A Framework for Generalized Control Dependence

Gianfranco Bilardi
DEI Universita di Padova, 35131 Padova, Italy
EECS, University of Illinois, Chicago, IL 60607

Abstract

We generalize the notion of dominance by defining a
generalized dominance relation with respect to a set of
paths in the control flow graph G = (V, E). This new
definition leads to a generalized notion of control de-
pendence, which includes standard control dependence
and weak control dependence as special cases.

If the set of paths underlying a generalized domi-
nance relation satisfies some natural closure conditions,
that dominance relation is tree-structured. Given this
tree, the corresponding control dependence relation can
be computed optimally by reduction to the Roman
Chariots Problem, which we have developed previously
for computing standard control dependence. More pre-
cisely, given linear preprocessing time and space, we
can answer the (generalized version of the) so called
cd, conds, and cdequiv queries in time proportional
to the output of the query.

To illustrate the utility of the framework, we show
how weak control dependence can be computed opti-
mally in O(|E|) preprocessing space and time. This
improves the O(|V]?) time required by the best previ-
ous algorithm for this problem.

1 Introduction

Control dependence was introduced by Ferrante, Ot-

IGianfranco Bilardi (bilardi@art.dei.unipd.it) was supported
in part by the ESPRIT III Basic Research Programme of the
EC under contract No. 9072 (Project GEPPCOM) and by the
Ttalian Ministry of University and Research.

?Keshav Pingali (pingali@cs.cornell.edu) was supported by
NSF grants CCR-9008526 and CCR-9503199, ONR grant
N00014-93-1-0103, and a grant from Hewlett-Packard Corpora-
tion.

Keshav Pingali
Department of Computer Science

Cornell University, Ithaca, NY 14853

tenstein and Warren [FOWS8T] to solve a number of
problems in program analysis and parallelization. In
this paper, we refer to it as classical control depen-
dence since it was the first formalization of the intu-
itive idea that the execution of predicate nodes in a
program determines how control flows through a pro-
gram. For some applications, other definitions of con-
trol dependence have proved to be useful. For exam-
ple, Podgurski and Clarke have proposed the notion of
weak control dependence for proving total correctness
of programs [PC90]. Both classical and weak control
dependence are reviewed in Section 2.

In Section 3, we present a generalized notion of con-
trol dependence, and show that classical and weak con-
trol dependence are special cases of this general defi-
nition. We do this as follows. First, we define a gen-
eralized notion of dominance which is parameterized
with respect to a set of paths in the control flow graph
(CFG). Then, we use this to generalize the notion of
control dependence in a natural way, and show that
classical and weak control dependence are special cases
of this general notion of control dependence. Appli-
cations of control dependence usually require answers
to queries known as cd, conds, and cdequiv in the
literature [CFS90]. For classical control dependence,
we have developed an optimal computational approach
based on a reduction to the Roman Chariots Prob-
lem [PB95]. For generalized control dependence, we
show that if the set of paths used in the underlying
dominance relation satisfies some natural closure prop-
erties, the dominance relation is tree-structured; for
such control dependence relations, our solution to the
Roman Chariots Problem immediately provides an op-
timal computational approach.

In Sections 4 and 5, we focus on weak control depen-
dence, and its underlying dominance relation, which
we call loop postdominance. In Section 4, we show that
the loop postdominance relation is tree structured, and
that its transitive reduction, the loop postdominance
forest, is a pruning of the standard postdominator tree.
This fact was proved earlier by Podgurski in his the-

sis [Pod89]. However, we give a new characterization of
the set of edges to be pruned, in terms of a set of nodes
called crowns. In Section 5, we give an O(|E|) algo-
rithm based on depth-first search for computing the set
of crowns. Crowns are used to build the loop postdom-
inator forest in O(|E|) time. Using this data structure,
we exploit our solution to the Roman Chariots Prob-
lem to solve the problem of answering cd, conds and
cdequiv queries on the weak control dependence rela-
tion optimally (that is, in O(]|E|) preprocessing time,
and query time proportional to the size of the answer
to a query). This improves the O(|V|?) preprocessing
time required by Podgurski and Clarke’s algorithm for

answering cd and conds queries; it also provides an
optimal algorithm for answering cdequiv queries.

2 Two Control Dependence Re-
lations

The following definitions are standard.

Definition 1 A control flow graph (CFG) G =
(V,E) is a directed graph in which nodes represent
statements, and an edge u — v represents possible flow
of control from u tov. Set'V contains two distinguished
nodes: START, with no predecessors and from which ev-
ery node 1s reachable; and END, with no successors and
reachable from every node.

It is convenient to assume that E contains edges
START — END (as in [FOWST7]) and END — END.

Definition 2 A node w postdominates a node v if
every path from v to END contains w. If, in addition,
w # v, then w is said to strictly postdominate v.

It can be shown that postdominance is a transi-
tive relation with a tree-structured transitive reduction
called the postdominator tree, which can be constructed
in O(|Ela(|E])) time by an algorithm due to Tarjan
and Lengauer [LT79], or in O(|E|) time by a rather
more complicated algorithm due to Harel [Har85].

Classical control dependence can be defined formally

as follows [FOW8T].

Definition 3 A node w is control dependent on
edge (u —v) € E if

1. w postdominates v, and
2. w does not strictly postdominate u.

