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Technical  Notes and Correspondence 

Instability of Feedback Systems 
M. VIDYASAGAR 

Abstract-A generalization is given of a result due to Takeda and 
Bergen [l]. 

In this note we give a generalization of a “passivity-type’’ of instability 
result due  to  Takeda  and Bergen [I]. Basically, we derive the  same result 
as in [I], but subject to fewer assumptions. 

Takeda  and Bergen consider a feedback system described by 

e ,  = u ,  -y2  (1) 

Assumprion 8: There exists a  constant 6 such  that 

( x ,  6 IIGZXII~. (IO) 

Assumption 9: E and 6 together satisfy 

€ + 6  >O. (11) 
In [I], it is shown that if Assumptions 1-9 hold, then the system (1H4) is 
unstable. and that, in particular, y I  4L,  whenever u l = O  and u,E 

We now come to the objective of this note. In [ I ]  a large number of 
assumptions  are necessitated because the ultimate conclusion is that 
y ,  B L ,  for a  certain class of inputs. However, instability only requires 
that either yI  or y 2  does not belong to & for a  certain class of inputs. In 
Theorem 1 below, this fact is exploited to eliminate some assumptions. A 
further reduction in the assumptions is obtained through a new method 

‘u:/PJ. 

(4) of proof. 
Theorem 1: Suppose Assumptions 1-5 and Assumptions 8 and 9 hold, 

where e, ,  e2, y , ,  y2 ,  u,. u2 belong to  the extended functional space Suppose also that Assumption 10 is true. 
Lze= &=[0, co) (see [2] for definition of terms), and GI, G,, map L,  into AssumPrion 10: 
itself. To be specific. it is assumed that for each u , , u , ~ L ,  there exist 
e , . e 2 . y l , y 2 ~ L 2 e  such that (1H4) hold. The system ( l H 4 )  is said to be 
stable if whenever U I ,  u2 E L2 (the unextended space), any corresponding Then either y1 4 ~2 or y, 4 L,. whenever u1 = 0 and u2 E M+ / (0). 
e~.e2,Y 14’2  E &e such that (1H4) hold. actually belong to L,. The system Proof: Let u,  = 0, u2 E A4: / {  0). and assume by  way of contra&- 
(1H4) is said to  be unsrable otherwise. tion that y lEL , .  y 2 E L 2 .  Then it follows that e l €  L,. e,€ L,. By 

instability of the system (1H4). For this purpose, the following assump- small so that 
tions are made in [ I ] :  

G,x=O. x E M t , * x = O .  ( 12) 

The objective is to derive conditions  on GI and G, which insure the Assumption 2. this implies that el  E M , ,  ~ ~ ~ t .  pick a, 0 

Assumption I :  There is a family of constants (ar,  T E[O, E)) such that e -a+6>0.  (13) 

Il(Glx),lJ < q- l lx~l) ,  TE[O,co),  xEL2e  ( 5 )  This is possible in  view of Assumption 9. Now, from Assumptions 5 and 
2 , we have that for all x E MI. 

where ( . )r  denotes the truncation [2] of a function  to  the interval [O, TI. 
Assumption 2: Define ( x , G , x ) ~ ~ l l x l l * > ( c - a ) ~ l x l l ~ + a ; ~ x ~ ~ ~ > ( c - a ) ~ ~ x ~ ~ ~ + ( a / y ~ ) ~ ~ G x ~ ~ ~ .  

M l = { ~ E L 2 : G I x E L 2 } .  (6) ( 14) 

Then there is a finite constant y such that 
From the system equations, we have 

ilG,xll < yilxll, V x E M .  (7) 
(yl.el)+~~~~2)=(~2-~2,~l)+(u,-el,e2>=(-u2,el)+(ul,e2~=O 

(15) 
Assumption 3: GI  is linear. 
Assumption 4: MI is a  proper  subset of L,. because u1 = 0, u2 E M:, and el  E M I. On  the  other  hand, by (IO) and 
Assumptions 1-4 are technical assumptions which imply that  the (1% we have 

operator GI is unstable in a  particular way. Specifically [I], [2], if 
Assumptions 1-4  hold, then M I  is a  proper closed subspace of & SO that (rl~~l>+(uz~el~~(~-~~lle,ll2+(~lY2)l1vl112+~llvz112~ (16) 
M+ (the  orthogonal complement of M I )  contains Some nonzero de- 
ments. 

make the following additional assumptions: 

Replacing e ,  by -y,. and using (15) gives 

In proving a “passivity-type” instability result, Takeda  and Bergen oa(r-a+S)llr,112+(u/Y~~IIVI’I~ 

Assumption 5: There exists a  constant E such that from which it follows that 

where (.;) denotes  the  inner  product on L,. 
Assumption 6: G, maps L, into itself. 
Assumption 7: G, satisfies 

G,x = O*x = 0. 

