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Abstract  Over recent decades, many studies have considered the development, assessment and refinement of 
scheduling algorithms for use in real-time embedded applications. Various studies have also considered the impact 
of variations in the interval between the executions of periodic tasks (i.e. jitter) on the behaviour of such systems. 
Despite interest in both of these areas, there has been comparatively little attention paid to the impact of scheduler 
implementation techniques on jitter behaviour. This is unfortunate because – as we demonstrate in the course of this 
paper – there is a ‘one-to-many’ mapping between scheduler algorithms and scheduler implementations, and even 
comparatively small changes in the scheduler implementation can have a significant impact on jitter behaviour. 
Throughout this paper, our focus is on implementations of a form of “cyclic executive” which is one of the simplest 
scheduling algorithms in widespread use. The results presented demonstrate that – even for this very simple 
scheduling algorithm – implementation decisions can have a significant impact on both jitter behaviour and on 
resource requirements. We would expect that the results obtained would also apply to more complicated algorithms: 
indeed, as the algorithms grow more complicated, we would expect that the number of implementation options 
would increase, with a corresponding increase in the jitter variation. 
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1. Introduction 
In this paper, we are concerned with the 

implementation of schedulers for use in real-time 
resource-constrained embedded systems. Such systems 
usually require high degrees of reliability and 
predictability while having severe resource constraints. 
Our particular focus is on the impact of scheduler 
implementation decisions on the timing behaviour of the 
system: in particular, variations in the interval between the 
release times of periodic tasks (namely, the task jitter). 

There have been many previous studies which looked at 
the topic of jitter. Jitter has been found to arise due to 
clock drift, branching in the code, the scheduling 
algorithm employed, or as a consequence of using specific 
hardware [1]. In real-time systems, the jitter is mainly 
considered at task level (e.g. release time), and most 
concern about task jitter has been in the context of 
scheduling [2]. For example, standard scheduling 
algorithms based on fixed timing constraints (e.g. fixed 
periods and deadlines) can induce jitter if a task is blocked 
in a high-load situation: to deal with such issues, a range 
of flexible solutions have been proposed for use at run-
time [3]. In distributed systems, reducing the variations in 

message transmission delays can help to reduce the jitter 
levels [4,5,6] 

The presence of jitter can have a detrimental impact on 
the performance of many real-time systems where 
particular tasks must be executed at precise timing. For 
example, [7] show that – during data acquisition tasks – 
jitter rates of 10% or more may result in a meaningless 
interpretation of the sampled signal. Serious impacts of 
jitter on a wide range of applications have been discussed 
in [8,9,10,11].  

While jitter has been widely investigated, the impact of 
scheduler implementation on jitter behaviour has not 
received widespread attention. This is unfortunate because 
– as we demonstrate in the course of this paper – there is a 
‘one-to-many’ mapping between scheduler algorithms and 
scheduler implementations, and even comparatively small 
changes in the scheduler implementation can have a 
significant impact on the jitter behaviour [6,12-18]. 

Our focus in the paper is on implementations of a form 
of “cyclic executive” [12,19]. This algorithm is also called 
“time-triggered co-operative” (TTC) scheduling algorithm 
and it is one of the simplest schedulers that is in 
widespread use. The paper discusses a wide range of TTC 
scheduler implementations for use in both single- and 
multi-processor designs. It provides a systematic method 
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for comparing between the various implementations and 
demonstrates how – with a little modification during the 
implementation stage of a scheduler (in the source code) – 
the jitter at the task level can be significantly reduced or 
entirely eliminated. Also, it will be shown how 
manipulating the scheduler implementation can have 
impacts on the computational as well as memory resources. 

We would expect that the results obtained from this 
algorithm would also apply to more complicated 
algorithms (e.g. “Earliest Deadline First” algorithms: [20]). 
Indeed, as the algorithms grow more complicated, we 
would expect that the number of implementation options 
would increase, with a corresponding increase in the jitter 
variation. 

The remainder of the paper is organised as follows. 
Section  2 presents a review of previous work in the area of 
scheduler implementation. In Section  3, we discuss 
possible sources of jitter in the TTC scheduling algorithm 
which is considered in this study. In Section  4, we assess 
the jitter levels in the original implementation of the TTC 
scheduler that forms the benchmark against which later 
implementations are evaluated. We then, in Section  5, 
explore several new TTC implementations which produce 
lower levels of jitter in single-processor systems. A 
similar study is repeated in Section  6 and Section  7, this 
time using a multi-processor TTC algorithm as the 
benchmark. In Section  8, we discuss the findings and 
present the overall paper conclusions. 

2. Previous work on scheduler 
Implementations 

The implementation of schedulers is a major problem 
which faces designers of real-time scheduling systems 
[21]. In their useful publication, Cho and colleges clarified 
that the well-known term scheduling is used to describe 
the process of finding the optimal schedule for a set of 
real-time tasks, while the term scheduler implementation 
refers to the process of implementing a physical (software 
or hardware) scheduler that enforces – at run-time – the 
task sequencing determined by the designed schedule. 
While there has been a great deal of interest in 
development, assessment and refinement of scheduling 
algorithms [19,20,22,23,24], we have found evidence of 
only a limited amount of work on scheduler 
implementation.  

Some early work concerning the implementation of 
cyclic executives (in the Ada programming language) was 
carried out by [12]. Later on, [25] looked at the problems 
of implementing forms of cyclic executive in assembly 
language. Phatrapornnant and Pont [17] have also looked 
at implementation of a form of cyclic executive: they have 
described techniques to maintain low jitter behaviour 
when dynamic voltage scaling is employed (in order to 
reduce system power consumption). Hughes and Pont [26], 
[27] described an implementation of TTC schedulers with 
a wide range of “task guardian” mechanisms to reduce the 
impact of a task-overrun problem on the real-time 
performance of the system. In our previous publication 
[28], we described a low-jitter TTC scheduler framework 
and compared it with an early scheduler implementation 
(as in [14]). Two jitter-reduction techniques were later on 

developed and integrated with the TTC algorithm to 
enhance its timing predictability [29]. Such techniques 
form the basis of some of the TTC implementations 
described in this paper. 

Looking more generally at scheduler implementation 
techniques, Katcher et al. [30] argue that that there is a 
wide gap between scheduling theory and its 
implementation in operating system kernels running on 
specific hardware platforms. They also note that the 
implementation of a particular algorithm can introduce 
costs which must be taken into account when validating 
the timing correctness properties of a real-time system. 
Moreover, they consider four generic scheduler 
implementations for a fixed priority scheduling algorithm: 
two time-triggered-based and two event-triggered-based. 
When applied to two realistic task sets – corresponding to 
avionics and inertial navigation applications – the 
different implementations demonstrated different levels of 
schedulability degradation. In [13], it was reported that the 
choice of particular implementation can have a major 
impact on the critical success factors for a real-time 
system. Xu [31] emphasised that “the simplified high-
level abstraction of code” is only an approximation of “the 
actual real-time software implementation” which does not 
take into account all the implementation details that may 
affect timing. Therefore, the performance of the real-time 
system would critically depend on implementation details 
of the task scheduler [32]. In addition, as the system 
expands, the scheduler design and implementation 
processes will increase in complexity and, consequently, 
the impact on the entire system performance becomes 
more significant [21]. 