Intuitively, this means that if control flows from node
u to node v along edge u — v, it will eventually reach
node w; however, control may reach END from u with-
out passing through w. Thus, u is a ‘decision-point’
that influences the execution of w. Figure 1 shows a
CFG@G, its postdominator tree and its classical control

dependence relation. We will often use the term con-
trol dependence, without any qualifications, to refer to
classical control dependence.

Podgurski and Clarke have introduced weak control
dependence [PCI0], which is more appropriate than
the classical one for proving total correctness of pro-
grams. In this paper, we call it loop control depen-
dence because we give an alternative definition of it
based on the concept of loop postdominance, given be-
low. Figure 1 shows a program in which classical and
loop control dependence differ. Consider node k in the
CFG. In the classical notion, k is control dependent on
g — a. However, to prove that k will be executed, it is
necessary to prove that the loop a — b — a terminates.
Therefore, in the context of proving total correctness of
programs, it is more appropriate to make k£ loop con-
trol dependent on the exit of the loop — namely, the
edge b — k. In programs without cycles, the classical
and loop control dependence relations are identical.

Definition 4 Assume that END — END € E. A node w
loop postdominates a node v if every infinite path
starting at v contains w. If, in addition, w # v, then
w 18 said to strictly loop postdominate v.

In other words, if control reaches a node v, and w
loop postdominates v, then control will reach w in a
finite number of steps, whether or not the program ter-
minates (that is, whether or not control reaches END).

Definition 5 A node w is loop control dependent
on edge (u — v) € E if

1. w loop postdominates v, and
2. w does not strictly loop postdominate u.

Intuitively, this means that (i) if control reaches v, it
must reach w in a finite number of steps, and (ii) from
u, it is possible for control to reach a cycle of nodes
(possibly, the self loop at END) without encountering
w. It can be shown that loop control dependence is
equivalent to Podgurski and Clarke’s weak control de-
pendence.

In applications of any control dependence relation,
the following queries arise naturally for a given edge e

or node v [CFS90]:

1. cd(e): which nodes are control dependent on e?

2. conds(v): which edges is v control dependent on?

3. cdequiv(v): which other nodes are control depen-
dent on the same set of edges as v?

3 The Framework

We now discuss a general framework which unifies clas-
sical and weak control dependence, and supports the
design of optimal algorithms for answering queries on
such relations.

(a) Control Flow Graph

.{E'\fah\g.START
111

c d

(c) Loop postdominator forest

E Y la b c d e f g h k
START — ¢)=
g —d e e °
? :? .. — PR b e : control dependence
E —d LA e 0 o : loop control dependence
— a e |6 [
e —nh o
f%h]
b — Kk o

(d) Control Dependence and Loop control dependence

Figure 1: A Program and Two Control Dependence Relations

By the standard definition of postdominance, w post-
dominates v if every path from v to END contains w. In
other words, all terminating executions that reach v
eventually reach w. We generalize this notion by con-
sidering an arbitrary class of possible executions, mod-
eled as a set of paths P in the CFG. Different notions
of dominance and, correspondingly, of control depen-
dence, arise from different choices for P.

Let I be a (possibly infinite) interval on the integer
line. A path of the CFG is a sequence of nodes {v; € V :
i € I} such that if 7,04+ 1 € I then (v; — vi41) € E. A
path is finite, of length n, when I = {0,1,...,n} and
becomes trivial when n = 0. A path is right infinste
when I is the set of positive integers and is left infinite
when I is the set of negative integers.

Definition 6 Given a set of paths P in a directed
graph G = (V, E), let P, denote the subset of paths

wn P that contain v € V.. We say that v P-dominates
u, denoted v = u, if and only if Py, 2 Py.

Technically, Fp would be a more appropriate nota-
tion; we omit the subscript for simplicity.
Definition 7 We say that w € V is P-control de-
pendent upon edge (v — v) € E if

e wk v, and

o if u # w, then w7 u.

Here are some interesting path sets, and the corre-
sponding dominance relations.

Definition 8

1. S: the set of finite paths starting at START.
predominance (classical domi-

S-dominance

nance).
2. E: the set of finite paths ending at END.
E-domainance = postdominance.
3. B: the set of finite paths from START to END.
B-dominance = predominance OR postdominance.
4. L: the set of left-infinite paths.
L-dominance = loop predominance.
5. R: the set of mght-infinite paths.
R-dominance = loop postdominance.

In the following two subsections, we study properties
of P that lead to a forest-structured dominance rela-
tion and enable the formulation of control dependence
queries in terms of the Roman Chariots Problem.

3.1 The P-dominance Relation

The following properties of a set of paths P are of in-
terest:

Definition 9

o Prefix Closure: Any prefiz of a path in P is in P.

o Suffix Closure: Any suffix of a path wn P 1s in P.

¢ Junction Closure: Whenever myvmy and oqvoy are
wn P, then mivoy s also in P.

o Preaugmentation Closure: If (v — v) € E and

(vm) € P then (uvrw) € P.

¢ Postaugmentation Closure: If (u — v) € E and
(ru) € P then (muv) € P.

