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Abstract. Emerging approaches to network monitoring involve large
numbers of agents collaborating to produce performance or security re-
lated statistics on huge, partial mesh networks. The aggregation process
often involves security or business-critical information which network
providers are generally unwilling to share without strong privacy protec-
tion. We present efficient and scalable protocols for privately comput-
ing a large range of aggregation functions based on addition, disjunc-
tion, and max/min. For addition, we give a protocol that is information-
theoretically secure against a passive adversary, and which requires only
one additional round compared to non-private protocols for computing
sums. For disjunctions, we present both a computationally secure, and an
information-theoretically secure solution. The latter uses a general com-
position approach which executes the sum protocol together with a stan-
dard multi-party protocol for a complete subgraph of “trusted servers”.
This can be used, for instance, when a large network can be partitioned
into a smaller number of provider domains.

Keywords. Multi-party computation; Private aggregation; Partial mesh
network

1 Introduction

With the continuous increase of network complexity and attacker sophistication,
the subject of network and security monitoring becomes increasingly important.
Traditionally, organizations have performed network and security monitoring
based only on data they can collect themselves. One of the reasons for this is a
reluctance to share traffic data and security logs between organizations, as such
data is sensitive.

There is much to be gained from collaboration in security monitoring. Attacks
range from being targeted at specific individuals or organizations, to global scale
attacks such as botnets. Naturally, the response measures depend on the type of
attack. The same situation applies to network monitoring, where the complexity
of networks, and large amount of applications can make it difficult to distinguish
between local and global disruptions with access only to local data.

A natural path towards a solution is to use multi-party computation (MPC)
techniques, which have been long studied within the field of cryptography. The



goal of MPC is to allow a group of mutually distrusting parties to jointly eval-
uate a function of their private inputs, while leaking nothing but what can be
deduced from the output of the function. Furthermore, protocols built on MPC
techniques are generally secure, even if several parties (up to a fraction of the
parties involved in the computation) collude to break the privacy of the other
participants.

The traditional setting of MPC is one where the number of parties is relatively
small and the network is assumed to be full mesh. Sadly, this precludes the
immediate application of such techniques in the large, partial mesh networks
which are prevalent today.

Recent approaches to monitoring in large networks employ an in-network
paradigm [1] whereby monitoring is performed collaboratively by the network
nodes themselves, using algorithms based on spanning trees [26,11] or gossip-
ing [24,22]. For these applications, scalability is often taken to mean sub-linear
growth in resource consumption growth in the size of the network.

Towards a general solution to the problem of collaborative network and secu-
rity monitoring we present in this paper efficient protocols for computing sum,
max, disjunction, and thresholds in partial mesh networks. These operations are
sufficient to implement many of the aggregates of interest in monitoring. Our
protocols are efficient, both in terms of message and computational overhead.

We focus in this paper on passive, “honest-but-curious” adversaries whereby
attackers are bound to follow the protocol but may collude to learn information
about the honest parties’ inputs. This is much simpler than the active attack
model also considered in multi-party computation and often leads to more effi-
cient protocols. However, it is also a reasonable and attractive model in many
practical situations where e.g. side conditions related to traffic observations and
arguments of utility can be appealed to to ensure protocol behavior is adhered
to.

The security of MPC protocols is commonly characterized by the size of
collusions they remain secure against. Such thresholds become less meaningful
for protocols, such as ours, which can be used on arbitrary networks. Thus,
we analyze security in terms of tolerable adversary structures in the sense of
Hirt and Maurer [20], and describe the tolerable structures in terms of graph
theoretical properties of the network on which the protocol is executed.

As the need for monitoring is common to many areas, and our protocols are
efficient, we believe there is a wide range of applications. We give a few examples
of possible applications to set some context for the work.

Example 1 (Collaborative Security Monitoring). The need to aggregate security
log information as part of general intelligence gathering is widely acknowledged,
cf. [29]. The importance of collaboration is further emphasized by services such
as Internet Storm Centre’s www.dshield.org, where firewall logs can be shared,
and aggregate statistics are collected.

