · · , θNθ
} and {φ1, · · · , φNφ

}

Compute the coefficents EH
i for i = 1, · · ·Nθ by solving

AEH
i = Li

Compute the coefficients ΨH
i for i = 1, · · ·Nφ by solving

ATΨH
i = −gi

On–Line Stage:

Select a new incident wave direction θ

Compute the coefficients αi of Ẽ
H

=

Nθ∑

i=1

αiE
H
i by solving

(EH
i )TAẼ

H
= (EH

i )T Li i = 1, ·, Nθ

Compute the coefficents βi of Ψ̃
H

=

Nφ∑

i=1

βiΨ
H
i by solving

(ΨH
i )TAT Ψ̃

H
= −(ΨH

i )T gi i = 1, · · · , Nφ

Then compute s̃H from

s̃H = gT Ẽ
H
−

[

LT Ψ̃
H
−

(

Ψ̃
H

)T
AẼ

H
]

The scattering width distribution is then given by
σ̂ = s̃H s̃H

Table 1: Algorithmic description of the reduced–order approximation procedure for the scattering
width distribution, detailing the off–line and on–line stages

so that, in particular, when W = e,
∣
∣RΨ(e)

∣
∣ ≤ ‖RΨ‖−∗‖e‖∗ (44)

In order to be able to determine a computable bound for sH − s̃H , we require the existence of a
discrete inf–sup parameter β that satisfies

inf
V ∈XH

sup
W ∈XH

|A(V , W )|

‖V ‖∗‖W ‖∗
≥ β > 0 (45)

It should be noted that the existence of this parameter is a requirement for the original problem
of equation (18) to be well–posed. Now, if we set V = e in this equation, we may deduce that

sup
W ∈XH

|A(e, W )|

‖W ‖∗
≥ β‖e‖∗ (46)

When this result is combined with equations (40) and (42), we see immediately that

‖e‖∗ ≤
1

β
‖RU‖−∗ (47)
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Off–Line Stage:

Compute the minimum singular value µi of the matrix A

On–Line Stage:

For a chosen wave direction θ

Compute the scattering residual

RU = L − AENθ

For all φ compute the adjoint residual

RΨ = −g − ATΨNφ

and the bounds

∆σ̂ = (∆|s̃H |)2 =

(

‖RΨ‖ ‖RU‖
min µi

)2

Table 2: The algorithm for calculating bounds on the scattering width distribution given by the
reduced–order approximation showing the off–line and on–line stages

and it follows, using equation (44), that

sH − s̃H ≤
∣
∣RΨ(e)

∣
∣ ≤

1

β
‖RΨ‖−∗‖R

U‖−∗ (48)

3.3 Selected Implementation

If we represent the elements of XH in terms of the edge basis functions of equations (16) and (17),
we can write

V = vT φ ∀V ∈ XH (49)

In this case, it follows that

‖V ‖2
∗ = vT Nv ‖R‖2

−∗ = RT N−1R (50)

where N = n(φ, φ), and the inf–sup parameter is then given, from a generalised eigenvalue
problem, as

β2 = max
v

vTAT N−1Av

vT Nv
(51)

Here, for computational efficiency, we choose N to be the identity matrix, in which case β
becomes the minimum of the singular values µi of A and ‖ · ‖∗ and ‖ · ‖−∗ are vector euclidean
norms. Of course, other possible choices could be adopted, but these might be computationally
less advantages. In Algorithm 2, we summarise the steps required to obtain, in this fashion, the
certainty bounds on outputs predicted by the reduced–order model.

4 Computational Costs

To assess the computational costs associated with the reduced–order model, it is convenient to
consider the off–line and on–line stages separately.

In the off–line stage, the implementation of the reduced–order approximation requires the
computation of Nθ problem solutions and Nφ adjoint solutions. For each case, the matrix A
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remains unaltered and only the right hand side vectors g and L change. By using a LINPACK
direct solution technique which allows for multiple right hand side vectors, we are able to compute
all these solutions simultaneously. In preparation for the calculation of bounds, we are required

Figure 2: Scattering by a PEC/PMC circular cylinder of diameter D = 2λ showing the structured
mesh of 200 triangular elements

to evaluate the minimum of the singular values of the matrix A. Although this is an expensive
O(N3) operation, it only has to be undertaken once for all incident wave directions.