It is easy to verify that & and L satisfy prefix,
postaugmentation, and junction closure, & and R
satisfy suffix, preaugmentation, and junction closure,
while B satisfies junction closure. It is trivial to show
that suffix and preaugmentation closure (or symmetri-
cally, prefix and postaugmentation closure) of P imply
Jjunction closure of P.

Next, we establish sufficient conditions on P that
guarantee that the P-dominance relation is forest-
structured.

Theorem 1 Let P be a set of paths with prefiz (or
suffiz) and junction closure, such that set Py’s are not
empty and are distinct from each other.

Then, P-dominance is ¢ partial order (i.e., a reflex-
ive, transitive, and antisymmetric relation), and its
transitive reduction is forest-structured (i.e., a node
has at most one predecessor in the reduction).

Proof: Reflexivity and transitivity follow from Defini-
tion 6 and the analogous properties of set inclusion.
Antisymmetry follows from the distinctness of the P,’s.

Below, we assume suffix closure, the argument for pre-
fix closure being similar.

We begin by claiming that (v F « and w F u) implies
(v b worwk v). In fact, let 7 € P, (exploiting the
assumption that P, is not empty). By definition of dom-
inance, 7 contains both v and w. By the suffix property,
assume that m starts at « and, w.l.o.g., assume that »
occurs before w on w. Then, we can write 7 = mom,,
with m w-free. Let now ¢ = oyvos be any path in P,.
By the junction property, mvo, € Py, hence it contains
w. Since m Is w-free, w must occur on o». Therefore,
o € Py. In conclusion, P, C Py, hence w F v.

Assume that (u,v) and (u,w) are related by the tran-
sitive reduction of P-dominance. We claim that v = w.
In fact, by the previous claim, either v dominates w or
vice versa. Say v - w. Then, u - w is a transitive conse-
quence of u F v and v F w; therefore the pair (u,w) can
not be in the transitive reduction, unless w = v. In con-
clusion, at most one node can immediately P-dominate
u, which implies that the P-dominance relation is forest-
structured. |

Theorem 1 and the observations preceding it imme-
diately lead to the following result.

Corollary 1 The transitive reductions of the classical
dominance relation, classical postdominance relation,
loop predominance relation, and loop postdominance re-
latron are all forest-structured.

It is useful to represent the transitive reduction of
a P-dominance relation as a graph, called the P-
dominance graph. Under the assumptions of Theorem
1. this graph is a forest, directed from root to leaves. It

is convenient to make this forest into a tree by adding
to V a distinguished node co and an edge from it to
each node of V with no parent in the forest (such as
nodes ¢,b.e and f in Figure 1). Node oo is not shown
in Figure 1(c) to avoid cluttering the diagram.

The tree just introduced will be referred to as the
P-dominator tree. In it, each node v € V has a
parent called the immediate P-dominator of v, and de-
noted iPdom(v). When P = §, the P-dominator tree
becomes the classical dominator tree, and iPdom(v)
is the immediate dominator of v. Similarly, when
P = &, the classical postdominator tree is obtained
and :Pdom(v) is the immediate postdominator of v.

3.2 Control Dependence Computations
and the Roman Chariots Problem

In [PB95], it was shown that the computation of clas-
sical control dependence can be reduced to the Ro-
man Chariots Problem. Based on the following result,
we extend this reduction to any forest-structured P-

dominance relation.

Theorem 2 Given a P-dominator tree and a control
flow edge (u — v) € E, let z denote the least com-
mon ancestor (denoted by lca) of v and (Pdom(u).
Then, the nodes of V' that are P-control dependent upon
(u — v) are exactly those in the simple path in the P-
dominator tree from v to z, not including z.

Proof: Consider a node w that is P-control dependent
upon (u — v). With reference to the two clauses of
Definition 6, we have:

e w must P-dominate v hence, by the tree-structured
property, must lie on the path o, from v to the root
oo of the P-dominator tree;

o if w# u, then w must not P-dominate u hence, by
the tree-structured property, must lie outside the
path oipiomeu) from iPdom(u) to the root co of
the P-dominator tree.

Then, w must lie on 0y — Fipgom(u)- This difference is
a path starting at v and going up to, but not including
the first intersection of ¢, and o;pgom(u), Which is the
nearest common ancestor z of v and iPdom(u). a

For example, in Figure 1, the nodes that are loop
control dependent on (¢ — d) are d and f. The im-
mediate loop postdominator of ¢ is oo, and the least
common ancestor of d and oo is oo. The nodes that are
loop control dependent on (g — d) are the nodes on the
path from d to oo, excluding oo — namely, nodes d and
f- Given the P-dominator tree, this least common an-
cestor computation for all CFG edges simultaneously
can be done in O(|E|) time using the well-known algo-
rithm of Harel and Tarjan [HT84].

We now recall the formulation of the Roman Chari-
ots problem.

Roman Chariots Problem: The major arteries of
the Roman road system are organized as a rooted tree
wn which nodes represent cities, edges represent roads
and the root represents Rome. Public transportation
18 provided by chariots, and the cities on each chariot

tree. Given a rooted tree T =< V. F, ROME > and an
array A[l..m] of chariot routes in which each route is
specified by its end points, design a data structure to
answer the following queries optimally.

1. cd(e): Enumerate the cities on route e.

2. conds(v): Enumerate the routes that serve city v.

