Technical

Instability of Feedback Systems

M. VIDYASAGAR

Abstract-A generalization is given of a result due to Takeda and Bergen [1].

In this note we give a generalization of a "passivity-type" of instability result due to Takeda and Bergen [1]. Basically, we derive the same result as in [1], but subject to fewer assumptions.

Takeda and Bergen consider a feedback system described by

$$
\begin{align*}
& e_{1}=u_{1}-y_{2} \tag{1}\\
& e_{2}=u_{2}+y_{1} \tag{2}\\
& y_{1}=G_{1} e_{1} \tag{3}\\
& y_{2}=G_{2} e_{2} \tag{4}
\end{align*}
$$

where $e_{1}, e_{2}, y_{1}, y_{2}, u_{1}, u_{2}$ belong to the extended functional space $L_{2 e}=L_{2 e}[0, \infty)$ (see [2] for definition of terms), and G_{1}, G_{2}, map $L_{2 e}$ into itself. To be specific, it is assumed that for each $u_{1}, u_{2} \in L_{2}$ there exist $e_{1}, e_{2}, y_{1}, y_{2} \in L_{2 e}$ such that (1)-(4) hold. The system (1)-(4) is said to be stable if whenever $u_{1}, u_{2} \in L_{2}$ (the unextended space), any corresponding $e_{1}, e_{2}, y_{1}, y_{2} \in L_{2 e}$ such that (1)-(4) hold, actually belong to L_{2}. The system (1)-(4) is said to be unstable otherwise.

The objective is to derive conditions on G_{1} and G_{2} which insure the instability of the system (1)-(4). For this purpose, the following assumptions are made in [1]:

Assumption 1: There is a family of constants ($\alpha_{T}, T \in[0, \infty)$) such that

$$
\begin{equation*}
\left\|\left(G_{1} x\right)_{T}\right\| \leqslant \alpha_{T}\left\|x_{T}\right\|, \quad T \in[0, \infty), \quad x \in L_{2 e} \tag{5}
\end{equation*}
$$

where $(\cdot)_{T}$ denotes the truncation [2] of a function to the interval $[0, T]$. Assumption 2: Define

$$
\begin{equation*}
M_{1}=\left\{x \in L_{2}: G_{1} x \in L_{2}\right\} . \tag{6}
\end{equation*}
$$

Then there is a finite constant γ such that

$$
\begin{equation*}
\left\|G_{1} x\right\| \leqslant \gamma_{i}\left|x_{i}\right|, \quad \forall x \in M \tag{7}
\end{equation*}
$$

Assumption 3: G_{1} is linear.
Assumption 4: M_{1} is a proper subset of L_{2}.
Assumptions 1-4 are technical assumptions which imply that the operator G_{1} is unstable in a particular way. Specifically [1], [2], if Assumptions 1-4 hold, then M_{1} is a proper closed subspace of L_{2} so that M_{1}^{\perp} (the orthogonal complement of M_{1}) contains some nonzero elements.
In proving a "passivity-type" instability result, Takeda and Bergen make the following additional assumptions:
Assumption 5: There exists a constant ϵ such that

$$
\begin{equation*}
\left\langle x, G_{x}\right\rangle \geqslant \epsilon\|x\|^{2}, \quad \forall x \in M_{1} \tag{8}
\end{equation*}
$$

where $\langle\cdot, \cdot\rangle$ denotes the inner product on L_{2}.
Assumption 6: G_{2} maps L_{2} into itself.
Assumption 7: G_{2} satisfies

$$
\begin{equation*}
G_{2} x=0 \Rightarrow x=0 . \tag{9}
\end{equation*}
$$

Manuscript received July 23, 1976. This work was supporied by the National Research Council of Canada under Grant A-7790.
The author is with the Department of Electrical Engineering, Concordia University, Montreal, P.Q., Canada.

Assumption 8: There exists a constant δ such that

$$
\begin{equation*}
\left\langle x, G_{2} x\right\rangle \geqslant \delta\left\|G_{2} x\right\|^{2} . \tag{10}
\end{equation*}
$$

Assumption 9: ϵ and δ together satisfy

$$
\begin{equation*}
\epsilon+\delta>0 \tag{11}
\end{equation*}
$$

In [1], it is shown that if Assumptions 1-9 hold, then the system (1)-(4) is unstable, and that, in particular, $y_{1} \notin L_{2}$ whenever $u_{1}=0$ and $u_{2} \in$ $M_{1}^{\perp} /(0)$.