Our discussions in this paper will also concern multi-
processor architectures. In this case, as we will discuss in 
Section  7.2, we need to implement techniques which 
maintain synchronisation of the clocks on the different 
CPUs. In this case, the impact of the underlying network 
protocol must be considered. For example when – for 
example – the Controller Area Network (CAN: [33] 
protocol is used to link the various processor nodes, jitter 
can be caused by variations in the lengths of transmitted 
messages. To reduce such variations, [34] proposed a 
technique by which transmitted data are masked before 
transmission. An alternative (and, it is claimed, more 
general) approach to reducing the variation in CAN 
message durations has been described in [5,6]. 

3. Sources of Jitter in Single-processor 
TTC Implementations 

In order to reduce levels of task jitter in any scheduler, 
it is necessary to identify possible sources of timing 
variations. As outlined in the introduction, our focus in 
this paper is on time-triggered co-operative schedulers. In 
such schedulers, possible sources of task jitter (in single-
processor implementations) can be divided into three 
categories: 
• Scheduling overhead variation.  
• Task placement. 
• Tick drift. 
We consider each of these categories in turn in this 

section. 
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3.1. Scheduling overhead variation 
The overhead of a conventional scheduler arises mainly 
from context switching. In some systems, the scheduling 

overhead is comparatively large and may have a highly 
variable duration. As an example, Figure 1 illustrates how 
a TTC system can suffer release jitter as a result of 
variations in the scheduler overhead. 
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Figure 1. Release jitter caused by variation of scheduling overhead 

3.2. Task Placement 
Even if variations in the scheduler overhead are avoided, 

we may still have problems with jitter in a TTC design as 
a result of the task placement. 

To illustrate this, consider Figure 2. In this schedule, 
Task C runs sometimes after A, sometimes after A and B, 

and sometimes alone. Therefore, the period between every 
two successive runs of Task C is highly variable. 
Moreover, if Task A and B have variable execution 
durations, then the jitter levels of Task C will be even 
larger.  
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Figure 2. Release jitter caused by task placement in TTC schedulers 

3.3. Tick Drift 
For completeness, we also consider tick drift as a 

source of task jitter. In the TTC designs considered in this 
paper, a clock tick is generated by a hardware timer that is 
linked to an interrupt service routine (see Section  4). This 
mechanism relies on the presence of a timer that runs at a 
fixed frequency: in these circumstances, any jitter will 
arise from variations at the hardware level (e.g. through 
the use of a low-cost frequency source, such as a ceramic 
resonator, to drive the on-chip oscillator: see [14]).  

In the scheduler implementations considered in this 
paper, the software developer has no control over the 
clock source. However, in some circumstances, those 
implementing a scheduler must take such factors into 
account. For example, in situations where “dynamic 
voltage scaling” (DVS) is employed to reduce CPU power 
consumption, it may take a variable amount of time for the 
processor’s “phase-locked loop” (PLL) to stabilise after 
the clock frequency is changed (see Figure 3). As 
discussed elsewhere, it is possible to compensate for such 
changes in software and thereby reduce jitter (see [17]). 
Such techniques are not considered further in this paper. 
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Figure 3. Tick drift in DVS systems 

4. Assessing a Single-processor TTC 
Implementation  

Having considered three possible sources of jitter in 
TTC algorithm, we explore the operation of a particular 
TTC scheduler which was originally described and fully 
documented [14]. We will refer to this implementation 
here as “Original TTC-Dispatch” 1  scheduler 
implementation. 

                                                                        
1 The name is derived from the way the scheduler is implemented in 
software. This was to distinguish it from the earlier simpler 
implementations: e.g. schedulers based on super loop (TTC-SL) and 
interrupt service routine (TTC-ISR) (see [14] for more details). 

4.1. The Original TTC-Dispatch 
Implementation 

The Original TTC-Dispatch scheduler is driven by 
periodic interrupts generated from an on-chip timer. When 
an interrupt occurs, the processor executes an “Update” 
function (see Listing 1). In the Update function, the 
scheduler checks to see if any tasks are due to run and sets 
appropriate flags. After these checks are complete, a 
Dispatch function (Listing 2) will be called, and the 
identified tasks (if any) will be executed. When not 
executing the Update and Dispatch functions, the system 
will usually enter a low-power (“idle”) mode. 



42 Journal of Embedded Systems  

 

Listing 1. “Update” ISR of Original TTC-Dispatch scheduler 

 

Listing 2. Dispatch function of Original TTC-Dispatch scheduler 

4.2. Measuring the Task Jitter 
The experimental methodology used to obtain jitter 

results from the TTC implementations on a single-
processor system is outlined here. 

4.2.1. Hardware Platform 
In order to explore the impact of the TTC 

implementations in practical designs, we used a Phytec 
board supporting a 16-bit C167 microcontroller with an 
oscillation frequency of 20 MHz. The Keil C166 compiler 
was used [35]. 

4.2.2. Tasks 
In the single processor design considered in this study, 

we used four different tasks with randomly-varying 
durations. The task schedule was chosen here in such a 
way that the jitter for each task was maximised. More 
specifically, all tasks begin to execute at time delay equals 
to 0 (i.e. in the first tick interval). However, the first task 
(called task A) runs every 2 scheduler ticks, the second 

task (called task B) runs every 3 scheduler ticks, the third 
task (called task C) runs every 4 scheduler ticks, and the 
fourth task (called task D) runs every scheduler tick. In 
this design, the Major Cycle(The Major Cycle is a period 
equal to the lowest common multiple of the periods of the 
scheduled tasks: see, for example, [12].) for the schedule 
is equal to 12 ticks (Figure 4). The scheduler tick interval 
used was 10 ms. 

 

Figure 4. Scheduler tasks used in this study for measuring the jitter 
levels 

4.2.3. Jitter Measurements 
To measure the jitter on each task, we set a pin high at 

the beginning of the task (for a short time) and then 
measure the periods between every two successive rising 
edges. We recorded 25,000 samples in each experiment. 
The periods were measured using a National Instruments 
data acquisition card ‘NI PCI-6035E’ [36], used in 
conjunction with appropriate software LabVIEW 7.1 [37]. 

To assess the jitter levels, we report two values: the 
average jitter and the difference jitter. The difference jitter 
is obtained by subtracting the minimum period from the 
maximum period from the measurements in the sample set. 
The average jitter is represented by the standard deviation 
in the measure of average periods. Note that there are 
many other measures that can be used to represent the 
levels of task jitter, but these measures were felt to be 
appropriate for this study. 

4.3. Results from Original TTC-Dispatch 
Scheduler 

Table 1 shows the periods and jitter measurements for 
all tasks when the Original TTC-Dispatch scheduler is 
used. 