3. cdequiv(v): Enumerate the cities served by ex-
actly the same routes that serve city v.

To make the connection with the control dependence
problem, let the P-dominator tree be the rooted tree T'.
For each edge (v — v) € E, insert in array A a char-
iot route with endpoints v and lca(v, iPdom(u)), as
described in Theorem 2. Then, a control dependence
query can be reformulated immediately as a Roman
Chariots query. Therefore, these queries can be pro-
cessed in time proportional to their output size, using
the AP7T (augmented P-dominator tree) data struc-
ture introduced in [PB95].

Therefore, given a CFG G = (V,E) and a set of
paths P satisfying the assumptions of Theorem 1, we
can build a data structure to answer P-control depen-
dence queries optimally, provided we can build the P-
dominance tree efficiently.

3.3 An Important Special Case

For classical control dependence, it is well-known that
the nodes that are control dependent on a given edge
form a simple path in the postdominator tree [FOWS8T].
Indeed, in this special case, a stronger property holds:
if (u — v) € E, then iPdom(u) is an ancestor of v.
Therefore, we see that the least common ancestor of
v and iPdom(u) is z = iPdom(u), and this node can
be identified without recourse to the Harel and Tarjan
algorithm.

Although not essential, this property does simplify
the reduction to the Roman Chariot Problem, and it
can be useful in other ways. We show below that suffix
and preaugmentation closure are sufficient conditions
for it. (As these two properties together imply junction
closure, Theorem 1 holds.)

Proposition 1 Let P be a set of paths with suffix and
preaugmentation closure. If (u — v) € E, then every
w # u that P-dominates u also P-dominates v, i.e.,
iPdom(u) is an ancestor of v.

Proof: Let # € P,. Then, 7 contains v and hence a suf-
fix of the form vo. Due to suffix closure, (vo) € P,.
Due to the preaugmentation property, we have that

(uvo) € P. As u occurs on this path, any w that P-
dominates u must also occur on it, in particular (being
w # u) w must occur on the portion vo. Since the latter
is a suffix of 7, we conclude the w occurs on 7, and that

Py CPuy. m]

An analogous proposition holds under prefix and
postaugmentation closure. The assumptions of Propo-
sition 1 simplify the algorithm considerably. If these
assumptions are met, then the set of nodes control de-
pendent on an edge u — v are simply the nodes on the
simple path from v to parent(u), excluding parent(u).

The critical step remains the computation of the
P-dominator tree. Linear time solutions are known
[Har85] for P = § and P = &, that is, for the classi-
cal dominator and postdominator tree. In the rest of
the paper, we develop a linear time algorithm for loop
postdominance (P = R).

4 Relating Loop Postdomi-

nance to Postdominance

We now take a close look at the relation between R-
dominance, also called loop postdominance, and &-
dominance, i.e., classical postdominance. We shall as-
sume that the edge END — END is present in the CFG.
Then, the paths in £ (finite paths terminating at END)
are in a natural correspondence with the right-infinite
pathsin R’ C R in which only a finite number of nodes
differ from END. In fact, postdominance could be de-
fined by letting P = R'.

It is a straightforward consequence of Definition 6
that dominance is nondecreasing with the path set P,
in the sense that if @ O P, then Q-dominance C P-
dominance. As a corollary (when P = R’ and @ = R),
we see that loop postdominance is a subset of postdom-
inance.

In general, inclusion between two transitive relations
does not imply inclusion between their transitive re-
ductions. Fortunately, we can show that the loop post-
dominance forest (denoted Ipd-forest) is obtained by a
suitable pruning of the postdominance tree (denoted
pd-tree). This can be seen in Figure 1 for the running
example. First, we introduce some notation.

e v pd u: v postdominates (E-dominates) u;

e v 1pd u: v loop postdominates (R-dominates) u;

e ipd(a): i€dom(a), the immediate postdominator
of a;

e ilpd(a): iRdom(a), the immediate loop postdom-
inator of a.

Proposition 2 If ilpd(a) # oo then ilpd(a) =
ipd(a).

Proof: Let b = ilpd(a) € V. By contradiction, assume
that b # ipd(a). Then, there is a ¢ € V such that b pd ¢

and ¢ pd a. Let m € R, be a right-infinite path starting
at a. We distinguish two cases:

¢ END occurs on m. Then, let m be the smallest prefix
of m from a to END. Since ¢ pd a, then ¢ occurs on
m, hence it occurs on m and 7 € R..

e END does not occur on m. Since b 1pd a, node b
must occur on w. Moreover, since b pd ¢, there is a
c-free path o from b to END. Let m; be the smallest
prefix of m from a to b. Then, m o goes from a to
END and, considering that ¢ pd a, it must contain
c. Since o is c-free, ¢ must occur on m, hence it
occurs on ™ and ™ € R..

In both cases, we see that R, C R., so conclude that
¢ 1lpd a. By Theorem 1, b and ¢ are ordered by loop
postdominance. Given that b = ilpd(a), it must be
true that ¢ 1pd b which, since loop postdominance im-
plies postdominance, yields ¢ pd b, in contradiction with
b pd ¢ (postdominance is acyclic). O

From Proposition 2, we see that we can build the
loop postdominance tree by starting with the postdom-
inator tree, and replacing each edge (ipd(v) — v) with
(00 — v) for all nodes v for which ilpd(v) # ipd(v).
A computationally convenient characterization of such
nodes (in Figure 1, nodes b,e, f,g) is the next goal. The
necessary concepts are now introduced.