In the on–line stage, we prescribe new incident wave directions and compute Ẽ
H

and Ψ̃
H

as
linear combinations of the predetermined data given in WNθ

and WNφ
. The Nθ × Nθ and the

Nφ × Nφ matrices which result from equations (31) and (32) can be precomputed to reduce the
cost of computing subsequent outputs for new θ values. Inversion of the resulting system for

Ẽ
H

, Ψ̃
H

is at most, O(max(N3
θ , N3

φ)) and we deduce that, for small Nθ and Nφ, s̃H is much less
expensive to compute than sH .

Further computational efficiencies can be obtained by storing quantities which remain unal-
tered during evaluation of different RCS values.

5 Numerical Examples

A number of numerical examples are now considered to demonstrate the performance of the
proposed procedure. Initially, the reduced–order approximation of equation (35) is used to predict
the scattering width distribution, following the algorithm shown in Table 1. Then, we demonstrate
the evaluation of bounds for the scattering width distribution using equation (48) and the selected
implementation, following the algorithm outlined in Table 2.

5.1 Performance of the Reduced–Order Approximation

To demonstrate the performance of the reduced–order approximation, consider initially the prob-
lem of scattering of a plane TE wave by a PMC circular cylinder of diameter D = 2λ. The
computational domain is in the form of a circular annulus of inner radius λ and outer radius
2λ. This domain is discretised using a structured mesh of 200 triangular elements of polynomial
order p = 4, as illustrated in Figure 2. For this example, off–line solutions corresponding to
Nθ = 3, with incident wave directions θi = {−90, 0, 90} degrees, and viewing angles Nφ = 18
with φi = −180 + 20(i − 1) degrees for i = 1, 2, . . . , 18, are computed. Using these computed
results, the reduced–order approximation is invoked, in the on–line stage, to predict the scatter-
ing width distributions for waves incident at angles of θ = {0, 10, 20, 40, 120} degrees in turn. A
comparison between the resulting distributions in decibels and the distributions obtained from
the full finite element solutions are shown in Figure 3. It can be observed that for the case θ = 0,
which corresponds to one of the primal problems, the reduced–order approximation produces re-
sults that are in exact agreement with the finite element distribution. For angles of incidence
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Figure 3: Scattering of a plane TE wave by a PMC circular cylinder of diameter D = 2λ show-
ing a comparison between the scattering width distributions computed using the adjoint enhanced
reduced–order model solution and the finite element solution, for waves incident at different angles,
θ.
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Figure 4: Scattering of a plane TE wave by a PEC circular cylinder of diameter D = 2λ show-
ing a comparison between the scattering width distributions computed using the adjoint enhanced
reduced–order model solution and the finite element solution, for waves incident at different angles,
θ.
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θ = {10, 20, 40, 120}, which do not correspond to one of the primal problems, the reduced–order
approximation is in excellent agreement with the output given by the corresponding full finite
element solution.

In Figure 4, the corresponding results for the scattering of a TE wave by a PEC circular
cylinder of diameter D = 2λ are displayed. For this example, we employ the same mesh and
compute Nθ = 3 scattering solutions and Nφ = 18 adjoint solutions. As in the PMC case, it is
observed that the scattering width distributions produced by the reduced–order approximation
are again in excellent agreement with those obtained from the full finite element solution.

As an example of a problem involving a more complicated geometry, the calculation of the
scattering width distribution for the problem of scattering of a plane TE wave by PEC NACA0012
aerofoil of electrical length 2λ is considered. The hybrid mesh that is employed is illustrated in

Figure 5: Scattering by a PEC NACA0012 aerofoil of chord length 2λ showing the hybrid mesh
of 668 triangles and 60 quadrilaterals.

Figure 5 and contains 668 triangles and 60 quadrilaterals with uniform polynomial order p = 3.
Off–line calculations are undertaken with Nθ = 3 and Nφ = 18. The reduced–order model
scattering width distributions, for incident wave directions θ = {0, 10, 20, 40, 120}, are compared
with the distributions computed from the full finite element solution in Figure 6. It can be seen
that excellent agreement is again obtained.

