
This manuscript has been reproduced from the microfilm master. UMI films 

the text directly from the original or copy submitted. Thus, some thesis and 

dissertation copies are in typewriter face, while others may be from any type of 

computer printer. 

The quality of this reproduction is dependent upon the quality of the 

copy submitted. Broken or indistinct print, colored or poor quality illustrations 

and photographs, print bleedthrough. substandard margins, and improper 

alignment can adversely affect reproduction. 

In the unlikely event that the author did not send UMI a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion. 

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

sectioning the original. beginning at the upper left-hand comer and continuing 

from left to right in eqwl sections with small overlaps. 

Photographs included in the original manuscript have been reproduced 

xerographically in this copy. Higher quality 6" x 9" black and white 

photographic prints are available for any photographs or illustrations appearing 

in this copy for an additional charge. Contact UMI directly to order. 

PmQuest Information and Learning 
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA 

800-52 1 -0600 





Heterogeneous View Integration 

and its Automation 

by 

Alexander Franz Egyed 

A Dissertation Presented to the 

FACULTY OF THE GRADUATE SCHOOL 

UNIVERSITY OF SOUTHERN CALIFORNIA 

In Partial Fulfillment of the 

Requirements for the Degree 

DOCTOR OF PHILOSOPHY 

(Computer Science) 

Copyright 2000 

August 2000 

Alexander Franz Egyed 



UMl Number: 3Ot 8075 

Copyright 2000 by 
Egyed, Alexander Franz 

All rights reserved. 

UM l Microform 301 8075 
Copyright 2001 by Bell 8 Howell Information and Learning Company. 

All rights reserved. This microform edition is protected agair;~: 
unauthorized copying under Title 17, United States Code. 

Bell & Howell Information and Learning Company 
300 North Zeeb Road 

P.O. Box 1346 
Ann Arbor, MI 48 1 06-1 346 



To my parents Franz and Berta 



Acknowledgements 

So many people contrib~ted to the making of this work that it seems impossible to thank all of 

them. I am very grateful towards my advisor Barry Boehm for all the dedication and support he has given 

along these many joyful years. I am also most grateful for all the invaluable suggestions I got from Nenad 

Medvidovic. 

I would like to thank the reviewers of my thesis including my other dissertation committee 

members Lewis Johnson, Bert Steece, and David Wile as well as other reviewers like Nicolas Rouquette. 

Also my thanks to all the people who gave suggestions and insights along the way, including the 

anonymous reviewers of journal and conference papers I have written. Moreover, I would like to thank 

Philippe Kruchten. 

My dissertation would have becn impossibk if other researchers would not have provided a 

foundation onto which to build upon. 1 greatly value the papers I have read for they opened my eyes onto 

the vast challenges that exist but also onto the unique solutions they provided. My work builds upon their 

contributions. 

Finally yet importantly I would like to thank my family, friends, and colleagues for their support 

or just for being there. I value their friendship, encouragement, and companionship. 



.. 
DEDICATION ................... ......................................H.......................u...e..................H............e..... u 

... ACKNOWLEDGEMENTS ................... .......H.e...................... w 

... LIST OF TABLES .....~..................mH...............m................o........He.....................................o........ VUI 

............................................................................................. SOFTWARE MODELING 12 
................................................................................................ MODELS AND VIEWS 13 

................................................................................ COMMON MODUS AND VIEWS 14 
........................................................... THE UNIFIED MODELING LANGUAGE (UML) 16 

.................................................. ARCHITECTURE DESCRIPTION LANGUAGES (ADL) 18 
.............................................................. STAKEHOLDERS AND MODEL LIFE CYCLES 20 

.......................................... INP~RMATION GAP AND INFORMATION DISCONTINU~~Y 23 
.................................................................................. INFORMATION DEGRADA~ON 25 

................................................................................................................ SUMMARY 27 

3.1 WHAT ARE MODEL REDUNDANCIES? .............................. ...... ................................ 28 
3.2 MKSM INTEGRATION IN MODELS AND VEWS ....................................................... 31 

........................................................................................... 3.3 WHAT IS INTEGRATION? 32 
3.4 THEVIEWINTEGRATIONPROBLEM ........................................................................ 34 

3.4.1 Why Integrate Views? .....................~................................................................... 34 
3.4.2 Why Integrate Heterogeneous Views? ...................,,.............. .................... 35 

............................................. 3.4.3 Why Automate Heterogeneous View Integration? 36 
3.5 BR~DGING THE  FORMATION GAP: SYNTHESIS AND ANALYSIS ............................... 36 

................................................................... 3.6 POTENTIAL INTEGRATION C O M P I E X ~  39 
3.7 WHAT IS NOT ~'EGRATION? .................................................................................... 39 
3.8 SUMMARY ........................ .. ............ ,.. ..................................... 41 

4 SCOPE AND LIMITATIONS 0" ...~-..~..--t.W.o"rn*"t.~H-*~nrnHw~m"~~~~.~~.~~~~w~~~~ 0 . 0 0 0 0 " .  42 



5 MODEL ELEMENTS AND VIEWS .... ............... ....H.......m......H.......................e......................... 45 

5.1 WHAT ARE MODEL ELEMP(TS. VIEWS. AND MODELS? ......................................... 45 
5.2 MODEL ELEMENIS. MODEL ~STANCES. AND USER OBECIS .................................. 47 

....................................................... 5.3 UML MODEL, MODEL E m .  AND VIEWS 48 
5.4 Vlnv DIMENSIONS ................................................................................................... 49 

5.4.1 Level of Generality ............................................................................................. 49 
............................................................................................ 5.4.2 Level of Abstraction 50 
.......................................................................................... 5.4.3 Level of Behaviorism 51 

5.5 VE~SPACEAND~RELATIONTOVIEWS ............................................................. 51 
............................................................ 5.6 I~JTERDEPENDENCES OF MODEL E m  54 

5.7 SUMMARY ................................................................................................................ 55 

6 MODEL INCONSISTENCIES ....... .. ............................................................................................ 56 

.............................................................................. 6.1 EXAMPLES OF INCONSISTENCIES 56 
................................................. 6.1.1 Inconsistency between Class Layers 56 

6.1.2 Inconsistency between Class and Sequence Diagram ......................................... 57 
6.1.3 Cardinality Inconsistency ............................................................................... 58 

........................................ 6.1.4 Inconsistency between State and Sequence Diagrams 59 
........................................................................................ 6.2 LIST OF INCONS~STENCIES 61 

6.2.1 Inconsistencies in the Abstract Dimension ......................................................... 61 
6.2.2 Inconsistencies in the Generic Dimension .......................................................... 70 

..................................................... 6.2.3 Inconsistencies in the Behavioral Dimension 75 
..................................................................... 6.3 C L A S S ~ A T ~ O N  OF INCONSISTENCIES 78 

6.4 ACT IN THE PRESENCE OF INCONSISTENCIES ............................................................ 78 
6.5 SUMMARY ................................................................................................................ 79 

................................................................ OUR VIEW INTEGRATION FRAMEWORK 80 

7.1 Owtvmv ................... ,., ......................................................................................... 80 
............................................................................ 7 $2 VW I~JTEGRATION FRAMEWORK 81 
.......................................................................... 7.3 SMPE MODEL TRANSFORMATION 85 

.......................................................................................................... 7.3.1 Abstraction 89 
. .................................................................................... 7.3.1 1 Classifier Abstraction 89 

..................................................................................... 7.3.1.2 Relation Abstraction 91 
.................................................................... 7.3.1.3 Semantic Rules for Abstraction 91 

.................................................................................... 7.3.1.4 Complex Abstraction 97 
7.3.1.5 Abstraction Algorithm .................................................................................. 99 

.............................................................................. 7.3.1.6 Specialized Abstraction 100 
...................................................................................................... 7.3.1.7 Example 101 
................................... ............*...............................*................. 7 . 3.2 Generalization ,, 103 

........................................................ 7.3.2.1 Sequence to Statec hart Generalization 104 
.................................................................... 7.3.2.2 Object to Class Generalization 108 

7.3.2.3 Generalization Rules and Automation ........................................................ 110 
7.3.3 Structuralization ................................................................................................ 110 

.......................................................... 7.3.3.1 Sequence to Object Structuralization 111 
7.3.3.2 Statecharts to Class Strucntralization ..................................................... 113 

..................................................... 7.3.3.3 Structuralization Rules and Automation 114 
........................................................................................................ 7.3.4 TransIation 115 

................................................................................. 7.4 COMPLEX TRANSPORMAT~ON 116 
.................................................................................................. 7.4.1 Deferred Issues 122 

............................................................... 7 5 AUTOM ATWG MODEL D E R . ' E R E N T ~ A ~ O N  123 



7.5.1 Comparing User-Defined and Derived Elements ............................................ 124 
..................................................................................... 7 5.1.1 Comparison Modes 124 

................................................... 7.5.1.2 Multiple Interpretations and Realizations 125 
7.5.1.3 Ambiguous Interpretations ....................................................................... I28 

............................................................................................. 7.5.2 Consistency Rules I30 
................................................................................. 7.5.2. t List of Inconsistencies 130 

..................................................... 7.5.2.2 Simple Consistency Checking Example 133 
........... 7.5.2.3 Consistency Rules Defined and Applied ....................................... 136 

................................................................................ 7.5.3 Triggering Transformation 144 
................................................................................................. 7.5.4 User Interaction 146 
.................................................................................................. 7.5.5 Deferred Issues 148 

......................................................................... 7.6 MODEL SYNTHESIS AND MAPPING 148 
................................................................................................ 7.6.1 Modelsynthesis 148 
................................................................................................. 7.6.2 Model Mapping 149 

...................................................................................... 7.6.2.1 Traceability Types 149 
7.6.2.2 Mapping Support ....................................................................................... 150 

.................................................................................................. 7.6.3 Deferred Issues 150 
.............................................................................................. 7.7 MODEL REPOSITORY 150 

7.7.1 Implementing View integration Elements ........................................................ 151 
..................................................................... 7.7.2 Evolutionary Scalability Problem 152 

............................................................................ 7.7.3 Reduced Redundancy Model 153 
7.7.3.1 Reduced Redundancy Model for Class Diagrams ....................................... 156 

...................................................... 7.7.3.2 Reduced Model Redundancy and UML 163 
7.7.4 Purging ............................................................................................................. 165 

.............................................................................................................. 7.8 SUMMARY 166 

................... 8 CASE STUDY .. ............. ........................................................................................ 168 

8.1 A R C H ~ ~ R E L E V E L  ........................................................................................... 168 
............................................................... 8.2 REFINEMENT TO HIGHER-LEVEL DESIGN 169 

........................................................................................................... 8.2.1 Overview 169 
................................................................................................ 8.2.2 Transformations 176 

....................................................................................... 8.2.3 Consistency Checking 177 
................................................................ 8.3 REFINEMENT TO LOWER-LEVEL DESIGN 179 

8.3.1 Overview ........................................................................................................... 179 
................................................................................................ 8.3.2 Transformations 184 

8.3.3 Consistency Checking ....................................................................................... 185 
8.4 S C A L M ~ L ~  .......................................................................................................... 191 

.............................................................................................................. 8.5 SUMMARY 192 

.................................................................................................. 9 UMUANALY ZER-A TOOL 193 

10 RELATED WORK ............... .........e.......o.................... .......................................................... 198 



11 EVALUATION. FUTURE WORK, AND SUMMARY ........ .. ........ ..................................... 212 

.......................................................................................................... 1 1.1 EVALUATION 212 
............................................................ 1 1.11 Evaluating Transformation Techniques 212 

1 1.1.2 Evaluating Comparison Methods ...................................................................... 214 
1 1.1.3 Evaluating Effectiveness, Efficiency. and Reliability ....................................... 215 

....................................................................................... 1 1.1.4 Evaluating Scalability 217 
............................................... 1 1.1.5 Evaluating Applicability outside UML Domain 217 

. ...........*.........................*.*..*....... 1 1 f . 6 Evaluating UML's ability to support analysis 218 
1 1.1.6.1 Reduced Redundancy Model ...................................................................... 218 
11.1.6.2 Explicit and Implicit Treatment of Traces .................................................. 219 
1 1.1.6.3 Ambiguous and Partial Interpretations ........................................................ 219 

............................................... 1 1 . 1.7 Evaluating in the Context of Other Approaches 220 
1 1.1.8 Breadth over Depth ........................................................................................... 222 
1 1.1.9 Technology and Research Transfer ............................................................... 2 2 4  

1 1.2 F t r m . ~  WORK ...................................................................................................... 224 
11.3 CONCLUSION ...................................................................................................... 226 

I t  REFERENCES .......... .. ..... .............e.e..................................... 228 

vii 



................. . Table 1 . Stakeholder Concerns as Architecture Evaluation Criteria from [Gacek et a1 19951 21 

......................................................................... . Table 2 Discontinuity of Roject Information over T im 24 

Table 3 . UML Views and Diagrams adapted from [Rumbaugh et a1 . I9991 ......................................... 4 8  

Table 4 . Eight Regions of the View Space ................................................................................................ 53 

.................................................... Table 5 . List of Inconsistencies on the AbstradConcrete Dimension 130 

...................................................... Table 6 . List of Inconsistencies on the GenericlSpecific Dimension 131 

.............................................. Table 7 . List of Inconsistencies on the StructuraYBehavioral Dimension 132 

. ...........................................*............*................. Table 8 Comparison of View Integration Approaches 199 

viii 



List of Figures 

................................................................................................... Figure 1 : Mathematical Systems Theory 12 

.................................................................................................... Figure 2: Software Engineering Theory 13 

....................................................................... Figure 3: Some of Diagrammatic Views support by UML 16 

Figure 4: Architectural Views in UML ..................................................................................................... 22 

.......................................................................................... Figure 5: Information Degradation over Time 27 

......................................................................................... Figure 6 . Different Views for Hospital System 28 

Figure 7 . View Redundancy ...................................................................................................................... 29 

............................................................................................ Figure 8: Two Problem Solving Approaches 31 

......................................................... Figure 9 . Integration to Enable Automated Synthesis and Analysis 37 

....................................................... Figure 10 . Information Discontinuity. Degradation. and Restoration 38 

............................................................................................. Figure 1 1: Complexity in Integrating Views 39 

.................................................................................... Figure 12: Views and ADLs represented in UML 40 

Figure 13 . UML Core Elements as defined in [OMG 19991 ..................................................................... 45 

................. . Figure 14 . The Four-Layer Meta-Modeling Architecture of UML [Medvidovic et a1 1999bI 47 

Figute 15 . Views Dimensions .................................................................................................................. 50 

Figure 16 . Views and the Vicw Space ...................................................................................................... 52 

Figure 17: Potential Mismatch between two Layers (Completeness) .................................................... 57 

Figure 18: Potential Mismatch between Class Diagram and Sequence Diagram ...................................... 58 

........................... Figure 19: Potential Mismatch Between a Structural View and two Behavioral Views 59 

Figure 20: Potential Mismatch between State-. Sequence- and Collaboration Diagrams ......................... 60 

............................................................. Figure 2 1 . Concrete Relation has no Corresponding Abstraction 61 

Figure 22 . Concrete Classifier has no Corresponding Abstraction ........................................................... 62 

................................................................................. Figure 23 . Abstract Classifier has not been Refined 63 

Figure 24 . Concrete Classifier is of Different Type than its Corresponding Abstraction ......................... 64 

Figure 25 . Concrete Relation uses Abstract Classifier Instead of its Refinement ..................................... 64 



............. Figure 26 . Abstract Classifier is Replicated at the Concrete Level Although Refinement Exis u 65 

............................................ . Figure 27 Concrete Classifier is Assigned to Multiple Abstract Classifiers 66 

...................................................... . Figure 28 Cardinality of Refinement does not Match its Abstraction 66 

.............................................. . Figure 29 Direction of Concrete Relation does not Match its Abstraction 67 

........................................ Figure 30 . Concrete Classifier does not Replicate a Method of its Abstraction 68 

............................ . Figure 3 1 Concrete Method is of Different Type than its Corresponding Abstraction 68 

. ......................*.................................*. Figure 32 Specific Relation has no Corresponding Generalization 70 

.................................... . Figure 33 Cardinality of Generic Classifiers does not Match Specific Scenarios 71 

........................................... . Figure 34 Direction of Specific Relation does not Match its Generalization 72 

.................................. . Figure 35 Specific View uses a Method that is not Defined in Generic Classifier 73 

.............................................. Figure 36 . Specific Classifier has not been Assigned to Generic Classifier 73 

............................................................... . Figure 37 Generic Pre-Condition is Violated in Specific View 74 

.......................................................... . Figure 38 Structural View does not Support all Behavioral Needs 75 

..................................................................... . Figure 39 Structural Declaration does not Match its Usage 76 

........................................................................................................ Figure 40: Categories of Mismatches 78 

.............................................. Figure 4 1 : Model-based Development-a view independent representation 80 

Figure 42 . View Integration Framework ................................................................................................... 81 

Figure 43 . View Transformation and Mapping to Complement View Comparison ................................. 83 

Figure 44 . Transforming Model Elements between Regions in the View Space ...................................... 86 

Figure 45 . View Dimension and View Transformation Axes .................................................................. 87 

..................................................................................... Figure 46 . Transformations Currently Supported 88 

Figure 47: Classifier (left) and Relation (right) Abstraction-Two Approaches ........................................ 90 

Figure 48 . Class Patterns ........................................................................................................................... 92 

........................................................ Figure 49: Simple InputlOutput Structure Patterns for Abstractions 94 

Figure 50: Abstraction Rules for O b j e c t  Diagrams ....................................................................... 96 

Figure 5 1 . Serial Abstraction ...............................~........~........................................................................... 97 

Figure 52: Abstraction Rules for State Diagrams ................. ...... ............................................................... 98 



Figure 53: Abstraction Rules for Package Diagrams ................................................................................ 99 

Figure 54 . Abstraction Algorithm ............................................................................................................. 99 

.................................................................................. Figure 55 . Cardinality Examples between Classes la0 

Figure 56 . Cardinality Examples and their Abstractions ......................................................................... 101 

Figure 57 . Simple Example of Generated Abstractions from three Input Diagrams ............................... 102 

Figure 58: Generating transitive relationship from Flight to Person ...................................................... 103 

.............................................................................. Figure 59 . Sequence to State Generalization-Basics 105 

.......................................................................... Figure 60 . Sequence to State Generalization-Extended 107 

.................................................................................................. Figure 6 1 . Minimal Statechart Diagram 107 

Figure 62 . Object Diagram ...................................................................................................................... 108 

................................................ Figure 63 . Generalized Object Diagram Represented as Class Diagram 109 

. ......................................................................................................... Figure 64 Generalization Patterns 110 

................................................................................................................. Figure 65 . Sequence Diagram 112 

................................................... Figure 66 . Sequence Diagram Structuralized into on Object Diagram 113 

................................................................. Figure 67 . Structuralizing Statechart views into Clilss Views 114 

Figure 68 . Structuralization Patterns ...................................................................................................... 115 

Figure 69 . Tmsformation Methods and Paths ..................................................................................... 117 

Figure 70 . Complex Transformation Paths ............................................................................................ 118 

Figure 7 1 . Complex Transformation Algorithm .................................................................................... 119 

Figure 72 . Lack of Intermediate Views in Covering Full Transformation .............................................. 120 

Figure 73 . Examples of Equivalence Comparison .................................................................................. 124 

Figure 74 . Examples of Pactsf Comparison ........................................................................................... 124 

Figure 75 . One-to-many Comparison ................................................................................................... 126 

Figure 76 . Many-to-One Comparison ..................................................................................................... 126 

Figure 77 . Zero-to-one Comparison ........................................................................................................ 127 

Figure 78 . Variations in View Comparison ............................................................................................. 127 

Figure 79 . Ambiguous Comparison ........................................................................................................ 128 

xi 



Figure 80 . Variations (Ambiguities) in Transformation Results ........................................................... 129 

Figure 8 1 . Refinement Inconsistency ..................................................................................................... 133 

Figure 82 . Abstraction Example .............................................................................................................. 135 

...................... Figure 83 . Example of Consistency Checking between Abstract and Concrete Elements 136 

Figure 84 . Example of Consistency Checking between Generic and Specific Elements ........................ 141 

............................................................................... Figure 85 . Origin Traces and Interpretations Traces 151 

Figure 86 . Evolutionary Complexity ................................................................................................... 153 

Figure 87 . Reducing Model Redundancy using UML ........................................................................... 154 

Figure 88 . Reducing Model Redundancy outside UML ......................................................................... 155 

Figure 89: Generic Example of Classifier Abstraction ........................................................................... 157 

........................................... Figure 90: UML-A Model satisfying Classifiers for Multiple Abstractions 158 

................................. Figure 9 1: Ambiguity in Accessing Composite Classifiers via Relational Names 159 

Figure 92: Deriving correct Projection from Relation Identifier ........................................................... 160 

............................................................................. Figure 93 . Generic Example of Relation Abstraction 160 

............................................. Figure 94: UML-A Model satisfying Relations for Multiple Abstractions 161 

Figure 95: Ambiguity in Accessing Composite Relations via Classifier Names .................................... 162 

Figure 96: Special Case of Relations using Associations ....................................................................... 163 

...................................................... Figure 97: Linear Integration Work using an Integrated Repository 165 

............................................................................................. Figure 98 . Architecture Overview of HMS 168 

Figure 99 . HMS Data Types ................................................................................................................... 169 

Figure 100 . Employees Interacting with Applications using Services .................................................... 170 

................................................................... Figure 10 1 . Services, their Dialogs, and the Database (DB) 171 

Figure 102 . Containers used by Dialogs ............................................................................................ 172 

........................................................................... Figure 103 . Data Types used by Services and Dialogs 172 

............................................... Figure LO4 . Mapping hom Design Classes to Architecture Components 173 

........................... Figure 105 . Object Diagram Depicting the Relationships between Guests and Hotels 174 

Figure 106 . Statechart for EditDZg .......................................................................................................... 174 

xii 



.......................................................................................... Figure 107 . Statechart for CaptureContainer 174 

........................................................................................ Figure 108 . Statechart for ReservationService 175 

.................................................... F i g m  109 . Sequence Diagram depicting a Search for a Reservation 176 

................. Figure 1 10 . Transformations to support Consistency Checking of Architecture and Design 176 

Figure 1 1 1 . Abstracted Design-Level Class Diagram ........................................................................... 177 

............................................................ Figure 1 12 . Structuralized and Generalized Sequence Diagram 178 

Figure 1 13 . Generalized Object Diagram ............................................................................................... 178 

...................................................................................... Figure 1 14 . Structurrrlized Statechart Diagrams 179 

.................................................................... Figure 1 15 . Low-Level Design of Basic H M S  Data Types 180 

................................................... Figure 1 16 . ReservationServices. ReservationDlg. and its Containers 181 

.......................................................... Figure 1 17 . Statechart diagram for ReservationCaptureContainer 181 

Figure 1 18 . Startchart Diagram for ReservationEditDlg ..................................................................... 182 

Figure 1 19 . Sequence Diagram Capturing the Modification of a Reservation ....................................... 183 

................................. Figure 120 . Transformations to support Consistency Checking between Designs 184 

Figure 12 1. Mapping from Low-Level Design Classes to High-Level Design Classes ....................... ... 185 

..................................................................... . Figure 122 Abstracted Low-Level Design Class Diagram 186 

......................................................................... Figure 123 . Abstracted Statechart Diagram for EditDlg 187 

Figure 124 . Abstracted Sequence Diagram for modif+-reservation() .................................................... 188 

Figure 125 . Structuralization and Generalization of Sequence Diagram ............................................... 189 

Figure 126 . Generalized Sequence Diagram to Statechart Diagram ....................................................... 190 

Figure 127 . Structuralized Statechart Diagrams into Class Diagrams .................................................... 190 

Figure 128 . UML-Analyzer Tool Supporting View Integration ............................................................. 193 

Figure I29 . Complexity in Class Abstraction ......................................................................................... 194 

Figure 130 . Inconsistencies between HMS Architecture and High-Level Design .................................. 195 

Figure 13 1 . Inconsistencies between HMS High- and Low-Level Designs ............................................ 1% 

Figure 132 . Reuse and Duplication Elimination during Abstraction ...................................................... 197 

xiii 



Software systems are characterized by unprecedented complefity. One effective means of 

dealing with that complexity is to consider a system from a particular persptive, or view (e-g., 

architecture or design diagram). Views enable software developers to reduce the amount of information 

they have to deal with at any given time. They enable this by utilizing a divide-and-conquer strategy that 

allows large-scale software development problems to be broken up into smaller, more comprehensible 

pieces. Individual development issues can then be evaluated without the need of access to the whole body 

of knowledge about a given software system. The major drawback of views is that development concerns 

cannot truly be investigated by themselves, since concerns tend to affect one another. Successful and 

precise product development supported via multiple views requires that common assumptions and 

definitions ;Ire recognized and maintained in a consistent fashion. In other words, having views with 

inconsistent assumptions about a system's expected environment reduces their usefulness and possibly 

renders invalid solutions based on them. 

Developing software systems therefore requires more than what general-purpose software 

development models can provide today. Development is about modeling, solving, and interpreting, and in 

doing so a major emphasis is placed on mismatch identification and reconciliation within and among 

diagrammatic and textual views. Our work introduces a view integration framework and demonstrates 

how its activities enable view comparison in a more scalable and reliable fashion. Our framework extends 

the comparison activity with mapping and transformation to define the 'what' and the 'how' of view 

intcgration. We will demonstrate the use of our framework on the Unified Modeling Language (UML), 

which has become a de-facto standard for object-oriented software development, In this context we will 

describe causes of model inconsistencies among UUL views, and show how integration techniques can 

be applied to identify and resolve them in a more automated fashion. Our framework is tool supported. 

xiv 



1 Introduction 

1.1 Overview 

Boehm and Ross said, "your project will succeed if and only if you make winners out of all 

critical stakeholders" [Boehm and Ross 19891. This notion, coined in requirements engineering, implies 

that it is vital to identi@ critical stakeholders, capture their concerns and goals, and resolve conflicts 

between them to ensure that the software system under development meets everyone's expectations. By 

stakeholder we mean an individual or a group that shares concerns or interests in the system (e.g., 

developers, users, customers, etc.). Software views, such as diagrammatic and textual views in 

architecture and design, assist the modeling of concerns. It is thus not surprising that recent standards, 

such as the IEEE Recommended Practice for Architectural Description [IEEE Architecture Working 

Group 1999) (P147 I), advocate using architectural views to address stakeholder concerns. Concerns can 

be of different origins: ( I )  they can be goals that reflect wishes and expectations of stakeholders; or (2) 

they can be conflicts that reflect clashes between those goals. To address concerns, the PI47 1 standard 

suggests the use of views, following a widespread practice in software and systems modeling. Views deal 

with concerns in the following manners: 

Views separate concerns and reduce their overall complexity, 

Views describe and analyze concerns to evaluate the feasibiiity of stakeholder gods, and 

Views assist in the identification and resolution of conff icts among concerns. 

The focus of this work is geared towards architecture, design, and implementation views since 

those views describe software systems within the boundary of their expected working environment. 

Architecture and design views need to be capable of describing functional and non-functional aspects of 

software systems. Among non-functional aspects we include software properties such as feasibility, 

security, maintainability, performance, reliability, cost, schedule, or interoperability. 

Since architecture and design modeling goes hand in hand with requirements modeling, it 

follows that architecture and design views should be used to generally validate concerns early on (as 

compared to identifying problems in the codingksting stage resulting in potentially higher costs in fixing 
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them [Boehm 198 11). Architectural and design views are thus synthesized in response to concerns and are 

analyzed to validate those concerns. 

CunentIy, we are in the fortunate situation of having ample modeling support available. 

Researchers and practitioners alike have built strong and powerful fnvnrlptions for modeling software 

development issues, covering all activities in the software life cycle from requirements engineering (e.g., 

[Carmel et al. 19831, [Conklin and Begeman 19881, [Dardenne et al, 19931, [Finkelstein et al. 19911, 

[Jackson 19951, [Mullery l979], [Potts and Takahashi 19931, [Robertson and Robertson 19991, and 

[Sommerville and Sawyer 19971) to architecture and design (see Sections 2.2 and 2.5), to coding and 

maintenance. Although most of those views do not cover development concerns in a comprehensive 

manner, they have cevertheless shown great promises in addressing individual software difficulties (and 

complexity). In particular, architectural models stand out in their innovative way of handling automated 

analysis and simulation capabilities, enabIing the identification and evaluation of potential risks early on, 

The major drawback of the concept of views is that development concerns cannot truly be 

investigated all by themselves. Instead development concerns tend to affect one anther. If a set of issues 

about a modeled system is investigated, each one through its own views, then the underlying correctness 

requires that assumptions and definitions common to multiple views are recognized and maintained in a 

consistent fashion (consistency issue). It seems, however, that the perceived benefits of using software 

development views (models) are under-realized since the independent nature of views hinders the 

integration of their results. This is a serious dilemma since the independence of views (models) is a 

desirable property because it allows development concerns to be addressed separately and individually. 

Views thus enable closed-world environments that separate concerns. On the other hand, this 

independence manifests itself also in the model's inability to carry-over information from its first 

definition (specification) to its subsequent usages. Therefore, the disruption of the development flow 

caused by the gap between muItipIe views weakens their benefits. After all, regardless how pretty 

software development models look or how effective they are in modeling individual concerns, they do not 

add any value to the final product unless the information specified through them can somehow be 

transitioned into the final product, 



Despite the downside, views are still the only major mechanism in simplifying software 

development by reducing its complexity [Brooks 19871 [Rumbaugh et al. 19991 [Nuseibeh 19941. What 

makes software so complex and so difficult to grasp is that the amount of information loaded onto a 

single person is vastly exceeding the capabilities of the human mind. We are not able to handle thousands 

of pieces of information at any given time. Instead it seems that the human short-term memory is quite 

limited in that respect. The 7 s  rule is a well-known example. This rule states that the human short-term 

memory can usually only handle 7 new items (plus or minus 2) at a time. The separation of concerns into 

views is a powetful tool in allowing software developers to reduce the amount of information they have 

to deal with at any given time [Tam et al. 19991. It has been recognized that "it is not the number of 

details, as such, that contributes to complexity, but the number of details of which we have to be aware at 

the same time'* [Siegtiied 19961. 

Views handle software complexities by allowing development concerns to be addressed, solved, 

and interpreted individually. Today, unfortunately, the inclusion of modeling information (e.g., from 

domain, architecture, and design) into the final product frequently has to be done through manual 

interpretation and conversion of that information. For instance, a programmer has to read the design 

specifications and realize them through a programming language. We speak of an information gap 

causing a discontinuity of the natural flow of software development. For modeling this entails several 

challenges: 

Need for support of a broad set of concerns, 

Need for validation capabilities to ensure consistency between those views, and 

Need for an integrated toolset to support modeling via multiple views. 

1.2 Motivation 

The motivation of this work is in enabling view integration, View integration allows working 

with multiple views without having to live with their negative side effects caused by information 

discontinuity (e-g., manual, repetitive labor, and inconsistencies). View integration, which enables 

consistency and continuity between views, cannot easily be guaranteed since views embody information 



redundancies (information overlap). Redundancy is a side effect of the closed-world environment that 

views create. It implies that information and assumptions common to multiple views must be replicated 

among all views that need them. For view integration this implies that model redundancy is the primary 

cause for inconsistencies among mdtiple views due to information replication. Model redundancy is also 

the primary cause for information discontinuity since replication among views is required but not 

automated. There are three basic choices on how to handle redundancy: 

( I )  Create fully orthogonal views 

(2) Limit the domain 

(3) Bridge the information gap 

The first option of creating fully orthogonal, non redundant views is likely the most effective 

form of dealing with redundancy since this approach circumvents the problem altogether. The drawback 

of this approach is that creating orthogonal views is both infeasible and impractical. Understanding the 

reasons for this returns us to the issue of stakeholder concerns. We argued that views are needed to 

address concerns (and not vice versa). It follows that views and concerns are inevitable intertwined which 

implies that views can only be as orthogonal as the concerns they are modeling. Views, therefore. inherit 

redundancies Trom the concerns they are addressing. Option one is not a viable alternative to view 

integration. 

The second option (limit the domain) avoids redundancy by having ail views implicitly share the 

same domain assumptions. The strength of this approach is in having domain-specific views that are 

powerful and concise. The drawback. however. is that if interoperability across domains is required. the 

view integration problem is back again, potentially worsened due to the lack of "implicit" domain 

knowledge or assumptions that were not explicitly modeled. 

The third option handles redundancies by building communication links (view connectors) 

between views. Using that option implies accepting views with all their benefits, but, also with all their 

flaws. However, those flaws may be mitigated in the form of automated connectors that enable 

continuous information flow between views. Option three, therefore. bridges the information gap in an 



explicit manner via view connectors. We have identified two major threads to support automated 

communication across multiple views: 

(1) Automated synthesis to enable view transformation 

(2) Automated analysis to identify view mismatches (inconsistencies) 

Automated synthesis bridges the information gap between views by supporting the 

transformation of information that those views have in common. For instance, a common form of 

automated synthesis is code generation given some design specification. Thc advantage of automated 

synthesis is that same or similar information need not be captured multiple times (manually) but can 

instead be transitioned automatically between views (e.g., design information that can be transitioned 

automatically into code). Automated synthesis therefore replicates information needed in other views 

(redundant information) and provides information continuity across multiple views. The benefit of using 

automated synthesis is a reduction (or even elimination) of manual, error-prone, and repetitive activities 

in capturing recurring modeling information. 

Since automated synthesis is often infeasible, automated analysis may be used to bridge the 

information gap by enabling information comparison between views. A common form of automated 

analysis is type and constraint checking between (formal) specifications. The advantage of automated 

analysis is that inconsistencies between views are identified and even pinpointed automatically (e.g., a 

type error in a formal specification). Automated analysis, therefore, compares replicated (redundant) 

information across muitipIe views and provides consistency feedback. The benefit of automated analysis 

is a reduction of manual, error-prone, and repetitive activities in validating the consistency and integrity 

of modeling information. 

1.3 Contributions 

The main contribution of this work is a framework for view integration. We describe this 

framework and its major activities in Section 7. Because of the abundant number of views currently in 

existence we decided to follow a breadth and depth approach in dealing with the integration problem. Our 

approach had to cover significant breadth in order to come up with a framework that was generic enough 



so that it would scale to numerous situations and types of views. Our approach also had to provide 

significant depth in order to come up with a framework that was specific enough to be useful. Since the 

effort of integrating views rises exponentially (see Section 3.6) it was not possible to provide in-depth 

coverage for all selected views. We, therefore, chose one view category and studied its integration 

complexities and scalability issues in more detail. 

To test our framework, we chose the Unified Modeling Language (UML) [Rumbaugh et al, 

19991 [Booch et ill. 19991, which, to date, has had little integration support. In particular, we chose the 

class, object, sequence, and statechart views of UML to ensure breadth coverage (Section 5) as well as 

the class and object views for depth coverage. We chose class, object, sequence, and statechart views for 

breadth coverage because we wanted to have at least one view species for each major view dimension 

(see Section 5.4). The rationale for the views we chose for depth coverage was that we wanted a situation 

where simple comparison would not suffice (e.g., as in the case of comparing class views of different 

levels of abstraction-see also Sections 7.3.1 and 7.5.2). 

Another contribution of this work is an analysis of W ' s  suitability for dealing with view 

integration issues via automated analysis and synthesis. In particular, we wanted to investigate how well 

the UML meta-model would adapt to our integration needs and how well ow framework could be fitted 

on top of UML. Although we built the framework with UML in mind, our goal was to remain as generic 

as possible and to allow other views to be integrated as well. For example, our work on C2-to-UML 

integration in [Egyed and Medvidovic 2000) talks about how to use our framework with other types of 

views where we show the integration between a design language (UML) and an architecture description 

language (C2) [Taylor et al. 19961. 

We have analyzed techniques for both synthesis and analysis, and have found ways to automate 

parts of them. Although both are equally important for view integration, the emphasis of this work is 

more geared towards automated analysis. Section 7.3 will, however, aIso discuss that automated synthesis 

is often an enabling technology for analysis (this is one of the reasons why we chose class diagrams for 

an in-depth study) and as such we will revisit synthesis in Sections 7.3 and 7.5. 



In order to validate our h e w o r k ,  we followed multiple paths (see Section 11). First, we 

validated its ability to handle inconsistencies among the four types of views mentioned above. Then we 

validated our framework's ability to include a development view for which it was not intended initially. 

To this end, we integrated the UML class and object views with the C2 architecture description language. 

Furthermore, we validated the in-depth solutions and associated tool on various real applications for 

which we either had models or were able to derive them (e.g., via reverse engineering). We also evaluated 

the complexity of ow view integration approach by analyzing its scalability. Besides our framework, we 

also evaluated UUL and its ability to deal with view integration in general and our approach in particular. 

It was our hypothesis that UML was not created with view integration in mind and this work indeed 

identified major deficiencies in UML's ability to support view integration (Section 1 1.1.6). 

1.4 Background Information 

The absence of view integration is not a new discovery. Quite the contrary, many software 

modeling approaches talk about the need of keeping model(s) consistent. Sometimes, process models 

provide additional guidelines on what activities one can do to improve the conceptual integrity of models. 

For instance, a case study in using the WinWin Spiral Model [Boehm et a1. 19981 suggests using 

Architecture Review Boards [AT&T 19931 after the LC0 (life-cycle objectives) and LCA (life-cycle 

architecture) stages [Boehm 19963 to verify and validate the integrity of analysis and design. Similar 

viewpoints are given by other researchers: 

Sage and Lynch [Sage and Lynch 19981 describe various aspects of integration (enterprise wide). 

They frequently stress "the important role that architecture plays in system integration." They present 

the need for three major views: enterprise view, systems engineering and management view, and 

technology implementation view, stressing the need to ensure consistency among these views. 

Rechtin [Rechtin 19911 emphasizes strongly the validity and consistency of requirements as well as 

the interface definitions. He htrther suggests the need for problem detection and diagnosis. 

Gacek, AM-Allah, Clark, and Boehm [Gacek et al. 19951 present the results of a survey of people 

frequently involved in the software development process (developers, customers, maintainers, 
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acquisitioners, etc.). They found that, with respect to architects, the three major concerns were "1) 

requirements traceability; 2) support of tradeoff analyses; and 3) completeness, consistency of 

architecture." 

The EEE PI47 1 Committee Architecture Working Group 19991 speaks of Architecture 

Evaluation: "The purpose of evaluation is to determine the quality of an architectural description, 

and through it assess the quality of the related architecture." They fwther state the need evaluation 

criteria against which the architecture should be verified. 

[Kuhn 19961, [Humphrey 19951, and [Paulk et al. 1995) who defined the Software and Systems 

CMM (Capability Maturity Model) stress the need for integration and quality control as part of the 

software life cycle. Especially the SE-SMM (Systems CMM) identifies Integration, Validation, and 

Architectural Evolution as key prctcess areas. 

Nuseibeh [Nuseibeh 19951 wrote that "inconsistency is an inevitable part of a complex, incremental 

software deveiopment process" and that "the incremental development of software systems involves 

the detection and handling of inconsistencies." 

W a g  and Cheng [Wang and Cheng 19981 propose a more rigorous object-oriented design process to 

deal with the shortcomings of the OMT [Rumbaugh et aI. 19911 mudet. We share their view when 

they say that "the lack of a welldefined semantics for the individual [OMTI models and theu 

integration hinders the overall development process." 

Shaw and GarIan [Shaw and Garlan 19961 describe architecture very provocatively as being "a 

substantial folklore of system design, with little consistency or precision." They further state that 

"software architecture found its roots in diagrams and informal prose. Unfortunately, diagrams and 

descriptions are highly ambiguous." 

Perry and Wolf [Perry and Wolf 19921 realized the importance of software architectures early on and 

they state as one of the four major benefits of architectures that they are "the basis for dependency 

and consistency analysis." 



These references, and many more. talk about the need for (or lack of) view integration. Despite 

that, not many solutions exist on how to do automated view integration (Section 10 will discuss some of 

those that exist). In some cases, the details of how to enable integration are purposely omitted, such as in 

case of the CMM, since they do not wish to favor a particular integration approach. However, in most 

cases it seems that architects and designers ate left ill equipped to ensure the integrity of their work. 

Some of the techniques that are sometime suggested are often aimed at making people talk to 

each other. For instance, the Architecture Review Board [AT&T 19931 or the Inspection Process [NASA 

19931 [Fagan 19861 are primarily tailored for getting the most capable people together so that they may 

share their findings. These techniques may follow a defined process (e.g., checklists) and may yield very 

effective results but the actual activities of identifying and correcting defects are stiIl done manually 

without much automated (or automatable) assistance. 

1.5 Outline 

This work is divided up as follows: 

Section 2 discusses model-based software development in general. This section discusses relevant 

modeling terminologies as well as various modeling approaches. 

Section 3 focuses on the view integration problem itself. The probkm of view redundancy is 

explained and (visw) integration is defined. The section also discusses the goals and benefits of view 

connectors to automate synthesis and analysis. This section will also illustrate one scalability 

problem associated with view integration. 

Section 4 summarizes the main scope and limitations of our work. As it was indicated previously, the 

view integration problem is too vast to be solved at once. It is conceivable that the view integration 

problem is not even solvable entirely. This section will therefore re-iterate key contributions of our 

work but also emphasize areas that are out of the scope. 

Section 5 revisits modeIs and views, discussing them in the context of their atomic elements as well 

as their types and instances. This section is foundational since it establishes view dimensions that 

will become very relevant later. 