Definition 10 With reference to o« CFG G = (V, E)
and nodes a,w,x € V, we introduce the following ter-
manology and notation:

e w 1s prereachable from a: there is @ non trivial
path from a to w not conteining ipd(a);

e 1 s a crown: x is prereachable from itself;

o K: the set of crowns of G;

o K*: the set of nodes from which some crown is
prereachable.

Clearly, all the nodes of a path from « to w not con-
taining ipd(a) are strictly postdominated by ipd(a).
In Figure 1, e is prereachable from f because the path
f — ¢ — e does not contain ipd(f) = h. Intuitively,
this means e is reachable from f by a path in which all
nodes lie within that subtree of the postdominator tree
that is rooted at ipd(f) = h.

A crown is a node that lies on a cycle that does not
contain its postdominator. In Figure 1, b is a crown
since it lies on the cycle ¢ — b — «a, and k = ipd(b)
does not. Similarly, e and f are crowns since they lie on
cycle ¢ = e - d — f — ¢, and h does not. Intuitively,
it is clear that if v is a crown, then ¢Ipd(v) and ipd(v)
are different nodes because there is an infinite path
starting at v that does not contain ipd(v).

Note that ipd(g) is distinct from ilpd(g) but g is not
a crown. However, there is a path from ¢ to crown f
(¢ = d — f) which does not contain ipd(¢). In other
words, ¢ € K*. We show next that membership in
K* identifies all nodes for which ipd(v) is distinct from

ilpd(v). Obviously, membership in K is a special case,
as K C K*.

Theorem 3 For any a € V, if a € K* then
ilpd(a) = oo else ilpd(a) = ipd(a).

Proof: As ilpd(END) = ipd(END) = oo, the statement is
trivially true for @ = END. Hereafter, we assume a # END.

Part 1: @« € K* = ilpd(a) = co. Consider first
the case where there is a crown x prereachable from a.
Let ¢ = xyz be a cycle containing = but not ipd(z);
such a cycle exists by Definition 10. Let oz be a path
from a to « whose nodes are all strictly postdominated
by b = ipd(a); such a path exists by Definition 10.
Clearly, o(z)" -where ™ denotes infinite repetition- is a
path in R, — Rs, showing that —(b 1pd a), Therefore,
by Proposition 2, ilpd(a) = oo, and the then clause is
established.

Part 2: ilpd(a) = oo = a € K. In conjunction with
Proposition 2, this establishes the else clause.

We let b = ipd(a) and assume that —(b 1pd a). By
definition of loop postdominance, there is a b-free right-
infinite path m € R, starting at a. Since 7 is infinite,
some node must occur repeatedly. Consider the shortest
prefix m of m where a repetition occurs, so that m; has
the form oy~y.

We claim that all nodes on m; are strictly postdomi-
nated by b. Indeed, if some z on m were not postdomi-
nated by b, the prefix m of m terminating with z could
be augmented with a b-free path 7 to END. The concate-
nation m»7 would then be a b-free path from a to END,
contradicting the assumption that b = ipd(a).

Consider now the cycle ' = yyy, which is part of my,
and the nearest ancestor x of y whose parent in the pd-
tree is not on (/. Clearly, = is a crown prereachable from
a, hence a € K™. o

To summarize, the computation of the loop post-
dominance forest has been reduced to that of set ™.

In the next section, we shall first develop an algo-
rithm to compute K from G. Then, we show how
the well known connection between prereachability and
conversion of a program to single static assignment
form [BJP91, CFRT91, Wei92] can be exploited to
compute K* from K.

5 Optimal Computation of the
Loop Postdominance Forest

We introduce a graph called the sibling connectivity
graph associated with any CFG, which facilitates the
computation of crowns. Specifically, while in the CFG
a node is a crown if it lies on a cycle that does not
contain the immediate postdominator of that node, in
the sibling connectivity graph a node is a crown if it
simply lies on a cycle.

(a) Control Flow Graph

Initialize the SCG to (V' — {END}, 0).

Create an initially empty stack ST.

QU = W DN =

Add edge z — y to the SCG.

{This computes the SCG.}

8. Output K = Ky U K3 as the set of crowns.

For each node v € V, create an initially empty list L(v).
For each edge (z — v), if v # ipd(x) then append (z — v) to list L(v).
For each node v visited during a depth-first walk over the pd-tree, do:

1. When entering v for the first time, push v on stack ST.
For each # — v in L(v), let y be the node pushed immediately on top of ipd(z) in ST.

2. When retreating out of v, pop v from stack ST.

6. Determine the set Iy of nodes with self loops in the SCG (during its construction).
7. Find the strongly connected components (scc’s) of the SCG.
Let K5 be the set of nodes contained in sce’s of two or more nodes.

Figure 2: Computing the Sibling Connectivity Graph and the Set of Crowns

(b) Postdominator tree

(c) Sibling Connectivity Graph

Figure 3: The Sibling Connectivity Graph

5.1 Sibling Connectivity Graph

In this subsection, we define the sibling connectivity
graph and describe a linear time algorithm to compute
it.