Network providers and supervisors have strong interest in accurate security
log aggregates, as this will allow more precise estimations of the global secu-
rity situation, in order to take countermeasures and improve operations. There

2



are, however, important privacy concerns, as log data, even in sanitized form,
can reveal significant amounts of critical information concerning internal busi-
ness and network operations. Previous work has explored techniques such as log
anonymization and randomized alert routing to deal with this problem [29,25].
We argue that private aggregation techniques can be used in this scenario to pro-
duce practical security aggregates with strong privacy guarantees in near real
time.

One application would be to collect aggregate packet- or flow counts to vari-
ous destination ports. Due to the computational efficiency of our protocols, they
could be run directly on network devices such as routers, and without the need
to trust a third party.

Example 2 (Anonymous and robust peer-to-peer networks). Consider a peer-to-
peer network for anonymous publication and retrieval of files where the network
acts as a distributed storage. In this scenario, it could be of interest to compute
the number of copies of a file to discover if further duplication of that file is
needed, something that could be done by a private computation of a sum. It
may also be useful to be able to query for availability of a file without learning
any other information than if the file exists in the network or not, which would
correspond to a private computation of disjunction.

Another application within the realm of peer-to-peer networking would be
to implement monitoring of the overlay to enhance quality and research. This
could be useful both for overlays with strict anonymity requirements, but also
for more traditional file-sharing applications where individual users may still be
hesitant to share information on e.g. the amount of data they’ve uploaded.

Example 3 (Joint control of SCADA systems). A research topic of growing im-
portance is the security of Supervisory Control and Data Acquisition (SCADA)
systems, e.g. systems controlling criticial infrastructure such as the electrical
grid. Many different entities are involved in running the electrical grid, and they
must co-operate to ensure production and consumption is balanced throughout
the grid. However, many of the entities are direct competitors, which can prevent
collaboration that would involve sharing of business-sensitive data.

Our protocols could be applied to monitor aggregate power flows over various
areas of the grid, which is a summation. They could also be applied to compute
the disjunction of alert statuses at operators. Then, if one operator has some
form of disruptions, other operators would automatically be put on alert and be
prepared in case the failure condition affects other parts of the grid. This would
decrease the risk of cascading failures by giving early warnings to other operators,
without sharing detailed information on the reliability of any individial operator.

We believe that in the scenarios presented above, the assumption of a pas-
sive adversary could be reasonable. For network monitoring, there is little to
be gained for the participants in disrupting the computation of the aggregated
information. In the P2P scenario, attacking monitoring is likely to be uninterest-
ing, but searches and functions ensuring replication may be suitable candidates
for protocols with stronger security properties, depending on the nature of the
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network. In the SCADA scenario, in addition to the small gains from actively
manipulating the computations, it’s possible that legislation would demand that
data was retained for auditing, thus increasing the risk involved in cheating.

1.1 Our Contributions

Firstly, we give a protocol for summation, where we perform a single round of
communication to achieve privacy, and then reduce the problem to non-private
summation. A single group element is sent in each direction over every link in this
extra round. The protocol is similar to a protocol by Chor and Kushilevitz [10],
but adapted to a partial mesh network, and with a precise characterization of
tolerable adversary structures. It is also similar to the dining cryptographers
networks proposed by Chaum [9] which is essentially the same protocol but
applied to provide sender untraceability.

Secondly, we present a computationally secure protocol for computing dis-
junction, based on homomorphic cryptosystem, such as El Gamal [15]. The pro-
tocol requires two rounds of communication and then uses a non-private protocol
for summation. Computationally, it requires a small number of encryptions and
decryptions per neighbor.