Section 6 then discusses inconsistencies in the face of views and their elements. This section shows 

examples and lists all inconsistency types we identified. 

Section 7 introduces the basics of our view integration approach that consists of the three major 

components Transformation, Differentiation, and Mapping sitting on top of a Repository. This 

section is a general overview of some of the latter sections. 

Section 8 discusses transformation, the first of the three major components of our integration 

approach. Transformation converts model information to simplify validation. Transformation is 

subdivided into types following the view dimensions discussed in Section 5. 

Section 9 discusses differentiation, the actual consistency checking activity of our approach. This 

section introduces consistency rules for the inconsistency types of Section 6 and then illustrates how 

those rules must be applied. This section also discusses some ergonomic (e-g., human-computer 

interface) aspects of view integration. 

Section 10 briefly covers two other important areas of modeiing; that of information capture and 

tracing. Both activities have important ramifications towards view integration but are considered out 

of the scope of this work. 

Section I 1  covers the third and last important piece of our approach-the model repository. 

Repository design is hndamentaI for transformation, consistency checking, and their scalability. 

Section 12 discusses our tool WAnalyze r  that supports the in-depth part of our integration 

approach in the context of the objectklass abstraction and consistency checking. The tool is 

discussed in the context of an example. 

Section 13 discusses other examples in the context of larger models onto which our approach was 

applied. One of these examples is discussed in detail. 

Section 14 shows related works in this area and discusses them with respect to eight criteria. 

Section 15 evaluates our work and its contributions in the context of eight evaluation criteria 

Section 16,17, and 18 describe future work, conclusions, and bibliographical entries. 



1.6 Summary 

This chapter laid out the basic problem of view integration. We gave a brief overview on the 

current state of software modeling and pointed out its deficiencies. We also emphasized key contributions 

of this thesis and briefly described its outline. Additional background information was given to support 

our claim that the proposed problem is indeed important and the problem is severe enough that is needs 

attention. The motivation for our work is in addressing deficiencies of model-based software 

development that are caused by the lack of automated assistance in identifying and resolving 

inconsistencies. 



2 Model-Based Software Development 

A model of a large sofrware system pennits dealing with complexity that is too dificult to deal 
with directly. A model can abstract to a level that is comprehensible to humans, without getting 
lost in details. A computer can petform complicated analyses on a model in an effort to find 
possible trouble spots, such as timing errors and resource overruns. A model can determine the 
potential impact ofa change before it is made, by exploring dependencies in the system A model 
can also show how to restructure a system to reduce such effects. [Rumbaugh et al. 19991 

2.1 Software Modeling 

In science and engineering, we (humans) have made use of abstraction to deal with complexities. 

Soware Engineering is no exception and thus emphasizes the need for abstraction in the software 

development domain. Sommerville defined that software engineering is pre-occupied with "theories, 

methods, and tools which are needed to develop [...I software" [Sommerville 19961. We would extend 

this statement to say that those theories, methods, and tools facilitate abstraction to separate concerns. 

Model-based software development is d l  about abstraction but that alone does not solve 

problems. In order to solve complex problems, we need to solve problems in the abstracted model world 

and we then interpret model solutions in the real world. Figure L shows this process in the field of 

mathematical systems theory. There a problem solver uses some mathematical formula (function f(x)) to 

translate a real world problem into a (mathematical) model world problem, The model problem (if it is 

simple enough) is then solved to yield a model solution. Applying the translation backward will results in 

a solution that is applicable in the reai world. Should the model problem still be too difficult to solve, the 

same technique can be applied recursively again (the previous model problem becoming the real 

problem). If the refined model problems are easier to solve than the real problems, we will eventually find 

a model problem that is simple enough to be solved directly. Figure I shows that, in mathematical 

( Real World Real Problem 
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Figure 2: Software Engineering Theory 

systems theory, finding a solution for the real problem is reduced to finding a solution for the model 

problem. The principles, which guide the mathematical systems theory in Figure 1, are also visible in 

software development (see Figure 2). 

Figure 2 shows the task of going from a real software problem (e.g., requirements) to a real 

software solution (e.g., source code). Since solving real problems directly is often too difficult for large 

software projects [Brooks 19951 (although often attempted), models can provide enormous 

simpiifications. In Figure 2, diagrams are used to represent the model problem and the model solution 

(analogous to Figure 1). Those diagrams could be class diagrams, sequence diagram, state diagnms, or 

ocher types of diagrams (to name just a few). The real picture of software modeling is of course more 

complex since it usualIy invoIves multiple Ievels of refinement. Nevertheless, the basic idea is still the 

same. The model-based problem solving process uses intermediate models to simplify a more complex 

solving task. The number of diagram required be may increased as the compIexity of the problem 

increases. 

2.2 Models and Views 

So far we have used the terms model and views in many ways and even interchangeably. We 

referred to them as being diagrams, languages, and even mathematical representations. This section 

defines these words in more detail and discusses what they imply. 

The EEE Draft Standard 1471 Architecture Working Group 19991 refers to a view as 

something that "addresses one or more concerns of a system stakeholder." By stakeholder we mean an 



individual or a group that shares concerns or interests in the system (e.g., developers, users, customers, 

etc.). A model is the union (collection) of all views related to the same problem (e.g., related to the same 

software project) and views are partial descriptions of that model in the context of stakeholder concems. 

A view is, therefore, a piece of the model that is still small enough for us to comprehend but that also 

contains all relevant information about a particular concern. As such, the diagrams depicted in Figure 2 

redly show views of the problemtsolution model. 

Ideally, there would only be a small set of views covering all deveIopment needs and concems. 

In reality, there are many types of views. Recent developments in architectural modeling showed that 

even more types of views (e.g., architecture description languages) are needed to address other 

development needs and concerns that were not addressed well before. The cwrent advances in 

architecture modeling are a strong indication for that. Given the many needs and concerns that can arise 

during a software life cycle, it is not surprising that a myriad of specific models and views are in 

existence, many of which have their respective advantages that also justify their continuing existence. 

Besides modeling concerns, mother reason for the diversity of views lies in their need of having 

to address different audiences. Possible audiences include architects, analysts, coders, maintainers, 

testers, users, customers, and many more, If the audience is, for instance, a customer or user, then the 

emphasis of a model is in having descriptions that are simple and easy to understand. Although 

developers would similarly benefit from simple models, reality shows that those simple modeIs 

frequently lack the precision required to describe a problem andfor solution in detail. Likewise, 

development models are often not ideal for handling customer or maintainers needs, and so forth, 

2.3 Common Models and Views 

"Until relatively recently, the mast commonly used software design strategy involved 

decomposing the design into hnctional components with system state information held in a shared data 

area" [Sornmerville 19961. SommervilIe goes on further, stating that "it is only since the late 1980s that 

. . . alternative, object-oriented design has been widely adopted," 



Numerous software modeling techniques and methodologies (collection of techniques) have 

been developed in the past decades. Among the most notable methodologies (both functional and object- 

oriented) are Booch's Object-Oriented Design Method (BOOD) [Booch 19941 [Booch 19961, Coad- 

Yourdon Method [Coad and Yourdon 1991aI [Coad and Yourdon 1991bj, Controlled Requirements 

Expression (CORE) [Mullery 19791, Data Flow Models (DFD) [DeMarco 19781, Entity-Relationship 

Models (ERM) [Chen 19761, Jackson Design Method (JSD) [Jackson 19831, Object Modeling Technique 

(OMT) [Rumbaugh et d. 19911, OOSE Method [Jacobson et al. 19921, SADT [Ross 19773 [Schoman and 

Ross 19771, Shlaer-Mellor Method [Shlaer and Mellor 19891 [Shlaer and Mellor 19911, Structured 

Systems Analysis and Design Method (SSADM) [Cutts 19881 [Weaver 19931, SRD [Orr 19811, and 

Warnier-Orr Method [Wamier 19771. It is out of the scope to discuss those development methodologies. 

There are numerous comparative studies about the features, strengths, and weaknesses of these techniques 

such as [Sommerville 19961. [Cannichael 19941, [Sheard and Lake 19983 and [Song and Osterweil 19921. 

The types of models supporting software development can be very distinct in their 

characteristics. Many models are (at least partially) graphical in nature, yet other models are more textual, 

spanning the use of plain English and some types of formal or semi-formal language. Most of those 

modeling techniques have shown promise in at Ieilst some aspect of software development, It was only 

natural that people stmed to combine individual models into more comprehensive development 

methodologies. Those methodologies emphasize a (usually) small number of views covering the most 

important and interesting aspects of development. With time, the community was even able to standardize 

some of those development methodologies, providing more generality that, in turn, increased their 

applicability to even larger software development domains. The Unified Modeling Language (UML) 

[Rumbaugh et al. 19991 is the result of one such endeavor to unify object-oriented analysis and design 

techniques and their associated diagrams into a single methodology. UML supports a series of diagrams 

(views) and provides a common meta-model underneath them. 
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Figure 3: Some of Diagrammatic Views support by UML 

2.4 The Unified Modeling Language (UML) 

The Unified Modeling Language (UML) "is the successor to the wave of object-oriented 

analysis and design (OOA & D) methods chat appeared in the late '80s and early '90s. It most directly 

unifies the methods of Booch, Rumbaugh (OMT), and Jacobson ..." [Fowler 19971. UML is a generic 

modeling language that aims at supporting a broad range of development concerns. 

In the remainder of this work, we will primarily use the Unified Modeling Language (UML) to 

illustrate our view integration approach as well as to describe examples. In this section we will briefly 

describe UML, which is currently the leading object-oriented analysis and design model. UML supports a 

variety of design views, some of which object-oriented in nature (e.g., class diagrams [Booch 19941 

[Rumbaugh et al. 19911) and ochers more functional (e.g., statecharts [Harel 19871). For the most part, 

views in UML are graphical; however, there are also textual descriptions, mostly in the form of add-ons 

to the graphical notation (e.g., Object Constraint Language [Wanner and Kleppe 19991). UML is the 

result of a collaboration between numerous companies and 00 modeling experts and it borrows heavily 

from Booch [Booch 19941, OMT [Rumbaugh et al. 19911, and other 00 models such as [Coad and 

Yourdon 199 la], [Coad and Yourdon 199 1 b], and [Jacobson et al. 1992). 



"UML is a language for specifying, visualizing, constructing, and documenting the artifacts of 

software systems, as well as for business modeling and other non-software systems" [Booch et al, 19991. 

These different but overlapping uses of the model can only be achieved by supporting a variety of views. 

Some of those views (diagrams) are schematically depicted in Figure 3 showing a sequence diagram 

(left), a class diagram (right), a use-case diagram (middle-bottom), and statechart diagram (middle-top). 

These and other views are briefly explained below. A more detailed discussion of LJML 

diagrams is outside the scope of this thesis. We assume the reader to be familiar with the basic UML 

design concepts. Please refer to [Rumbaugh et al. 19991 or the "OMG Notation and Semantics Guide for 

UML" [OMG 1999) for more detailed descriptions (this work uses UML version 1.3). Additionally, 

Fowler 19971 provides a brief overview of UML. 

Use Case: Depict the interaction between users and components or between components. In doing 

so, use cases provide a high-level view of the usage of a system and Frequently shows the interaction 

of multiple functions of that system. For instance, the task of editing a document involves the 

functions open document, edit document, and save document. 

Interaction (e.g., Sequence and Collaboration diagrams): Sometimes also referred to as Mini-Uses. 

Interaction diagmns show concrete examples of how components communicate. They can often be 

seen as test cases and depict sequences of interactions (e.g., calls). A call can refer to user interface 

invocations (e.g., open file) or to component interactions. 

Objects and Classes (e.g., Class diagrams): Classes are the most central view in UML. Class 

diagrams depict the relationships between classes and objects, which are the smallest stand-alone 

components in 00. Class relationships further depict their generic interactions (e.g., aggregations, 

dependencies, etc.). 

Packages (e.g., Package diagram): Packages are used to group classes into layers and partitions. As 

such they show system decompositions. 

State Transition (e.g., State and Activity diagrams): Are used in CTML to describe the states that 

classes can go through. In UML, state diagrams are bounded to individual classes. Activity Diagrams 



are a generalization of state diagrams in that they can also be used to depict events or other 

'transitional* elements across class boundaries. 

0 Deployment (e.g., Deployment diagrams): Shows the physical components of the system during 

deployment. It presents a physical view of the system and is, therefore, Frequently used to depict the 

component dependency of the actual implementation. 

The Object Constraint Language (OCL) Warmer and Kleppe L999] supports UML and provides 

some limited integration within and between UML diagrams. OCL is a formal language for expressing 

constraints on model elements in UML (see Section 5 for more information on modei elements). 

2.5 Architecture Oescriptlon Languages (ADL) 

The development of design methodologies such as the ones listed in Section 2.3 had stagnated in 

the late 80's. Until then, a strong development driver of newer design methodologies was 

comprehensiveness to increase their concern coverage and applicability. With the emergence of 

architecture description languages (ADLs) in the mid-nineties, a reverse trend started. ADLs, contrary to 

methodologies such as SSADM and SADT, are very specialized and often only address specific concerns 

(e.g., reliability, presence of deadlocks, dynamism, etc.). Although, ADLs are very restrictive in their 

scope, they are nevertheless extremely powerful in analyzing and simulating their respective niches 

[Medvidovic et al. 1999b1. More general-purpose languages often lack such extensive anaiytical features. 

With W, a new design methodology has emerged that does not have strong analytical capabilities. 

Researchers and practitioners, however, have proposed to extend LJML ro support special-purpose 

modeling (via ADLs) combined with general-purpose modeling (via UML). This can be done by using 

UML's extensibility mechanism and OCL to represent new types of model elements and their semantics 

in UML (e.g., [Hofmeister et al. 19991, [Medvidovic and Rosenblum 19991, [Robbins et al. 19981, [Selic 

et al. 19941, and [Selic and Rumbaugh 19981). For instance, in [Abi-Antoun and Medvidovic 19991 and 

[Robbins et al. 19981 it is shown how the C2 architecture description language [Taylor et ai. 19961 is 

represented and transformed into a UML description. 



To define what software architecture is, is difficult since not many people can agree on a single 

definition. Perry and Wolf [Perry and Wolf 19921 describe architectures as having elements, form, and 

rationale. Elements describe the building blocks of architectures and thus denote what is built, form 

describes the configuration of how ~nodel elements are interrelated and communicate, and the rationale 

gives the reasoning behind the chosen architectural decisions (why). 

Shaw and Garlan [Shaw and Garlan 19961 give a more elaborate definition and write that "the 

architecture of a software system defines that system in terms of computational components and 

interactions among those components. Components are such things as clients and servers, databases, 

filters, and layers in a hierarchical system. Interactions among components at this level of design can be 

simple and familiar, such as procedure call and shared variable access. But they can also be complex and 

semantically rich, such as client-server protocots, database-accessing protocols, asynchronous event 

multicast, and piped streams" [Shaw and Garlan 19961. 

Recently, there have been attempts in standardizing architectures and their usages. The IEEE 

Draft Standard I471 [IEEE Architecture Working Group 19991, one such endeavor, provides the 

following definition for software architecture: 

Every system has an architecture, deflned as follows: 
An architecture is the highest-level conception of a system in its environment where: the 
'highest-level' abstracts away porn details of design, implementation and operation of the 
system to focus on the system's 'unifiing or coherent form'; 'conception' emphasizes its nature 
as a human abstraction, not to be confiued with its concrete representation in a document, 
product or other artifact; and ' in its environment' acknowledges that since systems inhabit their 
environment, a system 's archirecture reflects that environment. [I EEE Architecture Working 
Group 19991 

Above definitions are all rather vague and apply to "architecture" as well as to "requirements," 

"design," or "operational concept." Shaw and Garlan's definition actually uses the term design as part of 

their definition of software architecture. Also, all of the above definitions provide to little emphasis on the 

analysis and interpretation of architectural descriptions. Of course, architectural descriptions are 

supported by powerful analysis and simulation capabilities that help resolve stakeholder concerns; 

however, dealing with architectural descriptions also requires analyzing and verifying the conceptual 



integrity, consistency, and completeness of those descriptions in the context of requirements, design 

(lower-level), and implementation. This is where our work fits in. We find that ADLs have accomplished 

in the small what we hope more general-purpose languages will accomplish in the future. As such, A D h  

do not just provide modeling languages to compose systems but also provide concepts and techniques on 

how to analyze and validate them. Our work additionally shows how various modeling languages (from 

UML to ADh)  can be used together in a consistent manner. Afier all, no single model is adequate in 

addressing all stakeholder concerns. 

Examples of architectural models (ADLs) are ACME [Garlan et al. 19971, Ah& [Wile 19991, 

C2 [Taylor et al. 19961, Chemical Abstract Machine [Inverardi and Wolf 19951, Rapide [Luckham and J. 

Vera 19951, Darwin [Magee and Krarner 19961, SADL [Moriconi et d. 19951, and Wright [Allen and 

Garlan 19971. Initially, we had not included ADLs into ow view integration framework; however, we 

found that there is a great benefit in combining general-purpose modeling languages (e.g., UML) with 

specific-purpose modeling languages (see also [Medvidovic and Taylor 20001 for a comparison). We 

have therefore investigated ways of combining ADLs and UML in order to improve modeling. In [Egyed 

and Medvidovic 19991, we show how our view integration technique can be applied for consistency 

checking between UML class/object diagrams and the C2 architectwe description language. We see our 

work on UML and C2 integration as initial proof of concept that our approach is also appIicabie beyond 

CTML (see Section 1 1.1 S). 

2.6 Stakeholders and Model Life Cycles 

Modeling architectures and designs implies satisfying a number of potentidly conflicting 

concerns (see Section 1). Table 1 (taken fiom [Gacek et al. 19951) summarizes major architecture-related 

concerns with respect to goals and wishes of system stakeholders (note that we believe those concerns to 

be equally relevant for design). Those concerns can then serve as evaluation criteria for both architecture 

and design. As the table suggests, the customer is likely to be concerned with getting fit-order estimates 

of the cost, reliability, and maintainability of the software based on its high-level structure. This implies 



Table 1, Stakeholder Concerns as Architecture Evaluation Criteria from [Gacek et al. 19951 
- - 

Stakeholder Concerns / Evaluation Criteria 

Customer Schedule and budget estimation 
Feasibility and risk assessment 
Requirements traceability 
Progresstracking 
Product line compatibility 

User Consistency with requirements and usage scenarios 
a Future requirement growth accommodation 
a Performance, reliability, interopecability, other quality attributes 

Architect Product line compatibility 
and Requirements traceability 
System Engineer Suppon of tradeoff analyses 

Completeness, consistency of architecture 

Developer Sufficient detail for design and development 
a Framework for selecting / assembling components 

Resolution of development risks 
Product line compatibility 

Interoperator Definition of interfaces with interoperator's system 

Maintainer Guidance on software modification 
Guidance on architecture evolution 
Definition of interoperability with existing systems 

that the architecture shoutd be strongly coupled with the requirements to evaluate if the architecture can 

satisfy those requirements (see also [Boehm et al. 1998)). 

Users need software architectures to clarify and negotiate their requirements for the developed 

software system, especially with respect to future extensions to the product. Users will be interested in the 

impact of the software structure on performance, usability, and compliance with other system attribute 

requirements. 

Architects and designers are concerned with translating requirements into high-level 

architectures and designs. Therefore, their major concerns are about consistency between the 

requirements and the architecture and design during the process of clarifjhg and negotiating the 

requirements of the system [Gruenbacher et al. 20001. Developers are concerned with getting an 



architectural specification that is sufficient in detail to satisfy the customer's requirements but that is not 

so constraining as to preclude different approaches or technologies in the implementation. Deveiopers 

then use the architecture (design) as a reference for developing and assembling system components, and 

provide a compatibility check for reusing pre-existing components. Interoperators use the software 

architecture as a basis for understanding (and negotiating about) the product in order to keep it 

interoperable with existing systems. The maintainer will be concerned with how easy it will be to 

diagnose, extend, or modify the software. 

Modeling with UML can be seen in Figure 4. The figure shows UML views (as well as some 

related views) that are needed from an architect's or designer's point of view. The arrows depict the 

dependencies between views, The figure should not be taken too literally since we tried to capture the 

major flows of dependencies only. For instance, the picture shows that the classes and objects affect the 

implementation (e.g,, code in C u )  but not vice versa This is, of course, not always true. There are cases 

where the impIementation may trigger changes in the design and architecture (e.g., due to choice of 

COTS product). As a general rule, it is good practice to anticipate these dependencies and address them 

via prototyping and analysis. Further, the associations of the development artifacts (such as classes, use 

- Analysis 

-- Low-Level Design 

Figure 4: Architectural Views in UML 



cases, etc.) to the major phases of the life cycle can indicate primary associations at best. Again, we tried 

to capture the major associations of those development artifacts and the views in which they are 

frequently used. It is this ambiguity in how to associate and relate development artifacts that already 

poses our first problem in model-based soha re  development, 

Traditional life cycle models such as the waterfall process model are less useful in object- 

oriented software development because 00 activities overlap with one another potentially causing 

chhes  between process phases. We tried to indicate this in Figure 4 where some development artifacts, 

such as classes and objects, are used and shiued extensively during most of the deveiopment process. This 

ambiguity, in the definition of deveiopment stages and phases, is however also a goad thing since it 

provides some continuity between the life cycle stages and, thus, brings the development stages closer. 

The conceptual breaks, which so frequently happen between the analysis and design stages, are eased. 

Figure 4 also shows that there are multiple views needed to address software development, and 

that modeling languages such as the UML support some of them. The main message we try to convey 

with Figure 4, and with the above discussion, is that UML views relate to one another, but are not 

integrated well enough to allow their interaction. We speak of an information gap in that information in 

different views may relate, that relztionship may however not be explicitly captured. 

2.7 Information Gap and Information Discontinuity 

Previously, we discussed that in order to control software complexity, we utilize abstraction as a 

strong driving force for software development. Abstraction comes in different dimensions. For instance, 

software development projects use processes to create phases and milestones to synchronize and divide 

activities. Views (e.g., as enabled through textual and diagrammatic representations) have typically 

complemented processes in achieving abstraction. However, the underlying concepts of how views 

enable abstraction have strong similarities to those of processes. Both try to depict problems in a discrete 

manner through stake holder concerns. 

Currently a major challenge in software development is how to best utilize information captured 

during the project life cycle. We have observed that significant portions of model descriptions do not find 



their way directly into the end product. For instance, requirements capture has been recognized as being a 

fundamental part of software development; however, requirements rarely find themselves automatically 

included in the source code or the user's manuals, the end-products of software projects, Instead, 

requirements tend to be by-products of software development and ultimately are only used for decision- 

making along the way (e.g., in how to do the design). 

What this implies is that information captured about a system often cannot be automatically 

carried through the entire project to find itself in the final product. We speak of a degradation of project 

specific information over time. This degradation does not imply loss of information. For instance, 

requirements or design information stay available throughout the life cycle of a project, but frequently in 

a form that is unsuitable for further processing. Thus, model information often lacks continuity in that it 

cannot be transitioned automatically from its definitions to all its usages. 

Consider the example in Table 2. There, the cardinality of a relationship between Patient and 

Visiting Record is represented in three different forms. The first case shows a requirement describing 

their relationship, the second case shows a UML class diagram depicting that same relationship in a 

graphical form, and finally, the third case shows the corresponding partial pseudocode. Even in a rather 

trivial example such as this one, it is not straightforward to see how the information entered in the 

requirements could find its way into the design without human intervention. SimiIarIy, it is not easy to see 

how the design information can be transitioned into the code in an automated fashion. 

In both process and view oriented development projects, the main cause of information 

discontinuity is the discrete basis of infomation capture. All information should be captured and 

Table 2 Discontinuity of Project Information over Time 

Requirements: 

Design: 

- - -  

There shall be no more than one visiting record per patient and each visiting 
record belongs to exactly one patient. I 

Patient -- Ow.1 Visaing Recod 
-- - - -  A 

- 1..1 -- - 

- - -- 

Implementation: if (get~atient(aVisitingRecord1 = NULL) then 
raise exception; 



maintained continuously, but instead we tend to develop software projects through the use of artificial 

borders placed by views and processes. The disadvantage of too strictly defined milestones for processes 

have long been recognized as problematic (e.g., waterfall model); views exhibit a similar downside. 

Views are best used within a defined group of stakeholders, at defined times, and for defined problems. 

For instance, the class diagram view (a popular object oriented design view) is primarily used by 

architects and designers during the design phase. The use case view (a UML. requirements capture view) 

is mostly used by customers, users, and analysts during the initial phases of the projects. Although the 

timeline of activities may be blurred, the basic premise stays the same. The result is a discontinuity in that 

information entered into one view (diagram) must, at a later time, be converted into other views to be 

useful. Take for instance the extreme case of requirements and code. ClearIy, today we have hardly 

achieved the ability to automaticdly generate code From requirements, even when requirements are 

defined in great detail. This case denotes a discontinuity between requirements and code [Medvidovic et 

al. 20011. 

The existence of this gap does not imply that process- or view-oriented development approaches 

have failed in their quest to simplify software development We already discussed the benefits in 

separating concerns. However, both approaches have failed to live up to their promises, even though, we 

still need them to reduce the complexity of software projects. Views divide huge projects into more 

comprehensible pieces that can be understood and at least partially solved on their own. On the downside, 

the discontinuity in msitioning project-related data causes same or similar information to be captured 

multiple times for different views, which in turn causes significant extra work. Furthermore, recapturing 

information may also introduce additional errors, especially since the activity of replication is often a 

manual one. 

2.8 Information Degradation 

The information gap denotes a discontinuity in how information can be carried over from 

previous development activities. The severity of this gap varies. In some cases, some information may be 

carried over whereas in other cases, information must be recaptured. For instance, lower-level design 



views (e.g., class diagrams) can often be used to generate skeleton code; however, interconnectivities of 

classes depicted in those diagrams frequently get lost (e.g., calling dependencies). In other cases, the 

information gap is more severe as it was already described in the requirements-to-designlcode example 

above. We have learned that certain milestones are particularly vulnerable to information Ioss [Boehm et 

ai. 19981 [Boehrn and Egyed 19991). For instance, it is much harder to automatically carry over 

information from the early life cycle stage to the design stage than it is to carry over information from the 

design stage to the code. 

Figure 5 depicts how information may degrade over time. The first example shows the ideal case 

of information once captured being fully transitioned into later views without information loss. The 

second and third cases depict the more realistic scenarios of partial and full information loss over some 

time (information degradation). In partial degradation some information can be salvaged for later use; in 

full degradation all information is lost after some time. 

The last case in the figure depicts an impossibility (under a closed world assumption). It is not 

possible that more complete information is automatically generated over time than was previously 

captured. Note that we do not speak of the physical amount of information here but instead of the 

completeness of information (percentage). Even in case of reuse (e.g., product lines) that information 

must have been entered at one time and made available later on. In the latter case, we speak of continuity 

of product information across projects as well as models. 

Figure 5 aIso shows that information once entered but lost may have to be reentered later on, 

albeit in a different form (second and third case). Also note that information is not physically lost but 

instead becomes unusable. Although some information may not need to be carried over (e.g., if it was 

only used for decision-making), the example in Table 2 showed that there are cases where information 

should find its way through multiple stages of the project life cycle. In those cases where information 

must be reentered, we encounter redundancy and work duplication that are also major causes of (view) 

inconsistencies. 
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Figure 5: Information Degradation over Time 

2.9 Summary 

This chapter discussed the issue of model-based software development. First we highlighted the 

differences between models and views and gave some examples. We then discussed one such example, 

the Unified Modeling Language. in more detail since we will make use of it throughout this work. We 

also gave a brief overview of architecture description languages since we used them to validate our work 

outside the UML domain. Finally, we re-emphasized the existence and the problem of the information 

gap that results in an information discontinuity. It is that discontinuity that decreases the overall usability 

of models and views. Vicw integration, the emphasis of this work, discusses ways on how to address that 

prob tern. 



3 Model Integration 

This section will discuss view integration and its problems and challenges. Since redundancies 

are the primary cause of inconsistencies and hinder integration, view integration relies heavily on locating 

related information (redudundancies). 

3.1 What are Model Redundancies? 

The major drawback of model-based software development is information discontinuity. We 

already demonstrated that concerns, which are modeled through views, cannot be (and should not be) 

separated. If a set of issues about a modeled system is investigated, each through its own views, then the 

overlying correctness requires that common assumptions and definitions are recognized and maintained 

in a consistent fashion. However, consistency between views can not be easily guaranteed since views 

embody information redundancies (information overlap) to enable a closed-world environment. Having 

inconsistent assumptions about a system's expected environment voids the correctness and usefulness of 

views and thus rendering invalid all solutions based on those views. Thus, for views to be useful in 

addressing individual concerns, the problem of information redundancy has to be addressed. 

i Reauirement . 
There may be zero,one, or more W i n g  
records per patients and a visiting record 

(not found] create 

Seauenke VisitinqRecord r = null; 
record : Visiting I p = find,first(narne); 

>- Ew!zsi j if (p==NUU) 
p = new Patient(name); 

if ((r=p.get,record())=NUU) 
f -- r = new VisitingRecord(p); ) 

uses. 

Patient Processing 
-- . . - - . - - 

6 Merent Views for Hospital System 



Consider the example in Figure 6 (an extension of Table 2). The figure shows the cardinality of a 

relationship between Patient and Visiting Record of a hospital system. The cardinality is represented in 

different views. One view shows a requirement specification using natural language, another view shows 

the design using a UML (Unified Modeling Language [Rumbaugh et al. 19991) class and sequence 

diagrams, and yet another view shows a more formal textual view using pseudocode. The example shows 

the redundancy between views in that same or similar information appears in different places. For 

instance, one can infer the cardinality between Patient and Visiting Record through all views although it 

is represented in different manners. 

The problem of view redundancy becomes more severe because of the lack of automated suppon 

for information sharing between views. This denotes an information gap between views, which leads to 

an information discontinuity between related modeling elements (recall Section 2.7). The effect of the 

information discontinuity is that data common to multiple views is not carried over automatically. For 

instance, assume that the requirement in Figure 6 changes to: 'There must be at least one visiting record 

per patient." That change implicitly causes an inconsistency with some of the other views since the 

cardinality in the class diagram does not yet reflect that change. The discontinuity between views is 

obvious in hat  a change in requirements is not automatically propagated to all its dependent views. 

Dependent views could be diagrams (e.g., designs) that implement above requirements. The side effect of 

the information discontinuity results in the need of having to fill the information gap in a manual fashion. 

Thus. if one view is changed, then chis requires a manual detection of all affected modeling elements in 

other views as well as their manual updating to again guarantee consistency. 

It is, therefore. the redundancies between views that are 

the primary causes of inconsistencies. Figure 7 depicts variations 

on how views may relate. The first scenario shows two views that 

do not share any information and do not otherwise depend on each 
A#B hCc8 AcB 

other. These views can be considered fully orthogonal (unrelated). 1) 2) 3! 

A trivial example is of two views of separate software systems. Figure 7. View Redundancy 



The second scenario shows two views that overlap in the information they use or convey. These 

two views can be considered as depending on one another since they exhibit some redundant information. 

An example was already given in Figure 6 where we depicted four types of views sharing information. 

Each of those four views depicted information that was unique and not shared by the others (e.g., the 

sequence diagram shows that patient-list calls the create method only if patient is not found - that 

information is not inferable from the class diagram). However, all four views also depicted information 

that was common across all of them (e.g., the cardinality). 

The third scenario shows the cue of two views where the data used by one view is a subset of 

the data used in the other view. In this case, view B can be considered fully dependent on View A. 

Examples of such a scenario would be views describing different levels of abstraction where view B 

denotes a higher-level view and view A denoted a lower-level view. For consistent refinement, view A 

needs to describe the same information as view B, only in a lower-level of abstraction involving more 

detailed and elaborate descriptions (ergo more information). 

There is a possible fourth scenario not depicted in Figure 7 that denotes the extreme case of both 

views sharing exactly the same information and no view having any additionid information to present. 

Usually such a scenario denotes a case of an unnecessary view since there is little value in describing and 

maintaining two separate views without getting any additional value out of them. There are, however, 

exceptions. For instance, if code is generated in Java and C++ for different customers andlor platforms 

than that code needs to be tirlly redundant. Later, when we revisit automated synthesis, we will also find 

that transforming information from one view to another may result in such a scenario. For instance, in 

[Abi-Antoun and Medvidovic 19991 we find the case of an automated refinement technique from the C2 

architecture description language [Taylor et d. 19961 to UML class and object diagrams. In this case, the 

refinement technique produces a UML design out of a C2 architecture where, initially, both are 

equivalent and none has additional information to present. Note that the tern refinement, as Abi-Antoun 

and Medvidovic use it, is misleading since their technique is only a conversion from one representation 

scheme, C2, to another representation scheme, UML with the addition that implicit C2 concepts are 

explicitly stated in UML. Another example where two types of views rue very similar (or equal) are UML 



sequence and collaboration diagrams. Both types of views could be used to model the exact same 

situation using the same information. The only distinction is that aesthetically, a sequence diagram differs 

from a collaboration diagram. This difference in appearance may affect a stakeholder's perspective and 

thus justifies this case of highly redundant views. 

3.2 Missing Integration in Models and Views 

Having established the notion of view redundancy, we are now confronted with a major 

problem: How should we handle redundancy? Do we even need to care? When we described the 

mathematical problem solving approach (recall Figure I )  we concluded that modeling finds a solution to 

h e  real problem by finding a solution to the model problem. For that very reason, software development 

models were created; they serve as counterparts to mathematical models, However, are our software 

engineering models (like the one we showed in Figure 4) really equivalent to the mathematical model in 

solving problems (see Figure 8 for a comparison)? 

What if the (software) model, which is created to represent the red world, is not adequate'? A 

solution we might find to that model problem would not be correct then. This implies that we are not only 

confronted with the challenge of finding a (model) solution to a model problem but also we have to find a 

model of the real world that is adequate for our needs. This is like solving the right problem vs. solving 

Mathematical Problem Solving, W m l d  

Real Problem 

F 
L 

Model Problen 

Real Solutio p i 
-5 
Model Solution 

Software Problem Solving 

Figure 8: Two Problem Solving Approaches 



the problem right [Boehm 1989]! As such, the mathematical problem solving approach is realty doing 

three things (corresponding to the three arrows in the left side of Figure 8): 

Model the real problem adequately 

Solve the model problem 

Interpret the model solution in the real world 

Revisiting Figure 8, which part of the software model is doing the modeling? Which part is 

doing the solving? And which part is doing the interpretation of that solution? We find that models 

generally do not sufficiendy address d l  those issues. What this implies is that conventional software 

development models, such as the UML, are not sufficient in addressing all of h e  needs of software 

development. After all, what is the usefdness of an implementation of a software product if it does not 

satisfy the architecture or design? Similarly, of what use is the architecture if it does not satisfy its 

requirements? 

The conclusion we draw from this case is that architecting and designing is more than what 

conventional development models provide. For us, development is to model, to solve, and to interpret. 

Since, modeling languages, such as the UML, just provide assistance, this work will show how they can 

be enhanced (integrated) to increase their usefulness. Our work can ensure that consistency and continuity 

is improved, thus decreasing the likelihood of defect introductions. 

3.3 W h a  is integration? 

We have used the word Integration or 'what it means to integrate' but so far we have not 

described it. This section will do that. The term Integration, as such, is part of everybody's vocabulary. 

The Memam-Webster Dictionary [Merriam-Webster 19961 defines the term Integration as: 

The act or process or an instance of integrating: as a )  incorporation as equals into society 
or an organization of individuals of different groups (as races) 6) coordination of mental 
processes into a n o m l  effective personaliy or with the individual's environment. 
[Memam- Webster 19961 

Not surprisingly, this set of definitions is very broad and does not apply to software alone. In 

software engineering it applies to technologies, organizations, and people; it affects management, 



products, humans, politics, standards, models, enterprises, and more. Sage and Lynch's work about 

System Integration and Architecting [Sage and Lynch 19981 provides a very comprehensive overview of 

what integration means in the context of software and system modeling. They found that "systems 

integration is an activity omnipresent in almost all of systems engineering and management." They 

further found that "the term lacks precise definition and is used in different ways and for different 

purposes in the engineering of systems." 

Nuseibeh said that "separating concerns is an important step towards reducing the complexity of 

software systems, making them easier to develop, understand and maintain" [Nuseibeh 19941. He, 

therefore, concluded that "for complex systems which have been developed from multiple perspectives or 

views, some form of view integration is often necessary." Jackson states it even more direct when he says 

that ". .. having divided to conquer, we must now reunite to rule" [Jackson 19901. 

In software engineering, the word fntegration is used frequently and often refers to the process 

of assembling components (or subsystems) into systems. As such, the term integration stands for an 

activity that starts later on in the Iifecycle, once some software components have been developed and 

need assembly. Another case where the term Integration is used refers to the unification of standards, 

processes, and models. For instance, the Integrated Capability Maturity Model (iCMM) of the FAA, 

(which is a union of various CMM models (such as the SW-CMM [Paulk et al. 19951, SE-CMM [Kuhn 

19961, and SA-CMM [Ferguson 1996]), is one such attempt to integrate existing standards into a more 

general standard. The Unified Modeling Language (UML) is another such case, where various object- 

oriented development models (Booch, OMT, and pieces of many others) were integrated into a single 00 

deveIopment methodology. 

In this work, the term Integration is used in yet another way where it indicates quality aspects. A 

desirable quality we wouId like to see in a development model across d l  its views is consistency. On 

closer look, this form of integration is not that different from the other meanings described above. For 

instance, when we perform component integration where we evaluate the integrity of components while 

assembling them into bigger components (or even systems) that integration is quite analogous to 

performing view integration where we evaluate the integrity of views while assembling them into bigger 



models. The first case describes product integration, the second view integration. Both are facets of 

Integdon (see [Grady 19941 for an overview of these facets). 

3.4 The View Integration Problem 

3.4.1 Why Integrate Views? 

Previously, we gave an overview of an object-oriented development language (UML) and 

indicated that it (like others) addresses stakeholder concerns to satisfy their needs, We also briefly 

described a process through which we can guide and advise stakeholders on how to use those models and 

views in creating a software product in a consistent manner. We also described the deficiency of model- 

based development when it comes to solving problems (to model, to solve, and to interpret). 

This deficiency of views would not exist if we could have a few pefect views that could be used 

by dl stakeholders (as described above) and which would be precise enough, orthogonal, but still easy to 

use. These views, unfortunately, do not exist. Instead, we are confronted with a large number of loosely 

coupled, sometimes quite independent views that, to make things worse, exhibit redundancies. This is not 

really what we want. [Nuseibeh 19961 wrote that "multiple views often lead to inconsistencies between 

these views-particularly if these views represent, say, different stakeholder perspectives or alternative 

design sotutions." 

Thus, if we have to deal with multiple views we would like to have at least tightly coupled ones. 

Since views represent only individual aspects of a system model, those views are meant to be together; 

only together can they fully describe the model of a system. However, we also need views to be different 

and independent enough to provide separation of concerns for stakeholders. What we need are thus views 

that are ~ndependent and can stand on their own but their contents (information) being fully integrated 

with the contents of the other views to ensure their conceptual integrity. We need View Integration. 

We also need integration because views often use different undertying paradigms and, thus, the 

results of modeling a problem in one type of view may be different than modeling the same problem in 

another type of view. For instance, a non object-oriented analysis and design stage would yield functional 

decomposition (which is more suitable to be implemented in a functional programming language). On the 



other hand, using an object-oriented design technique would already structure the system in a more 

object-centered fashion and thus, its implementation would be more straightforward to implement in an 

00 language. In Figure 4, we showed object-oriented views (classes, interactions) and functional views 

(data flows, state transitions). In UML, like in other models, those types of views are commonly used 

together. Thus if two different people would start modeling the same system, one using 00 techniques 

and the other using functional ones, they might end up with two different solutions. Even if both solutions 

would correctly solve the problem, they still may not make much sense together, A reason for this is that 

hnctional views are structured differentIy than object oriented ones. 

Furthermore, if modeling is done separately (one view at a time) we may get inconsistencies 

between them. Notations, like UML, describe some of the semantics of its views and how they are 

supposed to be used. Nevertheless, those semantic descriptions are rather limited and still enable 

inconsistencies. Lifecycle processes are sometimes used to mitigate t,CIat problem; however, those are 

usually not detailed enough and not enforceable enough to solve the view integration problem. 

What we need is a development model that defines views and their relationships not oniy 

syntactically but also semantically (inter-view dependencies). Such a model would also need tool support 

to enable automation. The tool support should validate both syntactic correctness and semantic integrity. 

Tools today (e.g., Rational Rose) are generally good at enforcing intra-view syntax and semantics, but are 

m i y  able to handle inter-view dependencies. We see view integration as being about adding semantics 

to our models so that the integrity of the whole is improved. 

3.4.2 Why Integrate Hetwogeneour Views? 

The reason we chose the integration of heterogeneous views is because we needed to cover a 

broad set of development concerns. We needed multiple, distinct, and independent views that are clearly 

defined and generally understandable; we thus decided to focus on architecture and design views. 

Architecting and design are performed early in the development process from a purely engineering point 

of view. Both also occur early in the development Iife cycle which means that problems and faults are 

still relatively easy (and inexpensive) to fix if identified. Should architectural and design errors be carried 

into the implementation phase or even f i r ,  the cost of fixing them would become some orders of 



magnitude higher [Boehm 19811. Siegfried wrote that "there is no replacement for making a sound 

systems architecture early in a project" [Siegfried 19961. 