Definition 11 With each node b of CFG G = (V, E),
we associate a graph Gy = (Vy, Ey) where

Vi={x eV : ipd(x) = b}

18 the set of children of b in the pd-tree, and

Ey={x—y : 2,yeV, Iz - v) € Est.ypd v}
The collection of graphs Gy for all nodes b in the
program is called the sibling connectivity graph (SCG).

An intuitive description of the SCG is the following.
Let @ — v be a CFG edge with v # ipd(z). If y is
the sibling of that is an ancestor of v, the SCG has
an edge v — y, (a self-loop if y =). For example, in
Figure 1, edge (¢ — a) € E, and k is the sibling of ¢
that is an ancestor of ¢; therefore, edge (¢ — k) occurs

in the SCG. Figure 3 shows the SCG for the running
example; component G consists of the set of nodes
{e, f} and the edges between these nodes.

Proposition 3 The SCG corresponding to a CFG
G = (V,E) can be constructed in time O(|V| + |E|).

Proof: The procedure is shown in Figure 2, steps 1-5.
A depth-first walk is performed over the postdominator
tree. First, we construct a list L of edges at each node v :
ifo — visa C FG edge and v is not ipd(x), then this edge
is entered into list L(v). During the depth-first walk, we
maintain a stack of nodes such that when the walk is at
a node n, the stack consists of the ancestors of n ordered
by ancestorship. This is accomplished by pushing a node
n on the stack when the walk first reaches n, and popping
it from the stack when retreating out of node n. When
the walk reaches a node v, we examine the list of edges
L(v) : if @ — v is an edge in this list, we first locate the
parent of z in the postdominator tree (say p), and then
find the node pushed immediately on top of p in the stack
(say y). The SCG has an edge # — y. The stack can be
implemented as a doubly-linked list to support this ‘find’
operation (as well as pushing and popping) in constant
time. The correctness of this procedure follows trivially
from properties of depth-first search. It is also easy to
show that the entire procedure takes time proportional
to the number of vertices and edges in the CFG. a

5.2 Crowns

In this subsection, we characterize the crowns with re-
spect to the SCG and develop a fast algorithm to com-
pute the set K of all crowns.

Proposition 4 With the notation of Definition 11,
y € V; s prereachable from x € Vy in G if and only if
y s reachable from x in Gy.

Proof: Assume first that y is prereachable from z is G,
say via path m. Decompose m as ugm u1me...Ur—1 TrUy,
with vy = @ and u,, = y, where ug...u, are those nodes on
m that belong to Vj, while the nodes on m; are descendant
of u; in the pd-tree. Such decomposition (possibly, with
some of the m;’s empty) is always possible because:

1. by definition of prereachability, all nodes on 7 are
strictly postdominated by b, and

2. if edge w — v is on m, then whenever u and v are
descendant of different children of b in the pd-tree,
then u must be a child of b (by the characterization
of CFG edges with respect to the pd-tree).

Now, let »; be the node immediately following u; on .
Then, (u;—1 — v;) € E implies that (u;—1 — u;) € Es.
Hence, (r = uo)ul...ur,l(uT = y) is a path from z to y

in Gy.

For the converse, assume now that y is reachable from
x in Gy, say via a path ¢ = wou1...ur, with ug = and
ur, = y. Then, for 2+ > 0, by Definition 11 of Fj3, there
is a descendant v; of u;41 in the pd-tree such that (’u,,' —
v;) € E. Clearly, u;41 is reachable (in () from v; via a
path m; entirely postdominated by b (since u;41 pd v,;).
Hence, wom ...m is a path from wo = x to u, = y. 0

As a corollary of the preceding proposition, we have
the following characterization of the crowns.

Proposition 5 A node x is a crown if and only if it
lies on some cycle (possidly, a self loop) of the SCG.

Proof: Assume first that 2 is a crown of cycle (', in G,
and let (z — v) € E be the edge of €' emanating from z.

If pd v, then, by Definition 11 of Eipd(x)v Gipd(x)
contains the self loop ¥ — x as stated.

Else, let y (# x) be the sibling of among the an-
cestors of v. It is easy to see that y is also on (| so
that « and y are reachable from each other, in GG. More-
over, since all nodes of C' are strictly postdominated by
ipd(z), = and y are prereachable from each other, in G.
By Proposition 4, 2 and y are reachable from each other
in Gipd(x): hence x lies on a cycle OfGipd(z)'

For the converse, assume that z lies on a cycle C’ of
Gipd(:,,-)-

If C' is a self loop 22 — x, then, by Definition 11, there
is an edge (¢ — v) € E where pd v. As there is always
a path, say vre, from a node v to a postdominator of it
x, we can construct the cycle ' = zvmz in G having z
as a crown.

Else (' contains at least a node y # z. Clearly, «
and y are reachable from each other in Gipd(x) so that,
by Proposition 4, they a prereachable from each other in
G, say, via paths zoy and yrz. Then, C' = zoyrz is a
cycle in G whose nodes are all postdominated by ipd(z)
(= ipd(z)), whence x (as well as y) is a crown of C'.