We also give a composition structure where the information-theoretically
secure protocol for summation is composed with a standard protocol for com-
puting some other function. We show that this can be used for several standard
functions in network management, such as disjunction, min/max, or threshold
detection. For this composition, there needs to be a complete subgraph K of the
network such that no union of two sets from the adversary structure contains
K. This is a reasonable assumption in many network monitoring applications
where the members of K represent trusted servers appointed by a disjoint col-
lection of network providers. This is similar to the use of trusted aggregation
servers in [5,13,7]. The composition essentially performs an efficient and secure
“aggregation” of all inputs to some smaller subset of parties who can then run a
more expensive protocol with stricter connectivity requirements.

1.2 Related Work

There are general results [18,3] showing that every computable function can be
privately evaluated in a multi-party setting, but the protocols involved require
a full mesh network between the parties and can be prohibitively expensive to
execute.

There are many specialized protocols for computing specific functions in the
literature, that are more efficient than the general constructions. Examples of
such protocols include an information-theoretically secure protocol for summa-
tion by Chor and Kushilevitz [10], and computationally secure protocols for dis-
junction and maximum by Brandt [6], which uses the homomorphic El Gamal
cryptosystem as a building block. While such protocols are more efficient than
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the general solutions, they are still not scalable in the sense of the previous sec-
tion. Just sending one message between every pair of parties forces each party
to process too many messages.

In most of the works on multi-party computation, the parties are connected
in a full mesh network. An article by Franklin and Yung [14] describes how
to emulate the missing private channels between parties, and using their con-
struction, protocols built for full mesh networks may also be run on arbitrary
networks. However, this emulation can be very expensive, and may not always
be possible, depending on what parties an adversary can corrupt.

There has also been research exploring how the network connectivity affects
what functions can be computed with information-theoretical privacy. There are
results due to Bläser et al. [4] and Beimel [2] categorizing the functions that can
be computed on 1-connected networks.

The Dining Cryptographers problem, and its solution were discussed by
Chaum [9]. They study the problem of creating a channel such that the sender
of messages is untraceable and their suggested protocol is similar to our protocol
for summation.

A technique that can be applied to sidestep the connectivity and performance
issues of traditional MPC solutions is to aggregate data to a small set of semi-
trusted nodes, who can then perform the computation. As these servers are few,
it is more feasible to connect them with a full mesh network. Examples of such
schemes include Sharemind [5], SEPIA [7], and a system by Duan and Canny [13].
These are similar to the protocols we present in Section 5, with a difference
being that our protocols perform aggregation while collecting information from
the nodes, thus decreasing the load on the servers performing the computation,
but limiting what can be computed.

A number of authors propose additive secret sharing to secure information
aggregation in large networks or databases. Privacy schemes similar to the sum
protocol used here have been explored in the area of sensor networks and data
mining [28,19]. In fact, a very large range of algorithms used in data mining and
machine learning, including all algorithms in the statistical query framework
[23], can be expressed in a form compatible with additive secret sharing. Several
authors have investigated secure aggregation schemes for the case of a central-
ized aggregator node (cf. [21,27]). A solution with better scalability properties
is proposed by Chan et al. [8]. There, an additive tree-based aggregation frame-
work is augmented by hash signatures and authenticated broadcast to ensure
that, assuming the underlying aggregation tree is already secured, an attacker is
unable to induce an honest participant to accept an aggregate which could not
be obtained by direct injection of some private data value at the attacking node.
Other recent work with similar scope uses Flajolet-Martin sketches for secure
counting and random sampling [16].

1.3 Organization of This Paper

We begin by presenting the security and computational model and various def-
initions in Section 2. We then proceed to outline and prove properties of the
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protocol for computing sums in Section 3. Then, we give a computationally
secure protocol for computing disjunctions in Section 4. We then show a com-
position structure where the protocol for summation is composed with standard
protocols to compute for instance disjunction in Section 5.

2 Model and Definitions

We consider multi-party computation (MPC) protocols for n parties, P1, . . . , Pn,
and denote the set of all parties by P. Each party Pi holds a private input, xi, and
the vector of all inputs is denoted x. The network is modeled as an undirected
graph G = (P, E) where messages can only be sent between adjacent parties.