Table 1. Task jitter from the Original TTC-Dispatch scheduler (all 
values in µs) 

Task A B C D 

Min 19994.3 29598.5 39240.6 8894 

Max 20003.1 30397.7 40738.9 11073.2 

Average 19999 30033.1 39999 9948.2 

Diff. jitter 8.8 799.2 1498.4 2179.1 

Avg. jitter 2.7 189.7 249.7 360.1 

We can clearly see from the results shown in the table 
that all tasks in the system – including the first one – have 
a jitter in their release times. Moreover, we notice that the 
jitter levels increase as the task order increases (that is, the 
jitter is higher for Task B than Task A, and higher for 
Task C than Task B, etc.). Despite that the Original TTC-
Dispatch scheduler (developed by [14] was made so 
simple, reliable and cost-effective, it suffers high jitter at 
the task release times as jitter levels in this 
implementation largely depend on the task schedule itself. 
In more severe cases this would degrade the overall real-
time system performance. 
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5. Reducing Jitter in Single-processor 
TTC Implementations 

In this section, we explore different ways in which a 
TTC scheduler can be implemented. In each case we base 
our solution on the Original TTC-Dispatch 
implementation. As we will see, different implementations 
provide different levels of task jitter.  

5.1. Reducing Variations in the Scheduler 
Overhead (Modified TTC-Dispatch) 

In the Original TTC-Dispatch scheduler 
implementation, the scheduler first determines – in the 
Update function (Listing 1) – which tasks are due to 
execute and then executes the tasks from the Dispatch 
function (Listing 2). A consequence of this arrangement is 
that the scheduler overhead varies depending on the 
number of tasks that are to be implemented in a given tick 

interval. This means that even the first task to be executed 
(which is, implicitly, the task with the highest priority) can 
suffer from release jitter.  

In order to reduce the jitter in the first task, we can re-
arrange the activities performed in the Update and 
Dispatch functions, as illustrated in Listing 3 and Listing 4, 
respectively. In this modified implementation (which we 
will call Modified TTC-Dispatch), the Update (Listing 3) 
function simply keeps track of the number of Ticks and all 
scheduling and dispatch activities are now carried out in 
the Dispatch function (Listing 4). 

 

Listing 3. “Update” ISR of the Modified TTC-Dispatch scheduler 

 

Listing 4. Dispatch function in the Modified TTC-Dispatch scheduler 

5.2. Results from Modified TTC-Dispatch 
Scheduler  

Table 2 shows the impact of the scheduler 
modifications. The task set is identical to that used to 
produce the results shown in Table 1.  

Table 2. Task jitter from the Modified TTC-Dispatch scheduler (all 
values in µs) 

Task A B C D 

Min 19999.4 29603.9 39245.2 8888.3 

Max 19999.5 30394.4 40738.7 11103.6 

Average 19999.4 29966.5 40000.2 9989.6 

Diff. jitter 0.1 790.5 1493.5 2215.3 

Avg. jitter 0 199.8 248 373.2 

As can be seen from the table, the changes to the 
scheduler implementation have been successful in 
reducing the jitter in Task A (almost to 0). Remember that 
Task A is implicitly the highest-priority task in the cyclic 
executive scheduling algorithm. This task in many 

applications requires high degrees of predictability (which 
can be manifested by low jitter characteristics). 

5.3. Reducing Variations in the Scheduler 
Overhead (Offline TTC-Dispatch) 

One way of classifying scheduling algorithms is by the 
time at which scheduling decisions are made. If the 
scheduling decisions for the entire task set are made 
before the system activation, then the algorithm is called 
an “off-line” scheduler: if, instead, the decisions are made 
at run-time, we have an “on-line” scheduler [24,38]. In 
many cases, scheduling implementations may be on-line, 
off-line or some combination of the two.  

The Original and Modified TTC-Dispatch schedulers 
make the scheduling decisions online. One approach to 
reducing variations in the scheduler overhead (at run time) 
is to make most or all of the scheduling decisions offline. 
We explore this option in what we will call Offline TTC-
Dispatch scheduler.  

In Offline TTC-Dispatch, we use an array to store the 
task schedule. Since all tasks are periodic, this array needs 
to be able to store information for the whole Major Cycle. 
In the implementation of Offline TTC-Dispatch, we used a 
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desktop C program to calculate the schedule information 
for all tasks and stored the results in a two-dimensional 
array. The size of the schedule array As is given as: 

 s task tickA  N . N=  (1) 

Where Ntask is the total number of tasks in the scheduler 
and Ntick is the total number of ticks in the major cycle. 

Listing 5 shows the Dispatch function for Offline TTC-
Dispatch scheduler.  

 

Listing 5. Dispatch function in the Offline TTC-Dispatch scheduler 

5.4. Results from Offline TTC-Dispatch 
scheduler 

Table 3 presents the results obtained with Offline TTC-
Dispatch scheduler.  

Table 3. Task jitter from the Offline TTC-Dispatch scheduler (all 
values in µs) 

Task A B C D 
Min 19999.4 29607.4 39266.4 8920.7 
Max 19999.5 30390.9 40731.5 11079.6 

Average 19999.4 29974.8 39998.3 9987.4 
Diff. jitter 0.1 783.5 1465.1 2158.9 
Avg. jitter 0 193.1 245.2 367.7 
Looking at Table 3, we can see that – although the use 

of an offline scheduler has produced a slight reduction in 
the levels of task jitter for Task B, Task C and Task D – 

there is still considerable room for improvement. More 
clearly, special techniques may need to be implemented 
with the scheduler to take care of the task jitter. 

5.5. Reducing the Impact of Task Placement 
(Offline TTC-SD) 

In Section  3.2, we considered the impact of task 
placement on “low-priority” tasks running in TTC 
schedulers. In order to reduce the variation in the starting 
times of such tasks, the Offline TTC-SD scheduler 
implementation places a “Sandwich Delay” (SD: [39]) 
around tasks which execute prior to other tasks in the 
same tick interval.  

Briefly, a Sandwich Delay (SD) is a mechanism – based 
on a hardware timer – which can be used to ensure that a 
particular code section always takes approximately the 
same period of time to execute. The SD operates as 
follows: 1) we set a timer running; 2) we perform an 
activity; 3) we wait until the timer reaches a 
predetermined count value. In these circumstances – as 
long as the timer count is set to a duration that 
corresponds to the WCET of our sandwiched activity – we 
have the potential to fix the execution period. 