O

Proposition 6 The set K of the crowns of a CFG
G = (V,E) can be computed in time O(|V] + |E|).

END

Figure 4: Paths in Lemma 1

Proof: The complete procedure is shown in Fig-
ure 2. Having constructed the SCG (Proposition 3),
its strongly connected component (scc’s) are computed
in O(|V|+|E]) time by the algorithm of Tarjan [Tar72],
(see also [CLLR92]). Based on Proposition 5, the crowns
of GG can be determined by identifying those nodes of the
SCG that lie either on a self loop or on a cycle (which is
equivalent to membership in a scc of size at least two).
Both conditions are easily checked. a

5.3 Prereachability to Crowns

Finally, we must compute the set K* of those nodes
from which some crown is prereachable.

Our approach consists in reducing this problem to
that of finding the single static assignment (SSA) form
of a program whose CFG is the reverse of G = (V, E),
that is, Gp = (V, Eg), where Er = {v — u : (v —
v) € E}. We show that if I{ represents the set of
assignments to some dummy variable X, then K* is
precisely the set of the so-called join nodes [CFRT91]
where ¢-functions must be introduced to convert Gpr
to SSA form (with respect to X).

We begin by recalling the definition of join nodes
[CFR™91], in a form that is convenient for the present
developments.

Definition 12 Let S C V. The set Jr(S) of join
nodes for S in Gpr is the set of all nodes z such that

there are in G two non trivial paths z % xy and z % Z9,
with 1,22 € S, intersecting only at z.

The following lemma is the key step to make the
connection between prereachability in G and join nodes
in Gg.

Lemma 1 With reference to CFG G, if ¢ is prereach-
able from v, then there exist paths P, = v X ¢ and

P,=v =+ END intersecting only at v.

Proof: The proof is an induction on the length of the
shortest non trivial path P = v £ ¢ which establishes
the prereachability of ¢ from v.

Suppose the length of Pis 1,i.e., P = ve. Since ¢ does
not postdominate v, there is a path P, = v £ END not
containing ¢ and hence disjoint from P, = P, except for
node v.

Assume the lemma is true for paths of length less than
n. Let P=v & p — ¢ be a path of length n. By the
inductive assumption, there is a path R, = v 2 END that
is disjoint, except for node v, from a path 5, = v X p.
WLOG, assume that R, is acyclic. Appending the edge
p — ¢ to path 5, gives a path @ from v to ¢. If ¢ does
not occur on path Rs, or if ¢ = v, the lemma is proved
by setting P, =), and P, = R».

Otherwise, ¢ occurs on R» and is distinct from v. Let
R, be the prefix v X ocof R,. Note that) and R, are
two paths from v to ¢ that are disjoint except for v and
c. Consider an acyclic path T = v L END that does
not contain ¢; such a path must exist because ¢ does
not strictly postdominate v. lLet [be the last node on
T that occurs on either ¢ or R. — that is, the suffix
Ts =1 £ END of path 7" is disjoint (other than node
I) from paths) and R. (I must exist because all three
paths contain v).

Ifl = v, thenlet A = and P» = 1.

Otherwise, [is distinct from v, and it is contained in
exactly one of paths R. and). Suppose [is contained
in R.. Path R. can be written as v x l x ¢ where the
prefix v X lis called R;. Concatenate R; and T’ to get a
path P» = v £ END which is disjoint from P = Q. The
case when [is contained in) is identical. a

We can now make the connection to SSA computa-
tion.

Theorem 4 Let S € V with END = STARTR € S.
Then, v € Jr(S) if and only if there is a ¢ € S that 1s
prereachable from v in G.

Proof: (=) By Definition 12 of Jg(S), there are two
distinct nodes ¢1 and c¢2 in S and two non trivial paths
v 5 ¢ and v X ¢y in G intersecting only at v. At
least one of these two paths does not contain ipd(v),
thus establishing the prereachability of its endpoint (e
or ¢2) from v in G.

(=) From Lemma 1, there are two paths v £ END and

v X ¢in G that are disjoint except for v. Since ¢ and
END are both in S, by Definition 12, v € J(5). o

In our running example, the crowns are {b, e, f}; if
these nodes and END are treated as assignments to some
variable in the reverse CFG Gg, we need ¢-functions
at nodes {b, ¢, f,g}. The set of nodes {b, ¢, f, g} is pre-
cisely the set of nodes that in G are not loop postdom-
inated by their immediate postdominator.

It is worth observing that, while in general S is not
necessarily a subset of Jr(9), it is the case that I C
Jr(K) when K is the set of crowns. This is because (i)
END is a crown (due to the selfloop END — END) and each
crown is prereachable from itself (by Definition 10).

In conclusion, K* = Jp(I), which can be computed
in O(|E|) time by any of several SSA algorithms in the
literature [SG95, PB95], such as the one described in

our earlier work on APT [PB95].

5.4 Summary

The following theorem summarizes the result of our
approach to loop control dependence computations:

Theorem 5 Given o« CFG G = (V. E) containing the
edge END — END, the corresponding Augmented Loop
Postdomanator Tree can be constructed in linear time
and stored in linear space. It can answer loop con-
trol dependence queries of the cd, conds, and cdequiv
types in time proportional to the size of their answers.