For a graph G = (P, E), we say that G is disconnected if there exists a pair of
vertices such that there is no path between them. For a set of vertices X ⊆ P,
we denote by G −X the subgraph of G induced by the set of vertices P\X. In
other words, G −X is the graph obtained by deleting all vertices in X and their
incident edges from G.

Definition 1 (Separator, set of vertices). Given a graph G = (P, E), a set
of vertices X ⊆ P is called a separator of G if the graph G −X is disconnected.

2.1 Adversary Structures

The most common adversary considered in the MPC literature is a threshold
adversary corrupting up to a threshold of the parties. More generally, we can
allow an adversary corrupting some subset of parties as specified by an adversary
structure [20].

An adversary structure Z over P is a subset of the power set of P, containing
all possible sets of parties which an adversary may corrupt. We require that an
adversary structure is monotone, i.e., it is closed under taking subsets.

Definition 2 (Separator, adversary structure). In a network G = (P, E),
an adversary structure Z is called a separator of G if some element in Z is a
separator of G.

From the monotonicity of Z, it follows that if Z is not a separator of G, then
no matter what subset in Z the adversary chooses to corrupt, every corrupted
party will have at least one honest neighbor. More precisely, for every set C ∈ Z
it must be the case that every party P ∈ C has at least one neighbor who is not in
C. This observation is important for the proof of security of the computationally
private protocol for disjunction given in Section 4.

2.2 Security Definition

The security definition of a multi-party computation says that the adversary
should not learn anything from the protocol execution except what it can deduce
from its inputs and the output of the function the protocol computes.
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In the security analysis of our protocols, we only consider passive (honest-
but-curious), static adversaries in a network with private and reliable channels.
The protocols in Sections 3 and 5 are information-theoretically private, and the
protocol in Section 4 is computationally private.

We consider information about the network the protocol is executed on to be
public knowledge. Our protocols do not depend on honest parties knowing the
network structure, but neither do anything to hide that information from the
adversary.

We refer to [3,17] for details on security definitions for information-theoretical
and computational security of multi-party computation.

2.3 Homomorphic Cryptosystems

A cryptosystem CS = (Gen,E,D) is said to be homomorphic if the following
holds.

– Each public key pk output by Gen defines groups of messages, randomness,
and ciphertexts, denoted Mpk , Rpk , Cpk respectively, for which the group
operations are efficiently computable.

– For every public key pk , every messages m1,m2 ∈ Mpk , and every r1, r2 ∈
Rpk : Epk(m1, r1)Epk(m2, r2) = Epk(m1 +m2, r1 + r2).

It is convenient in our applications to use additive notation for both the group
of messages and the group of randomness. However, we do not require that the
cryptosystem is “additively homomorphic”, e.g., thatMpk = Zm for some from
integer m. Thus, any homomorphic cryptosystem with sufficiently large message
space suffices, e.g., El Gamal. We remark that we do not use the fact that the
cryptosystem is homomorphic over the randomness.

3 Computing Sums

We present an information-theoretically secure protocol for computing sums
over a finite Abelian group. The protocol is similar to a protocol by Chor and
Kushilevitz [10], but adapted to arbitrary networks, and with a precise charac-
terization of tolerable adversary structures. It is also similar to a protocol by
Chaum [9], with the difference that we explicitly create shared random secrets
by a straightfoward technique and use the protocol for summation rather than
sender-untraceability.

When computing sums, privacy comes cheap. We can take any non-private
protocol for sums, NonPrivateSum(x1, . . . , xn), and augment it with a single
additional round to turn it into a private protocol. The protocol admits all
adversary structures Z which do not separate the network G. This requirement
on the adversary structure is necessary in the information-theoretical setting.
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Protocol 1 (Sum). In the protocol for computing
∑n
i=1 xi over an Abelian

groupM, on the network G = (P, E), Pi ∈ P proceeds as follows:

1. For each neighbor Pj , pick ri,j ∈M randomly and send it to Pj .
2. Wait for rj,i from each neighbor Pj .
3. Compute si = xi −

∑
(Pi,Pj)∈E ri,j +

∑
(Pi,Pj)∈E rj,i.