In the Offline TTC-SD scheduler, we use SDs to 
provide execution “windows” of fixed sizes in situations 
where there is more than one task in a tick interval. To 
clarify this, consider again the set of tasks shown in Figure 
2 and compare this with same set of tasks executed by an 
Offline TTC-SD scheduler, as shown in Figure 5. In 
Figure 5, the required SD prior to Task C is equal to the 
WCET of Task A plus the WCET of Task B. This implies 
that in the first tick, the scheduler runs Task A and then 
waits for the period equals to the WCET of Task B before 
running Task C. The figure shows that when a SD is used 
(as part of the TTC scheduler) prior to Task C, the periods 
between the successive runs of this task become equal. 
Note that this scheduler is based on the TTC-SD scheduler 
implementation we presented elsewhere [29]. The only 
differences are that here the whole task schedule 
(including estimates of tasks’ WCETs) is made offline and 
that the hardware platform used is based on the 16-bit 
C167 microcontroller. 

 

Listing 6. Dispatch function in the Offline TTC-SD scheduler 
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Figure 5. Using SDs to reduce release jitter in TTC schedulers 

Note that – in this study – the WCET for each task is 
calculated offline by picking the maximum duration out of 
thousands of runs of the task. Dispatch code for the 
Offline TTC-SD scheduler is shown in Listing 6. 

5.6. Results from the Offline TTC-SD 
Scheduler 

Table 4 shows the periods and jitter measurements for 
all tasks when the Offline TTC-SD scheduler 
implementation is employed. 

Table 4. Task jitter from the Offline TTC-SD scheduler (all values in 
µs) 

Task A B C D 
Min 19999.5 29998.8 39998.5 9999.2 
Max 19999.6 29999.9 39999.6 10000.3 

Average 19999.6 29999.3 39999.1 9999.8 
Diff. jitter 0.1 1.1 1.1 1.1 
Avg. jitter 0 0.3 0.2 0.2 
The table shows how the use of sandwich delays prior 

to the execution of each task helped to remove most of the 
jitter in the release time of low-priority tasks. However, 
there is still some jitter in these tasks which is resulted 
from the use of software delay [29]. 

5.7. Reducing the Impact of Task Placement 
(Offline TTC-MTI) 

Although the SD technique can help to fix the release 
time of low-priority tasks, the use of software loop – to 

check if the required SD for the concerned task is 
complete – can still result in a low level of jitter since the 
time taken to leave the loop and run the task is not fixed. 
In addition, we are forced to run the processor in normal 
operating mode while the SD is executing: this is likely to 
result in increased power consumption. In order to address 
both of these issues, we can use a modified sandwich 
mechanism employing “multiple timer interrupts” (MTIs). 
We will call this scheduler implementation Offline TTC-
MTI. This is to distinguish it from the TTC-MTI 
scheduler we presented elsewhere [29] that is based on 
online scheduling rather than offline.  

As with the Offline TTC-SD, the tasks in the Offline 
TTC-MTI scheduler execute in predetermined time 
intervals (set to match the WCET of the task concerned). 
In this implementation, multiple timer interrupts are used 
to generate the execution slots: this allows more precise 
control of timing. The use of interrupts also allows the 
processor to enter an “idle” mode after completion of each 
task, allowing a reduction of power consumption.  

In order to achieve this, we require two timers: 1) a 
“Tick timer”: which is used to generate the scheduler 
periodic tick interrupts and trigger the execution of the 
first task in the interval (as normal) and, 2) a “Task timer”: 
which is used – within Tick intervals – to trigger the 
execution of any further tasks which are due to run in the 
Tick interval. The process is illustrated in Figure 6. 

 

Figure 6. Using MTIs to reduce release jitter in TTC schedulers 

 

Listing 7. “Update” ISR of the Tick-Timer-Interrupt in the Offline TTC-
MTI scheduler 

 

Listing 8. “Update” ISR of the Task-Timer-Interrupt in the Offline TTC-
MTI scheduler 

Code for the Offline TTC-MTI scheduler is shown in 
Listing 7 to Listing 9. 



46 Journal of Embedded Systems  

 
Listing 9. Dispatch function in the Offline TTC-MTI scheduler 

5.8. Results from the Offline TTC-MTI 
Scheduler 

Table 5 shows the periods and jitter measurements for 
all tasks when the Offline TTC-MTI scheduler 
implementation is employed.  

Table 5. Task jitter from the Offline TTC-MTI scheduler (all values 
in µs) 

Task A B C D 
Min 19999.4 29999.2 39998.9 9999.7 
Max 19999.5 29999.3 39999 9999.8 

Average 19999.4 29999.3 39998.9 9999.8 
Diff. jitter 0.1 0.1 0.1 0.1 
Avg. jitter 0 0 0 0 
By looking at the results presented in  
Table 5, we can see that the use of the “idle” mode 

prior to tasks in the multiple timer interrupts method 
helped to further reduce the jitter in the release times of all 
tasks running in the system (almost to 0).  

5.9. Comparing CPU overheads  
In Table 6, the CPU overheads for all of the considered 

TTC schedulers are presented. This reflects the processor 
utilisation by each scheduler implementation. 

To make these measurements, we set a pin high at the 
start of each tick and then low just before the processor 
goes to sleep. We report the readings for 1000 scheduler 
cycles. In order to compare the scheduler overhead of each 
model, we fixed the task durations in this experiment to 
make sure that the task overhead is identical in all 
programs.  

Table 6. CPU overhead in all considered scheduler methods 

Method CPU overhead 
per cycle (ms) 

CPU overhead per 
tick (ms) 

Original TTC-Dispatch 4.55 0.38 
Modified TTC-Dispatch 4.49 0.37 
Offline TTC-Dispatch 4.34 0.36 

Offline TTC-SD 20.49 1.71 
Offline TTC-MTI 5.02 0.42 

We can see from the table that the Offline TTC-
Dispatch scheduler implementation has the lowest CPU 
overhead. However, since our TTC design is so simple, 
we see very little difference between the CPU time in on-
line and off-line implementations. In more sophisticated 
designs, we would expect to see significant reduction in 
CPU processing when off-line schedulers are employed 
(see [40]). The difference in CPU overhead between 
Offline TTC-SD and Offline TTC-MTI is around 15.5 ms 
per cycle (1.3 ms per tick) which is so significant: this is – 

as expected – caused by the presence of the SDs in the 
Offline TTC-SD scheduler. 

5.10. Comparing Memory Requirements 
Table 7 presents the memory requirements for 

implementing the described schedulers on the CPU 
hardware platform considered in this study (i.e. 16-bit 
C167 processor). 

Table 7. Data and code memory requirements in all considered 
scheduler implementations 

Method RAM requirements 
(Bytes) 

ROM requirements 
(Bytes) 

Original TTC-Dispatch 46 1016 
Modified TTC-Dispatch 36 1022 
Offline TTC-Dispatch 70 988 

Offline TTC-SD 78 1070 
Offline TTC-MTI 176 1194 

Please note that the Original TTC-Dispatch 
implementation requires more RAM memory than the 
Modified TTC-Dispatch implementation. Also note that 
the off-line designs considered in our study required 
additional data memory (RAM) to store the schedule table. 
However, due to the simplicity of the off-line scheduler, 
the code memory (ROM) requirements for these 
schedulers are lower than the on-line equivalents.  