5.2 Bounds for the Reduced Order Approximation

To obtain tight bounds, it has been found to be necessary to increase the number of incident
directions employed for the off–line computations 2. However, this poor effectivity is offset by the
fact that certainty of the solution is obtained and that the reduced order model computations
are cheap. To illustrate this, consider again the case of scattering of a plane TE wave by a PMC
circular cylinder of diameter D = 2λ, but now involving off–line computations for Nθ = 20, with
θi = −180+18(i−1) degrees, i = 1, · · · , 20, and Nφ = 20, with φi = −180+18(i−1), i = 1, · · · , 20.
In Figure 7, we show the corresponding upper and lower certainty bounds for the scattering
width distributions which are obtained for on–line solutions with incident wave directions θ =
0, 10, 20, 40, 120 degrees. It may be observed that the bound gap vanishes completely for θ = 0, as
this angle represents one of the values of θi for the primal problem. At other incident directions,
we see that the bound gap vanishes at locations of φ corresponding to one of the values of φi for
the dual problem. The magnitude of the certainty bounds for an on–line solution at an incident
wave direction of θ = 20 are smaller than those obtained for an on–line solution with an incident
wave direction of θ = 10. This is because the incident wave direction θ = 10 degrees lies further
away from the incident wave directions that were selected for the primal problem. Increasing Nθ

and Nφ has the effect of reducing the magnitude of the bound gap.

2The size of the bound gap depends on the product of the norms of the residuals for the primal and dual

problems. Therefore, to obtain tight bounds one must make this product sufficiently small. This can be achieved

by increasing either Nθ or Nφ. However, we believe it is more computationally advantages to have Nθ ≈ Nφ
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Figure 6: Scattering of a plane TE wave by a PEC NACA0012 of electrical length 2λ show-
ing a comparison between the scattering width distributions computed using the adjoint enhanced
reduced–order model solution and the finite element solution, for waves incident at different angles,
θ.
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Figure 7: Scattering of a plane TE wave by a PMC cylinder of electrical length 2λ showing the
upper and lower certainty bounds and the predicted scattering width distributions for the reduced–
order model at different angles, θ.
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Figure 8: Scattering of a plane TE wave by a PEC NACA0012 aerofoil of electrical length 2λ
showing the upper and lower certainty bounds and the predicted scattering width distributions for
the reduced–order model at different angles, θ.
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The minimum singular value for the matrix A for this problem was found to be approximately
1.12, which is close to unity. This means that the magnitude of the bounds are effectively governed
by the Euclidean norms of the residuals.

To complete this section, we illustrate the computation of bounds for the problem of scattering
of a plane TE wave by a PEC NACA0012 aerofoil of electrical length 2λ. In this case, for
the off–line computations we take Nθ = 19 scattering solutions, with incident directions θi =
−180 + (360/19)(i − 1) degrees for i = 1, · · · , 19, and Nφ = 19 adjoint solutions, with viewing
angles φi = −180 + (360/19)(i − 1) degrees for i = 1, · · · , 19. The corresponding upper and
lower bounds for the scattering width distributions which are obtained for on–line solutions with
θ = 0, 10, 20, 40, 120 degrees are displayed in Figure 8. It can be observed that the upper and
lower bounds are very tight and almost indistinguishable from the distribution predicted by the
reduced–order model.

Finally, in Figure 9 we examine the convergence of the maximum relative bound gap for
increasing values of Nθ and Nφ. For this, we consider the scattering of a TE wave by a PMC
cylinder of diameter D = 2λ and the RCS distributions at θ = {10, 20, 40, 120}. We increase
Nθ = Nφ from 14 to 21, and determine the maximum of the relative bound gap in each case.
We observe, that for all values of θ considered, the trend is an exponential type convergence with
increasing Nθ = Nφ. Note that for the case of Nθ = Nφ = 18 and the angles θ = {20, 40, 120} the
bound gap vanishes and the reduced-order prediction coincides with the finite element solution,
hence no point on the graph is given.
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Figure 9: Scattering of a plane TE wave by a PMC cylinder of electrical length 2λ showing the
convergence of the maximum relative bound gap for the reduced–order model at different angles,
θ and different values of Nθ = Nφ.

6 Conclusions

In this paper, a reduced–order approximation for the rapid calculation of scattering width dis-
tributions in two dimensional electromagnetic wave scattering problems has been proposed. The
method has been shown to produce accurate scattering width distributions for new incident wave
directions, using data from only a small number of off–line solutions. A novel method for obtain-
ing tight bounds on the distribution predicted by the reduced–order approximation has also been
described. Work is currently in progress to extend this approach to include varying frequency
and changes in geometry.
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