4. Output NonPrivateSum(s1, . . . , sn).

We begin by observing that the protocol correctly computes the sum of the
inputs xi. For every value ri,j sent in step 1 of the protocol, that value is added
to sj and subtracted from si, so all ri,j cancel when summing the si.

We now show that the protocol is information-theoretically private with re-
spect to passive, static adversaries. We do this by showing that for any non-
separating collusion, the remaining si values are uniformly random, conditioned
on

∑n
i=1 si =

∑n
i=1 xi.

Theorem 1. Protocol 1 is information-theoretically private to a passive and
static adversary if the adversary structure Z does not separate the network G =
(P, E).

To prove the theorem, we begin by stating a lemma from which the theorem
follows immediately.

Lemma 1. Consider executions of Protocol 1 on a network G = (P, E) where:
the output

∑n
i=1 xi, a non-separating collusion C, and the inputs xi and commu-

nication ri,j , rj,i, si for Pi ∈ C are fixed. For such executions the remaining values
si for Pi ∈ P\C are uniformly random, conditioned on

∑n
i=1 si =

∑n
i=1 xi.

Proof (Theorem 1). The values ri,j sent in the first round are independent of the
input. By Lemma 1, for any fixed input and random tapes of a non-separating
collusion, and fixed output of the protocol, the remaining messages have the
same distribution. ut

Proof (Lemma 1). Consider two vectors s = (s1, . . . , sn), s′ = (s′1, . . . , s
′
n), and

two vectors of inputs x = (x1, . . . , xn), x′ = (x′1, . . . , x
′
n) such that

∑n
i=1 xi =∑n

i=1 x
′
i =

∑n
i=1 si =

∑n
i=1 s

′
i, and si = s′i, xi = x′i for all Pi ∈ C.

Let R denote an n × n matrix of ri,j , where ri,j = 0 if (Pi, Pj) is not an
edge in G. Define s(x,R) to be the vector of si values sent in the protocol when
executed on input x with random values R. The value at the ith position of
s(x,R) is denoted by si(x,R).

We show that the probability of s being sent on input x is equal to the
probability of s′ being sent on input x′. This is done by, for any tuple of vectors
s, s′, x, x′ constructing a bijective function f(R) such that if s = s(x,R) then
s′ = s(x′, f(R)). The function f(R) has the form f(R) = R + R′ for an n × n
matrix R′ = (r′i,j)i,j . Furthermore, r′i,j = 0 if Pi ∈ C or Pj ∈ C.
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We note that s = s(x,R) holds iff R is such that for each Pi we have si−xi =∑n
j=1 rj,i − ri,j . Thus, for R′ we need precisely that for each Pi we have

n∑
j=1

(r′j,i − r′i,j) = (s′i − x′i)− (si − xi) . (1)

Since C is not a separator, there exists a directed spanning tree T that spans
the honest parties, P\C. Let r′i,j = 0 if (Pi, Pj) is not an edge in T . We can now
fill in R′ iteratively during a postorder traversal of T . When a non-root Pi is
visited, only r′j,i for its parent Pj is still undefined on the ith row and column of
R′, and its value is determined by Equation 1.

When the root is visited, R′ is completely filled in and we know that Equa-
tion 1 holds for all other parties. Consider the sum of Equation 1 over all parties.
The left hand side satisfies

∑n
i=1

∑n
j=1(r

′
j,i − r′i,j) = 0. The right hand side also

satisfies
∑n
i=1(s

′
i − x′i) − (si − xi) = 0 since

∑n
i=1 xi =

∑n
i=1 x

′
i =

∑n
i=1 si =∑n

i=1 s
′
i. Since Equation 1 holds for all parties except for the root, it must also

hold for the root. ut

We would like to remark that the proof of Lemma 1 does not make use of
the monotonicity of the adversary structure Z. Thus, if we allow non-monotone
adversary structures (for instance, if parties 1 and 2 must always be corrupted
jointly), the protocol is still private given that Z does not separate the network
G.