Table 7 also shows that the Offline TTC-MTI 
implementation requires more data and code memory as 
compared to the Offline TTC-SD implementation. When 
choosing between these schedulers, a developer would 
need to weigh up jitter and resource requirements. 

6. Assessing a Multi-processor TTC 
Implementation 

Having considered possible implementation options for 
single-processor TTC schedulers, we now consider multi-
processor designs. We begin with describing the hardware 
and software platforms used to implement a multi-
processor testbed. 

6.1. A S-C TTC Scheduler Implementation 
We have previously sought to demonstrate that a 

“Shared-Clock” (S-C) architecture provides a simple and 
low-cost software framework for multi-processor TTC 
systems, without requiring specialized hardware [14,41]. 
We will employ such an architecture here, with nodes 
connected using a CAN protocol [33]. 

The scheduler used in the examples in this paper is 
based on the “shared-clock CAN scheduler” described 
previously [14]. For consistency with our previous studies 
[42,43], we will refer to this scheduler implementation as 
“TTC-SCC1”. 

In the multi-processor study, we investigate the levels 
of jitter (and implementation costs) in a simple testbed 
which contains two nodes: Master and Slave. To consider 
the impact of the transmission protocol as well as the 
scheduler implementation, we implement the described 
TTC models (original and low-jitter) in the Slave node.  

Listing 10 shows the Update function for the TTC-
SCC1 scheduler. The Dispatch function, used in single-
processor Original TTC-Dispatch design (Listing 2), is 
again used in this multi-processor design. 



 Journal of Embedded Systems 47 

 

Listing 10. “Update” ISR in the TTC-SCC1 scheduler (Slave node) 

6.2. Measuring the Task Jitter 
To measure the timing, computational costs and 

memory requirements in the multi-processor designs 
considered in this paper, we used an experimental 
methodology based on that outlined in Section  4.2. A 
summary of the methodology is presented here.  

6.2.1. Hardware Platform 
In the multiple processor design, two Phytec boards 

supporting C167 microcontroller were used to implement 
the Master and Slave nodes. Both processors ran at 20 
MHz. The Master and Slave were connected using CAN 
bus running at 1 Mbit/sec data rate.  

6.2.2. Software Setup 
On the Master node, we only set one task to run. On the 

Slave node, we scheduled four different tasks with 
different periods as outlined in Section  4.2: this is, again, 
to maximise the software jitter levels on the Slave tasks. 

A TTC-SCC1 scheduling algorithm was implemented 
over the CAN protocol as follows (based on [14]): the first 
byte of the 8 transmitted bytes in the CAN data segment 
was reserved for the Slave identifier (ID) to which tick 
message – sent from Master – is addressed. Only the 
addressed Slave will reply an acknowledgement message 
to the Master where this message must be sent back within 
the same tick interval in which the tick message is 
received. The remaining 7 bytes of the CAN data segment 
contained pseudo-random values, in order to maximise the 
jitter caused by bit stuffing mechanism in CAN hardware 
[34]. 

Please note that since we need to incorporate a data-
coding technique (see Section  7.2) – which use two bytes 
in each Tick message – all results include values from 8-
bytes and 6-bytes models. This helps to obtain meaningful 
comparisons. 

Please also note that a Keil C166 compiler was used for 
software development in all studies. 

6.2.3. Jitter Measurements 
The jitter in the multi-processor case is represented by 

measuring the interval between the release time of the 

(single) Master task and the release times of the tasks on 
the Slaves. The jitter measured by this method involves 
both the transmission jitter (i.e. any jitter caused by 
variations in the time taken to transmit a CAN message) 
and the software jitter (i.e. any jitter caused by the 
scheduler architectures on the Master and Slave nodes). 

To make these measurements, a pin on the Master node 
was set high (for a short period) at the start of the Master 
task. Another pin on the Slave (initially high) was set low 
at the start of the Slave task we wished to study. The 
signals from these two pins were then AND-ed (using a 
74LS08N chip: [44]), to give the transmission delays 
between Master and Slave. In all cases, the widths of the 
resulting pulses were measured using a National 
Instruments data acquisition card ‘NI PCI-6035E’, used in 
conjunction with LabVIEW 7.1 software. 

To represent the results, maximum, minimum and 
average message transmission times are reported here. To 
assess the jitter levels, average jitter and the difference 
jitter were reported. The difference jitter is obtained by 
subtracting the best-case (minimum) transmission time 
from the worst-case (maximum) transmission time from 
the measurements in the sample set. The average jitter is 
represented by the standard deviation in the measure of 
average message transmission time. 

6.3. Results from the TTC-SCC1 scheduler 
Table 8 shows the transmission delays and jitter 

measurements for all Slave tasks when the TTC-SCC1 
scheduler implementation is employed. 

Table 8. Task jitter from the TTC-SCC1 scheduler (all values in µs) 
Slave Task No. of data bytes A B C D 

Min 
8 181 183.4 201 59.6 
6 162.7 165.1 182.4 57.3 

Max 
8 194 589.1 979.4 1214.5 
6 176.1 568 960.2 1177.7 

Average 
8 186.1 278.5 465.1 257 
6 167.3 259.9 445.5 255.2 

Diff. jitter 
8 13 405.7 778.4 1154.9 
6 13.4 402.9 777.8 1120.4 

Avg. jitter 
8 2.1 116.4 160.9 213.7 
6 2 116.6 160.7 213.6 
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The results in the table show that all tasks have 
measurable levels of jitter. 

7. Reducing Task Jitter in Multi-
Processor Implementations 

In this section we describe how task jitter, on Slave 
node, can be reduced by employing the low-jitter TTC 
schedulers in the multi-processor design considered. In 
this case, we consider only multi-processor designs based 
on Offline TTC-MTI scheduler (described in Section  5.7) 
as the best TTC implementation in terms of jitter 
behaviour. 

7.1. The TTCj-SCC1 Implementation 

The described scheduler here is referred to as TTCj-
SCC1 scheduler. This is to denote that the TTC scheduler 
used in the Slave node is with minimum jitter. Thus, the 
“multiple timer interrupts” (MTI) method described in 
Section  5.7 is used here (with the Slave scheduler). This is 
again to minimise the task jitter which arises from the 
original implementation of the TTC scheduler.  

Note that when implementing the MTI method in the 
Slave scheduler using S-C protocol, the “Tick Interrupt” is 
generated by the arrival of tick messages sent periodically 
from the Master node where the “Task Interrupt” is 
generated by a Slave’s on-chip timer (Listing 11 and 
Listing 12). The Dispatch function for this scheduler 
implementation is illustrated in Listing 13. Note that after 
the last task completes execution, the scheduler checks the 
network status before entering the “idle” mode. 

 

Listing 11. “Update” ISR of the Tick-Timer-Interrupt in the TTCj-SCC1 scheduler (Slave node) 

 

Listing 12. “Update” ISR of the Task-Timer-Interrupt in the TTCj-SCC1 scheduler (Slave node) 
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Listing 13. Dispatch function in the TTCj-SCC1 scheduler (Slave node) 

Table 9 shows the transmission delays and jitter 
measurements for all Slave tasks when the TTC-SCC1-
MTI scheduler implementation is employed. The results 
show that the Slave tasks still suffer from jitter (in this 
case, caused by the CAN communication protocol). 