Architectural views should also be supported as much as possible by (UML) design views to 

validate their refinements. But why stop there? Modeling should also cover requirements and other types 

views outside the product-model domain. With heterogeneous integration we mean the integration of a 

well-rounded, sufficiently complete set of views to address a large set of concerns [Medvidovic et al. 

20011. 

3.4.3 Why Automate Heterogenwus View Integration? 

We also need to automate view integration mainly because of the complexities involved in 

bridging the information gap mmually. When we talk about automated view integration, we also talk 

about automated synthesis and automated analysis. What automation provides is a reduction of manual, 

error-prone, and repetitive activities in dealing with view redundancies. Automation also implies tool 

support for using models, for validating their integrity, and for addressing some other important facets of 

view integration (eg., scalability). 

3.5 Bridging the Information Gap: Synthesis and Analysis 

We discussed previously that views do not easily share information which denotes an 

information gap. That information gap cannot be eliminated but its negative side effects can be eased. 

There are two general methods for eliminating or minimizing it in an automated fashion. 

1. Automated Synthesis: Generating information horn previous activities so that they can be used 

at later stages (e.g., generatdsyn thesize code fiom design) 

2. Automated Analysis: Verification and validation of model information so that inconsistencies 

can be identified (and potentially resolved) automatically. 

Synthesis is thus about view transformation and analysis is about view validation (e.g., 

consistency checking). The most effective form of bridging the information gap automatically is synthesis 

since it impIicitly incorporates automated analysis. The rationale is that faithful and reliable synthesis 

between views requires the understanding of inter-view interrelationships. Automated synthesis, if it is 
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Figure 9. Integration to Enable Automated Synthesis and Analysis 

done correctly, implies hat the synthesized information is consistent with the source(s) (at least initially 

because evolutionary changes may cause inconsistencies later on). However, since synthesis incorporates 

analysis, synthesis is also harder to automate. Figure 9 depicts this relationship. The left side shows that 

the degree of (view) integration increases as automation increases. Since automated synthesis always 

implies automated analysis, it is not possible to increase synthesis without increasing analysis. In terms of 

automation, we find three degrees of integration of importance: full integration enabling automated 

synthesis and analysis; semi-integration enabling automated analysis only; and no integration where both 

synthesis and analysis have to be done manually. 

The ideal form of integration is full integration, which implies full automation. If full integration 

is not possible, semi-automated integration at least supports some degree of automation in validating 

whether or not reentered information remains consistent with previously entered information (consistency 

checking). If continuity of data cannot be enabIed through any automated means (either synthesis or 

analysis) then there remains no option but to do both activities in a manual fashion. 

Although, we do not expect to be able to achieve full automation for both synthesis and analysis 

for software in general, we do believe that significant portions can be automated through a rigorous 

treatment of the subject (e.g., automated synthesis is achievable in very restricted domains). This work 

can be applied onto project-specific information as well as domain-specific information (e.g., product 

lines). In both cases, we need to enable information continuity [Egyed et id. 20001. Although details of 
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information continuity may vary betweedwithin projects, the underlying concepts are alike. The gods are 

to decrease inforrnation degradation and increase the speed of information restoration. The left side of 

Figure 10 shows the ideal case of no inforrnation loss over time; the right side shows disruptions that are 

caused by information discontinuities and thus result in some information loss. As it can be seen in Figure 

10 (right), minimizing information degradation causes a reduction of the extent of the infonnation loss 

(the vertical gap is minimized). Furthennore, maximizing information restoration enables a speedily 

recuperation of information Ioss in case of information degradation. The latter case is important since it 

improves the ability to recover faster from an information loss. 

Automated synthesis minimizes information degradation by enabling some information to be 

carried over automaticdly. Similarly, automated analysis minimizes the amount of rework required in 

regaining the previous level of information capture after an information degradation and therefore 

increases information restoration (e.g., by locating inconsistencies). In Figure 10, the positive effects of 

view synthesis can be seen as a reduced vertical drop after an information discontinuity. Similarly, the 

figure depicts the positive effects of view analysis through the angle a which indicates an increase in the 

sped of information restoration the steeper the angle is. Automated synthesis and analysis complement 

each other in the quest for information loss prevention. 



3.6 Potential Integration Complexity 

Having established what it means to integrate views and what the goals of view integration are 

(synthesis and analysis) we have to also discuss the complexities involved in this task (see Figure 11). In 

order to exchange and validate information between all views, each view needs to be integrated with aU 

other views (assuming they all share information). In our example we have six views which, in the 

absence of a common reference model, would require them to be integrated in 15 different ways. Each 

additional view would force (n-1) additional ways of integration if "n" is the number of all views to be 

integrated. In total, n (n-1) / 2 ways of integration are required for "n" views to be fully integrated. 

Clearly. we are confronted with a non-linear explosion of integration work (0(n2) for a big n). We will 

show techniques on how to address this problem later. 

Figure 11: Complexity in Integrating Views 

3.7 What is not Integration? 

A usually simplistic notion of view integration is just providing a common meta model. UML is 

a good example since its standard provides an extensive meta-model defined by OMG (Object 

Management Group [OMG 19991). A severe shortfall of UML (and its simplistic notion) is that a 

common meta-model only provides view representation and that it comes up short in fully integrating 

views with each other: Although UML and its meta-model define notational and semantic aspects of 

individual views in detail, inter-view relationships are not captured in sufficient detail. Without these 



additional relationships, the (UML) model is nothing more than a collection of loosely coupled (or 

completely unrelated) views. Figure 12 illustrates this by showing UML views as separate entities within 

a common environment (the UML meta-model). Although, some views iue weakly integrated (e.g., class 

and sequence diagrams), in general, UML views are independent. 

Figure 12 also shows that the lack of view integration can extend beyond existing UML views to 

non-UML views represented in UML (e.g., ADLs). LlML supports its own extension via mechanisms like 

stereotypes, tagged-values, etc. Using these mechanisms enables us to represent new concepts in UML. 

For instance, we could choose to incorporate Entity-Relationship modeis [Chen 1976) expressed via 

stereotyped and constrained class diagrams. We also discussed that some archikcturd description 

Ianguages (e.g., C2) have already been integrated into the UML framework. The major drawback of using 

UML's extensibility mechanism to capture additional views is that those views are presented in UML but 

not fully integrated. The problem is similar to the above where view representation only describes how 

information can be captured in UML. Thus, view representation does not concern itself with whether 

information captured through new views is consistent with other parts of the existing model. View 

representation would allow the creation of multiple views, each of which would correctly conform to 

their specifications; however, their combination would not build a coherent unit. We therefore speak of 

C2 for Structure 
Wright for local Behavior 
Rapide for global Behavior 

integration U#L mods/ consists of a 

(constrain) co\/ection of /oow/y integmted dIa_~mmmatic views 

Figure 12: Views and ADLs represented in UML, 



view integration as an extension to view representation to ensure the conceptual integrity (consistency 

and completeness) of the entire model across the boundaries of individual views. 

This section discussed the meaning of view integration. We emphasized that view integration 

extends most of current development models by specifying the semantics of views and their 

interdependencies. Based on those semantics, the relationships between multiple views can be qualified 

meaningfully and automated techniques can be used to validate their integrity. Besides settling some 

tenninotogy issues, this section also talked about the goals of our work and the complexities involved. 

This section also briefly mentioned a common misconception of what is not integration (e.g., common 

meta model). 



4 Scope and Limitations 

The primw objective of this work is finding a framework that supports view integration in the 

context of transformation and consistency checking between heterogeneous types of views. The emphasis 

of this work is towards describing and localizing inconsistencies between multiple views. Consistency 

checking, which is part of analysis, addresses this facet of view integration. In the course of investigating 

the view integration problem, we found that effective consistency checking mandates transformation 

(synthesis) as well. This wark will therefore dso discuss view synthesis and how it assists analysis. To 

that end, this work will present a framework for transformation and consistency checking that together 

solve the larger problem of view integration, We have also investigated view synthesis and analysis 

issues outside the area of this work and therefore were able to gather extensive insights into the 

requirements of view connectors (e.g., [Medvidovic et d. 2001) and [Gruenbacher et al. 20001). 

Since view integration has a non-linear complexity (recall Section 3.6), this work focuses on a 

subset of the problem. It is out of the scope to address the entire palette of design (e,g., UML) views. 

Thus our work does not have the aim to be as complete and consistent as possible but instead to be as 

complete and consistent as is feasible. [Nuseibeh 19961 shares this view when he talks about viewpoint 

integration. This implies that we cannot guarantee that our integration approach will be able to cope with 

all situations. Furthermore, our techniques may not work under all circumstances; neither will they 

uncover all inconsistencies that could occur. Inconsistencies detected via our techniques must also be 

regarded as pofenrial inconsistencies but not as factual ones. The reason is that often not all development 

aspects are captured explicitly by the users. Our technique, as other integration approaches, therefore 

have to rely on assumptions and heuristics. 

To be able to cope with a wide range of views and their implications, we decided to follow a 

breadth and depth approach. UML supports nine types of views and we have decided to focus on class, 

object, sequence, and statechart diagrams initially. Section 5 will explain that those four types of views 

cover the most significant dimensions of the view integration problem, giving our framework sufficient 

breadth without having to consider all of UML. Adding other types of views does not invalidate our 



framework. For instance, adding collaboration diagrams or activity diagrams to our framework is well 

within the boundary of our framework since both can be categorized into our view dimensions. We also 

decided to have a depth approach to view integration to investigate the problem in all necessary details. 

We therefore, decided to only take a subset of the above views (object and class diagrams) and elaborate 

on them to ensure that ow framework also covers depth (something the breadth approach might not have 

revealed). For instance, we provide tool support of our approach but Limit tool support to object and class 

diagrams only. 

The emphasis of our work is generally on the technology side of the view integration problem 

(as opposite to the human-computer interaction side). As such, we will discuss view transformation, view 

comparison, and repository issues in detail. However, we will not discuss ergonomics-specific user 

interaction issues unless they are important for the technology side (e.g., we will not discuss how to 

present inconsistencies to users or what to do in order to resolve them). Our emphasis on technology is 

necessary since one the biggest unsolved challenges of view integration is scalability. We already 

indicated one scalability aspect in Section 3.6, but there are other even more severe challenges that need 

to be addressed to enable automated consistency checking. In terms of scalability our approach has 

several new and unique solutions. 

Another focus of our work is on product models. In Section 2 we fisted and briefly discussed 

design and architecture models that are within the umbrella of product models. Product models describe 

the to-be-built software system, but not its environment. Our work does not investigate the relevance of 

our approach towards other types of models such as process models or property models (see Section 2.6). 

Another reason why we emphasize UML in this work is because UML has become a de facto standard for 

object oriented software development. Nevertheless, LJML's definition is often ambiguous and many 

interreIationships between views are undefined. Since it is not within the scope of this work to formalize 

LML we will use others' interpretations and formalizations whenever necessary and applicable (e.g., 

[Cheng et al. 19951 or [~vergaard 19981). We consider it within the scope of this work to investigate 

UML.'s ability to deal with view integration issues and to evaluate its deficiencies in that context. 



A final restriction of this work is the issue of resolving inconsistencies. We will primarily 

investigate the problem of how to identify and locate inconsistencies and we will not investigate how to 

automatically resolve them. The reason for that is that inconsistency resolution requires extensive hwnan- 

computer interactions and those are well outside the scope of this work (see above). 

The following will summarize the scope of this thesis: 

1. Describe a view integration banework as a foundation to support the definition and identification of 

(potential) inconsistencies. 

2. Find techniques to support view integration activities defined in the above framework. For this, we 

will partially rely on existing technology and will introduce some of our own. 

3. Combine view integration techniques to make them work together. This step is primarily necessary 

because we use some techniques from other researchers and those techniques need some adaptation 

us to be useful for ow purposes (e.g., [Koskimies et al. 19981). 

4. Show how view integration techniques can be applied to simplify consistency checking based on 

consistency rules (constraints) and how scalability issues can be addressed. 

5. Summarize and list potential inconsistencies that can occur between heterogeneous types of views. 

6. Build tool support for all integration activities in the context of ow in-depth approach covering class 

and object diagrams. 

7. Compare and assess our work towards other view integration approaches. 



5 Model Elements and Views 

So far we talked about the view integration problem at a very high level. In order to explore its 

details more rigorously, we need to fvst settle some terminology issues regarding the meaning of model 

elements, views, and models. This section will also categorize views that will serve as a foundation for 

our view integration framework later on. 

5.1 What are Model Elements, Views, and Models? 

Model Elements are the core elements that comprise views and models. For instance, a class 

diagram primarily comprises classes and relationships. Upon closer inspection, we aiso find operations, 

methods, attributes, parameters, constraints, and other model elements. The Unified Modeling Language 

(UML) defines a very rich set of modeling elements, a subset of which is depicted in Figure 13. One of 

the interesting features of UML is that its meca model was described using a subset of itself. Figure 13 

shows the subset that depicts both the UML mcta model and U M L ' s  meta-meta model. The most basic 

element of UML is an Element. A Model Element is derived from an element and all other UML elements 

itre children of model element. 

[OMG 19991 



Elements are the foundation of a model and can be atomic or composite. UML defines a series of 

atomic elements and then builds on them to describe more complex types of elements. Composite model 

elements comprise of atomic ones and are more abstract. The elements depicted in Figure 13 are both 

atomic and composite. To instantiate a particular application (e.g., software system), one has to instantiate 

the meta model. In our work, we use instantiations of the meta model to demonstrate inconsistency 

examples of UML. For instance, Section 6 shows specific examples of inconsistencies. 

V i e w  are collections of model elements. As it was discussed in Section 2, views address 

stakeholder concerns and thus incorporate model elements that are needed to describe the problems and 

solutions of those concerns. Nuseibeh describes views "to be loosely coupled, locally managed, 

distributable objects, Each [view] encapsulates partial knowledge about a system and its domain- 

expressed in a suitable representation scheme-together with partial knowledge about the overall process 

of development" [Nuseibeh 19941. 

The term Model is ambiguous. Software practitioners use it to describe any form of abstraction 

through which the real world could be approximated and analyzed. Sometimes, the term model is used 

even more generally to describe development concepts and philosophies. The term Methodology is 

sometimes used analogously. In this work, we normally refer to a model as the collection of modeling 

infonnation related to a particular software project. We define a view as providing a specific context for 

using models and model elements to describe and analyze stakeholder concerns. Since views are 

independent from one another, we see the mode[, which captures d l  view-related infonnation, as 

providing a framework for view integration. 

View integration has to happen on a meta-model level so that its instances (our product model) 

"inherit" the view integration features we wish to ensure. For the most part, we will not work with 

UML's meta-meta model, although there are exceptions (e.g., Sections 7.7 and 11.1.6) because one of our 

findings is that UML's meta model inadequately handles some of the view integration details needed to 

support scalability. Our findings thus also result in some recommendations on how to improve UML on 

both the meta level as well as the meta-meta level. 



5.2 Model Elements, Model Instances, and User Objects 

"An instance [of a model] is a run-time entity with identity, this is, something that can be 

distinguished from other run-time entities. It has a value at any moment in time. Over time the value can 

change in response to operations on it" [Rumbaugh et d. 19991. This definition applies to instances of 

elements. We also refer to those instances as user objects. For example, if a class defines a "Person" with 

properties like name and age then instances of that class could be "personl" of type Person with values 

"Alice" and '23" or "person2" of type Person with values "Peter" and " 15." In this example, Alice and 

Peter are user objects whose values can change over time (e.g., age could be updated). 
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Figure 14. The Four-Layer Meta-Modeling Architecture of UML wedvidovic et al. 1999b3 
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The distinction between meta models, models, and user objects is, however, more subtle. Figure 

14 depicts the four-Iayer meta-modeling architecture of UML as defined in medvidovic et at. 1999bl. 

The meta-meta model layer defines a language for specifying UML (the meta-meta model is depicted in 

Figure 13). The meta model layer, in turn, defines legal specifications for a given modeling language. FOP 

exampie, the UML meta model defines the legal notation and semantics of UML specifications. The 

model layer is then used to represent specific software systems (e.g., like the Person cfass above). The 

User Objects 

model, an instance of the meta rnodei, describes a software product. Finally, the user objects layer 

l nstances 



corresponds to specific instances of a given model (e.g., like the Alice and Peter objects above). User 

objects are the instances of model elements and capture run-time aspects of the product model. 

5.3 UML Model, Model Elements, and Views 

[Rumbaugh et al. 19993 defines UML as having structure and dynamics (see also Table 3). 

Structural views describe software system entities (components) and their relationships 

(interconnections). In UML, static views, use case views, implementation views, and deployment views 

support structure. Be haviord views describe interactions between software system entities (component) 

andlor relationships (interconnections). In UML, state machine views, activity views, and interaction 

views are behavioral. The main model elements of UML are listed on the far right column of Table 3. 

Views are constructed out of those elements. For instance, class diagrams can be constructed out of 

Table 3. UML Views and Diagrams adapted from [Rumbaugh et al. 19991 

Major Area 

Structwal 

Dynamic 

Extensibmy 

View 

Static view 

Use case view 

Implementation 
view 

Deployment view 

State machine view 

Activity view 

-- . . - 

Interaction view 

Diagrams 

Class diagram 

Object diagram 

Package diagram 

Use case diagram 

Component diagram 

Deployment diagram 

S tartchart diagram 

Activity diagram 

Model Elements 

Package, subsystem, class, 
association, generalization, 
dependency, realization, interface 

Use case, actor, association, extend, 
include, use case generalization 

Component, interface, dependency, 
realization 

Node, component, dependency, 
location 

State, event, transition, action 

State, activity, completion transition, 
fork, join 

Sequence diagram Interaction, object, message, 
activation 

Collaboration diagram 

all 

ColIaboration, interaction, 
collaboration role, message 

Constraint, ste~~otypc,  tagged values 



classes, associations, generalization, dependencies, and so forth. This list of model elements is not 

complete; instead, Rurnbaugh, Booch, and Jacobson only listed the more significant ones. In this work we 

will make use of a subset of UML covering those model elements that are shaded in gray. We, therefore, 

cover both structural and dynamical aspects UML has to offer. In the next section, we will also show that 

our selection also covers the most relevant other view dimensions. 

For a detailed description of the UML notation and semantics please refer to [Rumbaugh et al. 

19991. In [Medvidovic and Rosenblum 19991 and [Robbins et al. 1998) it can be further seen how the 

UML extensibility mechanism can be applied to model other model representations (e.g., ADLs). In 

Section 7.7 we will further show how this mechanism can be used to model view integration elements not 

currently present in UML. 

5.4 View Dimensions 

We extended the view classification of Rumbaugh-Booch-Jacobson [Rumbaugh et al. 19991 

shown in Table 3 to cover broader aspects of view integration (see Figure 15). Since views can be very 

distinct in what they are meant to convey, we have tried to capture their most significant commonalities. 

We found that views can be classified via three dimensions: their level of generality, their level of 

abstraction, and their level of behaviorism. The following sections describe what those levels convey. 

5.4.1 Level of Generality 

The level of generality of views indicates how universally true information communicated in 

these views is. For instance, a UML class view depicts a generic representation of modeling information 

since it describes invariant facts about software components that must always hold (e.g., humans are 

mammals). A counterexample would be an object view that describes less genetic information (e.g., Alice 

is a human and Alice is also a mammal). Based on more specific information, it not very intuitive to infer 

general information. For instance, we cannot generalize that humans are mammals based on the 

observation that Alice (an instance of human) is a mammal. An object diagram therefore does not 

communicate the same level of generality as a class diagram. In the three-dimensional projection of 

Figure 15 a cIass view would be depicted apart from an object view along the generality dimension. 
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Figure IS. Views Dimensions 

5.42 Level of Abstraction 

The level of abstraction of views indicates how decomposed modeling information depicted in 

views is (level of granularity). For instance, a UML package view depicts an abstract representation of 

modeling information since it engulfs complex and detailed element (e.g., the package animal engulfs a 

wide range of species such as monkeys, horses, and cats). A counterexample would be a class view that 

describes less generic information (e.g., monkey, horse, cat). In the context of less abstract information, it 

becomes more difficult to comprehend the "bigger picture." For instance, it is much harder to memorize 

that horses, cats, and monkeys need air him it is to memorize that animals need air. Although, the class 

view communicates the same information as the abstract package view, the level and amount of detail 

there obscures abstract information. In the three-dimensional projection of Figure 15, a class view would 

be depicted apart from a package view along the abstraction dimension. 



The abstraction dimension frequently reflects a system's decomposition. Usually, higher levels 

(layers) show the system in a more abstract fashion, whereas lower levels show the system in more detail. 

Each layer should represent the complete system. Abstraction also enables model partitioning into 

subsystem. 

Note that abstraction and generality seem closely related. There is, however, a strong distinction: 

whereas a less general view only needs to depict a part of the generic picture, a less abstract view still 

needs to depict the entire abstract picture. The less abstract view is also allowed to provide additional 

details, however, the less generic view usually only "instantiates" specific examples. Also, generic views 

tend to use model elements; less generic views tend to use user objects. Abstract views and less abstract 

views, an the other hand, usually stay within one such domain (both are either model elements or user 

objects). 

5.4.3 Level of Behaviorism 

The level of behaviorism of views indicates how much interactive information is communicated 

via these views. For instance, a UML statechart view depicts the behavior and interactions of modeling 

elements at any given time (e.g., elevator door must be closed before the cabin can go up or down). A 

counterexample would be a class view that describes interactions in general (e.g., cabin depends on door). 

Based on Iess behavioral information, it is hard, if not impossible, to infer interaction. For instance, based 

on the information that "Cabin depends on Door," we have no way of knowing how that dependency is 

actually realized. The class diagram, therefore, does not communicate the same level of behaviorism as 

the statechart diagram. In the three-dimensional projection of Figure 15, a class view would be depicted 

apart from a state view along the behaviorism dimension. 

5.5 View Space and its Relation to Views 

The three dimensions of abstraction, generality, and behaviorism form a three-dimensional 

space-a view space-into which (UML) views can be placed. In the context of this space, views can trade- 

off abstraction, generality, and behaviorism relative to one another. For instance, there could be one type 

of view that is less generic but more behavioral than another view. Figure 16 depicts the three- 



dimensional view space with class, sequence, object, statechart, and C2SADEL views placed in it. For 

instance, in the generic dimension, the class view is more generic than the sequence view, whereas, in the 

behaviorism dimension, the class view is less behavioral. Class views are also more abstract than 

sequence views. Figure 16 also depicts the partitioning of dimensions into ranges. Abstraction can be 

divided into abstract and concrete, generality can be divided into generic and specific, and behaviorism 

can be divided into structural and behavioral. 

The positioning of views into the view space is not absolute. For instance, class views can depict 

software systems through various levels of abstraction. The white arrow on the abstraction plane in 

Figure 16 depicts that range of freedom. Similarly, a class view can depict s o b a r e  systems though 

various levels of generality (e.g., hiding some interdependencies in views). The white arrow on the 

Figure 16. Views and the View Space 



generality plane indicates that fieedom. The levels of freedom in how views are assigned to dimensions 

are, however, limited. For instance, a class view depicts a very general form of structure. The amount of 

freedom of modeling behavioral system information via class diagrams is therefore very limited. Figure 

16 indicates the freedom of class views in the form of a rectangle. The rectangle is actually a prism since 

a class views does have some behavioral freedom to describe various levels of behaviorism (e.g., 

different relationship types such as  dependencies or associations denote different behaviors). 

The view space in Figure 16 also depicts the existence of the information gap visually (recall 

Sections 2.7 and 3.5). This gap denotes the view integration dilemma where it is not obvious how one 

may bridge the space between views. Also being able to group views into the view space allows us to 

reason (or at least speculate) about some interesting issues concerning views: 

1) What is the optimd number of views? (e.g., views covering d l  view dimensions) 

2) What views should be used together? (e.g., coverage of the view space) 

3) What is the perfect view? (e.g., a view that spans all view dimensions) 

The separation of views into view dimensions alIows us to split them into upper and lower 

ranges (e.g., abstract or concrete). We find eight regions in the view space. Table 4 lists those eight 

regions and also indicates which view@) we currently support in covering those regions. We mentioned 

Table 4. Eight Regions of the View Space 

Abstraction 

Abstract 

Abstract 

Abstract 

Concrete 

Concrete 

Concrete 

Generality 

Generic 

Generic 

Specific 

Abstract 

Concrete 

Generic 

Specific 

Specific 

Dynamism 

Behavioral 

Structural 

Behavioral 

Candidate Views 

Statechart views 
, 

Class views, C ~ A D E L  views 

Specific 

Generic 

Structural 

Behavioral 

Structural 

Class views 

Sequence views 

Object views 

Structural 

Behavioral 

Object views 

Statechart views 



in Section 4 that we scoped the limits of our view integration framework to four types: class, sequence, 

statechart, and object views. Table 4 shows how those four types cover seven out of eight view regions. 

The eighth view region (abstract, specific, and behavioral) is not covered by any current UML view and 

is therefore left empty. 

Note that Table 4 is not meant to categorize views. Instead it is meant to categorize software- 

specific information within views. For instance, class diagrams are both useful as abstract and concrete 

views. Nevertheless, the information modeled in abstract ctass diagrams is different from the ones 

modeled in a concrete class diagram due to decomposition. Note that both Figure 16 and Table 4 depict 

the C2SADEL Medvidovic et al. 1999aI me view which is not part of UML. We integrated ow work 

with CZSADEL, an architecture description language (ADL), to demonstrate our framework's ability to 

handle other types of views outside the UML domain. A pre-requisite for doing this is the ability to 

integrate a new view into the view space. [Egyed and Medvidovic 20001 discusses that integration in 

more detail since it is outside the scope of this work. 

5.6 Interdependencies of Model Elements 

Views (class views, sequence views, etc.) are comprised of model elements. In a graphical 

representation, there are typically box and arrow types of model elements. For instance, a class view 

consists of class "boxes" and association, dependency, or generalization "arrows." Both, boxes and 

arrows, are considered model elements; however, these model elements capture only interdependencies 

within views (and not between them). There are, additionally, a variety of relationships among model 

elements that cannot be captured within single views. For instance, an object that is an "instance" of a 

class or a class that is b4part-~f" a package describe inter-view relationships. Some of those relationships 

between views are captured in UML implicitIy and others explicitly. For instance. no expIicit relationship 

type exists to associate a class to a package. A class is simply linked to a package (grouping effect), 

denoting an implicit relationship. The abstraction dependency relationship between classes is explicit in 

that the dependency relationship is declared as its own type within UML. Mdti-view development covers 

typically two types of interdependencies between model elements: 



1) Dependencies within model elements belonging to the same view (intra-view) 

2) Dependencies between model eIements belonging to different views (inter-view) 

The former are part of regular views, such as class views, and the latter are usually not depicted 

in views (although several of them are defined in UML). Inter-view dependencies (as dependencies 

between views are often called) are also known as traces. The knowledge of how traces interrelate is 

known as traceability. 'Traceability can be easily defined as forward and backward links between a 

system and its allocated requirements, and between those requirements and achld design elements" 

[Gieszl 19921. In Sections 7.3 and 7.6.2, we will show why knowledge about traces is important for view 

integration. 

5.7 Summary 

This section refined our concepts of model elements, views, types, and instances. The 

contribution of this section towards view integration (and consistency checking) is the existence of a view 

space into which views (and model elements) can be categorized. Our view space is three-dimensional 

and denotes the level of generality, abstraction, and behaviorism a view can exhibit (we will show later 

how scalability and automation profit from that discovery). This section further discussed that there are 

two types of modeling information-information that describes a product and information that relates 

product aspects iunong various views. The latter is commonly referred to traces. It is those traces that 

describe the relative positioning of views in the view space (e.g., abstract traces describe that one view is 

more abstract than the other). 



6 Model Inconsistencies 

"Consistency checking between [views] is a vehicle for integrating these [views]. It is the 

activity in which two or more [views] compare knowledge and ascertain whether or not the relationships 

that supposedly hold between them do indeed hold" [Nuseibeh et d. 1994). This implies that one 

important goal of view integration is to provide automatic assistance in identifying view inconsistencies. 

Although ensuring the conceptual integrity of models and views may not be fully automatable, there are 

various types of inconsistencies that can be identified and even resolved in an automated or semi- 

automated fashion. This section will show examples of inconsistencies in UML. 

6.1 Examples of Inconsistencies 

Having defined views in terms of their dimensions, we will now complement that by showing 

more concrete examples of (potential) modeling inconsistencies that can occur between and within those 

view dimensions. 

6.1 .l Inconsistency between Class layers 

The first example shows a simplified air traffic control system (see Figure 17). The system is 

presented in two layers and, as it was discussed in Section 5.4.2, each layer must present the system in a 

complete fashion. The first layer shows the interaction of the Flight component that has some 

dependencies to Mechanic, Pilot and Flight Controller. The second layer refines this relationship by 

decomposing the Flight component into Flight Plan, Aircraft, and Flight Authoriuztion-the Flight Plan 

being dependent on the Pilot, the Aircrafi with its instance Boeing 747 being dependent on the Mechanic, 

and Flight Controller being dependent on Pilot. 

Although Flight Controller and Flight are present in the tower level diagram, it remains unclear 

whether their relationships are equivalent to those in the higher-level diagram. It would be dangerous (or, 

in this case, incorrect) to conclude that there is a dependency simply because there are lines going fiom 

Flight, via Pilot, to Flight Controller. Upon closer inspection, we find that both Flight Plan and Flighr 

Controller depend on P i h .  Since Flight Plan is part of Flight, it follows that even Flight Plan depends 

on Pilot. However, the fact that both Flight and Flight Controller share the same dependency to Pilot 
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Figure 17: Potential Mismatch between two Layers (Completeness) 

does not indicate that Flight depends on Flight Controller as the higher-level diagrams requires. Given 

the lack of additional information, was can conclude that there is an inconsistency between the 

abstraction (top diagram) and the refinement (bottom diagram). 

6.1 2 Inconsistency between Clam and Sequence Diagram 

Figure 18 depicts another example of an inconsistency in a simple aerodynamic system. The 

figure shows a class and a sequence diagram. The class diagram shows that the Car consists of the parts 

Tires and Engine. The sequence diagram further indicates a scenario where the impact of speed is 

analyzed based on the shape of the car. The sequence diagram shows this for a particular instance of My 

Car. Based on the sequence diagram, we can observe that the aerodynamics class accessed operations of 

Tires and Curs. Car, in turn, accesses Engine. If we compare this data with the class view, we find an 

inconsistency. Sincc Eres is p a t  of Car, only the Car object (My Car) should be able to call methods of 

Tires (mylkes) .  The sequence diagram violates that d e .  Possible ways of resolving that inconsistency 

are ( I )  to change the relationship between Car and Tires ; or (2) to change the direction of calls in the 
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Figure 18: Potentid Mismatch between Class Diagram and Sequence Diagram 

sequence diagram (e.g., the latter could be done by having Aerodynamics pass along the speed of the car 

as a parameter). 

6.1.3 Cardinality Inconsistency 

Figure I9 shows an example of an inconsistency in a hospital system. The class diagram (top) 

shows the relationships between a Patient and histher Visiting Record during a stay in a hospital. Even 

though a patient may have stayed in the same hospital more than once before. hdshe should nevertheless 

have only one current visiting record at any given time. This static rule is violated in both the object 

diagram (lower left) and the sequence diagram (lower right). The object diagram shows an instance of 

Patient John Smith and it also shows that he has two current visiting records. Similarly, the sequence 

diagram shows that a new visiting record is created for John Smith even though one already exists. Note 
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Figure 19: Potential Mismatch Between a Structural View and two Behavioral Views 

that there is no inconsistency between the object and sequence diagram. In above example, 

inconsistencies can only exist between the class and object diagrams, and class and sequence diagrams 

since both depict scenarios and it is generally impossible to reason about the validity of scenarios in 

context of other scenarios. 

6.1.4 lnconrfstency batween State and Sequence Diagrams 

The next sample mismatch discussed here is depicted in Figure 20. it shows another perspective 

of the hospital system where we can see the system from a clerk's point of view. The clerk is using the 

screen to create visiting records for patients. The state diagram of the Screen class (top) shows that 

information about a patient is entered and validated and, afta the patient database is checked, a visiting 

record is created. The inconsistency is in the treatment of Patient. The sequence diagram creates a new 

object of type Patient but the state diagram does not support that action. The sequence diagram (bottom 

right) shows that data is validated, patient information is retrieved and, since that given patient is not 

found, both patient and visiting record are created. 



Fipre  20: Potential Mismatch betwan State-, Sequence- and Collaboration Diagrams 
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Figure 20 adds a few extra challenges to our view integration problem since this example does 

not always use the same names for same/similar things. For instance, get parient dam and 

checkgotientDB may seem identical to us (hums) ;  however, For the computer this may not be the 

case. Thus, we are confmnted with having to identify a c e  relationships (e.g.. through n data dictionary). 

The other challenge we see in Figure 20 is even more interesting since it still remains hard to see what 

pans of the diagram correspond to one another. For instance. to which model element in the sequence 

diagram does the state Visiting Record Creased relate? If we relate it to the creaie arrow that calls Visiting 

Record fmm Screen. we would be incorrect. The create arrow just calls the method. No Visiting Record 

and no Patient are created at that point So the state Visiting Record Created clearly does not correspond 

to that arrow nor the next one, bu t  instead, it corresponds to the point when the create method is finished 

and execution control is returned to Screen. So. the state Visiting Record Created corresponds to the void 
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between the two create calls. This implies that model elements may not always be traceable from one to 

the other although a dependency may exist. Whereas the naming problem in this example can be 

approximated with the use of a naming dictionary (which keeps track of all synonymous model element 

names), finding an adequate way of relating state diagrams with sequence diagrams is not as simple. 

6.2 List of Inconsistencies 

Although, a human analyst would be able to reason about the existence of these kinds of 

inconsistencies, for a computer to come to the same conclusion is not trivial. For simpte examples like the 

ones above, the need for automated assistance in identifying and resolving inconsistencies may not be 

obvious; however. in more complex examples involving hundreds or thousands of modeling elements, the 

task of finding and resolving inconsistencies may become very time consuming and error prone- 

frequently having strong effects on project schedule and cost. Thus, automated assistance in identifying 

md resolving inconsistencies would result in major benefits. 

6.2.1 Inconairtenciea in the Abstract Dimension 

1. Concrete relation bas no corresponding abstraction 

This case indicates that a lower-level model relationship between classifiers is not reflected 

between their higher-level counterparts. This inconsistency may indicate that the higher-level view does 

not capture the complete extent of the component interactions. Figure 21 depicts an example of one such 

Dl Jog ParWion CorrWrm Partition 

Figure 21. Concrete Relation bas no Corresponding Abstraction 



inconsistency between a package diagram and a class diagram. At the package level, we find three major 

classifiers: DialogPackage, DataPackage, and ContainerPackage. Also, there are dependency 

relationships between DiafogPackage and all the others. The chis diagram reveals more information 

about the contents of the packages-DaraPacknge contains the class Guest, DialogPackage contains the 

class GuestEditDlg, and ContainerPackage contains the class GuestCaptureContainer. The inconsistency 

depicted in the figure is based on the observation that there is a lower-level association relationship from 

GuestCaptureContainer to Guest but no such relationship between their corresponding higher-level 

packages (from ContainerPackage to DataPackage). 

2. Abstract relation has not been refined 

Higher-level model relationship between classifiers is not reflected between their lower-level 

refinements. This may indicate that the lower-level view does not currectly realize the higher-level one. 

3. Concrete classifier has no corresponding abstraction 

Lower-level model element is not assigned to any higher-level element. Although, this 

inconsistency is more an indication of incompleteness than an error, it nevertheless indicates a problem. 

The example in Figure 22 shows the case of the class ReservationCoflection that was not assigned to any 

higher-level package although it interacts with classes that are part of those packages. 

Data Parlition Dialog Partition 

Packago Level 

Clam Level 

Figure 2 2  Concrete Clrrssifler has no Corresponding Abstraction 



4. Abstract d a d l e r  has not been refined 

Higher-level model element is not assigned to any lower-level elements. Figure 23 depicts an 

example of one such inconsistency bctween a package and a class diagram. The package diagram shows 

the two classifiers DataPackage and JavaA WT. The class diagram depicts a refinement of DataPackage 

only, which includes the classes Reservation, Hotel, and Guest. The package JavaAWT was not refined. 

The inconsistency depicted in the figure is based on the observation that there is a dependency from 

DataPackage to JavaAWT that was not realized at the class level since the classes corresponding to 

JavaA WT are missing. 

Plck8ge Level 
DeWackage 

Claas Level 
+hotel , 

Figure 23. Abstract Classifier has not been Retined 

5. Concnte relation is of different type than its corresponding abstraction 

Higher-level rehion type does not conform to lower-level relation type. For instance, if at a 

higher level a relation of type dependency is used, but at the lower level an equivalent relation of type 

association is used then this denotes a type inconsistency between layers. 

6. Concrete d&er is of different type than its corresponding abstmction 

Higher-level classifier type does not conform to lower-level classifier type. Figure 24 depicts a 

higher-Ievel classifier AccountActivity that is decomposed into a number of sub classifiers (Transaction, 

Puyment, Erpense, Cash, Check, and Creditcard). The classifier AccowttActiviry is an interface class, 
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Figure 24. Concrete Classifier is of DiPIerent Type than its Companding Abstraction 

which implies that it will only provide operation stubs without implementing them. The lower-level view 

has an interface class (Transaction) but also two realizations (Paymeru and Expense). The inconsistency 

shown here is based on the observation that the higher level class specifies a partition of the system that 

only handles ars interface. The lower-level representation, however, violates that constraint by also 

defining realizations. 

7. Concrete relation uses abstract c l d e r  instead of its refinement 

Model relationship from a lower-level classifier (of one partition) to a higher-level classifier (of 

another partition) is not reflected between their corresponding high-level classifiers andfor between their 

corresponding lower-level chssifiers. Figure 25 depicts an example of one such inconsistency between a 

package diagram and a class diagram. At the package level, we find two major classifiers called 

DialogPackage and Datapackage. The class diagram reveals more information about the contents of 

those two packages-Datapackage contains the classes Guest, Hotel, and Reservation; and 

DialogPackage contains the class ReservationEditDlg. The inconsistency depicted in the figure is based 

Guest 

Lower Lovd 

figure 25. Concrete ReJation uses Abstract ~ ~ t r  Instead of its Refinement 



on the observation that there is a dependent y relations hip fiom ReservationEditDig to Datapackage but 

no corresponding higher-level relationship from DialogPackage to DataPackage. Furthermore, there is 

no lower-level dependency from ResewationEditDlg to any of the three classes Guest, Hotel, and 

Reservation. 

8. Abstract relation uscs concrete cladler instead of its abstraction 

Model relationship from a higher-level classifier (of one partition) to a lower-level classifier (of 

another partition) is not reflected between their corresponding high-level classifiers andfor between their 

corresponding lower-level classifiers. 

9. Abstract classifier is replicated at the concrete level although refinement exists 

An abstract classifier can be replicated at the lower-level if no refinement exists (or is 

necessary). However, in the case of Figure 26, a refinement exists but it was not used in the middle layer. 

Note that this case probably denotes more an oversight than an actual inconsistency. 

Higher tevml 
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Figure 26. Abstract Classifier is Replicated at the Concrete Level Although Refinement Exists 

10. Concrete c i d e r  is assigned to multiple abstract clrrssifiers 

A lower-level element cotresponds to multiple higher-level elements. This inconsistency may 

indicate that the partitioning of the system is ambiguous or that the lower-lever element in question does 

in fact belong to an altogether third higher-level element (e.g., a library class that is used widely 



Figure 27. Concrete Classifier is Assigned to Multiple Abstract Classifiers 

throughout the application). Figure 27 shows one such example where the class Hotel is assigned to two 

separate packages. 

11. Cardinality of refinement does not match its abstraction 

Cardinality between higher-level classifiers does not conform to lower-level classifiers. Figure 

28 depicts an example of a cardinality mismatch between classes of a higher level and their 

corresponding lowcr level classes. The higher level view shows the two clases, Guest and Transaction, 

with an association between them indicating that there can be one or more (i.e., many) trmsactions per 

Lowor Level 

Figure 28. C a d d i t y  of Refinement does not Match its Abstraction 



guest and each transaction can involve only one guest. The lower level view introduces the helper class 

Account that masks the true cardinality and interdependency between Guest and Transaction. However, it 

can be inferred that if there is at least one account per guest and at least zero transactions per account, 

then there can be at least zero transactions per guest. The views are inconsistent since the higher level 

view assumes at least one transaction per guest. 

12. Direction of concrete relation does not match its abstraction 

Relationship between higher-level classifiers does not conform to lower-level classifiers. Figure 

29 depicts an example of an association relationship from the higher-level class Account to Deposit 

(indicating that Account calls methods prodiced by Deposit). The lower level view introduces the helper 

class Transaction and indicates an association relationship from Transaction to Account as weil as a 

realization relationship from Deposit to Transaction. Since the realization relationship implies that 

Deposit realizes (impIemen ts) Transaction, one can safely assume that Deposit inherits all features from 

Transaction which includes Transaction's association to Account. It follows that Deposit should have an 

association to Account and not vice versa as the higher tevei view suggests. 