We now come to the objective of this note. In [1] a large number of assumptions are necessitated because the ultimate conclusion is that $y_{1} \notin L_{2}$ for a certain class of inputs. However, instability only requires that either y_{1} or y_{2} does not belong to L_{2} for a certain class of inputs. In Theorem I below, this fact is exploited to eliminate some assumptions. A further reduction in the assumptions is obtained through a new method of proof.

Theorem 1: Suppose Assumptions 1-5 and Assumptions 8 and 9 hold. Suppose also that Assumption 10 is true.

Assumption 10:

$$
\begin{equation*}
G_{2} x=0, \quad x \in M_{1}^{\perp}, \Rightarrow x=0 . \tag{12}
\end{equation*}
$$

Then either $y_{1} \notin L_{2}$ or $y_{2} \notin L_{2}$, whenever $u_{1}=0$ and $u_{2} \in M_{1}^{\perp} /\{0\}$.
Proof: Let $u_{1}=0, u_{2} \in M_{1}^{\perp} /\{0\}$, and assume by way of contradiction that $y_{1} \in L_{2}, y_{2} \in L_{2}$. Then it follows that $e_{1} \in L_{2}, e_{2} \in L_{2}$. By Assumption 2, this implies that $e_{1} \in M_{1}$. Next, pick $\alpha>0$ sufficiently small so that

$$
\begin{equation*}
\epsilon-\alpha+\delta>0 . \tag{13}
\end{equation*}
$$

This is possible in view of Assumption 9. Now, from Assumptions 5 and 2 , we have that for all $x \in M_{1}$,

$$
\begin{equation*}
\left\langle x, G_{1} x\right\rangle \geqslant \epsilon\|x\|^{2} \geqslant(\epsilon-\alpha)\|x\|^{2}+\alpha_{\|}^{\prime} \mid x\left\|^{2} \geqslant(\epsilon-\alpha)\right\| x\left\|^{2}+\left(\alpha / \gamma^{2}\right)\right\| G x \|^{2} . \tag{14}
\end{equation*}
$$

From the system equations, we have

$$
\begin{equation*}
\left\langle y_{1}, e_{1}\right\rangle+\left\langle y_{2}, e_{2}\right\rangle=\left\langle e_{2}-u_{2}, e_{1}\right\rangle+\left\langle u_{1}-e_{1}, e_{2}\right\rangle=\left\langle-u_{2}, e_{1}\right\rangle+\left\langle u_{1}, e_{2}\right\rangle=0 \tag{15}
\end{equation*}
$$

because $u_{1}=0, u_{2} \in M_{1}^{\perp}$, and $e_{1} \in M^{\perp}$. On the other hand, by (10) and (14), we have

$$
\begin{equation*}
\left\langle y_{1}, e_{1}\right\rangle+\left\langle y_{2}, e_{2}\right\rangle \geqslant(\epsilon-\alpha)\left\|e_{1}\right\|^{2}+\left(\alpha / \gamma^{2}\right)\left\|y_{1}\right\|^{2}+\delta\left\|y_{2}\right\|^{2} . \tag{16}
\end{equation*}
$$

Replacing e_{1} by $-y_{2}$, and using (15) gives

$$
\begin{equation*}
0 \geqslant(\epsilon-\alpha+\delta)\left\|y_{2}\right\|^{2}+\left(\alpha / \gamma^{2}\right) \|\left. y_{1}^{\prime}\right|^{2} \tag{17}
\end{equation*}
$$

from which it follows that

$$
\begin{equation*}
y_{1}=0, \quad y_{2}=0 . \tag{18}
\end{equation*}
$$

Hence, we have

$$
y_{2}=0, \quad e_{2}=y_{1}+u_{2} \in M_{1}^{\perp}
$$

which, by Assumption 10, implies that $e_{2}=0$. However, this is a contradiction since $u_{2} \neq 0$. This shows that the original assumption is wrong, whence either $y_{1} \notin L_{2}$ or $y_{2} \notin L_{2}$.
Q.E.D.

Comparing Theorem 1 with the earlier result in [1], we note two differences: 1) Assumption 6 is eliminated altogether and 2) Assumption 7 is replaced by a weaker requirement. Assumption 10. Of these, the first
difference arises because we are only concluding here that either y_{1} or y_{2} does not belong to L_{2}, while in [1] it is possible to conclude that $y_{1} \notin L_{2}$. The second difference arises because we exploit the "conditional finite gain" assumption on G_{1} to recast Assumption 5 in the form of (14). Checking back over the proof of Theorem 1, it is clear that if we add Assumption 6 to the hypotheses of Theorem 1, then we too can conclude that $y_{1} \notin L_{2}$. In this case, we have a slight improvement over the result in [1], since [1, Assumption 7] is replaced by the present Assumption 10.