Table 9. Task jitter from the TTCj-SCC1 scheduler (all values in µs) 
Slave Task No. of data bytes A B C D 

Min 8 167.8 744.5 1320 1894.4 
6 149.6 723.6 1296.8 1868.8 

Max 8 178 754.6 1330.1 1904.6 
6 157.9 731.9 1305.1 1877.1 

Average 8 171.2 747.9 1323.5 1897.9 
6 152.4 726.6 1299.7 1871.7 

Diff. jitter 8 10.2 10.1 10.1 10.2 
6 8.3 8.3 8.3 8.3 

Avg. jitter 8 1.5 1.5 1.5 1.5 
6 1.3 1.4 1.3 1.3 

7.2. The TTCj-SCC1j implementation  

The use of low-jitter schedulers can only compensate 
for the jitter caused by the software implementation of the 
TTC algorithm. In a multi-processor system, jitter can also 
arise from the characteristics of the communication 
protocol used (in this case CAN). 

CAN uses ‘non-return to zero’ (NRZ) coding for bit 
representation. Under this scheme, a drift in the receiver’s 
clock may occur if a long sequence of identical bits is 
transmitted on the bus. To overcome such a problem, 
CAN – at its physical layer – employs a bit stuffing 
mechanism in which the sending controller stuffs the 
opposite-polarity bit after each sequence of five identical 
bits detected in the data stream [45]. The bit stuffing 
causes the CAN frame length, and hence the transmission 
period, to become (in part) a complex function of the data 
contents. In S-C TTC schedulers, where Slaves are 
triggered by arrivals of messages sent from the Master, 
variations in the transmission time can cause variations in 
the release times of tasks running on the Slave nodes 
(Figure 7). 

 

Figure 7. Impact of message-length variations on the Slave ticks in the TTC-SCC system 

Researchers have previously described techniques 
which aim to compensate for jitter caused by “bit-
stuffing” in CAN networks. For example, Nolte and 
colleagues [4,34] have proposed techniques which have 
the potential to reduce the number of stuff-bits in 
particular set of CAN data without imposing large 
computational or memory overheads. In a previous study 
[6], an alternative method based on “software bit stuffing” 
(SBS), was developed and applied to a wide range of low-
cost microcontroller families. SBS uses two bytes – in the 
CAN data segment – for stuff coding. This helps to fix the 
data length in all transmitted frames on the CAN bus. As a 
result, SBS had the capability to reduce the message-
length variation (i.e. jitter) by around 40% when the 
technique is incorporated in practical implementations. 

In the study presented in this paper, SBS is incorporated 
in the low-jitter TTC schedulers (TTCj-SCC1) in order to 
minimise the jitter caused by the CAN hardware. The 
resulting scheduler is referred to here as “TTCj-SCC1j”. 
The reason for using this name is to denote that such a 
scheduler has minimum jitter in the TTC scheduler 
employed in the Slave node as well as minimum jitter 
caused by the CAN messages transmission in the S-C 
scheduling protocol. 

Table 10 shows the transmission delays and jitter 
measurements for all Slave tasks when the TTCj-SCC1j 
scheduler is employed. Note that only 6-bytes are used 
here for data since two bytes are required for message 
decoding. 
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Table 10. Task jitter from the TTCj-SCC1j scheduler (all values in 
µs) 

Slave Task A B C D 
Min 167.8 744.8 1320 1894.4 
Max 173 750 1325.2 1899.6 

Average 169.3 746.4 1321.7 1896.1 
Diff. jitter 5.2 5.2 5.2 5.2 
Avg. jitter 0.8 0.8 0.9 0.8 
The jitter values in the table demonstrate that when the 

TTCj-SCC1j scheduler is implemented with SBS 
technique, the overall jitter on each task in the Slave node 
can be reduced down to approximately 5 µs on the used 
hardware. Remember that, in our shared-clock design, the 
data segment of the transmitted CAN frames contained 
random bytes. In practical CAN implementations, jitter 
levels cannot be entirely eliminated by removing all bit 
stuffing from the CAN data field since other fields can 
still induce some jitter (for more details, see [6]). 

7.3. CPU Overheads 
In Table 11, the CPU overhead (on the Slave) for the 

various TTC-SC schedulers considered in this paper are 
presented. To obtain these measurements, we used the 
methodology outlined in Section  5.9. 

Table 11. CPU overhead in all considered scheduler methods 

Method No. of data bytes 
CPU 

overhead per 
cycle (ms) 

CPU overhead 
per tick (ms) 

TTC-SCC1 8 4.84 0.40 
6 4.81 0.40 

TTCj-SCC1 8 6.08 0.51 
6 5.96 0.50 

TTCj-SCC1j 6 + 2 stuff coding 11.16 0.93 
The results in the table show that – as in the single-

processor systems – the scheduler employing multiple 
timer interrupts requires more CPU time (than the original 
scheduler) to set the timing for execution slots and keep 
tracking of the major cycle. The results also show that 
when SBS coding method is applied, an additional CPU 
load is imposed. The increase in the CPU overhead is 
approximately 0.4 ms / tick which is equal to the time 
required to perform the decoding process in SBS method 
when the microprocessor platform considered in this study 
is used [6]. 

7.4. Memory Requirements 
Table 12 the memory requirements (on the Slave) for 

the various TTC-SCC schedulers considered in this paper 
are presented. 

Table 12. Data and code memory requirements in the considered 
scheduler methods 

Method No. of data 
bytes 

RAM requirements 
(Bytes) 

ROM requirements 
(Bytes) 

TTC-
SCC1 

8 64 1586 
6 58 1552 

TTCj-
SCC1 

8 240 1916 
6 236 1882 

TTCj-
SCC1j 

6 + 2 stuff 
coding 243 2070 

From the table, we can see that when the SBS technique 
is employed in the TTCj-SCC1 scheduler, additional 
RAM and ROM overheads are imposed. However, it 
should be noted that each C167 processor used in this 
study has 2 Kbytes of on-chip RAM and 32 Kbytes of on-

chip ROM [46]: as a consequence, the increase in memory 
requirements may not prove significant in most 
applications. 

8. Conclusions 
While there has been a great deal of interest in the 

development, assessment and refinement of real-time 
scheduling algorithms, we have found evidence of only 
limited amount of work on scheduler implementation. For 
example, although the impact of jitter has been widely 
investigated in real-time embedded systems, the impact of 
scheduler implementation on jitter behaviour has not 
received widespread attention. In order to begin to address 
this issue, we have explored some possible 
implementations of a simple TTC scheduler in this paper 
and reported the jitter behaviour (and resource 
requirements) for each implementation. It is clear from the 
results that even a small (and by no means exhaustive) 
selection of TTC scheduler implementations demonstrated 
a wide range of different patterns of timing behaviour. 