Account 
- - - - - - - -- - -- - - - . . A - - - 

Deposit 
H l g h ~  Lwd c - y f m t ~ ~  . - - - -- - - - - . -- . - - - 

Figure 29. Direction of Concrete Relation does not Match its Abstraction 

13. Concrete classifier does not replicate a method of its abstraction 

A lower-level element corresponding to a higher-level element does not exhibit the same 

operations (services). Figure 30 depicts an example of a higher-level classifier Guest that was 

decomposed into two sub classifiers (Guest and Account). The classifier Guest describes an interface of 

two operators called injood-standing and get-balance. Similarly, the decomposed lower-level describes 

an interface on its own, The inconsistency shown here is based on the observation that the lower-Ievel 

view must at least exhibit the same services as the higher-level view. In our concrete example, the lower- 
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Figure 30. Concrete C l d t e r  does not Replicate a Method of its Abstraction 

level view provides the ingood-standing interface as required by the higher-level view but does not 

provide a get-balance interface. 

14. Concrete classifier does not replicate an attribute of its abstraction 

A Iower-level element corresponding to a higher-Ievel element does not exhibit the same 

attributes. This type of inconsistency is analogous to the above one (Figure 30). 

14. Concrete method is of dinerent type than its abstraction 

A higher-level methods does not have the same interface as its corresponding lower-level 

method. For instance, in Figure 3 1, the higher-level class Accounr defines two methods called get-amount 

and do-transaction. The get-amount method further specifies that it returns a value of type integer. The 

lower-level diagram refines Account into classes A ccount and Transaction. Together, the two classes 

Higher Level 

Lower Level 

~tamtmto:  Integer 
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Guest : 

Fignre 31. Concrete Method is ot Merent Type than its Corresponding Abstraction 
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provide the same methods as the higher-level class Account; however, the interface for the method 

get-amount is different. 

16. Concrete attribute is of diflerent type than its corresponding abstraction 

A higher-level class corresponding to some lower-level classes does not have the same attribute 

interface. This case is very similar to the one above. 

17. Abstract and public method is hidden in refinement 

A lower-level classifier does not provide the same public interface as its corresponding higher- 

level abstraction. Consider the example in Figure 31 again. There we saw the case of an incompatible 

method interface. The example, however, also showed another type of inconsistency. There we can see 

that the class Guest accesses the class Account, which implies that the class Guest could access either one 

of the two methods Account provides. At the lower level we see that both classes provide the same 

interface (let us ignore the renun type inconsistency). However, at the lower level the class Guest can 

only access one of the two methods (get-amount). The other method is not directly accessible to Guest. 

18. Abstract and public attribute is hidden in refinement 

A lower-level classifier does not provide the same public attributes as its corresponding higher- 

level abstraction. This types of inconsistency is analogous to the case above. 

19. Abstract pre-conditions may not become stronger in refinement 

Pre condition of instance may not become stronger (or be strengthened), Note: child classes may 

weaken the pre conditions of methods but not the other way around. If during software development one 

wishes to substitute off-the-shelf components. then wc need to ensure that the minimal requirements (e.g., 

pre-conditions) are satisfied. For refinement this implies that a component can substitute another 

component, although the latter must either satisfy the same pre-conditions or weaken it. For instance, if a 

method "do-tmnsaction" has the pre-conditions that it only works if an account was already created, then 

it could be substituted with another method that does not have that pre-requisite. 

20. Abstract post-conditions may not become weaker in rehement 

Post conditions of inheritance may not become weaker. Note: child classes may strengthen the 

post condition of methods but not the other way around. This case is analogous to above. 



21. Abstract invariant may not becomc weaker in refsnemsnt 

Invariant of inheritance may not become weaker (or be weakened). Note: child c1asses may 

strengthen their invariants but not the other way around. This case is analogous to above. 

6.2.2 Inconsistencks in the Generic Dimension 

1. Specific relation bas no corresponding generzrlizrrtion 

Figure 32 depicts a generic class view involving three classifiers: Reservation, GuesrCollection and 

Guest. To illustrate the possibIe interactions between those generic classifiers, the sequence diagram 

depicts one possible scenario of how an instance of Reservation ( r l )  calls an instance of GuestCollection 

(gc) and an instance of Guest (g). It can be observed that the instance of Reservation interacts with the 

instances of GuestCollection and Girest. The inconsistency depicted is based on the fact that the generic 

view supports the interaction horn 

interact with Guest. 

Sequence View 

Reservation to GuestCollection, but, does not allow Reservation to 

Figure 32. Specilic Relation has no Corresponding Generalization 

2. Generic relation bas never been instantiated 

This case denotes more an incompleteness (oversight). It indicates that a generic relation has 

never been instantiated in any one of the specific models. 

3. Specific classifier bas no corresponding generalization 

This case corresponds to case (1) above. The only difference is that a specific classifier (instead 

of relation) is used that has not been defined at the generic level (e.g., an object that does not have a 

class). 



4. Generic classifier has never been instantiated 

This case denotes more an incompIeteness than an inconsistency. It indicates that a generic 

classifier has never been instantiated in any one of the specific models. 

5. S p d c  &tion is o f  different type than its corresponding generalization 

Specific relation instance does not conform to relation type. This case is analogous to the 

abstractlconcrete counterpart discussed in 6.2.1. 

6. Specific classifier is of diflerent type than its corresponding generalization 

Specific classifier instance does not conform to classifier type. This case is analogous to the 

abstract/concrete counterpart discussed in 6.2.1. 

7. Cardinality of generic classifiers does not match specific scenarios 

Cardinality between generic classifiers (e.g., classes) does not conform to specific scenarios 

(e.g., sequences). Figure 33 depicts a relationship between the two generic classifiers Guest and Account 

that was specialized into a more detailed sequence diagram depicting an interaction scenario. The 

sequence diagram depicts one instance of Guest called Peter and two instances of Account called a1 and 

a2. The sequence diagram further indicates that both instances of Account are known to Guest which 

implies that at the generic level there should be at Ieast two Accounts per Guest (there could possibly be 

more, but not fewer). The inconsistency between the diagrams is based on the observation that the 

sequence view depicts a cardinality of classifier instances, which is not supported by the class diagram. 

- *tray. x 
Figure 33. C-ty of Generic C l d e r s  docs not Match Specific SccllPVios 



8. Direction of specific relation does not match its generalization 

Figure 34 depicts a generic class view involving the two classifiers GuestEditDlg and 

GuestCaptureCntainer To illustrate the possible interactions between those generic ctassifiers, the 

sequence diagram depicts one possible scenario of how an instance of GuestEditDIg (gedlg) calls an 

instance of GuestCaprureContainer (dm). The inconsistency shown here is based on the observation that 

instances call each other (set-hta in both direction); however, the generic view only supports uni- 

directional interaction. As such, only the instance of GuestEditDlg is aliowed to call 

GuestCaprureContainer and not vice versa. 

Generic View Sequence View 
- - - 

Gut~tEditOlg r 
, - - -  - 1- 
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Figure 34. Direction of Spec& Relation does not Match its Generalization 

9. Generic method bas never been instantiated 

This case is analogous to its abstractkoncrete counterpart discussed in 6.2.1. 

9. Generic attribute has never been instantiated 

This case is analogous to its abstractkoncrete counterpart discussed in 6.2.1. 

11. Specific method is of different type than its corresponding generalization 

This case is analogous to its abstract/concrete counterpart discussed in 6,2.1. 

12. SpeciZic attribute is of different type than its corresponding generalizrrtion 

This case is analogous to its abstractlconcrete counterpart discussed in 6.2-1. 

13. Specific view uses a method that is not defined in generic c l d e r  

Figure 35 depicts a generic class view involving the two classifiers ResewationSearchLVg and 

ReservationCollection. To illustrate the possible interactions between those generic classifiers, the 
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Figure 35. Specific View uses a Method that is not Defined in Generic Classitier 

sequence diagram depicts one possible scenario of how an instance of ReservationSearchDlg (rsdlg) calls 

an instance of ResewationCollection (rcoll). The scenario first creates the collection (using operator 

corwtruct), and then searches it (using operator rcoll). The inconsistency shown here is based on the 

observation the rsdlg uses two operators to access rcoll (construct and search) but one of it was not 

defined in the generic view. 

14. Specific view uses an attribute that is not defined in generic classifier 

This case is analogous to the previous case. 

15. Specific classifier bas not been assigned to generic c l d e r  

Note that this case is more an indication of oversight than inconsistency. Figure 36 depicts an 

example of a generic class view involving the two classifiers ResewationSearchDlg and Reservation, To 

find 
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Figure 36. Specific Classifier bas not been Assigned to Generic Classifier 



illustrate the possible interactions between the generic classifiers, the sequence diagram depicts one 

possible scenario of how an instance of ReservationSearchDlg ( d g )  calls another instance called rcoll, 

which in turn calls two instances of Reservation (rl and r2). The inconsistency shown here is based on 

the observation that no classifier type was associated with rcoll. 

16. Specific relation has not been d g n d  to generic relation 

Analogous to next case. 

17. Generic pre-condition is violated in specific view 

Figure 37 defines a generic condition that the construct method may only create an object of 

type Guest if the operation is successful. In the sequence view (specific view) we can see that the 

operation construct created an object, although it is labeled a failure. 

Guest::construd - il successful abject of 

Generlc Vhw type Guest is created 
if failure no object b 
created 

* - 

Sequence View construct 
[failurej 

> 
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Figure 37. Generic Pre-Condition is Violated in Specific View 

1%. Generic post-condition is violated in speciiic view 

Analogous to previous case. 

19. Specific method used was declared ptivate in generic view 

Denotes a case where a generic view published a method that was declared public, but the 

specifc view declared that same method as private. 

20. Specific attribute used was declared private in generic view 

Analogous to previous case. 



6.2.3 Inconaistmcies in the Behavioral Dimmion 

1. Imported guard was not declared in structural view 

Figure 38 depicts an example of a generic class view involving the three cIassifiers Guest, 

GuestDlg, and GuestDB. The figure also illustrates the statechart diagram belonging to the class 

GuestDlg which shows that the class has three different states depending on the extend of the information 

capture, The state transition from guest unspecified to guest identijied uses a guard saying that the 

transition only happens if the object "guest::is,vaIid()" returns true, The inconsistency is based on the 

observation that the class corresponding to 

name. 

object guest does not have a method or attribute with that 

Figure 38. Structural View does not Support all Behavioral Needs 

2. Imported trigger was not declared in structural view 

This case is similar to the previous case. Figure 38 also depicts an example in case of the state 

transition from guest identified to guesr created. There it says that the trigger of "guestDB::add()" needs 

to have been called for that transition to happen. Since the add method is not part of GuestDlg it is 

expected that it must be part of another class. The class GuesrDB, however, does not have a method of 

that name. 

3. Structural view docs not allow an interaction as required by guard 

This inconsistency type indicates a case where interactions on the behavioral side are not 

reflected in the structural declaration. Figure 38 shows one such example in context of the state transition 



from guest unspecified to guest indentifled. It can be seen that this transition depends on an imported 

guard from the class Guest. Even if Guest would have a method called is_valid(), there would still exist 

an inconsisteny with respect to the allowed interactions. It must be noted that the current definition of the 

structural view (the class diagram) does not allow GuestDig to access Guest. 

4. Structural view does not allow an interaction as required by trigger 

This inconsistency is analogous to the previous one. Figure 38 would not have an inconsistency 

with respect to this case if the state transition between guest identified and guest created would have a 

method called add(). The class GuestDlg already depends on GuesrDB, thus, the structural definition 

supports the required interaction. 

5. Relationship between classes is not reflected in statechart 

This type of inconsistency is the counterpart to the four types we discussed previously. It states 

that if there is a structural dependency between any two classes, then statecharts belonging to those 

classes must also interact. 

6. Method was declared "query" but is used for non-circular state transitions 

This case indicates that the declaration of methods has an impact on how that method can be 

used. In Figure 39, we can see a class declaration which defines a set of attributes and methods as well as 

some properties of them. The figure dso defines a statechart of that class indicating that the class may go 
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Figure 39. StrPcturrrl Declaration does not Match its Usage 



through the three states closed, empty, andfilling. It can be observed that the method open was declared 

as a query which denotes that it cannot change states. The "query" declaration is meant to indicate 

methods that do not alter states if they are called. This declaration is inconsistent with the statechart view 

where the open method is used for state transitions between closed and empty as well as between closed 

and fifting. 

7. Method w m  declared "action" but is used for arcular state transitions only 

Figure 39 illso shows an inconsistency of this type. If a method is declared as action, it is implied 

that this method may cause a state transition if invoked. For instance, the method delete causes both 

regular and circular state transitions. The inconsistency is with method insert which was defined as action 

but is never used for transitions between two different states. 

8, Method was declared "activity" but is used for state transitions 

If a method is declared as "activity," it is implied that this method is of longer duration. For 

instance, a method cdl that waits for a user to press a button is of that type. Activities are usually 

associated with states. Should an activity be associated with a transition than this denotes an 

inconsistency. 

9. Guards leaving state are not mutually exclusive 

Figure 39 also shows im example of this case. The state transition open has two exits from the 

state closed. In order to decide which transition to use (e.g., the one to empty or the one to filling), guard 

conditions must be attached. For the state diagram to be deterministic, those guard conditions must be 

mutually exclusive. Currently, there exists an inconsistency in that the two guard conditions overlap in 

case of "count==O." 

10. GuaMrigger p m  or post condition does not mtcb method pre- or post condition 

m i s  type of inconsistency indicates that guard and mgger conditions must match their 

declaration. In Figure 39, the method delete has the condition that it may only be invoked if "count>O." If 

it should be invoked otherwise, the result would be undefined. The statechart view, however, defines a 

state transition for delete with the guard condition "count=O," which denotes an inconsistency. 



.\d' 
Figure 40: Categories of Mismatches 

6.3 Classification of Inconsistencies 

With respect to view inconsistencies we distinguish between three basic types (Figure 40): (1) 

inconsistencies within a single instance of a view; (2) inconsistencies between a set of view instances of 

the same view dimension; and (3) inconsistencies between a set of view instances of different view types 

and dimensions. 

In the previous section we did not represent a complete list of inconsistencies, but have instead 

focused on inconsistencies between views of different types and dimensions. The reasons for that are 

simple: most current view integration approaches make the simplistic assumptions of consistency 

checking between the same view instances and types (first and second categories) [Grundy and Hosking 

19961 wang et d. 19971. Actually, even UML defines simple consistency rules at those levels. With this 

simplistic assumption, consistency checking is often doable via simple comparison. In Section 7 we will 

show hat view integration is complicated by having to consider differcnt view dimensions and types. Our 

approach works for all three categories. 

6.4 Act in the Presence of Inconsistencies 

This section emphasized the existence of inconsistencies that are due to the gap between models 

and views. "While an approach that is intolerant of inconsistencies and multiple perspectives may be 



adopted (and is adopted by many organizations that wish to enforce a disciplined development policy), 

there appears to be mounting evidence that such an approach is not tealistic, and that software deveiopers 

prefer to work with multiple views ... and languages .., in which inconsistency is toierated" [Nuseibeh 

19941. 

What this implies is that inconsistencies are not inherently bad. They only become bad if one is 

not aware of their existence or does not react to them "Inconsistencies are inevitable in software 

development . . . processes and products. They provide a focus for further development .. ., and can be 

regarded as 'desirable' in that they highlight issues that need further attention. As such, they should be 

tolerated, analyzed and acted upon" [Hunter and Nuseibeh 19971. There have been numerous approaches 

to how one should act in the presence of inconsistencies (e-g., [Balzer 19911, [Narayanaswamy and 

Goldman 19921, and [Hunter and Nuseibeh 19981). 

6.5 Summary 

This section discussed potential negative impacts of modeling via multiple views. We started off 

by presenting some examples of inconsistencies among two or more types of diagrams. We then 

generalized and presented a list of inconsistencies dong the three dimensions presented in the previous 

section. We identified those in the course of evaluating a large number of scenarios. We also emphasized 

that this work addresses the most complicated and presently mostly unsolved types of inconsistencies-the 

inconsistencies between different types of views and view dimensions. Finally, we very briefly discussed 

the impact of inconsistencies. With that we wanted to show that having inconsistencies is not a bad thing 

per se; however, not knowing about them or not resolving them in time may result in serious 

consequences (e.g., negative impact on cost, schedule, etc.). 



7 Our View Integration Framework 

Nuseibeh, Kramer, and Finkelstein museibeh et al. 19941 wrote that the term view 

inconsistency indicates that some form of rule that expresses a relationship between model elements has 

been broken. It is these kinds of inconsistency rules we are aiming for in our integration work. However, 

rules alone are only limited useful if they cannot be applied automatically to check for consistency. This 

implies that there is more to view integration than consistency rules and model constraints. What we also 

need is an environment where we can appIy those rules in a meaningful way. 

7.1 Overview 

As discussed in previous sections, views are abstractions of information relevant to specific 

concerns. Views are structured in such a fashion that they arrange and present information in the most 

meaningful way to stakeholders (developer, architect, customer, etc.). Figure 41 depicts the outline of a 

generic development framework. Software system information is stored in a system model. Stakeholders, 

who are primarily arc hi tects and designers from a product modeling perspective, access that model and 

manipulate it throughout the course of the development life cycle. The model itself is not (or should not) 

be accessed directly. Instead, model information is projected (abstracted) into views. Views are then 

manipulated and changes within these views are then reconciled with the underlying model. 

Architect 2 

\ -  < abstract \ \ reconcile 
1 

\/ \ \ 
Architect l 

Synthesis Analysis 

Figure 41: Model-based Devehpment-a view independent representation 



We refer to the manipulation of views as synthesis although it must be noted hat this type of 

synthesis is mostly manual. Through synthesis, model information is created, modified, and deleted. We 

need view analysis to ensure the consistency and conceptual integrity of views and their changes. The 

view analysis component is the focus of this work and is described next. 

7.2 View lntegratian Framework 

To address view integration, we have investigated ways of describing and identifying the causes 

of modeling mismatches across UML views. To this end, we have devised and applied a view integration 

framework, accompanied by a set of activities and techniques for identifying inconsistencies in an 

automatable fashion. Our view integration framework is accompanied by a set of activities and techniques 

which are depicted in Figure 42 (this figure is a refinement of Figure 41). As it can be seen, our view 

analysis component incorporates three major activities called Mapping, Transformation, and 

Dflerentiation. 

The system model in Figure 42 represents the model base (e.g., UML model) of the designed 

software system (recall Figure 4 1). To create and manipulate these models, there is a need for a synthesis 

component (View Synthesis). To date, numerous (system) models and synthesis tools have been 

proposed. For instance, our framework is integrated with the Unified Modeling Language, which is used 

as the system model, and RationaI RoseTM, which is used as its synthesis tool. We need View Analysis 



during software evolution whenever modeling infonnation is added or modified since changes must be 

validated against the rest of the system model to ensure their consistency. 

Our view integration approach exploits the redundancy between views. For instance, if view A 

contains information about view 8, this information can be seen as a constraint on B. The view 

integration framework is used to enforce such constraints and, thereby, the consistency across views. In 

addition to constraints and consistency rules, ow view integration framework also defines what 

information can be exchanged and how information can be exchanged. This is critical for a scalable and 

automated inconsistency identification process. View Analysis, a continuous activity, involves the 

following major (sub)activities: 

Diflerenricrtion: traverses models and views to identify potential inconsistencies within and between 

modeling elements. Inconsistencies can be identified automatically through violations of consistency 

rules that are validated against the system model. Automated differentiation strongly depends on 

mapping and transformation, the other major activities of view analysis. 

Mapping: identifies and cross-references related modeling elements that describe overlapping and 

thus redundant pieces of information (e.g., as in Figure 6 on page 28). Mapping is often done 

manually via naming dictionaries or traceability matrices. Mapping simplifies differentiation in that 

it defines what modeling elements should be compared. 

Transformation: extracts and converts modeling elements of views in such a manner that they (or 

pieces of them) are more understandable in the context of other views. Transformation simplifies 

differentiation in that it makes model elements of different types and shapes easier to compare (how). 

It can be automated using abstraction, genemlization, structuralization, and translation (discussed 

later). 

Each view integration activity represents a complex problem in itself. This work will discuss the 

details of those activities later. It must be stressed that those activities are not separate but, instead, they 

need to be put together to simplifL and improve the overall task of inconsistency detection. 

Figure 43 depicts the relationship between Mapping, Transformation, and Dif/erentiation in the 

context of four inconsistency detection scenarios. In order to compare the two userdefined views A and 

82 



B (containing userdefined modeling elements), we could either a) compare them directly; b) transform 

(convert) A into 'something like B' so that A becomes more easily comparable to B; c) transform B into 

'something likc A' so that B becomes more easily comparable to A; or d) transform both A and B into 

'something like C' so that they are more easily comparable in the context of C. The role of mapping is to 

scope down transformation and differentiation by specifying what information needs to be exchanged and 

what information needs to be compared. The role of transformation is to enable more direct comparison 

by converting modeling eiements into similar types and thus defining how modeling elements can be 

compared. Transformation also extends the model in that new (automatically generated) modeling 

elements are derived from user-defined ones. For instance, the "something-like" boxes represent derived 

model information that must also be storcd. 

Figure 43 also shows that multiple input sources must frequently be used to automatically 

transform a modeling element fiom one type into another. Although mode1 elements of different types of 

views may overlap in what they are meant to convey, the form and the boundaries of those descriptions 

may vary. For instance, in order to generalize the relationships between two classes one needs to andyze 

user map IFF, 
~efined i 7 

Figure 43. View Tramdormation a d  Mapping to Complement View C o m p a r i , ~ ~  



the instances of those classes and their interrelationships. This implies that in order to convert modeling 

information from type A into type B, the transformation method may have to consult additional 

information about A and B (multiple sources of information) to transform A, B or both of them. 

This work will primarily investigate the activities of transformation and differentiation, and 

secondarily the activity of mapping since we try to emphasize automation since transformation and 

differentiation embody the strongest prospects for automation. Although mapping is equally important for 

view integration, we nevertheless find that mapping is dso the hardest to automate. Mapping requires 

intrinsic knowledge about the relationships between modeling elements of systems, a problem also 

known as the traceability problem [Gotel and Finkelstein 19941. Although mapping has received 

considerable attention in the research community, to date no truly automatablc solutions have been found 

to adequately address it. 

The other reason why we consider auromtrting mapping less important is da ted  to the frequency 

of that activity. Mapping between modeling elements needs to be defined only once per model element 

permutation (between any two model elements) whereas transformation and differentiation between that 

same permutations may happen multiple times throughout the project evolution, The latter is caused by 

the continuous need of ensuring consistency between views that is triggered by changes. Not being able 

to automate mapping, however, does not preclude automated view integration. Our framework has been 

built in such a manner that it can handle incomplete mapping information. Furthermore, our consistency 

checking approach can also detect missing or invalid mapping information. 

To demonstrate our integration approach, we will illustrate it in the context of the Unified 

Modeling Language (UML), Our framework and its activities are also applicable to other sets of 

heterogeneous views, although some transformation and comparison rules might have to be adapted. To 

date, we have applied our view integration framework on several UML views (class, object, sequence, 

and statechart views). We have also expanded the use of the ~ e w o r k  beyond UML, to architectural 

styles (e.g., C2 [Taylor et d. 19961, pipe-and-filter [Shaw and Garlan 19961, layered, etc.) where we 

vaiidate consistency between C2 and UML views [Egyed and Medvidovic 20001 and between AAA 

models [Gacek 19981 and UMf. views [Egyed and Gacek 19991. 



This work will also demonstrate a prototype tool, called UMUAnalyzer, which implements a 

part of our framework. Although it is our goal to provide as much automation as possible, we do not 

believe that full automation for view integration is always feasible; consistency checking will likely 

incorporate a sizeable human element. However, we do believe that even partial automation can save 

considerable time and effort and wc will give examples later. The following subsections will describe our 

approach in detail. 

7.3 Simple Model Transformation 

The importance of transformation is the conversion of modeling information between different 

types and views in such a manner that they become more easily comparable, This section will first 

discuss the aspects of transformation that are more challenging than simply converting information. We 

will therefore introduce simple transformation techniques, explain them in some detail, and then elaborate 

on how those simple transformation techniques can be integrated into complex ones. 

At first glance, view transformations may appear as being strongly dependent on the types of 

views involved. Although this is generally true, we nevertheless found that views can be grouped into 

categories and transforming between those categories often involves similar concepts. In Section 5, where 

we discussed models, views, and model elements, we found that views can be categorized into three 

major dimensions: abstraction, generality, and dynamism (recall Figure 15). 

Figure 44 depicts our view space from a different perspective. As discussed in Section 5.4, 

model elements belonging to views can be placed into regions in the view space. Figure 44 shows that, by 

transforming model dements, their positions in the view space change. For instance, a transformation 

process could make a set of model elements more abstract (up arrow), more structural (left arrow), or 

more generic (forward arrow). Similarly, transformation could achieve the opposite: making model 

elements more concrete, behavioral, or specific. The circular arrow in the middle denotes a case of 

transforming model elements kom one type to another without "moving" in the view space. We 

categorize transformation according to this structure,. 
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Figure 44. Transforming Model Ekments between Regions in the View Space 

The eight quadrants of the view space we discussed in Section 5.5 should be seen as categorizing 

the relative dependency between any two given views (or model elements). For instance, if there rue three 

class diagrams A, B, and C of decreasing level of abstraction, then between A and B, A is abstract and B 

is concrete but between B and C, B is abstract and C is concrete. The quadrants (regions) depicted in 

Figure 44 therefore show the relative relationships between any two given views. 

Having three dimensions of views implies four types of transformation axes (Figure 45 depicts 

these four types): Abstraction to capture transformation between abstract and concrete views; 

Generalization to capture transformation between generic and specific views; Structuralization to capture 

t~nsforrnation between structural and behavioral views; md Transhion to capture transformation within 

a single quadrant (both input and output type are of the same Ievel of generality, behaviorism, and 

abstraction as in the transformation between sequence and collaboration diagrams). 

We call the upward transformation process in Figure 45, which yields a more abstract view, 

abstraction. Abstraction takes information and simplifies it. For instance, a class diagram can be 

abstracted into a more abstract class diagram (see Section 7.3.1). It is important to note that abstraction 



Abstraction 
(e.g., Class to 
C2 diagram) 

Stnrcturalization Translation 
(0.g.. class 
diagram to OCL) 

(e.g., sequence to 
class diagram) 

Figure 45. View Dimension and View Tramfonaation Axes 

changes a view's positioning in the view space only dong the abstract-concrete dimension. A pure 

abstraction process does not change a view's generality or behaviorism. 

The sideways transformation process in Figure 45 is called structuralization. Structuralintion 

takes information and extracts its configuration (structure). For instance, a state diagram can be 

structunlized into a class diagram (see Section 7.3.3). It is again important to note that structuralization 

changes a view's positioning in the view space only on the behaviorism level without changing a view's 

abstraction or generality. 

The forward arrow in Figure 45 is called generalitorion. Generalization takes information and 

merges different interpretations to yield more comprehensive information. For instance, a sequence 

diagram depicts only scenarios. It is hard to generalize from a single scenario onto general structure 

and/or behavior. However, by merging scenarios together we get a more general view (e.g., a class 

diagram). Again, generalization only changes a views positioning at the generality level. 

Figure 46 shows the transformation techniques we are currently supporting in our framework. 

The arrows depict the transformation methods and the heads of the mow depict the directions of the 

transformations. The thick arrows are currently tool supported via our UMUAnalyzer tool discussed in 

Section 8. The dashed thick arrow is dso tool supported via the SCED tool developed by Koskimies, 

Sysd, Tuomi, and Miinnisto [Koskimies et al. 19981. The remaining arrows are model supported and will 

also be discussed later in Section 7.3. Model supported implies that in this work we will describe ways of 



Figure 46. Translormations Currently Supported 

automating them, although tool support has not been created yet. The scope and limitations section 

(Section 4) already discussed the reasons for this decision. 

All arrows in Figure 46 are generally uni-directional because the direction of automatic 

transformation tends to go from concrete to abstract. from behavior to structure, and from specific to 

generic. The rationale for this is that our transformations tend to go from more information to less 

information (e.g., abstraction removes lower-Ievel details not significant on an abstract level, 

gcneraiization merges commonalities between scenarios, and structuralization omits behavioral 

information not significant for the configuration). Since reversing transformation implies going from less 

information to more information, it follows that transformations are generally not reversible. This 

observation is dso confirmed by Koskimies' tool (SCED). 

Additionally, it must be noted that even if transformations would be generally reversible (e.g.. 

From structure to behavior) here wouid be only little value added since for consistency checking the 

direction of transformation is not important (assuming that a reverse transformation does not convert any 

additional information that the regular uni-directional transformation would not have transformed - recall 

scenarios b) and c) in Figure 43). For consistency checking it is only significant that information is 

transformed (regardless of direction) since consistency checking needs transformation only for 

comparison purposes. 



The following subsections are devoted towards simple model transformation. In order to 

automate view transformation, we need to automate the abstraction, structuralization, generalization, and 

translation activities. It turns out that the transformation processes for each of the four transformation 

types are quite distinct; however, different instances of the same transformation types exhibit similarities. 

For instance, the techniques used to abstract class diagrams and the ones used to abstract state diagrams 

are very similar. The same observation can be made about generalization and structuralization. 

Translation is the cover term for all remaining vansfonnations not covered by above three types. 

Translation may, thus, vary more strongly. 

Above we discussed the importance of transformation in enabling the conversion of model 

information between different types and views so that they become easier to compare to one another. The 

following will first discuss the basics of our simple transformation methods which are more challenging 

than just simply converting information. We will introduce simple transformation techniques, explain 

them in more detail, and then elaborate on how those simple transformation techniques can be integrated 

into complex ones. This section will also briefly discuss available tool support. 

7.3.1 Abstraction 

The process of abstraction deals with the simplification of information by removing details not 

necessary at a higher, more abstract level. We distinguish between two types of abstraction-classifier 

abstraction and relation(ship) abstraction. Both types of abstractions are based on diagrammatic views 

that use box-and-mow representations (e.g., class diagrams, state diagrams, etc.). The following 

subsections describe both abstraction mechanisms. 

7.3.1.1 Classifier Abstraction 

Classifier abstraction is probably the more intuitive abstraction type since it closely resembles 

hierarchical decomposition of structures provided in many views. For instance, in UML, layers of 

packages can be built using a feature of packages that allows them to contain other packages. Thus, a 

package can be subdivided into other packages, forming a tree hierarchy. In classifier abstraction it are 

classifiers (e.g., packages, class, states, etc.) that can be grouped ("collapsed") to yield a more simplified 



(ergo abstract) view. The relationships of the collapsed, concrete classes then become part of the interface 

of the more abstract one. Since UML does not support the composition/decomposition of all types of 

classifiers, we introduce the concept of a composite model element in UML that allows model elements to 

contain other model elements. 

Figure 47 (left) shows a generic example of a classifier abstraction at three levels. The lowest 

level contains a concrete view (e.g., class diagram) and depicts four classifiers (A-D) and four relations 

between them (a to 8). The middle diagram is an abstraction of the lower-level diagram where the 

classifiers B and C are grouped together and form a composite classifier named BC. The relation yas we11 

as the classifiers B and C are hidden inside the composite classifier BC and not visible any more at the 

middle-level (however the public interfaces of B and C must still be represented by its abstraction BC). 

The third and topmost level is a further abstraction that adds another composite classifier BCD that 

contains the composite classifier BC from the middle level as well as the ciassifier D fiom the Iowest 

levei. Thus, composite classifiers may also contain other composite classifiers forming a tree like 

hierarchy. The tree structure is visible through the traces linking the three levels of abstractions in Figure 

47 (left). 

In the case of the abstracted composite classifiers (e-g., BC), the question remains as to what 

type they rue. For instance, if a couple of concrete classes are collapsed into a singe composite class then 

the result should be a composite classifier that "inherits" the interfaces fiom the concrete classes. But is 

the composite box still a class? UML distinguishes different types of classes; regular class, utility class, 

Figure 47: Classitier (left) and Relation (right) AbstrrrctiobTwo Approaches 



meta-class, abstract class. Fwthermore, UML supports stereotypes that can be used to create additional 

types. If now an abstract class and a regular class are collapsed then is the composite class abstract or 

regular? For a transformation tool to support automated abstraction, a set of mles must be provided to 

specifj these transformation patterns. These rules will be discussed later. 

73.1.2 Rela tion Abstraction 

In a relation abstraction [Egyed and Kruchten 19991 it is the relation and not the classifier that 

serves as a vehicle for abstraction. Relations (with classifiers) can be collapsed into more abstract 

relations. Relation abstraction is needed since maintaining a strict hierarchy of classifiers (as classifier 

abstraction requires) is not always possible. For instance, during refinement, model elements may be 

introduced that may not refine abstract classes but may instead refine the relationships between thcm. 

Figwe 47 (right) shows an example of a relation abstraction using again three levels. The most 

concrete level (bottom) contains four classes A, B, C, and D as well as four relations a, f3, y, and 6. The 

$->C->8 pattern is collapsed in the middle Iayer by introducing the composite relation 7. Similarly, y+C- 

A is collapsed into the composite relation 4. The third level takes a and B fiom the lower level as well as 

( from the middle level and further collapses them into the composite relation o. The Iast abstraction 

again shows that composite relations may themselves contain other composite relations. Like composite 

classifiers, composite relations form a tree-like structure between the levels. Circular dependencies 

between composite elements (both classifiers and relations) are not allowed. For instance, < is not 

allowed to be an abstraction of o. 

73.13 Semantic Rdes  for Abstraction 

The main challenge during abstraction is to hide less important model elements (e.g., classes in 

class diagams) and to only depict the remaining classifiers and their relations as part of the higher-Ievel. 

The challenge we need to address is that at a concrete level, the dependencies between abstract model 

elements are not explicitly stated. Instead, those dependencies cue hidden within the lower-level model 

elements that we would like to hide. Classifier and relation abstractions, therefore, utilize a technique that 



allows groups of model elements (classifier or relations) to be collapsed into high-level composite model 

elements that s d z e  their lower-level semantic dependencies. This paper will describe the patterns. 

rules, and an algorithm necessary to do this. 

7.3.1.3.1 Absbaction Examples 

Take, for instance, Figure 

48, which depicts three simple class 

diagrams. The first diagram (top) 

describes the relationships between 

Compact Car, Car, and Driver. I t  

asserts that a Car is operated-by a 

Driver and that a Compact Car is a 

type of Car. Assuming that we do 

not care about the class Car but 

- 
/ man , 
) --.- 

has Hotel stays-at .--- i .  

Figure 48. Class Patterns 

instead would like to know the direct relationship between Compact Car and Driver, then we are actuaIly 

asking for an abstracted version of that class diagram where the "helper class" Car and its relationships 

have been replaced by a simpler relationship. To find out whether there is indeed such a simpler 

relationship between Compact Car and Driver, we need to analyze the semantic dependencies between 

Compact Car, Car, and Driver. 

The information that a Car is operated by a Driver (association relationship) implies a property 

of the class Car (class properties are methods, attributes, and their relationships). The information that 

Compact Car is-a Car (inheritance) implies that Compact Car inherits all properties from Car. It follows 

that Compact Car inherits the association to Driver From Car which implies that a Compact Car is also 

operated by a Driver. This knowledge of the transitive relationship between Compact Car and Driver, 

impIies that the classifier Car, as well as the relations is-a and operated-by, could be collapsed into a 

composite, more abstract relationship linking Compact Car and Driver directly. That composite relation 

should be of type association. This example shows a case where knowledge about the semantic properties 



of classifiers and relations allows us to eliminate a helper class and derive a more abstract class diagram 

The above example therefore indicates a class abstraction pattern of the form: 

Given: Inheritance - >  Class -> Association 

Implies: Association 

This pattern may be used to collapse any occurrence of the "given" pattern into an occurrence of 

the "implies" pattern. The second diagram in Figure 48 (middle) depicts a Guest who stays-at a Hotel 

which has Rooms. What the diagram does not depict is the (more abstract) relationship between Guest 

and Rooms. Semantically this diagram implies that Room are part of a Hotel which, in turn, implies that 

the class Room is conceptually within the class Hotel. If, therefore, Guest depends on Hotel, Guest also 

depends on all parts of Hotel-including Room (note that this assumption is weaker in that Guest may not 

actually depend on all parts of Hotel - we will discuss implications of this later). It follows that Guest 

relates to Room in the same manner as Guest relates to Hotel. We again found an abstraction pattern by 

analyzing the semantic relationships between the Hotel, Guest, and Room configuration: 

Given: Association - >  Class c- Aggregation 

Implies: Association 

Note that the directions of arrows have relevant semantic meanings. If Hotel were part of Room 

then we could not automatically assume the correctness of above pattern. 

The third example depicted in Figure 48 shows an elevator system where a User operates the 

Control (panel) class and depends on the Door when to enternewe the cabin (only if the door state is 

"open"). The figure hides the more abstract relationship(s) between User and Elevator. Assuming we 

have the knowledge that Cabin, Door, and Control are part of Elevator, we need to analyze how these 

three classes could be merged together to form one, more abstract class called Elevator. In the case of 

Door and Control, both are classes. A combined composite class of the two should, therefore, be another 

class. Grouping is a conceptually simple operation since it involves just the replacement of a group of 

classes by a single class. In the case of classes we could, therefore, devise the following simple rule: 

Given: Class -r  Association -> Class 

Implies: Class 

Applying the above d e ,  we find that classes Cabin, Door, and Control become one class, We 

aIready know from the second example that if User depends on a part of a class. then User also depends 



on the composite class. Thus, User must also have a Dependency and an Association relationship to the 

composite cfass Elevator. As mentioned before, the types of classifier abstractions are relevant. For 

instance, if we were to abstract two interface classes, then the resulting class will also be an interface 

class. 

7.3.1.3.2 Abstraction Patterns 

For a transformation tool to automatically support abstraction, abstraction rules must be 

provided. Figure 49 shows two simple structures for abstraction rules (the top stnictwe is for the classifier 

abstraction and the bottom structure is for the relation abstraction). Abstraction rules follow a simple 

concept. They define an input and an output pattern analogous to the "given" and "implies" pattern we 

used previously. Furthermore. the output pattern should be simpler (more abstract) than the input pattern, 

thus, guaranteeing that each applied abstraction rule indeed yields an abstraction. 

A classifier abstraction rule should have an input pattern of at least two classifiers with or 

without a relation between them. The corresponding output pattern should then be at least a single 

classifier. An example or this kind of abstraction pattern was given in the Cabin-Door-Control diagram in 

Figure 48. There, we found an input pattern representing a structure of two classes with an association 

relationship betwecn them. The output pattern was a single class. 
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Figure 49: Simple Input/Output Structure Patterns for Abstractions 



The lower half of Figure 49 shows the equivalent simple rule structure for the relation 

abstraction. There the input pattern consists of two relationships connected via a classifier, which can be 

abstracted into a single relationship. Figure 48 gave two examples for relation abstraction (Guest-Hotel- 

Room and Driver-Car-Compact-Car). Like in the classifier abstraction, the input pattem should be more 

complex than the output pattem. Otherwise, the abstraction algorithm presented later could be non- 

deterministic. The rules in Figure 48 represent a simple 2(3) to 1 abstraction pattern; however, our 

mechanism also applies to more complex input and output patterns, as will be discussed later. 

7.3.1.3.3 Rules and Reliabilities 

Figure 50 shows a Iist of input and output patterns (rules) for chss abstraction rules. The 

structure used in Figure 50 follows that discussed in Figure 49. The left side depicts the class input 

patterns and the right side (after "equals") depicts the class output patterns. Rule 3 in Figure 50 

corresponds to the Compact-Car-Car-Driver pattern in Figure 48, rule 24 corresponds to the Guest- 

Hotel-Room pattern, and rule 46 corresponds to the Elevator-User pattern. We also analyzed the semantic 

dependencies between other classes and their relationships and, thus, were able to derive 47 additional 

abstraction rules. Note that the direction of relations is indicated by their name. If the relation name is 

used with no add-on, then a forward relation (a relation from left to right) is meant. If the string 

"Reverse" is added then a backward relation (a relation from right to left) is meant. 

The number at the end of each ruie indicates its reliability. Since patterns and rules are based on 

semantics. the rules may not always be valid. We use reliability numbers as a form of priority setting to 

distinguish more reliable rules from less reliable ones. This priority setting is applied when deciding what 

rules to use when, such that more predictable rules are applied first. The reliability numbers can be 

between 0 and 100 (100 for high and 0 for low). Since composite model elements are derived through 

class abstractions rules and since those rules have reliability numbers attached, it follows that the 

composite model elements inherit the reliability number h m  the rule(s) from which they were created. 