Proof: Figure 5 summarizes the procedure developed
in this paper. The linear bound follows: for Step 1, by
[Har85]; for Step 2, by Proposition 6; for Step 3, by the
known results on SSA (e.g., [PB95]); for Steps 4 and 5,
by straightforward procedures; for Step 6, by the prepro-
cessing algorithms for the AP7T data structure presented

in [PB95]. 0

6 Conclusions

We have presented a framework, based on a generalized
notion of dominance, that permits a uniform treatment
of classical and loop control dependence. We have ap-
plied this framework to compute the weak (or loop)
control dependence relation optimally.

It would be interesting to include Ballance and Mec-
Cabe’s hierarchical control dependence [BM92] in our
framework. Unfortunately, this relation has been de-
fined by specifying a procedure for computing it. The
formulation of this relation in graph-theoretic terms is
a prerequisite for fitting it into our framework.

Acknowledgements: We are obligated to Tom Reps
for pointing us to the work of Podgurski and Clarke.
Andy Podgurski was kind enough to send us a copy
of his dissertation at short notice. We also thank Ron
Cytron, Jeanne Ferrante, Bjaarne Steensgard and Mike
Wolfe for useful discussions on control dependence. Fi-
nally, we would like to mention that we found the PLDI
"96 referee reports very useful in revising the extended
abstract.

References

[BJP91] Micah Beck, Richard Johnson, and Keshav Pin-
gali. From control flow to dataflow. Journal
of Parallel and Distributed Computing, 12:118-

129, 1991.

. Build the postdominator tree pd-tree of the given CFG G = (V, E), including the distinguished

node oo as described in Subsection 3.1.

¢-functions for variable X.

. For each a € K*, replace pd-tree edge (ipd(a) — a) with Ipd-tree edge (c0 — a).

. For each edge (u — v) € E such that v does not loop postdominate u, append to (an initially
empty) route array A a chariot route with end points v and ilpd(u).

. Construct the AP7T for the Roman Chariot Problem in which the tree is the loop postdominator

tree and the route array is A.

2. Compute the set of crowns K as shown in Figure 2.
. In the reverse CFG Gg, mark all crowns (1) as assignments to some dummy variable X, and
perform an SSA computation to obtain the set {* of nodes where the SSA form will require

[BM92]

[CFRT91]

[CFS90]

[CLR92)

[FOWST]

[Har85]

[HT84]

[LT79]

[PBY5]

Figure 5: Computing the Loop Control Dependence Relation

Robert Ballance and Arthur McCabe. Program
dependence graphs for the rest of us. Technical
Report 92-10, University of New Mexico, Octo-
ber 1992.

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Weg-
man, and F. K. Zadeck. Efficiently computing
static single assignment form and the control de-
pendence graph. ACM Transactions on Pro-
gramming Languages and Systems, 13(4):451-
490, October 1991.

Ron Cytron, Jeanne Ferrante, and Vivek Sarkar.
Compact representations for control depen-
dence. In Proceedings of the SIGPLAN °90 Con-
ference on Programming Language Design and
Implementation, pages 337-351, White Plains,
New York, June 20-22, 1990.

Thomas Cormen, Charles Leiserson, and Ronald
Rivest. Introduction to Algorithms. The MIT
Press, Cambridge, MA, 1992.

J. Ferrante, K. J. Ottenstein, and J. D. War-
ren. The program dependency graph and its
uses in optimization.
Programming Languages and Systems, 9(3):319—
349, June 1987.

D. Harel. A linear time algorithm for find-
ing dominators in flowgraphs and related prob-
In Proceedings of the 17th ACM Sympo-
sium on Theory of Computing, pages 185-194,
Providence, Rhode Island, May 6-8, 1985.

ACM Transactions on

lems.

Dov Harel and Robert Endre Tarjan. Fast
algorithms for finding nearest common ances-
tors. Siam Journal of Computing, 13(4):338—
355, 1984.

Thomas Lengauer and Robert Endre Tarjan.
A fast algorithm for finding dominators in a
flowgraph.
ming Languages and Systems,

July 1979.
Keshav Pingali and Gianfranco Bilardi. APT:

A data structure for optimal control dependence

ACM Transactions on Program-

1(1):121-141,

[PCY0]

[Pods9)]

[SGY5]

[Tar72]

[Wei92]

computation. In Proceedings of the ACM Con-
ference on Programming Language Design and
Implementation, June 1995.

Andy Podgurski and Lori Clarke.

model of program dependences and its implica-

A formal

tions for software testing, debugging and main-
tenance. IEFF Transactions on Software Fngi-

neering, 16(9):965-979. Septmeber 1990.

Andrew Podgurski. The significance of program
dependences for software testing, debugging and
maintenance. PhD thesis, University of Mas-
sachusetts, Amherst, 1989.

Vugranam C. Sreedhar and Guang R. Gao. A
linear time algorithm for placing ¢-nodes. In
Conference Record of POPL °95: 22nd ACM
SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 62-73, San
Francisco, California, January 1995.

Robert E. Tarjan. Depth first search and linear
graph algorithms. SIAM Journal of Computing,
1(2):146-160, 1972.

Michael Weiss. The transitive closure of control
dependence: The iterated join. ACM Letters on
Programming Languages and Systems, 1(2):178—
190, June 1992.