It is intuitively clear that sums cannot be privately computed if Z separates
the network, and this is indeed the case. In [2], Beimel gives a characterization
of the functions that can be privately computed in non-2-connected networks,
with an adversary structure consisting of all singleton sets, and shows that sums
cannot be computed in that setting. Any information-theoretically private pro-
tocol computing sums tolerating Z separating the network can be turned into
a protocol violating the bounds given in [2] by standard simulation techniques,
and cannot exist.

4 A Computationally Secure Protocol For Disjunction

We now consider the problem of computing the disjunction of all parties’ in-
puts, and present a computationally secure protocol, requiring two rounds of
communication and an execution of non-private protocol for summation.

As a building block, we need a cryptosystem CS = (Gen,E,D) that is homo-
morphic. We further need that the group of messagesMpk is the same group for
all keys generated with the same security parameter, κ. For notational conve-
nience, we denote this groupM. We require the cryptosystem to have IND-CPA
security, i.e., resistance to chosen-plaintext attacks. We relax the correctness
requirements slightly, and allow our protocol to incorrectly output false with
negligible probability 2−κ.

In this protocol, we construct a linear secret sharing of a group element which
is zero if all the parties’ inputs are false, and a uniformly random group element
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otherwise. The protocol then proceeds by opening the share, which is done by
(non-private) summation.

Conceptually, each party contributes either a zero or a random group element,
depending on its input. However, it is important that a party does not know the
group element representing its own input, as this would allow it to recognize
if it was the only party with input true. In order to achieve this, we apply
homomorphic encryption to allow its neighbors to jointly select how its input is
represented.

If the security requirements are relaxed slightly, and it is acceptable that the
adversary can learn if any other parties had input true, then Protocol 1 can
be used instead (with each party herself choosing 0 or a random element as her
input).

For ease of notation, we identify false with 0, and true with 1. In the
description of the protocol, we abuse notation slightly and multiply a value by
a party’s input as a shorthand for including or excluding terms of a sum.

Protocol 2 (Disjunction). In the protocol for computing Or(x1, . . . , xn),
where xi ∈ {0, 1}, on the network G = (P, E), based on a homomorphic cryp-
tosystem CS = (Gen,E,D), Pi ∈ P proceeds as follows:

1. Generate a key-pair (pk i, sk i)← Gen(1κ).
2. For each neighbor Pj , pick a random element ai,j ∈M, and send pk i, ci,j =

Epki
(ai,j) to Pj .

3. Upon receiving pk j , cj,i from Pj , pick a random ri,j ∈ M, and send c′i,j =
Epkj

(ri,j) + xicj,i to Pj .
4. Wait for c′j,i to be received from every neighbor Pj , and then compute
si =

∑
(Pi,Pj)∈E(Dski

(c′j,i)− ri,j)
5. Compute NonPrivateSum(s1, . . . , sn) and output 0 if the sum is the iden-

tity, and 1 otherwise.

The protocol is efficient, both in terms of computational resources and com-
munication. Each party needs to perform two encryptions, one decryption and
one ciphertext multiplication per neighbor. The first encryption does not depend
on the input, and can be performed off-line. The communication overhead of the
protocol is two rounds, in addition to performing a (non-private) summation.

Theorem 2. Protocol 2 for computing the disjunction of n bits on a network
G = (P, E), gives the correct output if it is false, and gives an incorrect output
with probability 2−κ when the correct output is true.

Proof. Consider the sum
n∑
i=1

si =
n∑
i=1

∑
(Pi,Pj)∈E

(xjai,j + rj,i − ri,j) =
∑

(Pi,Pj)∈E

xjai,j .

If all xj are 0, clearly the sum is 0. Otherwise, it is a sum of uniformly random
group elements, and thus has uniformly random distribution. In particular, with
probability 1− 2−κ it is non-zero. ut
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4.1 Privacy

Theorem 3. If the cryptosystem CS is (t, ε)-IND-CPA secure, then no adver-
sary running in time t− t′, for a small t′, can violate the privacy of Protocol 2
with advantage more than n2

4 ε.