For instance, if a composite relation was created through ruie 24, then the composite relation has the 

reliability of 100. If a composite model element itself consists of another composite model element then 

the reliability numbers are multiplied as factors of 100. E.g., if a very reliable rule (90) was followed by a 



Generalization x Class x Generalization equals Generalization 100 
Generalization x Class x Dependency equals Dependency 100 
Generalization x Class x Association equals Association 100 
Generalization x Class x Aggregation equals Aggregation 100 
Dependency x Class x Generalization equals Dependency 50 
Dependency x Class x Dependency equals Dependency 100 
Dependency x Class x Association equals Association 50 
Dependency x Class x Aggregation equals Dependency 70 
Association x Class x Generalization equals Association 70 
Association x Class x Dependency equals Dependency 50 
Association x Class x Association equals Association 100 
Association x Class x Aggregation equals Association 100 
Aggregation x Class x Generalization equals Aggregation 50 
Aggregation x Class x Dependency equals Dependency 50 
Aggregation x Class x Association equals Association 90 
Aggregation x Class x Aggregation equals Aggregation 100 
Generalization x Class x DependencyReverse equals DependencyReverse 100 
Generalization x Class x AggregationReverse equals AggregationReverse 100 
Dependency x Class x GeneralizationReverse equals Dependency 100 
Dependency x Class x AggregationReverse equals Dependency 80 
Association x Class x GeneralizationReverse equals Association 100 
Association x Class x DependencyReverse equals DependencyReverse SO 
Association x Class x AggregationReverse equals Association 70 
Aggregation x Class x Generalizationileverse equals Aggregation 100 
Aggregation x Class x DependencyReverse equals DependencyReverse 80 
GeneralizationReverse x Class x Dependency equals Dependency 50 
GeneralizationReverse x Class x Association equals Association 70 
GeneralizationReverse x Class x Aggregation equals Aggregation 80 
DependencyReverse x Class x Generalization equals DependencyReverse 50 
DependencyReverse x Class x Aggregation equals DependencyReverse 100 
DependencyReverse x Class x Association equals DependencyReverse SO 
AggregarionReverse x Class x Generalization equals AggregationReverse 80 
AggregationReverse x Class x Dependency equals Dependency 100 
AggregationReverse x Class x Association equals Association 100 
GeneralizationRev x Class x GeneralizationRev equals GeneralizationRev 100 
GeneralizationReverse x Class x DependencyRev equals DependencyRev 50 
GeneralizationReverse x Class x AggregationRev equals AggregationRev 50 
DependencyReverse x Class x GeneralizationRev equals DependencyRev 100 
DependencyReverse x Class x DependencyRev equals DependencyRev 100 
DependencyReverse x Class x AggregationRev equals DependencyRev 50 
AggregationReverse x Class x GeneralizationRev equals AggregationRev 100 
AggregationReverse x Class x DependencyRev equals DependencyRev 70 
AggregationReverse x Class x AggregationRev equals AggregationRev 100 
Class x Generalization x Class equals Class 99 
Class x Dependency x Class equals Class 99 
Class x Association x Class equals Class 99 
Class x Aggregation x Class equals Class 99 
Class x GeneralizationReverse x Class equals Class 99 
Class x DependencyReverse x Class equals Class 99 

. . Class x AggregationReverse x Class equals Class 99 
Figure 50: Abstraction Rules for CldObject  hgrams 

less reliable rule (50) then the overall reliability of the resulting composite model element is 90 * 50 1 100 

= 45. The heuristics were derived through experimentation with dozens of models (some of which 

provided by industry). The heuristics should. however, not be interpreted as fixed. Domain- or company- 

specific needs may well require their adaptation. 



73.1.4 Complex Abstraction 

Thus far, we discussed the basics of our abstraction approach. This section will discuss 

extensions to cover more complex types of abstraction issues. 

7.3.1.4.1 Serial Abstractions 

Serial abstractions were already implied previously when we talked about the possibility of 

applying multiple abstraction rules in a sequence. Figure 51 illustrates such a case. There, at the upper 

left, an association relationship between Person and Car is described. It is stated that the Person inspects 

the Car, that Mechanic is-a Person and that Volkswagen is-a Car (note that the &-a relationship denotes 

inheritance). 

If it is of interest to know the more abstract relationship between Mechanic and Volkswogen, 

then our abstraction process can be applied in sequence to eliminate both helper classes Person and Car. 

For instance, rule 2 could be used to eliminate Person and replace it with a simple association 

relationship (upper-right). Alternatively, rule 17 could be used to eliminate Car (lower-left). In both 

cases, we are left with less complex, more abstract three-class configurations. By applying our abstraction 
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: Mechanic 
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Mechanic ~olicswa~en -- 

Figure 51. Serial Abstraction 



rules on the already partially abstracted diagrams, we can M e r  abstract that configuration. For instance, 

if we had chosen rule 2 above, then rule 17 could be applied next. Similarly, if we had chosen rule 17 

initially, then rule 2 could be used next, In both cases, the resulting abstraction results in an (composite) 

association going from Mechanic to Volknvagen. Since these abstraction rules (2 and 7) were equally 

reliable (we used the same rules, only in a different order) and resulted in the same composite type (an 

association), both results can be merged together into a single association. 

Serial abstraction therefore enables more complex abstraction tasks where a larger number of 

classes can be eliminated. Generally, all abstraction paths need to be explored, In case an abstraction path 

yields a different result than another abstraction path (between the same two classes), both should be 

considered valid unless one path yields a significantly more reliable result than the other one. 

7.3.1 A.2 Complex Rules 

A11 the rules presented in Figure 50 are of the simple three-class to two-class pattern. Those 

patterns could be made more complex as well. For instance, the example in Figure 51 could be 

transformed into a more complex abstraction rule of the form: 

Given: Generalization - >  Class - >  Aggregation - >  Class c- Generalization 

Implies: Association 

It follows that complex abstraction rules can be used in place of serial abstractions. The 

advantages of using more complex abstraction patterns are better reliability and better coverage. The 

reliability is improved since ambiguous abstraction paths and, thus, ambiguous abstraction results are 

contained. For instance, in Figure 51 we found two abstraction paths. With a complex abstraction rule 

like the one above, that ambiguity is eliminated and only a single abstraction is found. Complex 

abstraction rules also improve the abstraction coverage (the situations they are applicable to) since those 

1 State x Link x State equals State 100 
State x LinkReverse x State equals State 100 
StartState x Link x State equals StartState 50 
State x LinkReverse x Statestate equals StartState 50 
State x Link x EndState equals EndState 50 
EndState x LinkReverse x State equals EndState 50 
Link x State x Link equals Link 100 
LinkReverse x State x LinkReverse equals LinkReverse 100 

Figure 52: Abstraction Rules for State Dingrams 



Package x Dependency x Package equals Package 100 
Package x Generalization x Package equals Package 100 
Package x DependencyReverse x Package equals Package 100 
Package x GeneralizationReverse x Package equals Package 100 
Dependency x Package x Dependency equals Dependency 100 
Dependency x Package x Genexalization equals Generalization 50 
Generalization x Package x Generalization equal Generalization 100 
Generalization x Package x Dependency equals Dependency 100 

Figure 53: Abstraction Rules for Package Diagmms 

complex rules tend to be more specialized. For instance, there are situations were more specialized rules 

(e.g., domain specific rules) can be created and validated more easily than more general rules. The 

following will discuss that briefly. 

7.3.1.4.3 Specific Rules 

The current set of rules listed in Figure 50 cover the generic semantic relationships within UML 

class diagrams. More specialized rules can be generated based on domain specific knowledge. Also, 

currently only association, generalitation, dependency, and aggregation relationships are supported. 

Additional information, such its stereotypes or tagged values, could be used to further specialize those 

rules. This information may be used I )  to refine the meaning of rules and 2) to extend the rule set to 

another set of rules. Furthermore, both abstraction methods can be generalized onto other types of 

diagrams. Figure 52 and Figure 53 depict abstraction rules for package and state diagrams respectively. 

Again, those rules could be specialized if needed. 

7.3.1 5 Abstraction Algorithm 

Figure 54 depicts the basics of our abstraction algorithm. As input, a concrete model (e.g., class 

diagram) needs to be provided, Furthermore, it must be specified which model elements should be 

1. input: concrete model elements and collection of classifiers/relations 
2. find all paths between each classifier/relation pair 
3. for each path 

abstract path by recursively applying abstraction rules until: 
- a composite model element has been found, 
- no abstraction rule can be applied, or 
- the reliability of composite model element becomes too small 
(reuse existing composite model elements if applicable) 

4. for all abstractions corresponding to a single classifier/relation pair 
eliminate less reliable results or duplicate results of the same type 

Figure 54. Abstraction Algorithm 



abstracted. All possible paths between the selected model elements are then identified. Each path is 

abstracted individually using the rules from Figure 50. The abstraction process terminates if (1) a suitable 

abstraction is found, (2) no more abstraction rules can be applied, or (3) the reliability number of the 

composite model element becomes too small (too unreliable). Note that the abstraction process has to be 

applied repeatedly for every model element permutation of the input collection. The resulting complexity 

of the algorithm (0(n2)) is, however, reduced by reusing intermediate composite model elements that 

have k e n  abstracted previously. FinalIy, at the end, less reliable paths as well as duplicate paths are 

eliminated. For instance, if two different abstraction paths between the same two classes yield the same 

types of abstractions, then they can be merged together. 

7.3.1.6 Specialized Abstraction 

has 
Our generic abstraction L! ! !  ! 

:-J - . 1 ..- 
mechanism works for box-and-arrow 

Room I 

types of diagrams. Abstracting only 

stays-at - 
0.:. Guest 

boxes and arrows, however, oniy covers Figure 55. Cardinality Examples between Classes 

some features that diagrams incorporate. Figure 55, depicts a class diagram showing the relationships 

between Hotel, Guest, and Room again. Additionally, the figure depicts the cardinality between those 

classes. For example, a Guest may stay at one or many Hotels and a Hotel may have zero to many Guests. 

Also, a Hotel may have one to many Rooms and each Room belongs to one Hotel (the diamond at the end 

of that line shows a part-of relationship that has cardinality one unless defined otherwise). Cardinality 

issues are specific to class diagrams in UML. Its abstraction requires additional measures that do not 

apply to package or state diagrams. 

Abstracting cardinality must, therefore, be treated separately. Otherwise, the process of 

abstracting Hotel, Guest, and Roam, loses the cardinality between Guest and Room. How this can be 

avoided is depicted in Figure 56 where various cardinality scenarios and their abstractions are shown. The 

fmt scenario (a) indicates that for each classifier A there is exactly one classifier B and, similarly, for 

each classifier B there is exactly one classifier C. It follows that for each classifier A there must be 



Figure 56. Cardinality Examples and their Abstractions 

exactly one classifier C. Going through examples "a" to "d," we find that we can derive abstracted 

cardinalities by multiplying individual cardinalities associated with the same direction. 

Cardinalities may also have ranges as depicted in examples "e" and "f* in Figure 56. In the case 

of ranges, the minimum values must be multipIied to yield the abstract minimum range and the maximum 

values must be multiplied to yield the abstract maximum range. In case a finite value (e.g., one, two, etc.) 

is multiplied with an infinite one (e.g., *, n, many, etc.), the result wiil always be infinite (the exception is 

if the finite value is zero, in which case the result will be zero). In case a value is multiplied with a range 

(example "e"), the value must be multiplied with the lower and upper bounds individually. 

For our abstraction algorithm to also address cardinality issues, we have to rnultipIy the 

cardinality numbers whenever two associations or aggregations are abstracted. Other abstraction issues 

related to other types of diagrams must be addressed similarly on an individual basis if applicable. 

7.3.1.7 Example 

Figure 57 gives a simple example of how abstraction rules are applied to generate a simpler, 

more abstract class diagram from a collection of three diagrams. Class diagram 1 shows the relationships 
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Figure 57. Simple Example of Generated Abstractions from &me Input Diagrams 

between people in a simplified Air Traffic Control system. It depicts a parent class Person for the main 

actors Pilot and Passenger (generalization connectors are used), Diagram 2 describes a Flight, which has 

a Location at any given time and which uses an Aircrafl as a vehicle (aggregation connectors are used). 

Diagram 3 shows the relationship of the people and the Aircrafi (dependency connectors are used). 

Using these three diagrams as input to our abstraction dgorithm, we can generate a simpler 

model that only shows the relationships between Person, Pilot, and Flight. Since these components are 

not connected directly to one another in the input class diagrams, our abstraction process can derive their 

transitive relationships using the rules defined in Figure 50. The relation names in Figure 58 are preceded 

by "dx ived~"  to indicate that they were generated automatically. 

Between Flight and Person, there is a transitive relationship from Flight to Aircrufi to Passenger 

and finally to Person. Figure 58 shows the abstraction process. Both Aircrafi and Passenger can be 

eliminated by applying rules from Figure 50. Note that the process looks slightly different if Passenger is 



eliminated first (the rules would be applied in reverse order). In this example, the result is the same, but 

this may not always be the case. 

The relation abstraction process outlined above was adopted by Rational Software and 

implemented in a tool called RosdArchitect (by Ensemble Systems for Rational Software [Egyed and 

Knrchten 19993). As part of this work, we aIso implemented our own version of classifier and relation 

abstraction into a tool called UMUAnalyzer. Our version incorporates all features of RosefArchitect. and 

also addresses repository issues. scalability issues. retiabilities, classifier abstraction, more complex 

abstraction patterns, and C2 architectural style support. Our W A n a l y z e r  tool is discussed in Section 8. 

vehicle - 1 7 
, Aircraft - i s - u s e  Passenger L i s a +  1 Penon ; - 

Figure 5%: Generating transitive relationship from Flight to Person 

7.3.2 Generalization 

Generalization aggregates specific information into a more generic form. For instance, a test 

scenario depicts one very specific form of interaction. Since it is usually not possible to generalize from 

single scenarios (or single examples), generalization takes multiple scenarios and unites them into more 

generic scenarios (e.g., sequence diagram) or even generic diagrams (e.g., class diagram). UML, uses 

sequence, collaboration and object diagrams to describe specific issues. To generalize those into more 

generic diagrams (e.g., class and state diagrams), we have adopted and extended the sequence-to-state 

transformation method from Koskimies et- a1 [Koskimies et al. 19983 as well as object-to-class 

transformation from Ehrig et al. [Ehrig et al. 1997). 

Generalization techniques for various WML views are similar in that they have to take multiple 

sources of input and merge them together to infer more generic knowledge. For instance, in the case of 



object to class generalization, an object diagram shows specific examples of how objects access other 

objects. By merging all information about any two objects' interactions, we can infer the general 

interaction of their types-the classes. Likewise, Koskimies' [Koskimies et al. 19981 sequence to state 

generalization takes multiple sequence diagrams as input and merges them by interpreting ca l ldre tm as 

state changes. Koskimies' approach has the downside that state changes do not always correlate one-to- 

one with procedure calls. Thus, we improved their approach by also relating calls to class methods, which 

in turn specify whether or not they alter the state. Using this additional information. the sequence to state 

consolidation becomes more reliable. Cunently some tool support is available to automate generalization 

(e-g., Koskimies' SCED tool [Koskimies et al. 19981 automating sequence to state transformation). 

7.3.2.1 Sequence to Statechart Generalization 

At least two groups of researchers have been developing ways for generalizing sequence views 

into statechart views ([Schonberger et al. 19991 and [Koskimies et al. 19981). Their approaches are very 

similar and both are discussed in related works in Section 10. Basically, both make the assumption that 

state changes as depicted in statechart views are triggered by method calls. Methods are operations of 

classes that can access and m o d i ~  attributes (e.g., variables) of their own classes or other dependent 

classes. Sequence diagrams describe when and in what order methods are called. Similarly, a statechart 

depicts in what order a class state can change. 

Both generalization approaches have drawbacks and the reasons for those are simple. Sequence 

views contain some statechart-relevant information, but not all of it. For instance, the information 

whether a method call in a sequence diagnm causes (or does not cause) a state change in a state diagram 

is ambiguous. Thus, it is difficult and sometimes impossible to generate a complete statechart out of 

sequence diagrams. We extended Koskimies' approach in the following: 

Use of class information to infer method type (query, action, activity): We use that information to 

improve reasoning on whether a method call causes a state change (e.g., yes if action; no if query). 

Use of "return" links to differentiate between end-of-methods and new method calls: We use this 

information to qualify sequence links (e.g., to add semantic meaning to arrows). 



Figure 59 shows an example of transforming two sequence diagrams (top haif) into statechart diagrams 

(lower half). The sequence diagrams depict the interaction between a generic File class and a domain 

specific GuestAccess class. File is used to store guest information. GuestAccess, in turn, is used to 

provide a nicer interface for Fife. The first sequence diagram depicts a scenario where guest (instance of 

Guesulccess) constructs a new object called fl (instance of type File) and then opens the file. The second 

sequence diagram depicts a scenario where guest reads from$? (of type File) and after the read operation 

is finished (after return) adds some data to f2. The sequence diagrams in Figure 59, although only 

scenarios, allow one to infer a Iot of generalizable information. 

( I )  If a method (e.g., construct) creates a new object, then this method must be a state transition 

initiating from a start state 

(2) If a method (e.g., open) is a regular message link then this method must be either an activity, 

action, or query (no state change, regular state change, or circular state change). 

( 3 )  If a method (e.g,, read) has to be completed before another method (e.g., add) can be startedn 

then those methods cannot lead into parallel states. 

Figure 59. Sequence to State GeneralizatiowBasics 



Given sequence diagram information, we could not infer of what type open and read are abou~  

They could be either circular state transitions, regular transitions between states, or activities as part of a 

state. To reason about those ambiguous properties, Figure 59 additionally shows a specification of class 

File, There we can tell that open and add are actions and that read is a query. Using that information, we 

can derive two statechart diagrams. The k t  one (depicted in the lower-left of Figure 59) shows the 

construct method initiating out of a start state. Since open is an action, it follows that it causes a state 

transition between two states. The stereotype <<end>> attached to one of the states indicates that no 

additional information is available to reason about what is going on thereafter. Since nothing can happen 

before a start state (horn an object's perspective), this case requires no explicit handling. The second state 

diagram in the lower-right of Figure 59 shows two states and two state transitions. The read state 

transition is circular since the read method is of type query and cannot change a state. The udd state 

transition, however, bridges between two distinct states since it is of type "action." Since sequence 

diagrams do not describe the relationships among themselves, we cannot yet reason about how the first 

state diagram fits with the second one. The second derived state diagram, therefore, uses the stereotypes 

<<begin>> and <<end>> to indicate that other things can happened before or after those states. For 

instance, it is possible that the <<end>> state of the first state diagram is identical to the <<begin>> state 

of the second. Figure 60 depicts another set of scquence diagrams and their corresponding statechart 

diagams. Two additional rules can be observed: 

(4) If a method (e.g., destroy) removes an object, then that method must be a state transition 

terminating in an end state 

(5) If a method (e.g., delete) was not declared, then assume it to be a sate transition 

Combining the statechart diagrams in Figure 59 and Figure 60, generalization yields five 

interpretations (ail about states of the ctass Fife). Although those interpretations are separate fiom each 

other, it is nevertheless possible to combine them to yield a more compact state diagram. Statecharts can 

be combined via common state transitions that normally indicate common states. For instance, Figure 60 

depicted two similar state transitions; one going via open, add, delete, and close; the other omitting 
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Figure 60. Sequence to State Generalization-Extended 

delete. We can therefore infer that the method delete may or may not follow the method add, Combined 

with Figure 59, it can be seen that either the method open or the method destroy may follow construct. 

Combining all those pieces of information, we find a mote compact-minimal-statechart diagram 

(see Figure 6 1). Note that transformation for synthesis and transformation for analysis have distinct goals. 

For instance, in transformation for synthesis, a minimal statechart diagram is much more beneficial, 

whereas for view integration (analysis) bits and pieces are more beneficial. The latter is the case since the 
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Figure 61. Minimnl Statechart Diagram 
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minimized version makes the assumption that sequence diagrams cover all relevant usages. Since it is 

possible (even likely) that not all behavioral variations have been modeled as scenarios. the above 

assumption may not be valid in these cases. 

7.3.2.2 ObjecttoClass&neralization 

An object diagram depicts instances of classes and how they interact. As such, an object diagram 

represents a scenario of one possible instantiation of a class diagram. Since object diagrams are in 

structure simiIar to class diagrams (in fact, UML uses the same view type to represent both), it seems 

natural to use class diagrams for generalization purposes. Figure 62 depicts a simple object diagram for 

Figure 62. Object Diagram 



Figure 63. Generalized Object Diagram Represented as Class Diagram 

an elevator system. The diagram depicts a very trivial realization of such a system where only one shaft 

with one cabin exists and the elevator can only go between two floors. For the elevator control, sensors 

are attached to floors, shafts, and doors, indicating the positioning of the cabin relative to the floors and 

the state of the door (open or closed). 

Generaiizing an object diagmm is trivial because the semantics of boxes and lines are the same 

as in class diagrams. Figure 63 depicts the generalization of Figure 62. If an object does not indicate its 

type (its class), a dummy "class" with unknown type must be created. The generalization method 

additionally keeps track of how many instances of the same type were attached to the same instance of 

another type. For instance, shafiA has exactly one cabid .  Thus, there is a one-to-one relationship 

between Shafi and Cabin. Further, there are two instances of FIoorDoor (called ShufiDoorl and 

ShaftDoorZ). Each instance of FioorDoor has exactly one instance of DoorEngine and three instances of 

TouchSensor attached. Thus, there is a one-to-one relationship between FIoorDoor and DoorEngine and a 

one-to-three relationship between FhrDoor and TouchSensor. 

As with sequence diagrams, multiple object diagrams yield multiple cIass diagrams. Those class 

diagrams can then be merged together to yield a minimal class diagram. Unlike with statecharts, 

minimizing class diagram has no risks attached and can be done by default since object and class 



diagrams are more structural than sequence and state diagrams. Object view to class view generalization 

exhibits the following situations (patterns): 

( I )  If there is a link between objects, then there must also be a link between their corresponding 

classes. 

(2) If there is more than one object of the same type attached to another object (of a different 

type), then this denotes cardinality. The Iower and upper bounds of that cardinality are 

derived from the minimum and maximum numbers observed. 

(3) If objects of the same type are attached to one another, then there must be a circular link 

between their corresponding classes. 

7.3.23 Generalization Rules and Automation 

The generalization scenarios described in this section are very distinct. They have, however, two 

properties in common. First, they transform instances into types (e.g., calls into state transitions or objects 

into classes). Second, they combine information fiom multiple instances to yield more generic results. 

The information used for generalization are the interdependencies between classifiers (we Figure 64). 

Currently, we have adopted a third party tool called SCED [Koskimies et al. 19981 for sequence to state 

generalization. We have no tool support for object to class generalization. 

7.3.3 Structuralization 

Structuralization takes information about behavior to infer structure. For instance, a test scenario 

depicts interactions between objects. Since it is usuafly not possible to infer behavior out of structure, 

Figure 64. G e n c ~ t i o n  Patterns 



structuralization is unidirectional from behavior to structure (ergo structuralization). UML uses sequence 

and statechart diagmms to describe behavior. To structuralize them, we create object and class diagrams. 

In particular, sequence diagrams get structuralized into object diagrams and statechart diagrams get 

structwalized into class diagrams (recall, our discussion in Sections 5.4 and 5.5 as to why we chose these 

types of views and transformations). 

73.3.1 Sequence to Object Structurrlization 

A sequence diagram depicts the interactions between multiple objects. For structurdization, ow 

primary interests arc what objects interact and what the directions of their interactions are. For 

structuralization it does not matter when the interaction happens (as opposed to generalization). There is 

no distinction between whether interactions occur frequently over a short period of time or only once 

during a lifespm of an object. In both cases, the objects interact. 

Figure 65 depicts a complcx sequence diagram. The fijye describes the interactions between a 

reservation clerk and a hotel reservation system and the scenario in particular depicts a regular reservation 

process: the reservation clerk initiates a make-reservation activity with the reservation application 

(ReservationApp). The latter causes service objects and user interface objects to be called, The details of 

the interaction are only of secondary importance. For sequence structuralization, only the existence and 

direction of interactions matter. For instance, only the object ResewationApp calls the object 

Reservation Handler. ReservationHandler, in turn, calls a number of other objects (instances of Hotel, 

Guest, Reservation, and Transaction). Note that only the type of objects (their classes) were specified in 

the diagram, but not their names. 

Figure 66 depicts the structuralized view of Figure 65. The figure shows the same objects, their 

interactions, and the methods used. This particular example only represented one-to-one relationships. If 

objects of different types wouId interact with the m e  object then one could also record what methods 

are actually used by what types. For instance, if Hotel would also access Guest via the method find, then 

one could distinguish between methods used by Hotel and methods used by Reservation Handler. That 

information has no immediate use for view integration for UML; however, it could improve the 



Figure 65. Sequence Diagram 

understanding of objects, classes and their interrelationships. The sequence diagnm therefore 

incorporates a series of structuralizable information. The following lists some common patterns: 

If there is a link from one object's bar (vertical pole) to another object's bar, then this 

denotes an association between those two objects (direction of association is equal to 

direction of link). 

If there is a link from one object's bar to another object (its box on top of the bar), then this 

denotes an association with the added information that the link method is a constructor (the 

method created another object). 

If there is a link from one object's bar to another object's termination (cross at the end of an 

object's life), then this denotes an association with the added information that the link 

method is a destructor (the method destroyed another object), 



Figure 66. Sequence Diagram Stmcturalized into on Object Diagram 

73.3.2 Statecharts to Class Structuralization 

Statechart diagrams depict the generic behavior of classes. UML requires states to belong to 

single classes. For structuralization, our interest is how statechiut diagrams of different classes interact. 

Figure 67 shows a class diagram with two classes called Cabin and Door as part of our elevator system. 

Each class has a statechart diagram attached. The statechart view for Cabin indicates that the cabin may 

be either stopped, moving down, or moving up. Similarly, the statechart view for Door indicates that a 

door may be opened or closed, or somewhere in between opening or closing. The example in Figure 67 

also depicts one interesting relationship between the two statecharts. The statechart view of Cabin 

describes that a cabin can only start moving once the state of its Door is closed. The implication of this is 

that cabin has to be aware of door and, thus, cabin has to be able to access the state of door. For 

structuralization, we learn that there is a potential association From Cabin to Door. 

This example shows an interesting transformation variation. So far, it was possible to transform 

views by transforming their boxes and arrows, Although both stirtechart and class views use boxes and 

arrows, it is not the boxes or arrows that describe relevant information for structuralization. Instead, here 

textual annotations in form of events, actions, and triggers are used. Those textual annotation are 

nevertheless defined model elements in UML We can observe the following situations: 

(1) If a transition of one statechart is tied to a state of another, then this indicates an association 

between the classes to which those statecharts belong. 
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Figure 67. Structuralizing Statechart views into Class Views 

(2) If there is a transition in one statechart view that is triggered by a transition in another 

statechart view, then this indicates an association (in either direction) between the classes to 

which those statecharts belong. 

(3) If there is a state in one diagram that is tied to a transition in another diagram, then this may 

indicate an association between their corresponding classes. 

(4) If there is a state in one diagram that is tied to a state in another diagram, then this may 

indicate an association between their corresponding classes, 

7.3.3.3 Structuraliurtion Rules and Automation 

Both structuralization examples exhibited similarities since in both cases it is knowledge about 

the interrelationships between two groups of data that helps infer structure. In case of sequence to object 

structuralization, it is the links between the T-like graphical items in sequence diagrams that denote 

interdependencies (see left side of Figure 68). Similarly, in the case of state to class structuralization, it is 

the links between statecharts belonging to separate ciasses that denote interdependencies (see right side of 



Figure 68. Structuralization Patterns 

Figure 68). Note that in the latter case, there must not always be graphical elements relating to 

interdependencies, Instead, textual annotations could be used. The information used for structuralization 

are the interdependencies between elements belonging to different classifiers (see Figure 68). 

7.3.4 Translation 

Translation is the fourth transformation category discussed in this thesis. Translation handles 

conversion of modeling information without altering its level of abstraction, behaviorism, or generality. 

For instance, in CTML there are two types of views to model specific behavior: sequence diagrams and 

collaboration diagrams. Instead of having to provide abstraction, structurdization, and generaIization 

techniques for both sequence and collaboration diagrams, we could instead provide a translation from, 

e.g., collaboration diagram to sequence diagrams and abstraction, generalization, and structuralization on 

sequence diagrams only. Thus, translation can minimize the effort required to realize additional 

transformation methods. 

Translation also enables the switching of models to continue the transformation sequence. To 

revisit Figure 43, we see another example where transformation would be very helpful. In scenario d) we 

discussed the case of having to transform both views into a third common view to enable comparison. Of 

course, this third view could be any graphical view discussed before; however, it could also be some 

formal constraint language underneath h e  graphical notation. Applied to UML, we could choose the 

Object Constraint Language (OCL) warmer and Kleppe 19991 as an alternative view for describing and 

comparing modeling information. Thus, OCL could be used to represent the 'something like C' box in 

Figure 43 (d). Translation is then needed to transform modeling information fiom UML into OCL. 



Another scenario in which translation becomes important is when it comes to replacing or 

substituting existing views with new types of views. For instance, in the case of UML, we might find the 

class view not always the ideal view for representing generic and abstract concepts. Instead, we might be 

tempted to choose a type of view outside our defined modeling environment (e.g., UML, in our case). For 

example, if we wish to build a software system consisting of dynamic and concurrent components we 

could choose the architectural style C2 [Taylor et a]. 19961, In [Abi-Antoun and Medvidovic 19991 a 

translation technique is shown for converting C2 modeling information into UML. The issue of 

translation is not further explored in this thesis. 

7.4 Complex Transformation 

The comparison of different types of views is greatly simplified through the four types of 

transformations discussed before. However, on a grander scale, these techniques also have to be 

integrated with one another to ensure continuity and scalability. This section therefore addresses critical 

aspects of complex transformation-that of finding transformation paths. We refer to the integration and 

serial execution of simple transformations as complex transformations. 

In simple terms, complex transformation is needed whenever no simple transformation exists. 

Figure 69 summarizes the complete list of simple transformation paths currently supported through our 

framework. Technically, the figure should depict a fully connected graph where each view (box) is 

connected to every other view (box). Since we are supporting nine categories of views (behavior versus 

structure; instance versus type; and concrete versus abstract), it follows that we would needed 36 

transformation methods. Currently we only support 14. Despite the partial coverage of needed 

transformation methods, we can still compare all views with one another. The solution is in the 

integration and serial execution of multiple transformation methods. 

Figure 70 depicts examples of how a complex transformation bridges a concrete sequence view 

with an abstract class view. Having 14 simple transformation paths available (Figure 69). we can derive a 

number of complex transformation paths for bridging a concrete sequence diagram with an abstract class 

diagram. For instance, we could structuralize the sequence view to an object view, abstract the (still 
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Figure 69. Tdormation lMethals and Patbs 

concrete) object view to an abstract object view, and finally generalize from the object view to the class 

view. This complex transformation scenario involves the serial execution of three transformation 

methods, resulting in a number of intermediate models. This particular example, depicted as "a)" in 

Figure 70 is, however, only one of many transformation options. Exiunple "b)" shows that an abstract 

class view can also be derived by structuralizing the sequence view to an object view, generalizing the 

object view to a class view, and finally abstracting the class view. 

Examples "c)" and "d)" show additional paths for deriving class views. Altogether, there are six 

paths but no transformation path is superior to the other unless differences in reliability allow their 

elimination (our reasoning in Section 7.3.1 on how to reuse and eliminate transformation results remains 

valid for complex transformation). Thus, all (or most) paths should be followed since together they may 

yield more comprehensive results. hnproved comprehensive results are achieved because different 

intermediate models are used during complex transformation (such as object or state diagrams in the 
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Figure 70. Complex Transformation Paths 

above example). These intermediate models contain different model information and thus result in 

different interpretations. Subsequent transformation, therefore, builds on different intermediate models 

and interpretations, which, in turn, may build complementary results. 

The advantage of having a transformation framework, such as the one in Figure 69, is that it 

limits the number of possible transfornation paths. If bi-directional transformation were fully 

automatable, then we could potentially derive a much larger number of transformation paths between any 

two views. The uni-directional nature of transformation, combined with the fact that no circular 

transfomation paths exist, results in a waterfall-like transfomation framework. The background arrow in 

Figure 69 depicts this. The large gray arrow indicated in the figure, shows that views can only be 

compared by transforming views from the upper-left to the lower-right. Those transformation paths 

follow along the lines depicted in Figure 43 "c)" and "d)" in page 83 where one view is transformed so 

that it is more easily comparabIe in the context of the othet. In case two views fall conceptually into the 

same view quadrant (e.g., both are concrete, specific, and behavioral as in the case of sequence and 
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Figure 71. Complex Transformation Algorithm 

collaboration diagrams), translation can be used to transform one to the other andlor a direct comparison 

can be attempted (the latter case is supported through the technique depicted in Figure 43 "a)"). 

However, how can we compare views where neither one can be transformed to the other? For 

instance, how can we compare an object diagram with a state diagram? There is no simple or complex 

transformation path available. Our framework enables their comparison indirectly by finding a common 

denominator. In the case of object and state diagram, a common denominator is a class diagram. The 

object diagram can be generalized to a class diagram and, similariy, the statechart diagram can be also 

structuralized to a class diagram. In the context of the class diagrams, the two can then be compared. This 

comparison scenario falls dong the line depicted in Figure 43 "d)." 

Figure 71 describes the complex transformation algorithm. The algorithm requires source and 

target views as an input. The first step checks, whether trace information between the source and target 

environment exist. The trace information guides the transformation process and, if none is found, 

indicates that fully automated transformation is not possible. Step two searches for a common 

denominator based on existing transformation methods. Again, if none is found, then transformation is 

not possible. Based on the denominator, all possible transformation paths can be identified and executed 

(steps 3 and 4). After execution, results can be combined or unreliable ones can be eliminated. 

One remaining issue is the quality of intermediate models in handling complex transformations. 

The question is, are the intermediate models adequate for this task? For instance, if an intermediate view 

is used to compare a source and target view, but the intermediate model only captures a part of the 

redundancy between source and target views, then that view alone does not enable a comprehensive view 

transformation and subsequent comparison. Figure 72 depicts such a case in the context of sequence, 
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Figure 72. Lack of Intermediate Views in Covering Full Transformation 

class, and object diagrams. Sequence and class diagrams share some modeling information, thus 

exhibiting some amount of redundancy. The figure depicts the redundancy as overlaps between the 

modeIing spaces (ellipses) covered through sequence views and class views respectively. As we had 

discusses in Section 7, it is the view redundancy that enables automated analysis. Or in other words, it is 

the information that is shared in multiple views that might become inconsistent. 

For transformation this entails two challenges: (1) view transformation should transform all 

redundant information; and (2) intermediate views need to capture all redundant information. As it was 

discusses previously, our framework does not support a direct transformation between sequence and class 

views. Instead, that transformation is broken up into two sequential and simpler transformations, e.g., 

using object views as intermediate views between them. Object views, however, only capture a part of the 

redundancy between sequence and class views (see Figure 72). Thus, this type of complex transformation 

is not fully effective and information is lost in the process. There are three potential options for 

addressing this issue: 



(1) Introducing additional intermediate views: For instance, if a single intermediate view does not 

adequately cover dl redundant model information, then additional views could be introduced andlor 

the current views be extended. For instance, in our sequence to class transfomtion problem, we 

could use statechart views in addition to object views to transform a wider range of modeling 

information (recall our discussion that all complex transformation paths need to be explored). 

(2) Building simple transformations: Instead of using intermediate views to transform sequence to class 

views, a direct transformation method would be introduced. That step would not require an 

intermediate view and thus could handle all redundant information. Since ow goal is to minimize 

transformations, we could choose to implement a direct sequence to class transformation covering 

only those modeling elements that are not covered through complex transformations. Thus, we would 

not have to build a complete additional transformation method. 

(3) Extending the underlying model: Instead of just transforming information that is needed by the 

derived view, additional information can be added. For instance, structuralization from sequence to 

object would also add class information. Since views cannot support that additional information, they 

would have to be annotated somehow. In Section 7.7 we briefly discuss the need of models to 

comprehensibly cover multiple views. These model(s) are prime candidates to store that additional 

information. In [Egyed and HiIIiard 20001, we discuss how model information can be made richer 

using a decorative stance [Hilliard 1999) in view integration. 

In practice, any one or more of the options above could to be adopted to enable more 

comprehensive coverage of transfonnation needs. In the case of the sequence to class transformation, the 

introduction of the statechart view is sufficient. In other cases, however, other options have to be 

considered as well. Since intermediate views only cover a limited range of complex transformation needs, 

it also follows that there is a trade-off between the numbers of views needed. Basicdly, there are as many 

transformation methods and types of views needed as is necessary to ensure comprehensive coverage of 

all possible view interactions (and their redundancies). We have found that the folIowing options limit 

transformation paths: 



Reliability numbers associated with (simple) transformation methods (note that we only 

discussed them in detail in Section 7.3.1 but they also apply to other transformation methods) 

Unidirectional transformation methods (bidirectional ones would result in a larger set of 

transformation paths) 

Remembering transformation results (instead of eliminating intermediate and final results, they 

can be stored for later use) 

Treating levels of abstraction separately (instead of transforming between the lowest level and 

the highest level, only adjacent levels need to be transformed) 

7.4.1 Deferred Issues 

Transformation cannot be seen as isolated in the context of our view integration framework. The 

following critical aspects will be addressed by other parts of our framework: 

o Modeling Transformation Redundancy (see Section 7.7) 

o Scalability Issucs (see Section 7.7) 

o Types of Traces Needed to Support SimpieKomplex Transformations (see Section 7.6.2) 

o InterpretatiodRealization Relationships (see Section 7.6.2) 

Above sections on simple and complex transformation discussed the problem of transformation 

in detail. We primarily focused on the problem of automated abstraction and only indicated informal 

solutions for generalization, structurdization, and translation. Although alI four types of transfmnation 

are equally important, we explained in Section 4 why we have emphasized more strongly on one over the 

other. The methods we discussed to support abstraction, generalization, structuralization, and translation 

rue dependent on the types of views we support in our thesis (Figure 46). For instance, structuralization 

only discussed sequence-to-object and statechart-to-class transformations since only these are needed to 

support our limited number of views. Recall Section 5.5, were we outlined that our limited set of views 

are sufficient in covering all three heterogeneous view dimensions. Naturally, if other views were needed, 

our framework would have to be extended by support by supporting additional transformation methods. 



7.5 Automating Mdel  Differentiation 

Transformation converts modeling information between various view dimensions and makes that 

information more abstract, more generic, or more structural in the process. The converted information is 

referred to as derived information and, ideally, it reflects the redundancies between view dimensions 

(e.g., converting a sequence diagram to a class diagram implies taking 1111 information from the sequence 

diagram that is potentially redundant with a ciass diagram). In Section 7.2, we discussed that it is the 

redundancy between views that poses constraints on views. Since derived information represents the 

redundancies between views, derived information can also be seen as constraints. The role of 

differentiation is to take derived model elements and to compare them with user-defined model elements, 

with the purpose of identifying differences (ergo differentiation). Since differences between user-defined 

information and derived information generally indicate constraint violations, those differences can be 

considered inconsistencies. 

Based on traceability information (see mapping in Section 7.6.2) it can be specified what 

information needs to be compared. For instance. if there are two views with no mapping between them 

then this may imply the views are not related to one another. A direct comparison between two unrelated 

views is not necessary. Ideally, differentiation should be abIe to compare views directly without any 

additional overhead. However, as it was discussed in Section 7, it is frequently not straightforward to 

compare views such as sequence and state diagrams directly. Differentiation is thus complicated by 

syntactic and semantic differences between views. We. therefore, use transformation to convert model 

information to allow a direct comparison between derived elements and all user-defined elements that 

relate to it (e.g., transformation of a sequence diagram to a derived statechart diagram and the subsequent 

comparison between that derived statechart diagram and the corresponding user-defined statechart 

diagram). Different vdues in derived and user-defined model elements denote inconsistencies. Mapping 

and transformation support differentiation 1) by constraining what information has to be compared 

(through mapping) and 2) by defining how information has to be compared (through transformation). 



Mapping and Transformation are therefore enabling technologies for more effective, less complex, and 

more scaleable differentiation. 

Differentiation is, however, more than just comparing model efements. Differentiation must also 

address what to do if inconsistencies are found. Transformation and mapping m y  simplify comparison 

but that does not imply that all of diffenntiation is simplified. For inconsistency checking, differentiation 

is responsible for three major tasks: I )  applying transformation methods; 2) comparing their results; and 

3) reporting the findings to the user. The following sections will address all three aspects in more detail. 

7.5.1 Comparing User-Defined and Derived Ekmnta 

Differentiation has to take derived elements and compare them with existing user defined 

elements. Depending on the types of views (as well as their transformations), the comparison may vary: 

7.5.1.1 Comparison Modes 

Equivalence comparison: There are 

cases where transformation yields derived 

results that Fully correspond to user- 

defined elements. For instance, if an 

abstraction process derives an association 

between two lower-level classes, then 

those same two classes should also have 

corresponding higher-level classes with 

an association between them (see Figure 

73). The comparison between both values 

is to ensure equality. 

Part-of comparison: There are cases 

where transformation cannot generate a 

complete picture of the real situation. For 
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instance, a sequence diagram likely only depicts a subset of an object's potential interactions. If a 

sequence diagram is genedized into a class diagram, then it follows that the derived class diagram 

only depicts a part (subset) of the existing user-defined class diagram. For instance, in Figure 74 the 

sequence diagram shows calls from the object Peter to the object at. Since Peter is of type Guest and 

since a1 is of type Account, it follows that at a derived but more generic level, the class Guest must 

depend on the class Account. That observation is c o n f w d  by the real (user-defined) class diagram 

(top of Figure 74), however, that diagram additionally conveys that Account may also access Guest. 

The compslrison between derived and user-defined elements, therefore, needs to ensure a part-of 

relationship. 

Whether the comparison has be done in the "part-of-mode" or the "equivalence-mode" depends 

on the type of inconsistency (recall Section 6). Consistency checking between specific views and generic 

views is more likely to use pm-of comparison. Consistency checking between abstract and concrete 

views is more Iikely to use equivalence comparison. There are, however, exceptions to both. Later we 

will see that consistency rules need to specify their comparison modes. 