More generally, it might be argued that – despite an 
enormous effort in the theoretical studies of scheduling 
algorithms – the results of such studies are often 
incomplete. The first reason for making such a claim is 
that (as we have demonstrated in this paper) it is not 
enough to say that “the system implements an XYZ 
scheduling algorithm”, because there is a ‘one-to-many’ 
mapping between scheduler algorithms and scheduler 
implementations. As a consequence, even under normal 
operating conditions, we can only define the scheduler 
behaviour through the source code or (given potential 
ambiguities in the translation of the source code: [47]) 
from the binary code. The second reason for arguing that 
many scheduling algorithms are incomplete is that they do 
not take into account the system behaviour when 
something goes wrong. For example, the most basic TTC 
scheduling algorithm assumes that – if a task overruns – 
all subsequent tasks will be delayed. This is fine, in theory, 
but it seems unlikely that any practical TTC 
implementation can ever achieve this. For example, if a 
task overruns for a week – or a year – then, in theory, the 
TTC scheduler should keep track of all “missing” tasks 
and execute them “immediately” when the overrunning 
task completes. Providing full support for such a 
mechanism requires a large memory capacity (potentially 
an infinite memory capacity). 

In practice, users of a TTC scheduler will provide some 
mechanism for dealing with task overruns (even if these 
are not complete, or not completely defined). For example, 
general mechanisms for dealing with task overruns (in 
software) are discussed by [48] while a complete software 
implementation is discussed by [27]. Whether or not such 
mechanisms are incorporated in the scheduler 
implementation, a scheduler description is not complete if 
– like all aspects of the system behaviour – the recovery 
mechanisms are not explicitly defined. 

The results (and discussions) in this paper do not 
simply apply to TTC schedulers. Indeed, we would expect 
that – as the algorithms grow more complicated – the 
number of implementation options would increase with a 
corresponding increase in the jitter variations. We would 
also expect that the jitter-reduction techniques described 
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in this study can be applied, in full or in part, when 
implementing other scheduling algorithms. 

Acknowledgement 
The work presented in this paper was conducted in the 

Embedded Systems Laboratory (ESL) at University of 
Leicester, UK, under the supervision of Professor Michael 
Pont, to whom the author is thankful. 

References 
[1] M. Sanfridson, “Timing problems in distributed real-time 

computer control systems,” Mechatronics Lab, Dept. of Machine 
Design, Royal Inst. of Technology, Stockholm, 2000. 

[2] K.-J. Lin and A. Herkert, “Jitter control in time-triggered 
systems,” in System Sciences, 1996., Proceedings of the Twenty-
Ninth Hawaii International Conference on ,, 1996, vol. 1, pp. 451-
459. 

[3] P. Marti, J. M. Fuertes, G. Fohler, and K. Ramamritham, “Jitter 
compensation for real-time control systems,” in 22nd IEEE Real-
Time Systems Symposium, 2001. (RTSS 2001). Proceedings, 2001, 
pp. 39-48. 

[4] T. Nolte, H. Hansson, and C. Norstrom, “Minimizing CAN 
response-time jitter by message manipulation,” in Eighth IEEE 
Real-Time and Embedded Technology and Applications 
Symposium, 2002. Proceedings, 2002, pp. 197-206. 

[5] M. Nahas and M. J. Pont, “Using XOR operations to reduce 
variations in the transmission time of CAN messages: A pilot 
study,” in Proceedings of the Second UK Embedded Forum, 
Birmingham, UK, 2005, pp. 4-17. 

[6] M. Nahas, M. J. Pont, and M. Short, “Reducing message-length 
variations in resource-constrained embedded systems implemented 
using the Controller Area Network (CAN) protocol,” Journal of 
Systems Architecture, vol. 55, no. 5-6, pp. 344-354, May 2009. 

[7] F. Cottet and L. David, “A Solution to the Time Jitter Removal in 
Deadline Based Scheduling of Real-time Applications,” presented 
at the 5th IEEE Real-Time Technology and Applications 
Symposium-WIP, Vancouver, Canada, 1999, pp. 33-38. 

[8] A. J. Jerri, “The Shannon sampling theorem #8212; Its various 
extensions and applications: A tutorial review,” Proceedings of the 
IEEE, vol. 65, no. 11, pp. 1565-1596, Nov. 1977. 

[9] S. H. Hong, “Scheduling algorithm of data sampling times in the 
integrated communication and control systems,” IEEE 
Transactions on Control Systems Technology, vol. 3, no. 2, pp. 
225-230, Jun. 1995. 

[10] A. Stothert and I. M. Macleod, “Effect of Timing Jitter on 
Distributed Computer Control System Performance,” in 
Proceedings of the 15th IFAC Workshop on Distributed Computer 
Control Systems (DCCS’98), 1998. 

[11] M. Nahas, M. Short, and M. J. Pont, “The impact of bit stuffing on 
the real-time performance of a distributed control system,” 
presented at the Proceeding of the 10th International CAN 
conference iCC, Rome, Italy, 2005, pp. 10-1-10-7. 

[12] T. P. Baker and A. Shaw, “The cyclic executive model and Ada,” 
Real-Time Syst, vol. 1, no. 1, pp. 7-25, Jun. 1989. 

[13] B. Koch, “The Theory of Task Scheduling in Real-Time Systems: 
Compilation and Systematization of the Main Results,” Studies 
Thesis, University of Hamburg, 1999. 

[14] M. J. Pont, Patterns for time-triggered embedded systems: 
building reliable applications with the 8051 family of 
microcontrollers. Harlow: Addison-Wesley, 2001. 

[15] S. K. Baruah, “The Non-preemptive Scheduling of Periodic Tasks 
upon Multiprocessors,” Real-Time Systems, vol. 32, no. 1-2, pp. 9-
20, Feb. 2006. 

[16] C. Mwelwa, “Development and Assessment of a Tool to Support 
Pattern-Based Code Generation of Time-Triggered (TT) 
Embedded Systems,” PhD Thesis, University of Leicester, 
Leicester, UK, 2006. 

[17] T. Phatrapornnant and M. J. Pont, “Reducing jitter in embedded 
systems employing a time-triggered software architecture and 
dynamic voltage scaling,” IEEE Transactions on Computers, vol. 
55, no. 2, pp. 113-124, Feb. 2006. 

[18] M. J. Pont, S. Kurian, H. Wang, and T. Phatrapornnant, “Selecting 
an appropriate scheduler for use with time-triggered embedded 
systems.,” in Proceedings of the 12th European Conference on 
Pattern Languages of Programs (EuroPLoP ’2007), Irsee, 
Germany, 2007, pp. 595-618. 

[19] C. D. Locke, “Software architecture for hard real-time applications: 
Cyclic executives vs. fixed priority executives,” The Journal of 
Real-Time Systems, vol. 4, no. 1, pp. 37-53, Mar. 1992. 