The proof of Theorem 3 begins like the proof of Theorem 1 with a combina-
torial lemma similar to Lemma 1, essentially saying that unless the adversary
learns something about the values ai,j from seeing them encrypted, it cannot
violate the privacy of Protocol 2. Given the lemma, we apply a hybrid argument
to prove the security of the protocol.

Lemma 2. Consider executions of Protocol 2 on a connected network G =
(P, E) with input x such that xi = true for at least one Pi, and where a col-
lusion C ∈ Z from a non-separating adversary structure Z, and communication
ai,j , ri,j , rj,i, si for Pi ∈ C is fixed. For such executions, the values si for Pi ∈ P\C
have a uniform and independent distribution.

Proof (Theorem 3). We begin with the observation that if all the parties have
input false, then the protocol behaves exactly as Protocol 1 with zeroes as
inputs and by Lemma 1, then the honest parties’ si will be uniformly random
conditioned on

∑n
i=1 si = 0.

First, consider the case where the inputs of all corrupted parties are false.
In this case, a simulator that independently samples the pk i, ci,j , ri,j and si
included in the adversary’s view, conditioned only on

∑n
i=1 si = 0 if the output

is false, or
∑n
i=1 si 6= 0 otherwise perfectly simulates the protocol to the adver-

sary, by the previous observation and Lemma 2. Thus, in this case, the adversary
cannot violate the privacy of the protocol.

Now, consider the case when at least one of the corrupted parties has input
true. We begin by constructing a simulator S0 that randomly selects inputs
and ai,j for all honest parties, conditioned on the output matching the output
it should simulate. It then follows the protocol to simulate the adversary’s view.

We now construct hybrid simulators, Sk, working like S0 but replacing the
first k ciphertexts ci,j in the adversary’s view by random ciphertexts. It follows
from the (t, ε)-IND-CPA security of Epki

(x) that no adversary running in time
t−t′, for some small t′ required to run the simulator Sk, can distinguish between
the views simulated by Sk and Sk−1.

Assume that the adversary’s view includes T ciphertexts ci,j , so the view
simulated by ST contains no information on the ai,j sent by honest nodes to
corrupted nodes. There can be at most (n/2)2 edges between honest and cor-
rupted nodes, so T ≤ n2/4. By Lemma 2, the distribution of simulated ri,j and
si values is exactly the same as in a real execution, so the view simulated by ST
contains no information on the honest parties inputs. ut

Proof (Lemma 2). Consider the following mental experiment, where we modify
an execution of the protocol in two steps.
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Modification 1. For each neighbor Pj of Pi we subtract xicj,i from c′i,j in Step
3 of the protocol and add xiaj,i to si in Step 4 of the protocol. It is easy to
see that this does not change the distribution of either si or Dski(c

′
i,j) for any

neighbor Pj .

Modification 2. Remove all encryptions and decryptions. This transforms
Steps 3-5 of the protocol into an execution of Protocol 1, where Pi holds the
input

∑n
j=1 xiaj,i.

From Lemma 1 we conclude that with the two modifications, the si are
independently distributed conditioned on

∑n
i=1 si =

∑n
i=1

∑n
j=1 xiaj,i, but the

right side of this equation is randomly distributed when some xi = 1 and ai,j for
some neighbor Pj is randomly distributed. From the conditions of the lemma, we
know there is at least one Pi such that xi = 1, and from the monotonicity of Z
and that it is non-separating, we know that every party has an honest neighbor.
Thus, the si are uniformly and independently distributed. This concludes the
proof. ut

4.2 Computing the Maximum

In the setting with passive adversaries, it is easy to construct a protocol for
computing the maximum by repetition and parallel composition of a protocol
for disjunctions.