7.5.1.2 Multiple Interpretations and Realiitions 

Another complication of comparison is the issue of multiple derived interpretations and/or 

multiple user-defined realizations. For instance, there are transformation methods such a clilss abstraction 

that may yield multiple results. If such a case occurs, then comparing those multiple results with a single 

user-defined realization may become more challenging. The following describes those cases and 

discusses ~ l e s  for handling them. 

Figure 73 depicted the trivial case of a one-to-one relationship between a derived model element 

and a user-defined model element. The bottom of the figure showed a concrete class diagram and the top 

showed the conesponding abstract class diagram. By abstracting the concrete class diagram using our 

class abstraction mechanism, an intermediate class diagram is breated (middle). The elements of the 

intermediate diagram are derived interpretations of the concrete diagram and correspond directly to the 



abstract diagram on the top. Checking 

for consistency between them is 

therefore simply a comparison of the 

derived value with their corresponding 

user-defined values on a one-to-one 

basis. 

Figure 75 depicts a less trivial, 

though similar example. Here, the 

abstracted class diagram was slightly 

modified and depicts two (abstract) 

relationships between the classes. The 

abstraction of the concrete diagram does 

not change and again yields the same 

intermediate class diagram. However, the 
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relationship between the intermediate class diagram and the 

abstract class diagram is more complicated. The derived classes in the intermediate model still correspond 

one-to-one to the abstract classes, but the single intermediate retationship has two alternatives. The 

intermediate relationship could beIong to either the abstract relation has-resentationfor or the abstract 

relation stays-at. Therefore, for comparison we also need to consider the possibility that a derived 

element may belong to one of several abstract relationships. 

Figure 76 depicts a third scenario in the context of the same situation. Again a concrete class 

diagram is abstracted into an intermediate class diagram. In this scenario, the abstract class diagram has 

only a single association relationship, whereas the derived but abstract class diagram has two 

relationships. Comparison, therefore, also needs to consider the possibility that several derived elements 

may correspond to a single abstract element. 

Figure 77 depicts a forth scenario in the context of the same situation. Again a concrete class 

diagram is abstracted into an intermediate class diagram. In this scenario, the abstract class diagram has 
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model elements together with their user- 

defined model elements, we require a more advanced form of repository. In Section 7.7 we will discuss 

the concept of a reduced redundancy model and its ability to integrate user-defined and derived 

information. Our repository currently supports zero or more derived elements to be associated with each 

userdefined element. In the case of the non-existent user element in Figure 77, our repository creates a 

dummy user-defined model element that is of type unknown. The reason for the creation of the dummy 

element is that this scenario can then be treated in the same manner as the others. 

Figure 78 depicts all supported comparisons between user-defined and derived elements. Case 

(a) shows the one-to-one scenario where one user-defined model element is compared with only one 

derived mode1 element at any given time. Note that this scenario does not disallow multiple derived 

interpretations as long as each interpretation is compared with exactly one userdefined model eiement. 

Case (b) shows the scenario were two 

interpretations are compared with a single 

userdefined model element. In this 

scenario, both derived interpretations 

must be compared with the userdefined 

realization (note that we use the tern 

realization to indicate userdefined 

elements that are comparable to derived 

interpretations). 
d e) 

Figure 78. Variations in View 
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Case (c) shows the scenario of one interpretation for two userdefined model elements. In this 

scenario, the derived interpretation must be matched with at least one of the userdefined ones, A 

combination of cases (b) and (c) can also happen where two derived interpretations exist for two user- 

defined model elements. There, both derived interpretations are compared with both userdefined model 

elements. Case (d) shows the scenario where a derived interpretation is found but no user-defined model 

element is known. Case (e) is a counterpart to case (d) in that a user-defined element exists but no derived 

element is generated. Both latter cases are indications of incompleteness and, depending on the types of 

views, may also show inconsistencies. 

Consistency rules, which will be discussed later, do not need to explicitly specify what to do in 

the case of multiple interpretations or realizations. Instead, our underlying view integration hmcwork 

has to ensure that the above constraints are enforced. 

7 . 1  Ambiguous Interpretations 

A final complication of comparison is the issue of R j j = >  
ambiguity. Figure 79 depicts the situations that may apply: (1)  - II -. I 
the interpretation is ambiguous and either the one or the other 

applies; or (2) the realization is ambiguous and, again, either 
Figure 79. Ambiguous Comparison 

one or the other applies. Figure 80 depicts an example that 

shows some cases of variations (ambiguities) among interpretations. At the bottom, two input diagrams 

are shown. The left diagnm is a sequence view describing the interactions between a guest and his 

account. Since the create method constructs a new object, we can infer that create is a <<constructon>. 

A constructor causes a state change from a start state to a regular state (see Section 7.3.3). The state 

diagram at the top of Figure 80 indeed shows rhe create method in that form. The impact of the deposit 

method on the state diagram is, however, less clear. Since no additional information is available, we have 

to assume deposit to be either a query (does not change state) or an action (may change state). 

The {action or query) tag indicates an ambiguity for this interpretation. However, it is still 

valuabIe to capture those values since they do constrain the situation somewhat (e.g., we exclude the 
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Figure 80. Variations (Ambiguities) in Transform~tion Results 

possibility that it is an activity). For deposit we also have a second interpretation, which comes from the 

class diagram-the post condition must result in a balance greater than zero. That information allows 

deposit to be associated with the Account Balance state since that state has the same invariant. The state 

diagram depicts deposit to cause a state change from Account Neutral to Account Balance. Thus deposit 

is an action. This observation does not violate the (action or query} constraint since the derived 

interpretation allows deposit to be an action. The example in Figure 80 has no inconsistency; however. 

given the constraints the diagrams pose onto one another. a number of potential inconsistencies may 

occur: ( I )  if create is ever used as a message that does not create an object; (2) if deposit is used as a 

constructor; (3) if deposit would be declared a <<query>>; (4) if deposit has the post condition 

{balance=O} or even {baIance>=O); and so forth. Thus, ambiguous transformation results still support 

consistency checking and must be captured. 

Inconsistencies are identified when derived interpretations and userdefined realization do not 

match. The comparison is done either in the "part-of' mode or the "equivalence" mode (as it was 

discussed above). The comparison rules and ambiguity issues discussed above must be supported 

implicitly and thus do not have to be specified explicitly as part of consistency rules. Comparison is 



simplified by not having to compare between all views (or model elements). There is no value in 

comparing specific views with one another since they only exhibit usage scenarios. For instance, if one 

scenario claims A to be equal to 6 and the other claims A to be equal to 9, this does not always imply 

inconsistency. It only implies that A could either be 6 or 9 (an ambiguity). Comparisons between specific 

views and generic views are, however, meaningful. Similarly meaningful are comparisons among generic 

views as well as with their abstractions. In some cases, comparisons within single diagrams may also be 

meaninghl. Those cases are, however, much simpler because direct comparisons without transformations 

often suffice. 

7.5.2 Consistency Rules 

7.5.2.1 List of Inconsistencies 

In the course of evaluating UML we have identified about fifty types of inconsistencies. Section 

6 discussed and illustrated them in detail. The following tables summarize those inconsistencies. 

Although we believe that all types of inconsistencies identified in this section can be detected 

automatically, we have not yet analyzed and automated them in suflicient detail to support that ciaim. 

The tables indicate the degree of tool support we have in place currently. Full support implies that both 

transformation and consistency checking can be done automatically. Semi support implies that only 

transformation has been automated and consistency checking still has to be done manually. We will 

discuss our tool and its automation in detail later in Section 8. 

Table 5. List of Inconsistencies on the AbstractiConcrete Dimension 

1 2 1 Abstract relation has not been refined 

1 

1 4 1 Abstract classifier has not been refined 1 General I Full I 

Description 

Concrete relation has no corresponding abstraction 

3 

1 5 1 Concrete relation is of different type than its corresponding abstraction I ~ e n e r i  

Views 

General 

r I \ 

Concrete classifier has no corresponding abstraction 

Tool 

Full 

General Full 



Abstract classifier is replicated on concrete level although refinement exists 

Concrete relation uses abstract classifier instead of its refinement 

Abstract relation uses concrete classifier instead of its abstraction 

Concrete classifier is assigned to multiple abstract classifiers 

General 

General 

Cardinality of refinement does not match its abstraction 

Direction of concrete relation does not match its abstraction 

Concrete classifier does not replicate a method of its abstraction 

Concrete classifier does not replicate an attribute of its abstraction 
--  

Concrete method is of different type than its corresponding abstraction 

Concrete attribute is of different type than its corresponding abstraction 

General + & 
Class 

Class 

6 

Class I 
Class I 

- 

- 

- 

- 

F 

- 
- 

- 

- 

- 

- 

- 

- 

- 
- 

Concrete classifier is of different type than its corresponding abstraction 

17 1 Abstract and public method is hidden in refinement 1 Class I 

General Full 

18 

Table 6. Lit of Inconsistencies on the CenericlSpecifrc Dimeasion 

Abstract and public attribute is hidden in refinement I Class 

General 

General 

General 

19 

20 

2 1 

Abstract pre-conditions may not become stronger in refinement 

Abstract post-conditions may not become weaker in refinement 

Abstract invariant may not become weaker in refinement 

1 

2 

3 

4 

5 

6 

Description 

Specific relation has no corresponding generalization 

Generic relation has never been instantiated 

Specific classifier has no corresponding generalization 

Generic classifier has never been instantiated 

Specific relation is of different type than its corresponding generalization 

Specific classifier is of different type than its corresponding generalization 

Views 

General 

General 

General 

General 

General 

General 

Tools 



Cardinality of generic classifiers does not match specific scenarios 

Direction of specific relation does not match its generalization 

Generic method has never been instantiated 

General 

General 

Generic attribute has never been instantiated General 

Specific method is of different type than its corresponding generalization 

Specific attribute is of different type than its corresponding generalization 

Specific view uses an attribute that is not defined in generic classifier 1 General I 

General 

General 

Specific view uses a method that is not defined in generic classifier General 

Specific relation has not been assigned to generic relation 

Specific classifier has not been assigned to generic classifier 

General 

General 

Generic pre-condition is violated in specific view 

Generic post-condition is violated in specific view 

Specific method used was declared private in generic view 

General 

General 

General 
- - -  - -- 

Specific attribute used was declared private in generic view 

State transition does not match method declaration 

Table 7. List of Inconsistencies on the StructurrrUBebaviorPI b a s i o n  

General 

SC-S 
- - 

State description does not match method declaration 

Method call order is violated 

Description 

SC-S 

SC-S 

I I Imported guard was not declared in smctural view 1 SC-C 

2 1 Imported trigger was not declared in structural view I SC-C I 
- - -  

3 I Structural view does not allow an interaction as required by guard 

Relationship between classes is not reflected in statechart 

4 Structural view does not allow an interaction as required by trigger SC-C 



1 7 1 Method was declared "action" but is used for state transitions I SC-C I I 

6 

1 9 1 Guards leaving state are not mutually exclusive 

Method was declared "query" but is used for non-circular state transitions 

8 

SC-C 

7.5.2 3 Simple Consistency Checking Example 

In Section 7 above, we indicated that automated consistency checking requires rules for 

validating constraints (redundancies). In our framework, rule validation is reduced to a simple 

comparison of user-defined and derived model elements. Section 7.5.1 further complemented this by 

introducing and discussing comparison rules in the case of ambiguity or muItiplicity. An issue that still 

remains is how and where to apply those comparison rules, To enable automated comparison, we need to 

specify conditions that indicate what consistency actually is. To that end, consistency rules must specib 

the groups of model elements they apply to as well as the conditions that must remain valid so that those 

groups of model elements can be considered consistent. The following will introduce consistency rules 

and will discuss them in the context of examples. 

Figure 81 depicts an example of an inconsistency between two class diagrams at different levels 

of abstraction. The diagrams depict a simplified view of a hotel management system. The system is 

presented in two layers and has the constraint that each layer is supposed to present the system in a 

Method was declared "activity" but is used for non-circular state transitions 

10 

complete fashion although at different levels of 

abstraction. The first layer (top) shows the interactions 

between the classes Hotel and Guest. It is stated that a 

Guest may stay at a Hotel and hat a Guest may have 

reservations for Hotels. The more concrete layer 

SC-C 

(bottom) shows 

Hotel as well 

Guardtrigger pre- or post condition does not match method condition 

refinements of the 

as a refinement 

SC-C 

classes Guest and 

of one of their 

. . - - . . . - :o.: - -- - --- .__ - 
Hotel kt--- 

- -- ..-- o... -----. Guast ..-i 1 

o.. , -- _--st8~Vsy8f_-_ 
- --: 

-. -. d 0.: - 

Figure 81. Refinement Inconsistency 



relationships. It can be observed that Hotel was decomposed into having a Building which has Room. 

The cIass Guest still exists; however, its dependencies to the classes Building and Room are refined via 

the helper class Reservation. Since both diagrams (refinement and abstraction) depict the same part of the 

hotel management system, it follows that the information depicted within them must be consistent with 

one another. The issue of consistency is, however, hard to validate-even in a simple example as the one 

above- because: 

- The class Hotel is not present in the lower-level design. 

- The relationship between Guest and Room (the latter being part of Hotel) is obstructed by the 

helper class Reservation. 

The example actually contains two inconsistencies. If we assume Room to be a surrogate of 

Hotel (which it partially is) then the cardinality between Guest and Hotel should be identical to the 

cardinality between Guest and Room. The higher-level design states that a guest may stay at most at one 

hotel at any given time, whereas the lower-level design states that a guest may stay at zero, one, or more 

hotels at any given time-an inconsistency. The second inconsistency in the example is in the direction of 

the relations. Whereas the higher-level diagram states that Guest may have reservations for Hotel (the 

uni-directional nature of the association implies that Guest may access methods of Hotel), the lower-level 

diagram depicts the class Reservation at the center of that interaction-another inconsistency, 

In Section 7.2, we discussed that inconsistencies arc based on redundancies between diagrams. 

Figure 81 illustrated this in the case of abstract information that poses constmints on refinements, For 

instance, the knowledge that Guest and Hotel interact at an abstract level is a constraint that such an 

interaction must also be implemented at a lower level (equivalence comparison). Similarly, the lack of an 

interaction at an abstract Ievel is a constraint on the lower level not to interact. 

In Section 7.3 we, therefore, discussed on how to use transformation to enable the comparison 

between different types of diagrams. In particular, for the example in Figure 81, we need abstraction. 

Figure 82 depicts the findings of that abstraction process. The bottom diagram shows the lower-level 

design from Figure 81. Our abstraction process is M y  tool supported and uses abstraction rules (see 

Section 7.3.1.3.3) to automatically replace more complex class patterns with less complex (more abstract) 



ones. The abstraction process described in 

Figure 81 involves two steps. The first step 

merges the classes Room and Building into a 

composite class Hotel. The composite class 

Hotel "inherits" the interfaces from Building 

and Room and, thus, has relations to 

Reservation and Guest. The second abstraction 

step eliminates the helper class Reservation 

since it obstructs our view onto the direct 

relationship between Guest and Hotel. The 

final result is a derived diagram where the 

direct relationships between Guest and Hotel 

are depicted (top of Figure 82). We refer to 

i Hotel cunent?y..staysysat [ Guest 
I_---- 
. / :o.: o.:t -I - 

-- 

Figure 82. Abstraction Example 

this diagram as the (abstract) interpretation of the lower-level diagram since it is directly comparable with 

the higher-level diagnm in Figure 8 1. 

To illustrate the process of comparison, consider Figure 83. The top and bottom rows depict the 

user-defined diagrams from Figure 8 1. The two rows in the middle are the derived diagrams we got after 

abstraction (see Figure 82). Since transformation and consistency checking relies on the existence of 

mapping information (see Section 7.6.21, Figure 83 also depicts trace information in form of vertical 

arrows that link elements between rows (trace mappings are shown as dashed arrows, e.g., between 

Building and Hotef). Additionally, transformation created interpretation relationships between some 

derived elements and higher-level elements to indicate that those elements are comparable, We refer to 

derived model elements that are comparable as interpretations. As a general rule, interpretations tend to 

be final ansformation results as in above case were the most abstract model elements have become 

interpretations. Interpretation relationships are represented as solid vertical arrows with circles on both 

ends. 
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Figure 83. Example of Consistency Checking between Abstract and Concrete Elements 

75.2.3 Consistency Rules Defined and Applied 

Based on the relationships between user-defined and derived elements, consistency rules can be 

validated. The following shows a consistency rule that states that for each interpreted relationship there 

must be a realization. Note that a realization is the opposite of an interpretation. If interpretations depict 

derived elements that are comparable to user-defined elements then realizations depict the corresponding 

user-defined elements that are comparable to derived elements. 

Concrete relation has no corresponding abstraction: 

I V r E relations, is-classmodel (r) A is-abstraction(r1 A I 
is-interpretation(r1 realization(r1 # NULL 

Above rule applies to relations in the model. In Figure 83 relations are the horizontal arrows 

between classifiers (e.g., between Guest and Hotet). Above rule then qudifies what relations are actually 

meant- The following restrictions are defined: ( 1) onIy those relations that are part of class models (all in 

our case); (2) only those relations that are abstractions (all derived and high-level ones in our case); and 

(3) only those relations that are interpretations (only the two abstract relations in the second row from 



top). This rule, therefore, only applies to abstracted relations of class diagrams that are comparable to 

user-defined ones. The rule then states that the realizations of those relations must also exist. In our 

example this rule is not violated since for both abstracted relations we also find at least one realization. 

Direction of concrete relation does not match its abstraction: 

V r E relations, is-classmodel (r) A is-abstraction (r) A 

realization (r->destination) = (realization(r1) ->destination) 

This rule applies to the same relations as the previous rule with the additional constraint that 

realizations must exist. Since realizations exist for both interpreted relations, this rule is applied to both. 

The rule states that the relations in question must have the same destination, For instance, both reiations 

in the higher-level diagnm in Figure 83 go from Guest to Hotel (see arrow head). The "(realization(r))- 

>destinationw part of above rule, therefore, returns {Hotel] in both cases. Note that "realization(r)'* yields 

the user-defined, higher-level relations (has~esewationfor, stays_at) and that "->destinations" yields 

the destination set of these relations (there may be multiple destinations since UML allows more than one 

destination per relation). On the other hand, the "reaIization(r->destination)" part of above rule returns 

{Horel] for one relation and (Hote1,Guestj for the other (note that associations without mows denote bi- 

directional associations). It follows that in one case, above consistency rule is valid whereas in the other 

case the rule is violated. The violation reveals that the interpreted result has a different direction of 

interaction than its realization. 

Concrete c l d ~ e r  is of different type than its corresponding abstraction: 

V r E relations, is-classmodel (r) A is-abstraction (r) A 

1 is-interpretation(r1 A realization(r) + NULL type (r) = I 
type (realization(r)) 

This ruIes again applies to the same set of relations as above one and states that the interpreted 

relationship must be the same as the type as the user-defined one with which it is compared. The ?ype(r)" 

part results in an association in both cases. Since the realizations for both relations "type(realization(r))" 

are also associations, it folIows that no inconsistency of this type exists. 



Cardinality of refiinement does not match its abstractioo: 
pp-p-p 

V r E relations, is-classmodel ( x )  A is-abstraction (r) A 

is-interpretation (r) A realization (r) * NULL A type (r) = massociation" A 

type f realization (r) 1 = nassociationn cardinality (r) = 

cardinality (realization (r) 

This rule also applies to all relations as the previous one but further qualifies that those relations 

must be of type "association." It states that the cardinality of that association has to match the cardinality 

of its realization. Note that this rule is rather generic in that it could be refined to check for source andor 

destination cardinalities. Also it could be refined to check for lower and upper bounds. Comparing 

cardinalities is also an example where one-to-one comparison cannot be easily implemented. For 

instance, a user could specify the same cardinality as [1..5] or as [1,2,3-51. Comparing cardinality, 

therefore, requires the normalization of its contents (another transformation). 

We analyzed the consistency cases between abstract and concrete diagrams and we identified 21 

consistency rules (see Table 5). In Figure 83 most of those rules were not violated. Nevertheless, we 

would have to validate all rules against the model to ensure that. The consistency rules we discussed thus 

far followed along the same pattern and the rulcs were very similar. Rules can, nevertheless, get more 

complicated. Consider the following example: 

Abstract relation has not been refined 

V r E relations, is-classmodel (r) A is-realization (r) A is-ref ineable (r) 

3 ir E r->interpretations, is-abstraction(ir1 A is-classmodel(ir->origin) 

This rules uses a number of different constructs for validation. The "is-refineable(r)" part 

verifies whether or not other model elements of the same level have been refined. This is necessary since 

we do not want to accidentally declare the most refined class diagram has having relations that have not 

been refined. This rule is also different in that the "implies part" is more complicated. Since we are not 

searching for interpretations but for realizations ("is-realization(r)") and, as we discussed in Section 

7.5.1.2, since more than one interpretation may exist per realization, it follows that each interpretations 

has to be searched. In above case, we want to ensure that a refinement exists for a refineable element. 



Thus, we need to find at least one interpretation that is an abstraction from something else. That alone is 

not sufficient since we learnt in Section 7.4 that complex transformations are also possible. Thus, there 

could be a stnrcturalized sequence diagram that was then abstracted. In that case, the abstracted 

information would qualify as an abstraction ("is-abstraction(ir)") although it was not derived from a 

direct refinement. We, therefore* need to additionally specily the origin of that derived element as being 

from a class model. We can use "is-classmodel" again for that purpose and provide as an input the 

elements from which the derived elements were built of ("ir->originw). Origin traverses the classifier tree 

in Figure 83 downward until user-defined elements are found (e.g., Building, Room, and its relation). 

Above examples only discussed relations. Handling abstract and concrete classes (classifiers) is 

very similar: 

Concrete classifier has no corresponding abstraction: 

V c E classifiers, is-classmodel (c) A is-abstraction (c1 A 

is-interpretation (c) * realization(c) # NULL 

Concrete classifier is of different type than its corresponding abstraction 

V c E classifiers, is-classmodel (c) A is-abstraction (c) A 

is-interpretation(c1 A realization(c) * NULL 
realization(c->destination) = (realization(c1) ->destination) 

Abstract c l d ~ e r  bas not been refined 

V c E classifiers, is~classmodel(c) A is-realization(c1 A is-refineable(c1 

a 3 ic E c- >interpretations, is-abstraction (ic) A is~classmodel (ic- >origin) 

Above rules emphasized in equivalence comparison (recall Section 7.5.1.1). Indeed, equivalence 

comparison is the pre-dominant form of comparison on the abstract-concrete dimension but there are 

exceptions such as: 

Abstract prelconditions may not become stronger in retiaemcnt 

V m E methods, is-classmodel (m) A is-abstraction (m) A is-interpretation(m1 

I A realization (m) t NULL A precondition (m) + NULL precondition(m1 7 I I precondition (realization (m) ) 



This rule validates methods of class diagrams. Methods are services (e.g., functions) that classes 

provide as an interface. For instance, the Reservation class in Figure 83 may have methods like 

set_am'vul_date or set-number-of-days. Some of those methods may have preconditions. For instance, a 

method set-arrival-&re may have the precondition that the arrival date cannot be the current date nor 

any past date. Thus, a reservation can only be made at least one day in advance. A refinement should 

ideally have the same pre-condition (equivalence), however, it is valid to weaken it a bit. For instance, if 

dwing refinement another method is created which has the relaxed pre-condition that no past arrival dates 

should be used, then this refinement does not contradict the abstraction. The refinement method still 

provides the same services as the original one only that it provides additional functionally. Note that this 

case should not be seen as allowing a requirements change. The validation that a reservation has to be 

done at least a day in advance still has to happen. Having a relaxed way of refinement supports concepts 

like class libraries or COTS (commercial-off-the-shelf) packages that frequently do much more than 

required. For instance, if the refined method is a part of a COTS package and it meet the same or weaker 

pre-conditions then it can be used as a substitute of that abstract element. Should above consistency rule 

not be applicable in other situations, it could be deleted, ignored, or replaced by a more adequate one. For 

instance, we could replace the b>" operator with a "=" if desired. 

Defining consistency rules between specific and abstract elements is very similar to consistency 

rules for abstract and concrete elements. It was already indicated above that the types of inconsistencies 

are very similar. The main difference between consistency rules for abstraction as compared to those for 

generalization are the part-of reIationships, 

Specific relation has no corresponding generalization: 
. - -  .- I V r E relations, is-classmodel (r) A isgeneralization(r1 A 

is-interpretation (r) = realization (r) # NULL 

Direction of specific relation does not match its generalization 

V x E relations, is_classmodel (r) A is-generalization (r) A I 
I is-interpretation (r) A realization (r) # NULL = I 



Cardinality of generic classifiers does not match specific scenarios 

- - -- I V r E relations, is-classmodel (r) A is-generalization (r) n 1 
is-interpretation (r) A realization (r) # NULL A type (r) = massociationN A 

type(realization(r))= "associationa cardinality(r1 s 

cardinality(realization(r)) 

Above examples showed that consistency checking for generalization involves the same pattern 

of consistency rules for abstraction. The main differences are the use of the "is,generalization" construct 

and the more frequent use of the "s" operator instead of the "=" operator. 



Figure 84 shows a comparison example between generic and specific diagrams, The figure is 

analogous to Figure 83. The top area and bottom areas again represent user-defined diagrams. On top, we 

find a class diagram depicting the generic relationship between Hotel, Guest, and Reservation. On the 

bottom, we find two specific diagrams depicting instances of the generic scenario. In particular, the 

bottom left shows an object diagram with the objects Peter, Ann, and Mary which are instances of Guest, 

the objects Shoreslnn and BeachResorr which are instances of Hotel, and the object R3 which is an 

instance of Reservation. It is depicted that Ann stays currently at the Shoreslnn, Peter currently stays at 

both hotels, and has a reservation for the Shoreslnn (e.g., for some later date), and Mary has neither a 

reservation for any hotel nor does she stay at any one of the hotels. 

The other specific diagram on the bottom right is a sequence diagram that depicts how a 

particular instance of Reservation (called R3) is used to make a reservation for Mary at the Shoreslnn. We 

see that the reservation object instantiates the Mary object (Mary had not exist at that time) followed by 

verifying availability of space (is-available method) and reserving space (reserve-guest method) at the 

Shoreslnn. The Shoreslnn object calls the Mary object using its setflog method (e.g., possibly to indicate 

that this person has some reservation for some place). 

The middle area in Figure 84 depicts derivations of the specific views using some of the 

generalization techniques discussed in Section 7.3.2. For instance, the object diagrarn was generalized 

into a class diagram showing the three classes Hotel, Reservation, and Guest. Additionally, the 

generalization process was able to derive some cardinality information based in the specific object 

diagram. For instance, we cm observe that the object diagram has the cases of zero, one, or two guests 

staying at hotels. This implies, on a generic level, ~ 5 3 t  Guesl may be related to zero-to-two Hotel objects. 

Other cardinality observations can be made in a similar manner. The sequence diagram was also 

generalized into a class diagram. However, as it was discussed in Section 7.4, no direct transformation 

be tween sequence and class diagrams exists. Therefore, our transformation process used complex 

transformation to generate first an object diagram out of the scquence diagram followed by a 

generalization of that object diagram into a class diagram. 



The generalization of the sequence diagram was not able to reason about the types of relations 

between the classes Hotel, Reservation, or Guest. Those relations are therefore indicated as dashed arrows 

(type = NULL). Although the relations are of unknown type, we still were able to indicate the directions 

of the interactions. Also, the sequence diagram shows method calls that can be structuralized and then 

generalized into a class diagram. For instance, the observation that the R3 object uses the create method 

to instantiate the Mary object implies that Mary's type, which is Guest, must also have a method called 

create. Additional observations could be made about the sequence diagram; however, they are omitted 

here since they are not relevant for this example. 

Since the generalization process requires mapping information, they are specified in form of 

generalization dependencies. Generalization dependencies are depicted as vertical dashed arrows. The 

generalization arrows between user-defined views and derived views were generated automatically. The 

generalization arrows between user-defined elements (e.g., between the generic and specific level) were 

defined manually. Like in Figure 83, interpretation arrows are used to denote elements that are directly 

comparable. The lines with circular mows on both ends indicate such interpretations. 

Checking for consistency between the generic and specific views is analogous to checking 

consistency between the abstract and concrete dimension. Consistency checking traverses the model and 

applies consistency rules whenever applicable. Thus, it traverses the model to find model elements for 

which the input condition holds and thcn validates the output condition. The example has a number of 

inconsistencies: 

Inconsistent cardinality between the class and the object diagram (e.g,, between Hotel and Guest) 

Inconsistent direction of relations between the class and the object diagram (in particular between 

Reservation and Guest) 

Inconsistent direction of relations between the class and the sequence diagram (two cases between 

Reservation and Guest and between Guest and Hotel) 

Inconsistent method declaration and usage between the class and the sequence diagram (method 

setfrog is not declared in class diagram but used in sequence diagram) 



Based on the examples shown, it can be observed that comparing generic and specific views is 

very similar to comparing abstract and concrete views. In both cases, diagrams are transformed to enable 

a direct comparison. In both cases the resulting comparison rules are therefore very much alike, The 

challenge of comparison is to identify interpretation relationships and comparison modes (e.g., part-of or 

equivalence). In both cases (generalization and abstraction) the actual comparison is complicated by 

partial, ambiguous, or multiple interpretations per comparable userdefined element. This section already 

discussed how to deal with those problems. 

The examples of abstraction and generalization showed that consistency checking is greatly 

simplified through transformation. For instance, identifjing rhe cardinality inconsistency between the 

generic and specific diagram can only be done by investigating entire diagrams. This is one reason why 

simple one-to-one comparisons without prior transformations are often not very powerful (recall Section 

7.2). 

In the following, we will discuss the issue of how to trigger transfonnation as part of consistency 

checking. Since the comparison examples in Figure 83 and Figure 84 showed an awkward overhead in 

the use of model elements (especially trace mows), Section 7.7 about repositories will discuss 

improvements. In particular, evolutionary aspects of view integration greatly depend on improvements 

made on the repository side. 

7.5.3 Triggering Transformation 

We discussed the workings of t~nsformation methods in Section 7.3. This section further shows 

how transformation methods are triggered to enable comparison. Although, we see model transformation 

as the enabling technology to ease comparison, we still found that transformation remains fairly 

independent from comparison. Accordingly, we see the need to support two fundamental modes of 

transformations: 

1. Transforming of the entire model prior to its comparison 

2. Transforming on a need basis for specific comparison (localized transformation) 

The reason for the independence of transformation from comparison is in the interface between 

them. We already discussed that transformation only generates derived information. In differentiation, 
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deived information is used to reason about consistency issues. The causal dependency between 

comparison and transformation is, therefore, only that transformation has to happen before comparison. It 

does not matter whether transformation was done immediately preceding comparison or whether it was 

done some longer period of time ago. Similarly, it does not matter whether only a partial transformation 

was carried out satisfying only a particular consistency checking need, or whether a more complete model 

transformation was performed. It has no negative influence onto consistency checking if more than 

required transformations were performed. 

There are respective advantages and disadvantages in what transformation mode to choose. It 

has been our finding that in reality both transformation modes have to be supported. Initially, 

transformation on a need basis may be sufficient. Since transformation results should never be discarded 

unless they have become obsolete, a more completely transformed model becomes available over time by 

default, 

There is also another scenario of not wanting to do transformation although their results might 

have impact onto comparison. For instance, if the model is changed, new inconsistencies could be 

introduced. Some of those inconsistencies are temporal since they only happen as part of the changing 

process. For instance, creating a new relation between two classes may require the deletion of the old 

reiation followed by the creation of the new one. The first step of deleting the old relation, however, 

could cause an inconsistency. Since that inconsistency is imrnediateIy resolved once the new relationship 

is created, it is of little use to identify it. We refer to such an inconsistency with only a short lifetime as a 

temporal inconsistency. It must be noted that the life-time of a temporal inconsistency may be as short as 

a minute but could also be as long as days or weeks (e.g., changing larger parts of a model). It may, 

therefore, not be desirable to do consistency checking on those parts of a model that are in the process of 

revision. To that end it is not always desirable to force transformation prior to comparison. On the other 

hand, only if transformation is forced immediately prior to comparison are derived interpretation and 

comparison results up-to-date. The ability to separate evolutionary aspects of software modeling from 

consistency checking is, therefore, another advantage of using a separate transformation and consistency 

checking approach. Our view integration model supports three modes of operation: 



1) Transformation only without comparison, 

2) Compiuison without prior transformation, and 

3) Comparison with minimal (forced) prior transformation 

The first case of transformation only implies the use of ow transformation methods as synthesis 

methods. The results of transformation are not (yet) used for consistency checking. The second case of 

comparison without prior transformation implies the use of our comparison methods for analysis only. No 

transformations are performed prior or afterwards and no derived interpretations are generated. In the 

second case, comparison can only draw From previous transformations results. The third and final case of 

comparison forces a minimal amount of prior transformation. This last case shows the use of both 

synthesis and analysis methods together. The synthesis happens prior to analysis to ensure that the model 

is up to date and that analysis can detect the latest inconsistencies. It is the users choice the select the 

fitting consistency-checking mode. 

The amount of transformation required for consistency checking depends on the selections 

made. For instance, if consistency needs to be validated between two diagrams then transformation can be 

limited to those two diagrams. If consistency needs to be validated given only a single diagram then d l  

other diagrams that are tnnsformable into that diagram need to be transformed. It is not very useful, 

although possible, to validate consistency between individual model elements since it has been our 

finding that often complete diagrams must be investigated to reason about single elements. 

7.5.4 User Interaction 

Consistency checking in itseIf may be seen disjoint from user activities but it is not separate. 

Consistency checking requires extensive feedback from users during all activities. The most manual 

activity of our view analysis framework is mapping. Nevertheless, transformation and differentiation 

cannot always be done fully automatically. Thus, the user at [east needs to specify the extent and modes 

of transformation and comparison. In more advanced cases, the users may also have to address and 

resolve ambiguities (e.g., during transformation) to get more meaningful comparison results. 

Besides consistency checking, view integration also needs to resolve inconsistencies. Two issues 

are important here: how to resolve inconsistencies and when to resolve inconsistencies. The issue on how 



to resolve inconsistencies may be intuitive. The issue of when to resolve it is less so since one would 

assume that inconsistencies must be resolved right away. Instead, there are good reasons why 

inconsistencies cannot be resolved immediately. As an example we mentioned temporal inconsistencies 

previously where a model change can cause inconsistencies that will be resolved sooner or later. Other 

cases involve incomplete information where it is sometimes not possible to resolve an inconsistency due 

to the lack of more specific information. There has been extensive works on living with inconsistencies 

that handle issues like what inconsistencies to search for, how to present them, how to repair them, and 

when to repair them [Balzer 19911 [Finkelstein et d. 19911 [Nuseibeh 19961. 

Like transformation, the differentiation activity is more challenging then just comparing model 

information. For one, we have to deal with similar issucs as in transformation (e.g., reuse and redundancy 

of comparison results) but we also have to deal with more ergonomic types of decisions since view 

comparison causes more interactions with the users (humans), Our work does not address human 

computer interactions (recail Section 4) but the following fists some of the concerns that may arise: 

Ignoring inconsistencies: The user may be aware of some types of inconsistencies and may chose to 

ignore any feedback on them. 

Show dYshow what has not been shown before: The user could chose to be presented with all 

inconsistencies every time an analysis is performed or the user could chose only to be presented with 

only the new ones. 

Passive feedback: Instead of requiring the user to acknowledge and/or immediately respond to 

inconsistencies, the feedback should be more passive, leaving it to the discretion of the user when 

and how to handle them. 

Prioritizing inconsistency feedback: This can be done by keeping track of the reliability of the 

n n s  format ion techniques used. 

Suppressing multiple feedbacks per modeling element: Since a single defect may be detected in 

different ways, a detection mechanism may also produce multiple defect reports about single defects 

which could be compressed. 



Inconsistency detection mechanism shodd err to the benefit of not indicating inconsistencies 

although there is one instead of indicating inconsistencies where there are not any. The rationde for 

that is that otherwise the amount of feedback to the user would exceed practical considerations. 

7.5.5 Deferred Issues 

Like transformation, differentiation cannot be seen in isolation. The following items will be 

addressed in later sections: 

o Modeling Multiple Derived Results (see Section 7.7) 

o Evolutionary Scalability (see Section 7.7) 

o Types of -aces needed to support comparison (see Section 7.6.2) 

o Dummy element for derived interpretations that do not have user-defined counterparts (see 

Section 7.7) 

7.6 Model Synthesis and Mapping 

Science and engineering alike stress the importance of being able to produce and reproduce data. 

The production of a software system involves the creation of modeling information that either specifies 

the system itself or assists during the decision making process. A general technique for enabling 

reproduction is tracing ones steps from inception to conclusion. If done properly, tracing will outline 

every step along the way of how a problem was transformed into a solution, including intermediate 

results and findings. This section address model synthesis (the production) and model mapping (the re- 

production). 

7.6.1 ModelSynthesis 

Most model information for software can be categorized into two mjor categories: (1) 

Information that is relevant for the construction of a software system; and (2) information primarily 

needed for decision making along the way. This work primarily emphasizes the former-the specification 

of system relevant information. Creating model elements is mostly a manual activity performed by a 

single or by multiple users. The issue of how to develop software models using UML has been discussed 

in great detail in works like Rumbaugh et al. 1999), [Booch et al. 19991, [Jacobson et al. 19991, [Fowler 



19971, [Siegfried 19961, [Kruchten 19981, [Carrnichael 19941, Fliens 19951, Magee and Kramer 19991, 

and [Wirfs-Brock et d. L9901. It is outside the scope of this work to provide development 

recommendations. 

Our tool, W A n a l y z e r ,  uses Rational Rose@ as a synthesis tool. Rational Rose is used to 

create, modify, and delete elements of the UML model. Our tool also uses Rational Rose to visualize 

transformation and consistency checking results (see Section 8). 

7.6.2 Model Mapping 

Mapping identifies relationships between modeling information of different views. Mapping 

therefore describes overlapping and often redundant pieces of information. We allbeady discussed the 

importance of mapping for view integration and discovered that mapping frequently has to be done 

manually and can (if done properly) significandy improve scalability and reliability. Mapping can be 

supported via naming dictionaries or traceability matrices [Gieszl 19921 [Gotel and Finkelstein 19941. 

7.6.2.1 Traceability Types 

For automated transformation and differentiation we identified a number of tracability types that 

need to be supported. Only some of those are actually used by the users most others are represented by 

our consistency checking framework: 

Abstraction traces: to link abstract and concrete diagrams (e.g., high-level and low-level diagrams) 

Stnrctumlization traces: to link structutal and behavioral diagrams (e.g., statechart and class 

diagrams) 

Generalization traces: to link generic and specific diagrams (e.g., sequence and class diagrams) 

Interpretation/realiation traces: to identify derived model elements that are directly comparable with 

user-defined model elements (for the most part transformed elements) 

Origin traces: to link derived model element to their original user-defined elements that served as 

input to the transformation process 



7.6.2.2 Mapping Support 

Mapping can be supported and partially automated and validated using analysis patterns, shared 

interfaces, and inter-view dependency traces. If done manually, mapping may result in an additional 

source of possible defects in that potentidly two views are related that actually do not relate to one 

another or vise versa. Mapping also increases the manual overhead in applying integration techniques. 

The goal is therefore to have some automated mapping technology. As it was outIined in Section 4 that 

this work does not aim at discussing how to automate mapping. The reason for this limitation is that 

mapping is a very complex problem in its own rights. Not discussing automated mapping does, however, 

not mean that no automated support for traceability is available. 

7.6.3 Deterred Issues 

Mapping, like transformation, cannot be seen in isolation in context of our view integration 

framework. The following issues are dcferred to the next section: 

o Implementation of ttrtcability types (see Section 7.7) 

o Scalability Issues due to trace explosion (see Section 7.7) 

7.7 M ode1 Repository 

The model repository is the central database for model elements. It provides both storage space 

and access points. In our view integration framework in Figure 42, the model repository was depicted 

outside of the view analysis component, and is, therefore, not discussed in every detail in this work. The 

main reason for that is that we chose a modeling language that is already predefined (e.g., UML). UML is 

supported by a meta-model that describes the definitions and interactions of model elements in detail 

(recall Section 5.3). For more information about UML's meta model, please refer to [OMG 19991. The 

major reason why we do have a model repository section in this work is to define the interfaces between 

our analysis component and the repository as well as suggest improvements and extensions to allow a 

better and more scalable consistency handling. 



7.7.1 Implementing View Integration Elements 

For the most part, transformation does not require specific model elements. For instance, an 

abstraction of a class diagram yields another class diagram that in turn can be model in the same manner 

as the first one. To distinguish between user-defined and derived information, derived elements are 

annotated with the stereotype derivedn. 

UML t .3 supports abstraction through the dependency relationship stereotyped as abstraction% 

Similarly, UML supports some forms of generalizations. In UML, the supported generillization 

relationship, however, only applies to certain types of model elements and not to all (in theory every 

specific model element could be generalized). We. therefore, decided to create our own version of the 

generalization dependency which is modeled like abstraction in form of the dependency relation UML 

provides (annotated as ageneralizationw). 