Hence, we have 

y2=0, e2=yl+u,EM: 

which, by Assumption 10, implies that e,=O. However, this is a  con- 
(9)  tradiction since u2 # 0. This shows that the original assumption is wrong, 

whence either y ,  E L, ory2 B L,. Q.E.D. 
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difference arises because we are only concluding here that  eithery, ory, 
does not belong to L,, while in [I] it is possible to conclude that y ,  4 4. 
The second difference arises because we exploit the "conditional finite 
gain" assumption  on GI to recast Assumption 5 in the  form of (14). 
Checking back over the proof of Theorem 1, it is clear that if we add 
Assumption 6 to the hypotheses of Theorem 1, then we too can conclude 
that y ,  B 4. In this case, we have  a slight improvement over the result in 
[I], since [ I ,  Assumption 71 is replaced by the  present Assumption IO. 
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Direct Solution lMethod for A I E + EA,  = - D 
THEODORE A. BICKART 

Abstract-A direct method-a  method without truncation or conver- 
gence errors-for  the solution of A , E  + EA, = - D, where A , E 9Ln1 x 

and A2ECk"2Xn2, is described. The  only assumption on the  matrices A ,  
and A, is that the spectra of A ,  and - A 2  be disjoint. The  method  requires 
storage  for  order 2n:+3nln2+2n: variables and requires order n,(n;+ 
nln2  + n:)n2 mnltiplications  and divisions. 

I. INTRODUCTION 

Consider the matrix differential equation 

X = A , X + X A , + D  (la) 

with the initial condition 

X ( O ) = C  ( lb)  

where A ,  E'%'IX"I and A2E%"*X"2.  Assume the spectra of A ,  and - A ,  
are disjoint;  that is, assume S [A,]n S[ - A,]=@. Then  the solution of 
( I )  is 

X ( t ) = e " l ' ( C - E ) e A 2 ' + E  (2) 

where E is the solution, which exists by the  above  assumption [ 1, p. 2311, 
of the matrix algebraic equation 

AIE+ EA,= - D. ( 3 )  

In a recent paper. Davison [2] described an algorithm by which to 
obtain numerical values of the solution (2) for r = n h  (n=0,1,2;..). He 
invoked the stronger assumption S [ A , ] c ?  and S [ A , ] c C ,  where f ={s: 
s E C  and Re[s]<O}. By this assumption, the solution of ( 3 )  can be 
expressed as [I ,  p. 1751 

Now, in his algorithm he adopts a  Pade (2.2) approximation to the 
matrix exponential eAah ( i  = 1,2) and employs a  forward Euler numerical 
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integration  method to evaluate (4).' The latter requires an iteration  to 
convergence-the converge error  bound being specified and thus known 
-as the interval of integration in (4) is infinite. The Pade  approximation 
is invoked in two places, in the evaluation of (2) for X ( n h ) ,  when E is 
known, and in the evaluation of (4) for E .  As to the evaluation of (4), the 
truncation  error due to  both  the  Pade  approximation and the forward 
Euler method and the  iteration in using the forward Euler method can 
be eliminated by adopting  a direct solution method for ( 3 ) .  Furthermore, 
a direct solution method need not as Davison implies engender a need 
for greater computer storage space or central processor time. 

Lacoss and Shakal [3] have shown one solution method which is 
reasonably efficient computationally. However, it is not,  as they imply, a 
direct solution method for E .  In addition to S [A,] n S [ - A,] = 0, they 
assume A,  ( i =  1,2) is  similar-with known similarity transformation 
matrix-to a  diagonal matrix. (They suggest how to proceed when A, is 
not similar to  a  diagonal matrix.) Thus, their method requires evaluation 
of the eigenvalues and eigenvectors of A,. As this, in general, requires an 
iterative process [4, p. 4853, their method fails in this respect to be a 
direct method. 

The method,  a  direct  method, herein proposed invokes no assumption 
other  than  that first given for (3) to possess a solution. Note: The 
method does require evaluation of an annihilating polynomial of A ,  or 
of A,. This, though, can  be accomplished without iteration (41. 

11. DIRECT SOLUTIOY METHOD 

L e t u i ( A ) = h ~ + a , , ~ ~ ~ ' + - ~ ~ + u i , ~ , h + u , , ( i = 1 , 2 ) d e n o t e a m o n i c  
annihilating polynomial of Ai. Note:  The characteristic polynomial ci@) 
and the minimal polynomial m,(h) are  annihilating polynomials of Ai.  
Next, let 

M,=O ( 5 4  

M ,  - D (5b) 

and 

M k = A I . ~ k - , - M k - I A 2 + A I ~ M k - Z A , .  (k=2.3;..). (5C) 

Then  the solution of (3) can be expressed as 

or 

This method with ui(X)= q(h)-hence, also mi= ni-k due  to Jameson 
[5]. The proof for this somewhat more general form is the  same as that 
given by Jameson, because he invoked only the  annihilating polynomial 
property of ci(h) in his proof. 

111. FURTHER DISCLSSION 

The number of multiplications (and divisions) required to  evaluate E 
by (6a)-set i = I-and  by  (6b)-set i = 2-is 

m i n ~ + ~ m ~ - ~ ~ ~ i + ~ ~ ~ ~ ~ + ( m ~ - m , + ~ ) n , - ~  ( 7 )  

where j =  2 (alternatively 1) when i =  1 (alternatively 2). I f  LU decom- 
position rather  than  direct inversion is used. the  number of multiplica- 
tions is somewhat less, namely, 

and the forward Euler method  is of order I .  
'There is an order inconsistency here in that the Pad; approximation is of order 4 (In h )  