References

[1] S. Takeda and A. R. Bergen, "Instability of feedback systems by orthogonal decomposition of L_{2}," IEEE Trans. Automar. Contr., vol. AC-18, pp. 631-636, 1973.
[2] C. A. Desoer and M. Vidyasagar, Feedback Systems: Input Output Properties. New York: Academic, 1975.
integration method to evaluate (4). ${ }^{1}$ The latter requires an iteration to convergence-the converge error bound being specified and thus known -as the interval of integration in (4) is infinite. The Pade approximation is invoked in two places, in the evaluation of (2) for $X(n h)$, when E is known, and in the evaluation of (4) for E. As to the evaluation of (4), the truncation error due to both the Pade approximation and the forward Euler method and the iteration in using the forward Euler method can be eliminated by adopting a direct solution method for (3). Furthermore, a direct solution method need not as Davison implies engender a need for greater computer storage space or central processor time.
Lacoss and Shakal [3] have shown one solution method which is reasonably efficient computationally. However, it is not, as they imply, a direct solution method for E. In addition to $\delta\left[A_{1}\right] \cap \Sigma\left[-A_{2}\right]=\varnothing$, they assume $A_{i}(i=1,2)$ is similar-with known similarity transformation matrix-to a diagonal matrix. (They suggest how to proceed when A_{i} is not similar to a diagonal matrix.) Thus, their method requires evaluation of the eigenvalues and eigenvectors of A_{i}. As this, in general, requires an iterative process [4, p. 485], their method fails in this respect to be a direct method.
The method, a direct method, herein proposed invokes no assumption other than that first given for (3) to possess a solution. Note: The method does require evaluation of an annihilating polynomial of A_{1} or of \boldsymbol{A}_{2}. This, though, can be accomplished without iteration [4].

II. Direct Solution Method

Let $a_{i}(\lambda)=\lambda^{m_{4}}+a_{i 1} \lambda^{m_{4}-1}+\cdots+a_{i m-1} \lambda+a_{i 0}(i=1,2)$ denote a monic annihilating polynomial of A_{i}. Note: The characteristic polynomial $c_{i}(\lambda)$ and the minimal polynomial $m_{i}(\lambda)$ are annihilating polynomials of A_{i}. Next, let

$$
\begin{align*}
& M_{0}=0 \tag{5a}\\
& M_{1}=-D \tag{5b}
\end{align*}
$$

and

$$
\begin{equation*}
M_{k}=A_{1} M_{k-1}-M_{k-1} A_{2}+A_{1} M_{k-2} A_{2}, \quad(k=2,3, \cdots) \tag{5c}
\end{equation*}
$$

Then the solution of (3) can be expressed as

$$
\begin{equation*}
E=-\left[\sum_{k=1}^{m_{2}} a_{1 m_{1}-k} M_{k}\right]\left[a_{1}\left(-A_{2}\right)\right]^{-1} \tag{6a}
\end{equation*}
$$

or

$$
\begin{equation*}
E=\left[a_{2}\left(-A_{1}\right)\right]^{-1}\left[\sum_{k=1}^{m_{2}} a_{2 m_{2}-k}(-1)^{k} M_{k}\right] . \tag{6b}
\end{equation*}
$$

This method with $a_{i}(\lambda)=c_{i}(\lambda)$-hence, also $m_{i}=n_{i}$-is due to Jameson [5]. The proof for this somewhat more general form is the same as that given by Jameson, because he invoked only the annihilating polynomial property of $c_{i}(\lambda)$ in his proof.

III. Further Disclission

The number of multiplications (and divisions) required to evaluate E by (6a)-set $i=1$-and by (6 b)-set $i=2$-is

$$
\begin{equation*}
m_{i} n_{j}^{3}+\left(m_{i}^{2}-m_{i}+n_{i}\right) n_{j}^{2}+\left(m_{i}^{3}-m_{i}+1\right) n_{j}-1 \tag{7}
\end{equation*}
$$

where $j=2$ (alternatively 1) when $i=1$ (alternatively 2). If $L U$ decomposition rather than direct inversion is used, the number of multiplications is somewhat less, namely,

$$
\begin{equation*}
\left(m_{i}-\frac{2}{3}\right) n_{j}^{3}+\left(m_{i}^{2}-m_{i}+n_{i}\right) n_{j}^{2}+\left(m_{i}^{3}-m_{i}+\frac{2}{3}\right) n_{j} . \tag{8}
\end{equation*}
$$

[^0]
[^0]: ${ }^{1}$ There is an order inconsistency here in that the Pade approximation is of order 4 (in h) and the forward Euler method is of order 1.