Origin traces link derived information to their user-defined ones. Since derived information may 

be based on intermediate derived information, the abstraction, generaiization, and structwdization links 

are often not adequate in determining the original user-defined elements that enabled the transfomation 

of a particular derived element. The origin trace, always a transitive link between derived and user- 

defined information, is also modeled via dependency relations. Figure 85 depicts origin traces in context 

Hig her-Level- o..e 

I Hotel - 
has- reserva tion, for 

0.: -- 
Guest 1 

I 

Figure 85. Origin Traces and Interpretations Traces 



of the example from Figure 83 (note that we did not display origin traces in Figure 83 to reduce 

confusion). Storage wise, an origin m e  is simply a shortcut, 

7.7.2 Evolutionary Scalability Problem 

Transformation improves reuse and has also a considerable positive impact onto scalability 

(reuse). Reusing tnnsfonnation results also improves evolutionary consistency checking during later 

cycles. It must be noted that previous examples only described single consistency checking tasks at a 

single time (a brief moment during the software life-cycle). Since consistency checking cycles m y  to be 

repeated frequently during longer projects, the higher- and lower level class diagrams in Figure 8 1 might 

have to be vdidated multiple times (at teast once per cycle). Having transformation results from past 

review cycles can, therefore, simplify the next review, again through reuse. For instance, if neither the 

lower-level diagram nor the higher-level diagrams were changed, then there would be no need for a re- 

evaluation. Remembering past consistency checking results, however, also implies keeping track of 

transformation results for a longer period of time. This latter aspect introduces a new scalability problem. 

Assume that our hotel management system discussed before has grown to a large model and now 

contains 50 (user-defined) diagrams. Using transformation, we can easily come up with hundreds if not 

thousands derived views (intermediate views) using various transformation combinations. Assume that 

we now modify a model element in one of the user views. As a consequence, we would have to make 

sure this change is properly propagated to the other 49 userdefined views. Additionally, and this is the 

problem, we might also have to update all derived views (the intermediate views we had generated during 

transformation) since they might have become inconsistent as well. The latter would cause an enormous 

diseconomy of scale (red1 the n2 complexity challenge we had discussed previously). In case of our 

example in Figure 82, if we change the lowermost diagram (most concrete view) then both abstractions 

might get dTected by that change and may be in need of updating. Figure 86 depicts this problem 

schematically. It shows that for a couple of user-defined views, a series of derived views may be 

generated. If a change is introduced, a large number of consistency checking activities have to be 

performed. 



An easy solution to this 

problem is the creation of derived 

views (interpretations) on a need 

basis and only for individual 

review cycles. For instance, the 

abstractions in Figure 82 could be 

created to support the comparison 

with the higher-level diagram in 

Figure 81. After completion of 

that review cycle, both derived 

abstractions could be deleted. 

Deletion would indeed solve the 

-. 
1 

User-Defined Views 

transformation overhead otherwise. Two reasons add to that overhead: ( I )  the same transformations must 

be repeated multiple times during evolution; and (2) user feedback as part of transforrnrrtion results might 

get lost. Recall Section 7.5.4 where we discussed that there is a benefit in separating transformation from 

consistency checking. That benefit would be taken away if we would delete dl derived model elements 

after usages. 

A simple solution to above problem would be the localized deletion of modeling information. 

Instead of deleting derived information after every review cycle, that information is kept in the repository 

for Future reuse. If a change in the model causes derived information to become inconsistent then a 

localized deletion is performed that eliminates obsolete elements. This solution improves the situation but 

is still not ideal since lots of changes cause the deletion of a large body of derived information. We will 

discuss this problem next. 

7.7.3 Reduced Redundancy Model 

The concept of a reduced redundancy model is a way of handling derived modeling information 

without having to worry about keeping them consistent. A reduced redundancy model is an internal 

representation of diagrams that tries to minimize redundancy. The problem we have with derived model 
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elements is that they exhibit a high d e p e  of redundancy; or to be precise they are completely redundant 

since otherwise an automated transformation method would not be able to create them. Figure 82 shows 

substantial redundancies in that some model elements are replicated twice or even three times (e.g., 

Guest). In larger examples, the amount of replication is even more severe. 

Previously, we discussed that redundancies are a major cause for inconsistencies. Due to the 

highdegree of redundancies in derived views, the number of inconsistencies that can occur rises 

significantly. Additionally. the high-degree of redundancy results in exponential increase of storage 

space. In a worst-case scenario, each type of model element may potentially be transformed into all other 

types, already causing a strong overhead. However, since those derived elements are again transformable 

into all other types (recdl complex transformation in Section (I)) ,  the storage overhead could explode. 

Instead of storing "n" elements, we might have to store ns(n- I)*(n-2)*(n-3).. . elements. This case is 

obviously a worst case scenario and the redity is by far not as bad, however, it is still a major concern. 

A reduced redundancy model is a compression method for modeling information with the added 

benefit that inconsistencies are less likely to occur. The fact that space for storing modeling information is 

reduced in the process is another positive side effect. The reduced redundancy model is an important 

concept in improving scalability for UML consistency checking. It allows derived information to be 

stored without having to worry about their maintenance. 

Figure 87 shows a reduced redundancy model of our example From Figure 82 using W L  

constructs. The figure depicts the same classes and relations as Figure 82 but uses less replication. Thus, 

instead of three instances of Guest (in Figure 

82). Figure 87 only uses one instance. The 

savings are considerable: The class diagrams 

in Figure 82 used 9 classes, 9 relations, and 14 

trace links (the latter not depicted in the 

figure). The more compressed class diagram in 

Figure 87 only uses 5 classes, 8 relations, and 

Figure 87. Reducing Model Redundancy using UML 
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8 trace links. Figure 87 is, therefore, a compression of Figure 82 in that it uses less model elements to 

describe the same interdependencies. Keep in mind that a reduced redundancy model improves the 

internal representation of modeling information. A user could still derive each diagram depicted in Figure 

82 out of the reduced redundancy model (we will discuss that later). 

As we discussed above, the advantage of a reduced redundancy model is reduced storage space 

and less consistency checking between user-defined and derived model elements. As an example of less 

consistency checking overhead, consider the following: If the name of the class Guest is changed to 

Patron in Figure 87, then this change causes no inconsistency in the process. On the other had ,  a change 

like that in one of the class diagram in Figure 82 would cause an immediate inconsistency with the other 

two diagrams. In Figure 87, this type of change does even require updates but instead the change is 

implicitly updated. 

The reduced redundancy model is also an example were the WML definition is brought to its 

limits since the situation depicted in Figure 87 is not yet perfect. On the one side, there is still redundancy 

as in the case of the currently-stays-at and resentation relations. On the other side, the interfaces of 

classes become askew. For instance, the user-defined class Building has only two relations in Figure 82 

but three relations in Figure 87. Those deficiencies cannot be addressed within the boundaries of the 

UML standard. Instead, we found that we had to introduce new concepts that go beyond UML. 

Figure 88 depicts an even less redundant model of the problem above. This version improves the 

previous one since it only needs 5 classes, 5 relations, and 6 trace links. Its creation, however, requires the 

concept of a bridge that links model elements together (both classes and relations). Bridges are depicted 

as black circles where classes and 

relations are attached. Figure 88 

completely eliminates both problems we 

identified with respect to Figure 87. first, 

the redundant relations are eliminated 

and, second, the cIasses only see their true 

- 

/ Hotel < 

~ m m a  G u y  
- - --- . - 1  , 0.2 

Figure 88. Reducing Model Redundancy outside UML 
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number of relations. For instance, the class Building now has exactly two bridges to relations. Also, 

building consistency rules for Figure 87 is much harder than building consistency rules for Figure 88. 

Additionally, the amount of computing effort required to navigate a more redundant model (as in Figure 

87) is also much higher than navigating the less redundant model in Figure 88. The compactness of ow 

reduced redundancy model, therefore, results in a higher accessibility of its model elements. 

The only disadvantage of the reduced redundancy model in Figure 88 is that it cannot be 

supported in UML. U M L ' s  meta model has a clear definition on how model elements have to interrelate 

and the concept of a bridge is not supported. Bridges are located between model elements and each bridge 

may have two or more attachment placeholders for model elements (ports). At least two ports are needed 

since a bridge is used to link at least two model elements. 

7.7.3.1 Reduced Redundancy Model for Class Diagrams 

Since the emphasis of our work is geared towards class diagrams, this section discusses both 

their creation and access in context of the reduced redundancy model. The specification of a bridge is 

analogous to the specification of an AssociationEnd in its role to mitigate between Association and 

C~ussifer (see [OMG 1999)). The usage of bridges during model synthesis is also analogous to rhat of 

AssociationEnd. If a model element is derived (e-g., abstracted) then the derived element is attached to all 

external bridges it absorbs. Figwe 88 shows this in the context of the Hotel classifier and the reservation 

and currently-stays-at relations. Hotel absorbs the classifiers Building and Room as well as their internal 

relation. Externally, two bridges remain to the relations that lead to Guest and Reservation. The major 

remaining issue is how to handle the access to a reduced redundancy model. In particular, is it possible to 

generate the original userdefined and derived views out of the reduced redundancy model? If yes, then 

this would imply that the original representations remained intact and there would be no negative side 

effect in using reduced redundancy models. 

Figure 89 shows a generic example of three class diagrams on different levels of abstraction, The 

lower-most layer contains the original view (e-g., detailed structuMUbehavioral view) and depicts four 

classifiers (A-D) and four relations between them (a to 6). The middle layer groups the classifier B and C 



Derived = (A,8CD={BCtD)) 
= {a$) 

Figure 89: Generic Example of Classifier Abstraction 

into a composite classifier named BC. The relation y as well as the classifiers B and C are absorbed into 

the composite classifier BC and not visible any more. The third and top-most layer further abstracts by 

adding another composite classifier BCD which contains the composite classifier BC from the middle 

layer as well as the original classifier D from the lower-most layer. 

The right hand-side of Figure 89 additionally depicts identifiers for accessing user-defined and 

derived views. Those identifiers are built out of classifiers or relations and are stored as part of view 

descriptors (a view descriptor describes information that is stored explicitly about views). If the user- 

defined view on the bottom needs to be reconstructed out of the reduced redundancy model then either 

the descriptor {A,B,C,D) or the descriptor {a ,~ ,y ,6)  can be used. We refer to those descriptors as the 

identifiers of views and, as it can be seen, there are two types of identifiers that could be used for class 

diagrams-one consists of classifiers and the other consists of relations (hybrids are possible too but not 

explored here). Derived views can be accessed as well. For instance, the middle layer can be accessed 

using either one of the following three forms: (A*BC,D}, {A,{ B,C},D} , {A+BC=(B,C},D} where the 

last form is the most complete one. 

Identifiers can dso be based on reIations. Using relations as identifiers may seem counter- 

intuitive at Cirst glance since people often find classifiers to be the more dominant design features. In fact, 

for classifier abstraction it even turns out that identifiers based on relations are ambiguous. We found, 



however, that during relation abstraction in the next section, it is the relations-based identifiers and not 

the classifier-based ones that yield unambiguous identifiers. Thus, both types are needed to allow 

seamless navigation between them. 

Before we can discuss how to eliminate the ambiguity in identifiers, we will describe how to 

restore and access views in cases where no ambiguities are present. Figure 90 (upper-left) shows the 

reduced redundancy model for all the three layers in Figure 89 (Figure 90 is alike Figure 88). Besides the 

discussed scalability and storage improvements, the minimal redundancy model also has the added 

advantage that model information as well as their abstractions (and other possible transformations) are 

stored and accessed at a single location. 

Using the ciassifier identifiers, the process of re-creating a view out of a reduced redundancy 

model is straightforward. We only need to take each cfassifier permutation and find all (direct) relations 

between them. For { A,B,C,D}, possible permutations are ( A,B }, { A,C), { A,D), ( B,C), { B,D), and 

(C,D). Between (A) and ( B )  exactly one relation P exists. If this process is repeated, the remaining 
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Figure 90: UML-A Model satisfying Chdfiers for Multiple Abstractions 



relations are found. The same process can be followed in case of identifier (A, BCD) which yields the 

two relations a and B. 

Since the reduced redundancy model plus the identifiers are sufficient in reconstructing all three 

diagrams in Figure 89, they can be deleted. After all, they can be re-constructed on a need bases at a later 

stage (e.g., if a user would like to modify one of them). In terms of computations, the re-construction only 

has a n2 complexity where n represents the number of model elements in the identifier. Since the reduced 

redundancy model is only an internal representation. we refer to diagrams that are constructed out of it as 

projections. It must be noted that projections are not labeled derived in order to not conhse them with 

user-definedlderived model elements in the previous chapters. 

We indicated above that identifiers based on classifiers are unambiguous, however, identifies 

based on relations are not. We investigated the issue and found a solution. The problem is depicted in 

Figure 91 which shows the ambiguity in using relations as identifiers for classifier abstractions (we use 

the same example as before). The figure shows that the identifier {a, p, 61 of our example in Figure 90 

will yield two possible projections. The Ieft projection is based on the original view whereas the right one 

is based on the derived view. In order to find an unique identifier, we have to first decide what it is that 

we want to achieve. In view integration, when we query for information related to some modeling 

rutifacts then one of the following two scenarios are most likely: 

a) Query is based on original modeling information for user-enabled manipulation 

b) Query is baed on the minimal derived modeling information for consistency checking 

Using the additional information about usage, the relation identifier becomes unique. The left 

diagram in Figure 91 shows the result of the query based on the original modeling information (scenario 

Figure 91: Ambiguity in Accessing Composite Classifiers via Relational N a m  



let classifier = ( }  
let paths = ( }  

(A) V from E relations, V to B relations and from t to 
paths->put(from->find-path(to1) 

(B) V p E paths 
p = abstract(p) 
classifier->union(p-~relation8->cla~sifiezsO 1 

(C) V from E classifier, V to E classifier and from # to 
if (to E from->abstractionsO) classifier->remove(frorn) 

Figure 92: Deriving correct Projection from Relation Identifier 

I let relations s input 

- 

(a)). Since the original view does not contain derived interpretations, the process of creating a user- 

defined view is simple (original approach applied to user-defined elements only). The second scenario is 

a bit more difficult to understand but yields a correct result as well. The procedure is as follows: 

The relations variable in Figure 92 is the input to the procedure. If we follow our previous exarnpIe, we 

need to set relations = (a p, 6). Part (A) then computes all possible paths between those relations which 

yields paths = ( (c*C.y.B.P} .{aC.S). (&B.y,C.S 1, ( a A $  } ) . Note that the path (cA.b.B, yC.6) is not 

valid since this path uses P, one of the input relations. 

Part (B) takes each individual path, searches for its abstraction(s) and stores classifiers found in 

the variable class#iers. The role of the abstract function is to take a path and collapse its structure in such 

a way that the final path is of the simple form (relation, classifier. relation}. In our example, the (a,C,G} 

path is already of that form. What remains is to abstract the remaining three paths that are still more 

complex. The abstraction procedure takes each path (e,g., {a,C,y,B,P I ) ,  queries whether there is already 

Figure 93. Ctneric Example of Relation Abstraction 



an existing composite classifier (e.g., as it is for (C,y,B}-note that this query is based on (BC} which is 

an unique identifies). If yes, then the existing classifier is returned, otherwise, the pattern {C,y,B) is 

collapsed into the composite classifier BC, and (a,BC,fi} is returned. The same procedure is repeated for 

all other paths. Part (B) also gathers all (user-defined) classifiers involved in abstracted paths (now 

( (a,BC,$ } ,{a,C,G}, (&BC,G}, (a,A,p ) 1). Thus, the variable classifiers will end up containing { BC,A,B, 

C,D) (duplicate classifiers are eliminated. Finally, Part (C) eliminates all those classifiers that already 

have abstractions of them in the list. In our example, B and C are refinements of BC and are removed. 

The remaining list of classifiers is (A,BC,D}. This result conforms to the right hand side of Figure 91 and 

can now be used as an unambiguous identifier. 

The same process can be repeated for relation abstraction. To that end, Figure 93 shows an 

example of a simple view that is abstracted using again several layers of abstraction. The original view 

abstracted in the middle layer by introducing a composite relation 7 and, similariy, y->C->b is abstracted 

into 6. The third layer takes a and B from thc original layer as well as < from the middle layer and Further 

abstracts that pattern in the composite relation o. The left hand-side of Figure 93 shows the identifiers for 

composite relations. 



Figure 94 shows the reduced redundancy model for Figure 93. As discussed in classifier 

abstraction, the goal of the model is to exhibit as little redundancy as possible. This is again achieved by 

overlaying all model elements (original and derived ones) onto the same structure (see upper left part of 

Figure 94). Composite relations are f inked to the original classifiers since they do not get modified in the 

process. This structure is analogous to the one given in classifier abstraction. The process of projecting 

views out of it is therefore also analogous. 

. . . .- -- - - -  - - .- -* .. - . ._ _ _  
-9 

Original = {A,B,D) Derived = {A,B,D) 
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Figure 95: Ambiguity in Accessing Composite ReIations via Classifier Names 

The ambiguity that accompanies some forms of identifiers exists here too. However, in this case 

it are the classifier-baxd identifiers (e.g.. {A,B,D)) which are ambiguous. Figure 95 shows examples of 

ambiguous results based on the identifier {A,B,D} which results in two potential projections. The 

solution to this problem is identical to the one given in classifier abstraction instead that the roles of 

relations and classifiers are reversed. The left hand-side of Figure 95 shows the projection of {A,B,D) 

onto the original model, the right hand-side shows the most abstracted projection that combines the 

original and derived modeling information. The latter projection is again derived by finding all paths 

between A, B, and D, collapsing those paths using the rule set defined below, and eliminating all 

refinements of selected composite relations. 

The last step, the elimination of refinements (Pan (C) of our algorithm in Figure 92), may seem 

however unnecessary. For composite classifiers, this step was necessary since a single classifier may have 

one, two, or more relations. One rhe other hand. a single relation was thus far only depicted as being 

exactly between two classifiers (or one in case of a circular relation). Although, relations are indeed used 

mostly in a dual fashion, there are exceptions. For instance, associations in UML class diagrams are 

aIIowed to link more than two classifiers. Figure 96 shows such a relation, Here the relation a links three 



classifiers A, B, and C. If a 

composite relation 6 is introduced 

that collapses a-X->b. The search 

for a projection for (AJS} would 

yield a as well as 8 where a is a 

refinement of 6. Thus, Part (C) of 

the procedure discussed in Figure 

92 is still necessary to eliminate a 

figm the result. 

Figure 96: Special Case of Relations using Associations 

7.7.3.2 Reduced Model Redundancy and UML 

The reader may wonder why we do not extend the concept of a reduced redundancy model to all 

views CTML has to offer including its rneta-model. Primarily the reason is that reduced redundancy 

models have the strongest benefits in grossly redundant cases. Derived views are completeiy redundant 

with user-defined ones (we discussed this beforehand). Given the degree of redundancy, the noticeable 

impact of compressing the model is thus much stronger. Also, since UML does not specify how to store 

and maintain derived information, integrating those into the existing UML meta-model is more doable 

without major implications on the standard. 

NevertheIess, providing a less redundant modei base for all of UML would indeed be a very 

effective solution overall. In fEgyed and Hilliard 2000), we explore this option in context of architecture 

description languages. There we argue that in order to address view integration, we need to consider the 

classification of views first BasicaIly we distinguish between Fixed Views and View-Independent 

Models: Fixed views are stand-alone and support their interaction with other views through some 

explicitly defined form of data andor coctrol integration. Most (if not all) architectural definition 

languages as welt as UML fall into the category of fixed views. View-independent models, on the other 

hand, incorporate all relevant information about multiple views under one common roof with the 

advantage that information must not be exchanged or updated explicitly. 



The trade-off is between them is expressivity and consistency: If one accepts the idea that the 

drivers of mhitecting are stakeholders and their concerns, then view-independent models make the 

assumption that all stakehoIders' concerns can be uniformly captured in a single representational scheme. 

If they can, then having a single model greatly simplifies the "integration problem." Although 

comprehensive modeIs have emerged in the recent past, these models do not qualify as being view- 

independent, Take for instance CrmL which incorporates a number of views such as class diagrams, state 

diagrams, and sequence diagrams. Even though UML incorporates these views under one common meta- 

model, the actual storage does not exclude redundancy. It does not violate the tTML notation to create two 

classes with a defined relationship between them and have their instances (objects) contain contradictory 

relationships. What the UML meta-model has achieved is not view integration but only view 

representation under a common roof [Egyed and Medvidovic 1999). 

On the other hand, requiring a view-independent representation of having no (or only minimal) 

model redundancy is somewhat of a utopia, however a desirable one since it promises working with 

multiple views without having to deal with consistency issues. The classification from fixed views to 

view-independent models is not a discrete one but continuous and manifests itself through three major 

stances: 

Constructive stance: Development views of systems are individually constructed. To understand the 

model is to understand the sum of all its views and their relationships. 

Projective smce: Views are projected out of the modei to allow its inspection and/or manipulation. 

The model itself is all-comprehensive and views are needed to extract the essence of particular 

concerns (like reduced redundancy model extended to all of UML,). 

Decorative stance: Development views may be partially constructive and projective, Here a base 

representation exists that is annotated with additional information supporting a limited form of view 

projection. 

Whereas the constructive and projective stances represent the extremes of view integration (none or full), 

the decorative stance takes the middle ground. Our work has shown that a decorative integration approach 

can be used even if the models and views were originally designed for a constructive stance (e.g., as in 
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case of most ADLs and UML). Furthermore, the decorative stance can support notions discussed in 

[Finkelstein et al. 199 1 ] where it is argued that some amount of inconsistency cannot always be avoided. 

The advantage of a (fully) reduced redundancy model for view integration is a simplification of 

integration work. A reduced redundancy model covering not only derived element but also user-defined 

ones could be used as a reference model. In an ideal case that reference model would exhibit no view 

redundancy and it would reduce the view integration complexity to a linear problem as depicted in Figure 

97. With the existence of a reference model, the integration work could be reduced to translating each 

view so that it is fdly (or sufficiently) represented in that reference model. Then we could define 

consistency and completeness rules based on the reference model. Thus, each view only needs to be 

translated once and all consistency and compIeteness rules needed only to be represented in one type of 

style (language, etc.) and not in a view-dependent form (as it is currently). A reduced redundancy model 

is a simple approximation of such a reference model, however, much more work is needed. 

7.7.4 Purging 

Using a reduced redundancy model, a change in a user-defined view is implicitly updated on ail 

derived views. A fully reduced (thus minimal) redundancy model could therefore eliminate the 

consistency problem between user-defined and derived views altogether. However, it is very hard to 

realize such an integrated and minima1 model. We found that it is possible to achieve partial view- 

independence but a complete one is often unrealistic. This is the reason why we referred to our model as a 

View 2 
View 6 

Figure 97: Linear Integration Wotk using an Integmted Repository 



reduced redundancy model instead of a minimal one. In cases where view-independent representations 

fails. affected (and possibly inconsistent) derived modeling elements must be deleted (purged). The 

purging activity traverses the model and removes all derived elements that might have been affected by 

an initial change. This activity. although not trivial. results in only a parrial deletion of derived modeling 

information and can be done without consistency checking. Here it comes to our advantage that 

transformation creates extensive trace links. Purging makes extensive use of those traces and principally 

works as follows: 

Purging (input: changed model element) 

1) Is any derived information affected by it? 

If yes then recursively call purging for those derivations 

2) Delete changed model element 

7.8 Summary 

This section discussed the details of our view integration approach. Fit, we talked about 

transformation as an enabiing technology for consistency checking. Transformation simplifies 

comparison (consistency checking) by converting model elements of different type and dimension in such 

a manner that they become easier comparable. We discussed simple transformation techniques and we 

discussed complex ones to extend the scope of the simpie ones. 

This section also discussed the problem of consistency checking after transformation. We first 

showed various situations that required different comparison modes. We then showed that the underlying 

consistency checking framework needed to address problems dealing with multiple derived 

interpretations and multiple realizations. Also we showed that transformation results must be considered 

with care in that they may contains ambiguities. Consistency checking was shown to be driven by 

comparison rules that specify input and output conditions. The input conditions defined where the rule is 

applicable (e-g., what model elements) and the output conditions defined what has to be satisfied for 

consistency to be enswed. 



The problems of model synthesis and mapping were briefly discussed since they are important 

aspects of modeling and consistency checking. Both are however out of the scope of this work since they 

have to be done mostly manually by users. Model synthesis deals with the creation of architectural and 

design diagrams. Mapping further provides the inter-dependencies between those diagrams. The quality 

of model synthesis and mapping has a significant impact onto view analysis (e.g., reliabilities). 

Finally, this section discussed issues on how to store and access modeling information in UML. 

As such, we showed that transformation reuse improves evolutionary consistency checking but we also 

showed that our technique causes another scalability problem. We therefore introduced a reduced 

redundancy model as a way of handling derived information without having to keep them consistent. To 

allow reduced redundancy modeis to be used analogous to regular models we showed how regular models 

could be projected out of reduced redundancy models. 



Case Study 

In this chapter we will apply our consistencychecking framework on a complex UML model. 

The problem model addresses the design and refinement of a Hotel Management System (HMS) dealing 

with reservation, counter, and accounting services. The services reflect the following needs: 

Reservation Services is used by clerks (employees) to make reservations for potentid guests. 

Reservations may be made for any one of the participating hotels. 

Counter Services is used by clerks for check-in and check-out activities as well as for basic 

payment and expense handling (e.g., room fees). 

Accounting Service is used for handling and maintaining monetary issues related to guest 

activities in general. Accounting Services deals with issues like overdue fees or Iate charges. 

8.1 Atchitecture Level 

Figure 98 depicts the high-level architectural view of the HMS. The major components are the 

ApplicationPackage, DialogPuckuge, ServicePackage, AccessPackage, and DataPackage. Clerks, who 

are employees of the hotel chain, use the ApplicutionPackage to access the three applications for 

reservation, counter, and accounting services. All three applications make use of the same DialogPackage 

to display information to the users (as well as for user input). The ServicePackage implements the 

business logic of the applications and offers services such as make reservation, find guest, or make 

payment. The DataPackage defines business objects (e.g., Guest, Hotel, Transaction, or Room) used by 

other packages and, finally, the AccessPackage is a front-end (wrapper) to a centralized database. All 

packages are executed on the local machines the clerks are using. The AccessPackage, therefore, is also a 

front-end for network services to a distant database. 

Figure 98. Architecture Overview of EiMS 



In the folIowing, we will gradually reveal more details about the HMS refining it over two 

additional levels, the high-level design and the low-level design, using a variety of diagrammatic views 

from class diagrams via object and sequence diagrams to statechart diagrams. Since the model is very 

complex only a partial consistency checking study will be shown here. Our emphasis is the coverage of 

multiple consistency checking scenarios involving at least two examples for each transformation type. 

8.2 Refinement to Higher-Level Design 

In the course of constructing the KMS, the architectural view from section 8.1 was refined twice. 

The following discusses the first refinement called the High-Level Design, which contains a series of 

class, object, sequence, and statechart diagrams. 

8.2.1 Overview 

The class view of the high-level design is far more detailed than the equivalent one in the 

architectural level. To display it in a single figure would make it too complex. In the following, multiple 

figures are used to capture pieces of the architectural components (e.g., DiulogPackage, ServicePackage) 

and heir interactions. 

Figure 99 depicts the basic 

data types of the HMS and their 

relationships. The figure shows that the 

HMS has to handle data like Guest, 

their Security deposits in case of 

reservations, or their Payment and 

Expense descriptions in case of their 

actual stays at a Hotel. It is also stated 

that a Guest may either stay at a Hotel 

0..1 
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Figure 99. K M S  Data Types 

or may have a reservation for it. The diagram also captures some basic Employee information and their 

access Privileges. The latter information is required to know what guest-related data can be accessed and 

manipulated by what employee (e.g., ReservationClerk, CounterClerk, Managerclerk). For instance, a 



counter clerk has the privileges to check-in a guest or to add expense or payment charges. However, a 

counter clerk has no ability (or privilege) to make other types of monetary interactions (e.g.. late 

reminders, service charges, etc.). 

Figure 99 also depicts some cardinality information between the basic HMS data types. For 

instance, it is stated that a Guest may have reservations for zero, one, or more Hotels at any given time or 

that a Guest may stay at most at one Hotel at any given time. It is also stated that a Guest must always 

have a Security (e.g., in the form of a credit card), regardless of whether the guest stays at the hotel or has 

a reservation for it- This is done to ensure that late fees or cancellation fees can be charged at a later time. 

The HMS provides three basic service packages corresponding to the needs of the three types of 

employees who have access to the system (Figure 100). The ResewationService is used by employees 

responsible for making reservations, Counterservice is used by employees within hotels (mainly for 

check-idcheck-out types of activities), and AccountingService is used by the financial group of 

employees who are maintaining guest accounts and their transactions. According to the service structure, 

the HMS provides three applications to access those services (ResemtionApp, CounrerApp, and 

AccountingApp). Additionally, a ManagerApp is provided to allow access to all three types of services. 

The access tights (privileges) are stored together with the employee information (see Figure 99). 

Figure 100. Employees Interacting with Applications using Services 



Figure 101. Services, their Dialogs, and the Database (DB) 

Figure 10 1 depicts the kinds of dialogs (e.g,, InsertionDlg, EditDlg, SearchDlg) that can be used 

by the services. Dialog classes are user interface classes and display data on computer screens and capture 

user inputs. For instance EditDlg is used to allow cterks to modify information of common HMS data 

types (e.g., hotel, guest, etc.). Other dialogs foliow the same structure and provide user interfaces for 

inserting, deleting, searching, or listing of HMS data types. It can be observed in Figure 101 that not all 

dialogs are used by all services equally. For instance, the ReservationService requires access to 

SearchDlg and InsertionDIg (directly), and EditDlg, DeletionDlg or ListDlg (indirectly). This means that 

ReservationSeruice may call SearchDIg to search for a reservation, which, in turn, may call dialogs like 

EditDlg to display a found reservation record. It can also be observed that the dialogs access the database. 

Figure 102 refines what didogs are using what containers. Containers are pieces of a user 

interface that handle self-contained elements of a dialog. For instance, a search container provides a user 

interface for searching data which is similar for all types (e.g., hotel, guest, transaction, etc.). The other 

containers (CaptureContainer and ListContainer) provide similar interfaces for modifying and listing. 



The reason for separating dialogs from 

containers is to increase reuse and improve 
I 

maintenance. For instance, the EdirDlg for - 
ud#g mj i cr~an~ansiim- 

reservations incornorates a reservation 

capture section as well as a guest and hotel 

search section. Similarly , SearchLllg for hotel - _ _ _ _ _ - _ 
- I 

and guest respectively provide their own I 

Figure 102 Containers used by Dialogs 
search bnctionalities. 

Instead of programming guest and hotel searches twice, we only provide one as part of the 

Searchcontainer which both can access. The CaptureContainer can aiso be reused by WitDlg and 

InsertationDlg, thus, requiring the implementation of data capture capabilities only once instead of twice. 

Containers also improve maintenance because if the specification of a data type changes, only the 

containers need to be updated (once) instead of requiring multiple similar updates in different dialogs. 

Figure 103 depicts the relationships between services, dialogs, and their data types in more 

detail. The left side of the figure shows the three service types (ReservationSe~vice, CounterSewice, and 

AccountingService) and indicates what data types are used by them. For instance, AccountingService only 

needs to have access to Guest, Payment, and Erpense data types but does not need access to the Hotel 

data type. Similarly, the different dialogs only require access to some data types. For instance, SearchDlg 

only requires knowledge of Guest, Hotel, Payment, and Expense (it cannot be used to search for security 

Figure 103. Data Types used by Services and Dialogs 



deposits). The DeletionDlg does not requires access to any HMS data type since it comprised only of a 

simple question. The other dialogs, however, do need access to all HMS data types, however, at varying 

cardinalities. For instance, UitDig  displays only one guest at a time whereas ListDlg displays a 

potentially iarge number of guests. 

Having discussed the breakdown of classes, we also need to show how those classes relate to the 

components in the architecture level. Figure 104 shows the mapping of some the high-level design classes 

to the architecture. The mappings are indicated through abstraction relationships. For instance, 

ManagerApp, AccountingApp, and CounterApp are refinements of the architecture component 

ApplicationPuckuge. Not all design classes are included in this mapping since some classes do not have 

direct counterparts. For instance, the container classes in the high-level design do not directly map to my 

architectural component. This is not a problem since our consistency checking approach can handle 

incomplete mapping information. 

Before we discuss the consistency issue between the high-level design class diagrams and the 

architecture-level component diagram, we will introduce other types of diagrams. In the following, we 

will show pieces of object, sequence, and statechart diagrams supporting above class structure. 

Figwe 105 shows an instantiation of some of the data types in Figure 99. Figure 105 depicts a 

collection of guests and hotels as well as their retationships. For instance, it can be seen that Peter stays at 

the Shoreslnn hotel for which he dso has a reservation. Ann currently stays both at the Shoreshn and at 

Figure 104. Mapping from Design Cl~lsscs to Architecmre Components 



Figure 105. Object Diagram Depicting the Relationships between Guests and H O W  

the NiceHotel. She also had to give a credit card (CC1234) as a security. It can also be seen that the 

BeachResort hoteI currently has no guest or any reservations. Also, the guest Rene has neither a 

reservation for a hotel nor does he currentfy stay at any hotel. 

Figure 106 depicts a statechart diagram for the class EditDlg. Recall Figure 101 where we 

introduced EditDlg and explained that it is used to capture and display HMS data. We also discussed 

previously that EditDIg uses multiple containers to capture HMS data. The statechart diagram in Figure 

106 states that EditDlg transitions from state idle to state valid if and only if all inputs (dl containers) 

have a valid input. It is, therefore, left to the state m I all containers::vrl~d 1 .( vdd 

CaptureContainer) to determine whether '-0 1-0 I 

0 0 ,- - r 
ReservationDlg transitions from idle to valid. 

Figure 106. Statechart for EdilDIg 
Figure 107 depicts the state diagram of 

one such container. Indeed, the capture container 

offers the state valid which indicates that the ---------L --- t 9 e-lameaUsV@O>- 

- - - [ ~ ~ k V * ~ ( J L  - -- .-- --A/ ! 
information entered currently constitutes a valid -- - ... 
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input. A valid input is determined by investigating s m b c h n t l o r ~  

a 'if - 
- 

-- 
the isValid() method of an object called element. 



(e.g., Guest or Hotel). For instance, if the container handles guests records (e.g., 

GuestCaptureContainer), then element is of type Guest. It is left to the object Guest to know whether it is 

valid or not. Being valid means that the information captured currently is sufficient to describe a guest. 

Normally, name, address, and security (e.g., credit card) information are required for a valid guest entry. 

Figure 108 shows the statechart .-----------. - 
S ~ f o r d u s  1 
D.r)prr-- 1 

I 

diagram for the class ReservationService. 
I ReservaUonDlg.~~~~~mrctO .-----. 

.----I m 
Recall from Figure 101 that 

ReservationSewice implements some of the 

business logic for K M S  applications 

(ReservationSewice in particular implements 

the business logic involving reservations). 

After instantiation, a ReservationService 

object is in the idle state. It is left unspecified 
- - 

how to transition from idle to the state Figure 108. Statechart for ReseryotionSemicc 

capture, however, it can be observed that 

such a transition is possible. If all required information about reservations has been captured (done via 

dialogs), the state of ReservationService transitions to complete. From this state is it possible to actually 

create, modifl, or delete a reservation entry in the database. 

Figure 109 depicts a sequence diagram showing the timing of certain activities during the 

process of modifying a reservation. First the nwdifl_reservation(I method is called in ReservationService, 

which, in turn, reads the reservation (via method read-reservation()) and then opens a dialog window 

(via method show-dialog()). The dialog window waits until all reservation information has been captured 

(note that interactions with containers become relevant here but were omitted). Thereafter, the dialog 

queries the database to find the new hotel information, which is then instantiated as a new Hotel object. 

At the end, the reservation is updated by calling the DB method edit-reservation(). 



Figure 109. Sequence Diagram depicting a Search for a Reservation 

8.2.2 Tmnsformations 

The refinement of the architecture level into the high-level design increased the information 

content of the model by an order of magnitude. Since the architecture only provided one view, 

consistency checking within the architecture level is not necessary. However, with the added design 

information, we are now confronted with about a dozen diagrams part of different subsystems and levels 

of abstractions. Figure 110 shows the basic structure how those diagrams inter-relate. The top level 

Figure 110. Tradorm~tions to support Consistency Cbeckiag of Architecture and Design 



depicts the architecture level which currently holds one diagram (Figure 98). The architecture was refined 

into a series of class diagrams depicted at the lower right area of the high-level design in Figure 110. 

Additionally, the design level provided an object diagram (Figure 105), a sequence diagram 

(Figure 109). and several statechart diagrams. From Chapter 5.5 we know that the object diagram is 

structural and specific, the sequence diagram is behavioral and specific, the statechart diagrams are 

behavioral and generic, and the class diagrams are structural and generic. Those diagrams are accordingly 

represented in the specific andfor behavioral sections of the high-level design. Given the cunent state of 

the model, the following four transfomtions are necessary to enable consistency checking between the 

currently existing diagrams: 

1. Abstraction between the high-level-design class diagrams and the architecture-level class diagram, 

2. StructuraIization between the high-level-design sequence and object diagrams, 

3. Generalization between the high-leveldesign object and class diagrams, and 

4. Structumlization between the high-level-design statechart and class diagrams. 

8.2.3 Consistency Checking 

Figure 11 1 depicts the result of abstracting the high-level design classes into a form that is 

suitable for comparison with the architectwe-level diagram from Figure 98. Figure I I 1  was generated 

with our W A n a l y z e r  tool. It can be observed that the basic structure of the abstraction is similar to 

Figure 98. However, on closer inspection, a series of inconsistencies can be observed: 

I .  The actor Managerclerk is not connected to Application 

2. The roles of ServicePackage and DialogPuckage are reversed which causes the direction of the 

relationship between them to be reversed 

Figure 111. Abstracted Design-Level Class Diagram 



3. Concrete classes like SearchContainer and Employee have not been assigned to abstract classes 

4. Concrete relationships like the association between ReservationApp and ReservationService have not 

been realized in the abstraction 

5,  The database (DB) class is not connected to DataPackage 

Figure 112 depicts the result of -r-I 
7- 

shown in Figure 109. The result is an H ~ I  

interpreted class diagram that should be *consbucr~ 
*c--o -, 

structuralization and subsequent 
[---tkna 

consistent with the high-level class 
t .-----I ~~ 
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diagrams. Since the sequence diagram is a t %t-W 

.c-wl 
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specific view, the consistency checking has +t-m~ 

generalization of the sequence diagram I 1 

to follow the part-of mode in that it is not Figure 112. Structuralized and Generalized 
Sequence Diagram 

expected that it completcly represent the 

generic class diagrams. Thus, validating the consistency involves the validation that the sequence diagram 

does not contradict the class diagrams. The following inconsistencies can be observed: 

1. Methods like DB::get-hotel() or Guest::construct() are not defined in generic view (see Figure 101) 

2. The relationship between ReservationService and InsertionDlg, DB and Guest, and DB and Hotel are 

not defined in generic view 

reservation-for 
The third required transformation is a _- 0..3 . - O..I - _  

Gwwt 1- - - 4  Hotd 1 
generalization from an object diagram (Figure 105). '-1 - 2---A 

0.2 I 
1.2 OA stays-at 

Again, a class diagram (Figure 1 13) is the result of that s m n t y  

0..1 transformation which needs to be consistent with the ---- 
q 

high-level class diagrams. Note that consistency 
Figure 113. Generalized Object Diagram 

checking between the sequence diagram and object 



diagram is not necessary since their validation is done implicitly by using the design-level class diagrams 

as a common denominator. Since the object diagram is also a specific view, consistency checking follows 

the part-of mode. The following inconsistencies can be observed: 

1. The relationship between Guest and Security is different (note: Figure 99 defines that relationship as 

aggregation which is impossible in Figure 113 because of the zero-to-one cardinality) 

2. The cardinality between Guest and Security as well as between Guest and Hotel (stays-at 

relationship) are different. 

Figure 114 is the forth and final 

transformation required for consistency checking 
----- .- - - . A .- -i tbVaadQ I - *isvalid() I 
/ m e w k m r g  

between the architecture and high level design. I ------- . - - - 
* -  - - - - - Reslnmtkrr 

Figure 114 depicts the resuIt of the structuralization isValid0 

of the three statechart diagrams in Figure 106, Figure 114. S t r u c t u d d  Sta-rt Diag- 

Figure 107, and Figure 108. The knowledge of 

statechart ownership and references are used here to infer class-relevant information. If can be observed 

that methods like isValid() and construct() have not been declared in the class views. Otherwise, no 

inconsistencies exist. 

8.3 Refinement to Lower-Level Design 

As it can be seen in above diagrams, having transformation methods simplifies consistency 

checking enormously. However, thus far, we only showed consistency checking within class diagrams 

and between class diagrams and other views. This was primarily caused because the architecture-level 

only provided a single class diagram. This section will refine the higher-level design diagrams and show 

other types of transformation and consistency checking. 

8.3.1 Overview 

Since the lower-level design view contains as large amount of model elements, we will focus on 

some pieces onIy in this section. Figwe 115 shows the refined version of the data types we previously 

discussed in Figure 99. As can be seen, the basic data types are still present (e-g.. Guest, Hotel, etc.), 
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Figure 115. Low-Level Design of Basic HMS Data Types 

however, their attributes and relationships have been further augmented. For instance, the class 

Reservation was introduced to refine the reservationfor relationship from Figure 99. Accordingly, some 

attributes of the classes in the lower-level design have been augmented. For instance, Figure 115 defines 

additional methods and cardinalities. 