Assume the inputs are integers of ` bits. We can then compute the disjunction
of the most significant bits of all parties’ inputs, which is also the most significant
bit of the maximum of the inputs. We then proceed to the next most significant
bit. When a party learns that its input is smaller than the maximum (its input
was 0 and the output was 1), it participates with input 0 in the remaining
protocol executions.

Several bits can be handled in parallel to reduce the number of rounds at
the cost of more protocol executions. To find the maximum of k bits, one can
run 2k − 1 parallel disjunction computations, where the parties set their inputs
based on if their k most significant bits represent an integer greater or equal to
2k−1, 2k−2, . . . , 1, respectively. Thus, to find the maximum of `-bit integers, one
can run d`/ke rounds of protocols for disjunction, with 2k−1 protocol executions
in each round.

5 General Composition

Many functions can be computed as a function of the sum of inputs of the parties.
Examples include disjunction, counting and threshold functions. In this context,
a threshold function is a function returning true if the sum of inputs exceeds
some threshold and false otherwise.

We can combine our Protocol 1 with standard protocols (which assume full
mesh communications) to construct information-theoretically secure protocols
for computing such functions. The benefit of this approach is that information-
theoretical security is achieved in a partial mesh network while maintaining
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efficiency. Another approach would have been to simulate the missing edges (e.g.,
with the techniques from [14]) and then immediately using standard protocol,
but this approach is generally more expensive in terms of communication.

By this composition, we essentially run a cheap protocol to “accumulate” the
inputs of most parties and then let some small subset of parties run a more
expensive protocol and jointly act as a trusted party. This can be useful when
performing computations with a large number of parties where some subset can
be trusted not to collude with each other. This can be compared to the trusted
servers in [5,13,7].

Executing the standard protocol requires a complete network, so this con-
struction is only applicable when G contains a subgraph K that is complete.
Furthermore, tolerable adversary structures Z are those that do not separate
the graph, and which, restricted to K, are tolerable by the standard protocol
being used. For most protocols, the requirement will be that no two subsets in
Z cover K, or using notation from [20], the predicate Q(2)(Z|K ,K) must hold.

Protocol 1 constructs a secret sharing of the sum of the parties inputs and
then opens it. When we adapt the protocol for composition, we only construct
the secret sharing, and accumulate the sum (still shared) in the nodes in K.

As an example, we give an information-theoretically secure protocol for dis-
junction. Here, we let each party input 0 or 1 (for false and true) and then
use a protocol by Damgård et al. [12] for comparison.

Protocol 3 (Disjunction). In the protocol for computing Or(x1, . . . , xn)
where xi ∈ {0, 1} on the network G = (P, E) with a set K ⊆ P of designated
parties, Pi ∈ P proceeds as follows:

1. For each neighbor Pj , pick ri,j ∈ Zp randomly and send it to Pj .
2. Wait for rj,i from each neighbor Pj .
3. Compute si = xi −

∑
(Pi,Pj)∈E ri,j +

∑
(Pi,Pj)∈E rj,i.

4. Compute s =
∑
Pj 6∈K sj using NonPrivateSum.

5. If in K, execute comparison protocol from [12] to test if s+
∑
Pj∈K sj = 0.

Theorem 4. Protocol 3 is information-theoretically private to a passive and
static adversary if the adversary structure Z does not separate the network G =
(P, E) and there is a complete subgraph K ⊆ G such that no two sets in Z cover
K.

Proof. The values ri,j are independent of the input. By the restriction on Z there
must be at least one party in K not corrupted by the adversary. By Lemma 1 we
know that the si values input to NonPrivateSum are uniform and independent.
Thus, the adversary gains no information from these, and by the composition
theorem [17, Theorem 7.5.7], we conclude that the protocol is private. ut
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6 Conclusion

In this paper we have given efficient protocols for privately evaluating summation
and disjunction on any network topology. The ability to privately evaluate these
two basic primitives have applications in several widely varying contexts. As
the most expensive part of our protocols is the task of non-private summation,
privacy comes very cheaply.

We believe that the question of which functions can be efficiently privately
evaluated in arbitrary network topologies is an interesting topic for further study.
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