[20] C. L. Liu and J. W. Layland, “Scheduling Algorithms for 
Multiprogramming in a Hard-Real-Time Environment,” J. ACM, 
vol. 20, no. 1, pp. 46-61, Jan. 1973. 

[21] Y. Cho, S. Yoo, K. Choi, N.-E. Zergainoh, and A. A. Jerraya, 
“Scheduler implementation in MP SoC design,” in Design 
Automation Conference, 2005. Proceedings of the ASP-DAC 2005. 
Asia and South Pacific, 2005, vol. 1, pp. 151-156 Vol. 1. 

[22] J. Y.-T. Leung and J. Whitehead, “On the complexity of fixed-
priority scheduling of periodic, real-time tasks,” Performance 
Evaluation, vol. 2, no. 4, pp. 237-250, Dec. 1982. 

[23] A. K.-L. Mok, “Fundamental design problems of distributed 
systems for the hard-real-time environment,” Thesis, 
Massachusetts Institute of Technology, 1983. 

[24] G. C. Buttazzo, Hard real-time computing systems: predictable 
scheduling algorithms and applications. New York: Springer, 
2005. 

[25] S. Key, M. J. Pon, and S. Edwards, “Implementing Low-cost 
TTCS Systems using Assembly Language.,” in Proceedings of the 
Eighth European conference on Pattern Languages of Programs 
(EuroPLoP 2003), Germany, 2003, pp. 667-690. 

[26] Z. H. Hughes and M. J. Pont, “Design and test of a task guardian 
for use in TTCS embedded systems,” in Proceedings of the UK 
Embedded Forum 2004, Birmingham, UK, 2004, pp. 16-25. 

[27] Z. M. Hughes and M. J. Pont, “Reducing the impact of task 
overruns in resource-constrained embedded systems in which a 
time-triggered software architecture is employed,” Transactions of 
the Institute of Measurement and Control, vol. 30, no. 5, pp. 427-
450, Dec. 2008. 

[28] M. Nahas, M. J. Pont, and A. Jain, “Reducing task jitter in shared-
clock embedded systems using CAN,” in Proceedings of the UK 
Embedded Forum 2004, Birmingham, UK, 2004, pp. 184-194. 

[29] M. Nahas, “Employing Two ‘Sandwich Delay’ Mechanisms to 
Enhance Predictability of Embedded Systems Which Use Time-
Triggered Co-Operative Architectures,” Journal of Software 
Engineering and Applications, vol. 04, no. 07, pp. 417-425, 2011. 

[30] D. I. Katcher, H. Arakawa, and J. K. Strosnider, “Engineering and 
analysis of fixed priority schedulers,” IEEE Transactions on 
Software Engineering, vol. 19, no. 9, pp. 920-934, Sep. 1993. 

[31] J. Xu, “On inspection and verification of software with timing 
requirements,” IEEE Transactions on Software Engineering, vol. 
29, no. 8, pp. 705-720, Aug. 2003. 

[32] G. S. Avrunin, J. C. Corbett, and L. K. Dillon, “Analyzing 
partially-implemented real-time systems,” IEEE Transactions on 
Software Engineering, vol. 24, no. 8, pp. 602-614, Aug. 1998. 

[33] Bosch, CAN Specification Version 2.0. Bosch, 1991. 
[34] T. Nolte, H. Hansson, C. Norström, and S. Punnekkat, “Using bit-

stuffing distributions in CAN analysis,” presented at the IEEE 
Real-Time Embedded Systems Workshop, London, 2001. 

[35] Keil Software, “C166 Compiler, Optimizing 166/167 C Compiler 
and Library Reference, User Guide.” Keil Elektronik GmbH., and 
Keil Software, Inc., 1998. 

[36]  National Instruments, “Low-Cost E Series Multifunction 
DAQ 12 or 16-Bit, 200 kS/s, 16 Analog Inputs.” [Online]. 
Available: http://www.ni.com/pdf/products/us/4daqsc202-
204_ETCx2_212_213.pdf. [Accessed: 08-Mar-2014]. 

[37] “LabVIEW System Design Software,” National Instruments. 
[Online]. Available: http://www.ni.com/labview/. [Accessed: 08-
Mar-2014]. 

[38] K. Baynes, C. Collins, E. Fiterman, B. Ganesh, P. Kohout, C. Smit, 
T. Zhang, and B. Jacob, “The performance and energy 
consumption of embedded real-time operating systems,” IEEE 
Transactions on Computers, vol. 52, no. 11, pp. 1454-1469, Nov. 
2003. 

[39] M. J. Pont, S. Kurian, and R. Bautista-Quintero, “Meeting Real-
Time Constraints Using ‘Sandwich Delays,’” in Transactions on 
Pattern Languages of Programming I, J. Noble and R. Johnson, 
Eds. Springer Berlin Heidelberg, 2009, pp. 94-102. 

[40] J. Xu and D. L. Parnas, “Priority Scheduling Versus Pre-Run-
Time Scheduling,” Real-Time Systems, vol. 18, no. 1, pp. 7-23, 
Jan. 2000. 



52 Journal of Embedded Systems  

[41] D. Ayavoo, M. J. Pont, M. Short, and S. Parker, “Two novel 
shared-clock scheduling algorithms for use with ‘Controller Area 
Network’ and related protocols,” Microprocessors and 
Microsystems, vol. 31, no. 5, pp. 326-334, Aug. 2007. 

[42] M. Nahas, “Estimating Message Latencies in Time-Triggered 
Shared-Clock Scheduling Protocols Built on CAN Network,” 
Journal of Embedded Systems, vol. 2, no. 1, pp. 1-10, 2014. 

[43] M. Nahas, “Developing a Novel Shared-Clock Scheduling 
Protocol for Highly-Predictable Distributed Real-Time Embedded 
Systems,” American Journal of Intelligent Systems, vol. 2, no. 5, 
pp. 118-128, Dec. 2012. 

[44] Texas Instruments, “74LS08 Datasheet.” [Online]. Available: 
http://www.cs.amherst.edu/~sfl<aplan/courses/spring-
2002/cs14/74LS08-datasheet. pdf. [Accessed: 08-Mar-2014]. 

[45] M. Farsi and M. B. M. Barbosa, CANopen implementation: 
applications to industrial networks. Baldock, Hertfordshire, 
England; Philadelphia, PA: Research Studies Press, 1999. 

[46] Infineon Technologies, “C167CR Derivatives: 16-Bit Single-chip 
Microcontroller; Microcontrollers. User’s manual V 3.1.” Mar-
2000. 

[47] L. Hatton, “Programming Languages and Safety-Related 
Systems,” in Achievement and Assurance of Safety, F. Redmill and 
T. Anderson, Eds. Springer London, 1995, pp. 48-64. 

[48] J. A. de la Puente and J. Zamorano, “Execution-time Clocks and 
Ravenscar Kernels,” in Proceedings of the 12th International 
Workshop on Real-time Ada, New York, NY, USA, 2003, pp. 82-
86. 

 