Figure 116 is a refinement of the RestrrvationSerwice, ReservationDlg, and Container classes 

from the high-level design. The figure again depicts some already known classes such as 

ReservarionService as well as their refinements. For instance, ResewationEditDlg is a refinement if 

EditDlg (Figure 10 1 )  and GuestSearchConrainer is a refinement of SearchConrainer (Figure 102). Figure 

116 shows that ReservutionService calls ReservationEdirDlg to modify reservations 

(modiji._reservationI)). ResewationEditDlg, which is a subclass of Dialog, displays reservation, hotel, 

and guest data via the ReservationCaptureContainer, HotelSearchContainer, and GuestSearchContainer. 

Containers like GuesrSearchContainer can be used to quickly locate guest data (e.g., membership 



Figure 116. ResewationSewices, ReservationDlg, and its Containers 

number) or they can be used to make a rough search followed by listing the findings in a separate dialog 

(GuestListDlg ). 

As a refinement of the CnptureContainer in Figure 107, Figure 117 depicts the 

ReservationCaptureContainer. ReservationCaptureContainer displays reservation data on the screen and 

validates provided input. It is specified that its state can only transition from ReservationCapture to 

ValidReservationCapture if and only if currentReservation.vali&te() returns me. From Figure 116, we 

know that currentReservation linked fkom ReservationCaptureContainer points to the HMS data type 

Reservation (note the label +currentReservation originating from ResewationCaptureContainer), 

indicating that the vali&teO method of the class Resenpation is meant. 

Figure 117. Statechart diagram for ReservationCapmnContaiaer 



Figure 118. Startchart Diagram for ReservationEditDlg 

Figure 118 shows the statechart diagram for ReservationEditDlg, which is a refinement of 

EJirDlg from Figure 106. ReservationEditDlg is fairly complex since it must capture the interactions 

between the dialog and all its containers. After construction, ReservationEditDlg is in the idle state. Once 

show-dialog() is invoked, the state of ResewationEditDlg transitions to HotelCapture. Once hotel 

information has been completely (vdidly) captured, ReservationEnirDlg transitions to 

ReservationCapttire. After the successful capture of reservation. guest, and security information, 

ReservationEditDlg reaches the valid state. Now the user (clerk) has the option of pressing the OK button 

on the screen to make modifications to the reservation. The cancei button could have been used 

throughout the process. 

Figure 119 depicts a sequence diagram showing how classes interact during modifying a 

resevation. The links in the sequence diagram reflect the ordering of method calls. It can be seen that the 

modification of a reservation invoives the Resewatiodervice making a call to ReservationEdisDlg which 

in turn instantiates needed data types and containers. Once the entered data is valid, the database is called 

to make the actual modification (edit-reservation()). 

At the end, the sequence diagram in Figure 119 proceeds in displaying the same record again by 

calling the show-dialog() method. The previous construct methods are not needed this time since the 

objects still exist. 



Figure 119. Sequence Diagram Capturing the Modification of a Reservation 



0.3.2 Transformations 

The refinement of the high-level design into the low-level design again increased the 

information content of the model. Since the high-level design and architecture were already checked for 

consistency, this step only needs to validate the consistency between the high-level design and low-levei 

design. Note that we could also validate the consistency between the architecture and the low-level design 

but we would benefit only little through it, To understand this, assume for a moment that all three levels 

of abstraction are completely consistent. In that case the comparison between the architecture and high- 

level design would reveal no inconsistencies and neither would the comparison between the high-level 

design and low-level design. If we would now also compare the low-level design with the architecture, 

we would naturally also not find any inconsistency since we indirectly proved this already. It follows that 

we only need to validate the consistency between the two design levels. 

Like before, validating consistency involves the transformation of diagrams in such a manner 

that they become directly comparable to the remaining diagrams. Like Figure 1 I0 previousIy, Figure 120 

again shows the relationships between the lower-level design diagrams and the higher-ievel ones. Given 

the current state of the model, the following five transformations are necessary to enable consistency 

checking between the currently existing diagrams: 

0 

sequence diagram ,0 

-- 

Figure 120. Trmsformations to support Consistency Checking between Desigus 



1. Abstraction between the low-level class diagrams and the high-level class diagrams, 

2. Abstraction between the low-level statechart diagrams and the high-Ievel statechart diagrams, 

3. Abstraction between the low-level sequence diagrams and the high-level sequence diagrams, 

4. Suvcturalization followed by generalization between the low-level sequence and class diagrams, 

5. Generalization between the low-level sequence and statechart diagrams, and 

6. Structuralization between the low-level statechart and class diagrams. 

To enable consistency checking, Figure 121 depicts the mapping between some of the lower- 

level classes and higher-level classes. For instance, it can be observed that Creditcard, Cash, and Check 

are refinements of Payment or that CuestSearchContainer and HotelSearchContainer realize 

SearchContainer. This type of trace information is again needed to ensure automated transformation and 

consistency checking. 

Figure 121, Mapping from Low-Level Design Classes to High-Level W g n  Classes 

8.3.3 Consistency Ch~king 

Figure 122 depicts the result of abstracting the low-level design classes into a form that is 

suitable for comparison with he  high-level class diagram from Figure 115 and Figure 116. Figure 122 

was again generated with our WAnalyzer  tool. Since we did not depict the complete lower-level class 

diagram, the abstraction only reflects a part of the high-level diagram. The following inconsistencies can 

be observed: 



There is only one association between Hotel and Guest, and this association has the wrong direction 

Classes Employee and Privileges were not refined 

Cardinality between Guest and Expense is wrong (note that association type and cardinality between 

Guest and Payment is correct since the diamond head in Figure 99 corresponds to a cardinality "I") 

Relationship between Hotel and PaymentSecurity is illegal 

Relationships from SearchContainer and CaprureContainer to InsertionDlg and ListDlg are not 

allowed by abstraction 

Likewise, relationships from Containers to Guest and Hotel are illegal 

Figure 122. Abstracted Low-Level Design Class Diagram 

Since the class ReservationCaprureContainer is a refinement of the high-level class 

CaptureContainer, it follows that the statechart diagrams attached to them relate in the same manner. The 

statechart diagram in Figure 117 thus refines the statechart diagram in Figure 107. Since the basic 

structure between both statechart diagrams is identical (box and mows relate in a one-to-one fashion), 

the abstraction process leaves Figure 117 unmodified. Comparing Figure 117 and Figure 107, we find 

that all interconnectivities are consistent. Figure 107 states that element.isValid() must be true for a 

transition to happen and Figure 107 also defines that element must be a DataType (e.g., Guest, Hotel, 

etc.). We can see from Figure 116 that currentReservation (as defined in Figure 117) is a link to the 

Reservation data type as it was defined in Figure 115- Currently, however, we did not specify the 

traceability (mapping) that Reservation implements one of the data types of the high-level design-we 



found an inconsistency. The absence of the construct() and destruct() methods (from Figure 1 17) is not an 

inconsistency since those methods were not yet defined in CaptureContainer in the high-level design. 

The class ResewationEditDlg is also a refinement of the class EditDlg. The statechart diagram 

corresponding to ReservationEditDlg (Figure 1 18) is, however, more complex than the one corresponding 

to EdirDlg (Figure 106). If we assume that the idle and valid states correspond to one another, then we 

get an abstraction of ReservationEditDlg that looks like Figure 123. It must be noted, that all information 

that is not known on a higher-level is omitted and transitive relationships were created. For instance, chere 

is only one path from idle to valid. This path uses intermediate states like HorelCapture. We also know 

from the lower-Ievel class diagrams that attributes like hotelsearcher link to containers (see Figure 1 16). 

With that we can infer that the methods show-dialog() and the valid states of several SearchConrainer 

and CaptureConrainer are needed for Figure 123 to transition from idle to valid. Circular links within idle 

are also possible but not easily abstractable since cance1::pressed is refemng to a class that is not defined 

(nor known) at the higher-level. A blank circular link is therefore depicted. Likewise, the backward 

transition from valid to idle is blank, indicating that it is possible to do it but it cannot be inferred how. 

We can observe the following inconsistencies: 

Circular transition not allowed in abstraction 

Backward transition not allowed in abstraction 

Method call guestsearch as used in Figure 1 18 is not defined 

Method call show-dialog() is used in lower level to transition between idle and valid but is not used 

at higher level. 

Figure 123. Abstracted Statechart Diagram for EditDlg 



Under nonnal circumstances. consistency checking between specific views is not very 

meaningW since specific views represent usage scenarios and scenarios may vary. For instance. if one 

specific view defines A=9 and the other defined A=S, then this denotes no inconsistency. However, based 

on trace information (mapping). we may choose to force comparisons between specific views. In our 

model, we make the claim that the sequence diagram in Figure 119 is a refinement of the sequence 

diagram in Figure 109 since both depict the same scenario on how to modify a reservation by changing 

the hotel. To allow consistency checking between the two sequence diagrams, Figure 119 must be 

abstracted. Abstracting a sequence diagram is similar to abstracting a class diagram. It involves the 

grouping of classes and the derivation of transitive relationships. Like with statechart diagrams before. 

method cdls that were not defined in the abstraction may be omitted. Figure 124 depicts the abstraction 

of Figure 119 and it can be observed thn the abstraction looks very similar to the high-level sequence 

diagram. Note that we did not explicitly state a trace imm handle-event (lower-level) to do-capture 

(higher-level). The following inconsistencies can be observed: 

1. The method call: get_hotel() was not refined as well as its subsequent method call set-reservation() 

2. The method call do_capture() was called three time although only one was expected 

Figure 124. Abstracted Sequence Diagram for rnodifi-msenrdion() 



The forth type of transformation we need to perform is a suucturalization followed by a 

generalization of the low-level sequence diagram. The result of that operation is a low-level class diagram 

that should be consistent with our current class diagrams. We find the following inconsistencies: 

1. The calling dependencies between ReservationEditDlg, GuestCaptureContainer and 

HotelCaprureContainer are not allowed 

2. The class Button does not exist 

Figure 125. Stmcturalization and Genemtization of Sequence Diagram 

Note that the methods handlegvent() or activate() and the relationships to DB are undefined in 

Figure 115 and Figure 116, however, they do exist in the lower-level class definition. For brevity. their 

definitions were omitted previously. 

For the fifth transformation, the generalization of the sequence diagram in Figure 119 to a 

statechart diagram like Figure 118, we again need additional traceability (mapping) information to 

proceed. A sequence diagram (like the one in Figure 119) can be used to create pieces of multiple 

statechart diagrams belonging to multiple component. Here we will demonstrate it on the case of 

ResewationEditDlg. It can be observed that ReservationEditDlg receives and sends out information 

during the course of modifying a reservation. We define construct() as a constructor and the methods 

show-dialog() and activate() as actions. Using that information, the sequence diagram can be uansfonned 

into a statechart diagram which looks like Figure 126. It can be seen that the conrrruct() method 



Figure U6. Generalized Sequence Diagram to Statechart Diagram 

transitions form a start state to a regular state, the methods set-data() and handle-evenfl are circular state 

transitions indicating that they are queries (or undefined), and the methods show-dialog() and activate0 

are regular state transitions. No information can be inferred about the state names, however, some of the 

conditions that enable state transitions can be taken over. It can be observed that the two statechart 

diagrams are almost consistent, except for the last show-dialog() method. The original statechart diagram 

in Figure t 18 requires the occurrence of another state transition [cancel::pressed] or [ok::pressed] before 

show-dialog() may be called again. 

The sixth, and final, transformation is a structurdization between the statechart and class 

diagrams. Figure 127 shows the result of transforming the two statechart diagrams in Figure 117 and 

Figure 1 I8 into a class diagram that becomes comparable to Figure 115 and Figure 116. The following 

inconsistencies can be observed: 

1. Class Button is not defined 

2. Class Reservation does not have a valiaizte() method 

3. Classes ReservationCaptureContainer and ReservationEditDlg do not have destroy0 methods 

Egure 127. Stnrctutalized Statechart Diagrams into Class Diagram 



8.4 Scalability 

Without any scalability measures and without our view integration framework, consistency 

checking of 19 user-defined diagrams would require up to 17 1 transfomtions andor consistency checks 

(not counting model elements). Additionally, such an approach would also require up to 22 

transformation types. In context of the HMS, such an unscalable approach would actually have to perform 

1 18 transformations and 17 transformation methods. 

Our consistency checking approach is geared towards scalable consistency checking supporting 

extensive reuse. In context of the HMS, our approach only requires 17 transformations and 7 

transformation methods. It must however, be noted that the worst case scenario of our approach could 

require up to 342 transformations and 8 transformation methods for 19 diagrams. This scenario would 

happen if 18 concrete sequence diagrams were to be transformed to I abstract class diagram. Our 

experience at looking at dozens of UML models shows that such a worst case scenario is unlikely. 

Simifarly unlikely are other cases that yield bad performances. Our approaches' performance improves 

the more types of diagrams ilrc used. Above worst case showed the use of only two types of diagrams that 

are located in the most extreme "corners" of our transformation fhmework. 

Even if such a worst case scenario would occur, the number of msformations would only be a 

factor of two higher, not significantly worsening the unscalable approach, however, our approach would, 

in a worst case scenario, still only require 8 transformation methods (versus 22). We therefore see our 

approach as both an improvement in the number of transformations to be performed under "normal" 

usages as well as an improvement in the number of transformation methods to be implemented to support 

consistency checking. Our approach therefore also lowers the entry barrier to enable large scale and 

scalable consistency checking. 

Finally, our approach also scales well if additional types of diagram are introduced. For 

instance, if collaboration diagrams need to be supported by our approach only a single translation method 

between sequence and collaboration diagrams needs to be added. We already added C2 ADL 

(C2SADEL) and also only required a single translation method. Thus, these two additional diagrzlm types 



only add two transformation methods. An unscalable approach would require the additional of 44 

transformation methods on top of the 22 already existing ones. In such a scenario, our approach improves 

the number of methods required by an order of magnitude. 

8.5 Summary 

This section presented a non-trivial case study of a hotel management system and demonstrated 

our approach in context of 19 diagrams. We showed the transformations required to pedorm consistency 

checking and we listed the inconsistencies the 19 diagrams currently exhibit. We concluded the 

discussion by comparing some scalability numbers between our approach versus a non-scalable one. 



9 UM UAnalyzer-A Tool 

The UMUAnalyzer tool implements our view transformation framework in the context of 

object, class, and C2SADEL diagrams. Figure 128 depicts some screen snapshots of the tool. 

UMUAnalyzer is integrated with Rational RosefM for the purpose of using it to create and modify views 

(synthesis). Rational Rose models are converted through an automated process into a system model called 

UML-A where they an analyzed via UMUAnalyzer (UML-A is an adaptation of UML to support 

advanced consistency checking concepts like reduced redundancy models). Generated modeling 

information as well as identified model inconsistencies can be fed back into Rational Rose for 

visualization. Figure 128 shows Rational RoseTM in the lower right as well as the UMUAnalyzer main 

window to the upper-left. The tool uses transformation rules (upper-right) to convert class and object 

models. Models loaded into UMUAnalyzer can then be msformed and analyzed with respect to their 

consistency (lower-left). 

Figure 128. UMEAdyzer  Tool Supporting View Integration 



At the current state, the tool supports class and object diagram abstraction and consistency 

checking. Other transformation techniques are still being implemented. The tool also supports the 

scalability measures discussed in this work to enable their evaluation. Some industrial companies have 

participated in its creation andor evduation. For instance, we have collaborated with Rational Software 

on our relation abstraction technique [Egyed and Kruchten 19991. Rational Software also implemented 

that technique in a tool called Rose/ArchitectTM. 

Future plans are to integrate a model consttaint parser and checker component (depends on 

availability of OCL parser and checker) as well as to integrate additional transformation techniques. 

However, even at its current state by only supporting partial automated transformation we have already 

observed an enormous benefit in using it. Figure 129 shows a populated UML model of our hotel 

management system containing both user-defined and derived modeling elements. Figure 129 is 

analogous to our reduced redundancy model we discussed in Chapter 7.7.3. As it can be seen, the task of 

Figure U9. Complexity in Class Abstraction 



Figure 130. Inconsistencies between HMS Architecture and High-Level Design 

abstracting a class model can be considerably complex and time consuming if done manually. Proper 

cIass abstraction rcquires the exploration of all possible path combinations folIowed by the application of 

proper class abstraction rules. The tool reduces this task to mere fractions of a second. 

Figure 130 depicts the list of inconsistencies between the architecture and design level of the 

E M S  system (see Chapter 8) as generated by UMUAnalyzer. Each entry first describes the nature of the 

inconsistency followed by the list of involved model elements. For instance, the fmt entry in Figure 13 1 

states that the concrete class HMS::High-Level Design::SeurchContoiner has not been realized in 

abstraction (recall the lack of a container package in the architecture level). In case of inconsistencies 

among relationships, usually multiple involved model elements are listed. For instance, the inconsistency 

"abstract relationship has different direction than refinement" indicates a problem between the two 

packages HMS::Archtitecture::Se~icePackage and HMS::Architecture::DkfogPackage, saying, that this 



Figure 131. Inconsistencies between HMS High- and Low-Level Designs 

relationship exists in the high-level design but has a different direction. Figure 131 also lists the 

inconsistencies among the high-level and low-level designs. 

Egure 132 depicts some statistics gathered by the UMUAnalyzer tool during the process of 

abstracting the high-level design into the architecture. During download, roughtly 80 relationships are 

created. Those relationships are part of the design and architecture diagrams of the HMS. During the 

course of abstracting the relationships among Clerks, ServicePackage, DialogPackuge, 

ApplicationPackage, AccessPackuge, and DataPackage, derived relationships are added to the model. 

Those derived relationships represent the more abstract interdependencies which are created by grouping 

concrete relationships. Our abstraction process also supports some scalability measures like reuse and 

elimination of duplicate but similar abstracted relationships. It can be obsewed that those two scalability 

measures eliminate the bulk of the derived elements. We have observed a similar pattern while 

abstracting over a dozen different and non-trivial class diagrams. We have also obsetved that the amount 



Figure 132. Reuse and Duplication Elimination during Abstraction 

of reuse increases over time as the repository is extended. The amount of reuse may peak up to 100% 

within reuse cycle, however, due to purging and evolutionary changes in the model, the degree of reuse 

may vary. We observed an avenge of 40-8096 reuse within review cycies. 



10 Related Work 

In one form or another, the view integration problem has been worked on by numerous 

researchers. This section discusses theu works and also discusses in what ways theu works differ from 

ours. It i s  important to note that other view integration approaches are not independent or in any way 

orthogonal to ours. [Sage and Lynch 1998) wrote that 'Infortunately, there appear to be no detailed 

definitions that distinguish between various types of integration, and this may appear to make the subject 

disjoint. . .- [However] integration is generally always being performed, but it is not clear as to where it is 

performed or how to accomplish it successfully." 

This section presents and discusses twelve related view integration approaches. Instead of 

discussing them individually, we found criteria on how to enable their comparison in a more meaningful 

fashion. Those criteria are partially based on our framework and could be considered subjective. 

However, even in case of subjectivity, these criteria enable reasoning about how their approaches relate to 

ours. The set of criteria may not be compIete, but they cover a number of important architectural 

considerations, and can serve as a baseline for future work. 

10.1 Overview 

View intcgration is part of every aspect of the development life cycle and, thus, our work, and 

the related work presented in this section, fit somehow into the greater scheme of the view integration 

problem. Because of the depths of the integration problem it is far out of the scope of this work to present 

a complete survey. We start this overview with the works of Sage and Lynch [Sage and Lynch 19981 

because they are one of the few people who have attempted to summarize all key aspects of integration 

even across the boundary of software. Their work on System Integration and Architecting covers 

integration aspects, principles, and practices on the system level going far down into details of systems 

and software development. Their recent summary is an excellent work of 50 pages and we could not 

possibly provide a better one here. In that work, they tsllk about the need for integration on the systems 

engineering level and present the results and findings of numerous researchers. Systems engineering 
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differs from software engineering in that it tries to cover all that is offered by the latter but more. It also 

covers hardware aspects and how software is integrated with it. With that in mind they address the need 

of model integration, as it is addressed in our work, although the scope of their work did not permit more 

than an overview. 

Since consistency-checking approaches are abundant, we decided to place the focus of this 

section onto automatable approaches. With that we exclude all manual validation and verification 

techniques such as inspection [NASA 19931, review boards [AT&T 19931 and others. Boehm's paper on 

verification and validation techniques [Boehm 19891 provides an excellent overview of such techniques. 

10.2 Comparison of View Integration Approache8 

In the folIowing subsections we discuss automated or automatable view integration approaches. 

In ow evaluation we considered twelve cases. Although, those cases do not all address consistency 

checking, they do solve some significant portions of it. For instance, we decided to also include 

approaches that only automate transformations (e.g., SCED [Koskimies et al, 19981). The types of 

approaches we considered are depicted as columns in Table 8. The first column represents our approach; 

the remaining columns represent related approaches. 

As we indicated previously, we defined a set of criteria in dealing with view integration issues 

(and consistency checking issues in particular). The eight criteria were then refined into 2 to 5 

characteristics each. Table 8 shows the ratings of all approaches. The following ratings were given: none, 

weak, strong. The rating none implies that that criterion is not satisfied by that approach. A none rating is 

also given when the criteria does not apply or is insignificant. The weak and strong ratings are given 

when some support or extensive support is available. We believe that no view integration approach is 

complete and, therefore, decided not to give any stronger ratings. The following approaches were 

evaluted (listed in alphabetical order) 

AAA (Architect's Automated Assistant): Abd-Allah and Gacek address the problem of 

component integration [AM-Allah 19963 [Gacek 19981. That task involves the interpretation of 

components and their characteristics followed by reasoning about potential inconsistencies 



among them Their approach is very unique since they investigate inconsistencies on a very 

high-level. For instance, if a software product is composed of a number of components-some of 

which may be COTS (Comaretcial-of-the-Shelcthen based on certain properties of those 

components potential inconsistencies could occur. 

Belbouche-Lemus: Belhouche and Lemus take a more formal approach to view integration in 

the context of statecharts and dataflow diagrams [Bekhouche and Lemus 19961. Their work 

reflects the opinion that views are independently created and analyzed, however, formal 

transformations should be used to support consistency checking (we have taken a similar stance). 

Their approach seems automatable, although, they do not provide tool support at this point. 

Delugach: Delugach took two types of diagrams, data-flow diagrams (DFD) and class diagrams, 

and transformed them onto a conceptual graph [Delugach 19961. What makes his work unique is 

that he then verbally describes the relationships of components in that conceptual graph. That 

process can be automated and a modeler can then read those descriptions (which are in plain 

English) and reason about their validity. 

Engels et al: Ehrig, Engels, Heckel and Taentzer worked on the problem on how to merge 

object diagram into more generic types of diagrams [Ehrig et al. 19971. Object diagrams are 

combined stepwise into a more generic model by merging two views at a time until all of them 

are merged. In doing so, they explore different generalization paths along they way. Their work 

is very useful for the generalization of specific views into generic ones. Besides, their approach 

can also be used for showing how a method changes an object diagram over time. For instance, 

if a method (function) adds, removes, modifies a current object model then this kind of 

knowledge can be used for consistency checking. 

JViews (MViews): Grundy, Hosking, Mugridge, and Warwick have created several modeling 

environments-most notably Niews (a successor of MViews) [Grundy et al. 19961. They 

primarily focus on code and lower-level designs, however, were able to address a series of view 

integration problems in that domain. 



Keller et al.: Schonberger, KelIer, and Khriss concentrated on scenario diagrams and how they 

can be transformed and merged into statechart diagrams [Schonberger et al. 19991 [Khriss et al. 

19981. They do this by matching method calls to state changes. Although they not provide tool 

support, they present detailed algorithms that also address concurrency issues. Even though they 

did not have view integration in mind, their work is fundamental when it comes to view 

integration. 

SADL: His approach is different to the previous one in that he provides a formal language and 

trimsformation taws with which transformations are guaranteed to remain consistent 

[Riemenschneider 19991. In particular, his work is geared towards consistent refinement of 

abstract descriptions to a level of detail that allows its direct implemcntation, 

SAAGE: Robbins, Medvidovic, Redmiles, and Rosenblum used the UML notation and modeled 

their architecture description language (ADL) in UML [Medvidovic and Rosenblum 19991. Abi- 

Antoun and Medvidovic then took that translation specification and automated it in their 

SAAGE tool [Abi-Antoun and Mcdvidovic 19991. Like SADL's work, their work guarantees 

consistent refinement (at least initially). 

SCED: The work of Koskimies, Sysd, Tuomi, and Mannisti) is very similar to Keller et d. since 

it also involved sequence to statechart transformation [Koskimies et al. 19981. Although, the 

techniques of KeIler's group are more in-depth, Koskimies's group was able to provide tool 

support (SCED). 

ViewPoints: The work of hterbrook, Finkelstein, Hunter, KMmer, and Nuseibeh on 

Viewpoints [Eaterbrook and Nuseibeh 19951 is also close to ours in that it presents some views 

and corresponding rules to identify inconsistencies within and between them [Finkelstein et d. 

199 11 [Nuseibeh et al. 19941. Their strongest contribution is a framework with which they 

provide mechanisms for detecting, classifying and resolving inconsistencies. Their work 

emphasizes the eariy parts of the life cycle strongest-requirements and architecture-and they 

provide several tools in the process. 



VisualSpecs: The work of Bourdeau, Cheng, and Wang, acknowledges and addresses a 

deficiency of modeling Ianguages, like UML or OMT, which has to do with the lack of precision 

and formalism [Cheng et al. 19951 [Wang and Cheng 19981 [Wang et al. 19971. They propose 

ways on how to eliminate that problem by integrating formal methods into OMT [Rumbaugh et 

al. 199 11. So they substitute object models with algebraic specifications, various OMT semantics 

with algebraic semantics and instance diagrams with algebras. Reasoning about diagrams can 

then be shifted onto the more precise formal specifications, 

The following sections will discuss the above approaches in context of our evaluation criteria. We defer 

the evaluation of our approach to Section 1 1.1.7. 

10.3 Integration Criteria 

The lntegrarion Criteria addresses the extent of how view integration has been addressed. In 

particular we are interested in the ergonomics, analysis, synthesis, and automation of individual 

approaches. 

Ergonomics addresses human-computer interface issues. For instance, how is information 

communicated to the users and how are users able to influence the integration process? Mews  (a 

successor of MViews) [Grundy and Hosking 19961 [Grundy et al. 19961 handles many facets of 

ergonomic issues related to user interactions [Grundy et al. 19981. As such, they also deal with issues on 

how to present inconsistencies curd how to act in their presence. Similarly strong, from an ergonomic 

point of view, is the work on ViewPoints [Finkelstein et al. 19941 which addresses the life cycIes of 

inconsistencies. AAA only handle simple user-interaction in defining and analyzing consistency issues 

and thus received a weak rating. All other approaches do not address ergonomic issues in context of 

consistency checking. 

Analysis addresses an approach's ability to reason in the presence of a model description. AAA 

defines and then analyzes conceptual features of components. Based on the values of those features, 

potential inconsistencies are identified. Belhouche-L.emusTs approach transforms diagrammatic 



descriptions like dataflow diagrams and statecharts into a formal representation. In the context of that 

representation, diagrams can be analyzed and inconsistencies identified. JViews takes a different 

approach where diagrammatic and textual description (e.g., source code) are captured in a well-defined 

model repository (the base model). It is in that model where inconsistencies are identified based on the 

semantic relationship between model elements of that model. Viewpoints takes multiple approaches to 

consistency detection and handling, although those mostly involve the description of a problem in some 

formal language and its  detection and resolution in context of that language. VisualSpecs' approach is 

analogous to Belhouche-Lemus and ViewPoints. Diagrammatic types of views are transformed into 

algebraic specifications, diagram instances are transformed into algebras, and the semantics that hold 

between diagrams and their instances are transformed into algebraic semantics. VisualSpecs then uses 

those algebraic semantics to reasons about the consistency between algebras. SADL's approach is very 

different in that no explicit analysis component exists but instead synthesis implicitly also covers 

analysis. His approach builds on well-defined semantics and uses proof-carrying transformation steps that 

guarantee that transformations remain consistent. SADL therefore merges synthesis and analysis. 

The synthesis criteria addresses whether consistency checking only involves the direct 

comparison of elements or whether transformation is part of that process. We found that most integration 

approach use some form of transformation. In many cases, transformation involves the translation of 

some given model into a more rigorously defined formal notation (e.g., Belhouche-Lemus, SADL, 

ViewPoints, VisudSpecs). Reasoning is then done in context of that formal representation. In many other 

cases, t~nsformation is used to provide a common repository (e.g., Engels et al., Keller et al., SAAGE, 

SCED). In some cases, no explicit transformation is used. Instead model information is annotated (made 

richer) to allow extended reasoning. For instance, AAA describes components in form of conceptual 

features that are added to component definitions; JViews provides a common repository and base model 

to enable a uniform reasoning environment; and Delugach creates descriptions of models in plain English 

(a generic reasoning environment for manual analysis). 

Most integration approaches support automation and have tool support. We gave a strong rating 

when tool support is available for modeling, analysis and, inconsistencies detection, We gave a weak 



rating when only partial tool support is available (e.g., SCED only supporting synthesis but not analysis) 

or when no tool support is available but algorithms are defined (e.g., Keller et al.). 

10.4 Modes Criteria 

The modes criteria indicate the usefulness of an approach in dealing with the entire life cycle of 

inconsistencies. Most importantly are the detection and resolution of inconsistencies. 

All approaches are useful for inconsistency identijiwrion. Some approaches received a strong 

rating if they defined analysis and synthesis rules (e-g., consistency rules and transformation rules) in 

such detail that inconsistencies can be identified in a fully automatable process (e.g., AAA, Belhouche- 

Lernus, JViews, ViewPoints, VisualSpecs). The weak reatings are giver. if only partially consistency 

checking is automatable (or automated) (e.g., Delugach, Engels et al., Kelier et a]., SAAGE, SCED). For 

instance, in case of SCED only transformation is automated which simplifies comparison considerably. 

Nevertheless, the actual comparison still has to be done manually. A very exceptional case is SADL's 

approach. His approach gives no direct support for automated consistency checking since he uses a 

process that guarantees consistent refinement. However, since his synthesis steps gumntee consistency, 

he received a strong rating. 

Inconsistency resolution is the natural extension to inconsistency detection. Resolution is, 

however, also very hard to accomplish. Only SADL's approach enables the automatic resolution of 

inconsistencies (strong rating), although, this rating may be misleading since his approach avoids having 

to deal with inconsistencies. Nevertheless, his approach supports a form of view integration that does not 

require any inconsistency handling. All others have to handle inconsistencies somehow. Mews and 

Viewpoints provide some support (mostly user interface and process type) to deal with inconsistencies. 

That support helps but does not provide full automation (partial rating). All other approaches do not 

support inconsistency resolution. 



10.5 Media Criteria 

The media criteria addresses the types of models required to support view integration. Most 

integration approaches support graphical modeling languages such as the UML. Some other approaches 

are at least partially based on formal notations. Even in cases where synthesis and analysis requires a 

formal notation (e.g., Belhouche-Lemus, Viewpoints, VisualSpecs), graphical counterparts exist (with the 

exception of SADL). Only two approaches could be useful for informal types of media like documents. 

Delugach's approach produces such media for analysis and Viewpoints uses some structured form of 

requirements evaluation. Pure document-driven consistency checking approaches are not handled in this 

work, Please refer to [Boehm 19891 for an overview. 

10.6 View Dimensions Criteria 

The view dimension criteria coven the types of diagrams that could be supported by various 

approaches. In our works, we distinguished inconsistencies between abstract and concrete views, generic 

and specific views, structural and behavioral views, and within a single type of views. 

Whereas most integration approaches showed strong similarities for some of the previous 

criteria, when it comes to the applicability wc find strong deviations. Only one approach handles 

consistent refinement (abstraction) in a strong manner-SADL. Two other approaches have partial support 

for it. We gave partial support when the consistency checking between refinement and abstraction 

assumes one-to-one traces. For instance, JViews can validate consistency between a source code type of 

view and a class diagram type of view (note that there are differences to the UML definition of class 

diagrams). However, Mews assumes the mapping from source code to class diagram to be one-to-one. 

Thus, a source code class corresponds directly to a class diagram class and so forth. We believe that this 

case constitutes a proper abstractionlrefinement relationship since the source code level shows 

information not present in the class diagram level, although, their approach only deals with the most 

trivial ftom of abstraction (weak rating). SAAGE also got a weak rating since it transforms C2 

architectural diagrams into UML object diagrams, That rransfonnation could be considered a refinement 

since C2 implicit information is explicitly stated in LML. Nevertheless, like in the case of JViews, the 



distinction between abstract and concrete is very weak. Accordingly weak are the findings in relevance to 

consistent refinement. 

We found that view integration approaches tend to be most useful for consistency checking 

between generic and specflc views. Engels et al's approach merges object diagrams (instances) together 

using some type of reference model for naming and consistency issues. Although this work does not 

actually address consistency checking, their work can be hndarnental in generalizing specific views into 

more general ones. Their approach uses a stepwise generalization, creating intermediate models in the 

process. The result of the generalization process is an integrated object diagram with more generic 

properties. Their approach is also unique in that they relate object diagrams to one another and define 

what kind of methods cause their differences. For instance, consider a constructor method in context of 

object diagrams. If the input to a method is an empty object diagram (no objects), and the output of the 

method is an object diagram with one object then one can infer that that constructor metticid created an 

object. That additional information about the relations between object diagrams can then be used to 

further argue about generic consistency issues. 

Keiler et al's approach and SCED's approach are very similar. Both take (multiple) sequence 

diagrams (which are specific views) and merge them into more generic statechart diagrams. That 

generalization process interprets message calls between objects as triggers of state changes. Given a 

collection of sequence diagrams, repetitive patterns between and within them can be used to cross- 

reference and merge their transformations into statechart diagrams. When we adopted their approaches. 

however. we found that their approaches have a number of deficiencies. For instance, the assumption that 

a method call triggers a state change is true in many cases but there are exceptions: A state change in a 

class may also be triggered by a state change in another class without them having to communicate. There 

are also hidden complexities with concurrency issues. For instance, if two objects run concurnntly and 

they exchange messages then it is important to know at what time that state changes occurred. The SCED 

approach adopted a rather simplistic solution whereas the Keller et al. approach tried to address some 

concurrency issues. 



VisualSpec is the fourth approach to receive a strong rating. As it was already discussed, it 

transforms informal diagrammatic schema into formal algebraic specifications and algebras. Types are 

transformed into algebraic specifications and instances are transformed into algebras. The typefinstance 

relationship is similar to our generidspecific relationship. VisualSpec then defines diagrammatic 

semantics in form of algebraic semantics. Consistency checking involvcs the validation of algebras in 

context of those algebraic semantics. 

Delugach's approach is the only case that received a partial rating. The remaining approaches 

did not pilss the threshold. Delugach's approach interprets diagrammatic views (e.g., class diagrams) and 

converts their contents into plain English. The produced documents can then be read sequentially and in 

that context it can be reasoned about inconsistencies. His approach, like some others, do not actually 

provide automated consistency checking, however, through the transformation process it is claimed that 

some types of inconsistencies are more easily identifiable. We believe that his approach is only useful in 

context of generic and specific views since, on that level, the semantic relationships are still 

understandable enough to enable ii direct comparison. In case of abstraction and structuralimtion, we find 

that a simple one-to-one comparison is of little use. Transforming a diagrammatic view into plain English 

does not simplify that. 

Consistency checking between structural and behavioral views is among the weakest supported 

forms we observed. We only gave the approaches of Belhouche-Lemus and Viewpoint a strong rating, 

not because they explicitly investigated consistency between structural and behavioral views but because 

the formal notation they support allows behavioral reasoning. 

10.7 Life-Cycle Criteria 

We dso evaluated related approaches in context of their usefulness during the software life 

cycle. The life-cycle cn'reria is therefore split into requirements, architecture, design, and coding. Note 

that it is not our intention to favor a particular process model. The sequencing of specifications should not 

be interpreted as waterfall-like. Instead, we chose those criteria to denote an approach's usefulness in 

dealing with the different types of semantic models present during those development stages. 



The requirements criterion indicate the usefulness of integration approaches in dealing with 

high-level types of information. Requirements are typically captured less formally (often in plain English) 

and typically cover a wider range of development issues even outside the boundary of the actual product. 

Almost all approaches with the exception of ViewPoints cannot be used on that level. Even Viewpoint 

resorts to a formal specification of requirements and evaluates them in that context. 

The architecture captures high-level components, their relations as well as their roles and 

responsibilities. Architectural descriptions are still abstract enough so that their components are intuitive 

p m  of software systems. Only one of the approaches we evaluated could be considered purely 

architectural. The AAA approach evaluates architectural components that could be legacy systems, in- 

house developed components, or COTS (commercid-off-the-shelf) components. AAA analyzes 

consistency between them by andyzing conceptual dependencies of their characteristics. For instance, if a 

component is concurrent and it is composed with a component that is sequential, the concurrent 

component may potentially use the sequential one in a concurrent fashion causing faults. 

The Viewpoints' approach also seems more architectural although that was not explicitly stated 

as such by the authors and we gave them a weak rating here. Both SADL and SAAGE come from the 

architecture community. The emphasis of their works is strongty motivated in the context of architecture 

description languages. Nevertheless, both cIaim that automated refinement even through the code level is  

possible. However, it is our opinion that their languages get rather awkward if used in the small. Both 

approaches only support one type of modeling language and, at this point, they are not sufficiently 

equipped to deal with lower-level concerns (e.g., design patterns [Gamma et d. 19941, etc.). 

Most approaches iue at least partially useful for design modeling (except for AAA) since they 

tend to use some design-level constructs. As such Belhouche-Lemus is based on dataflow diagrams and 

statecharts; Delugach evaluates class-like diagrams; Engels et al. is based on object diagrams; Mews 

also uses class-like diagrams; Keller et al. and SCED use sequence and statechart diagrams; and 

VisualSpecs is based on OMT (OMT is similar to UML). Viewpoint got a weak rating since we saw only 

little support for design type diagrams although they state that some exists. SAAGE and SADL do not 

support design notations, however, both claim their notations to be useful for designs (weak ratings). 



10.8 Flow Criteria 

The direction of development flow and how changes are propagated are two important aspects of 

view integration. We find that all techniques support forward engineering (more waterfall-like scenario). 

Also, most approaches could be used for reverse engineering. The exceptions are the four architectural 

approaches AAA, SADL, SAAGE, and ViewPoints. In case of AAA, reverse engineering does not make 

sense since it is needed for component composition. En case of SADL, SAAGE, and Viewpoints, reverse 

engineering is probably possible but because on their reliance on formal notations without common 

design notations it might be harder to realize (it is hard to relate implementation construct to architectural 

constructs). 

Change management, the last flow criterion, denotes the ability to make changes at some later 

point. For instance, what happens if one of VisualSpecs diagrams is changed after an algebraic 

specification was generated and it had been instantiated? Naturally, the simple solution would be a re- 

generation of the algebras based on the new diagram, however, that approach would require a complete 

re-evaluation of that diagram for consistency checking. If only a small part of the diagram changed than 

not ail should be reevaluated. Change management, (herefore, requires a smart and well-defined way of 

dealing with evolutionary changes. We did not find strong support for change management among the 

dozen approaches we evaluated. Two approaches, Niews and Viewpoint, defined that notion and have 

incorporated some solution, however, that problem remains largely unsolved. 

10.9 Scalability Criteria 

Thc scalability criteria are meant to evaluate solutions with respect to the single largest challenge 

of view integration-that of scalability. View integration does not scale well and in this work we discussed 

a number of reasons why. Evaluating dated works we find that scalability has not been addressed in 

deiail. The most basic scalabiliry problem of view integration is the fact hat  all model elements (and all 

views) have to be compared with d l  other model elements (and views). Only JViews provides the start of 

a partid solution by introducing a base model that compactly handles modeling information. We found 



that extensive reuse during consistency checking is the key for improvements. No other view integration 

approach addresses scalability in a similar strong manner. 

10.1 0 Other Models Criteria 

The final criteria with which we evaluated related works are their usefulness towards other areas 

of software development. Note that our emphasis thus far was about product modets that describe 

software systems. Other types of models include process models and property models. 

Process models describe development activities. Examples of process modek are the waterfall 

model [Royce 19701 and the spiral model [Boehm 19881. Integration could, for example, validate the 

conformance of a development process to the actual process. We found that onIy JViews (integrated with 

Serendipity [I [Grundy and Hosking 19961) provides process coverage, 

Properry models, additionally, evaluate non-functional aspects of software systems. For instance, 

software properties could be performance, reliability, security, etc. AAA, SADL, and SAAGE have some 

support for those although they do not model them explicitly. 

The works presented above do not cover the complete picture of what is going on in view 

integration. However, it gives an overview of the major approaches. The diversity of the work above is 

another reason why this work thrives not to just add another technique. Many approaches described in 

this section are excellent and, thus, our work tries to also take the best of what already exists. 



11 Evaluation, Future Work, and Summary 

11.1 Evaluation 

A critical aspect of a new approach is its evaluation. In this section, we will discuss the kinds of 

validations we have performed and the observations we have made. Evaiuating a body of work like this 

embodies a number of complexities, especially since we did not set off with a well-bounded problem nor 

did we end up with a well-bounded solution. Thus, a mathematical proof of correctness cannot be cast 

across the entirety of our work. Nevertheless, validation is possible and we chose to follow a series of 

dimensions: 
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0 

0 

0 

0 

0 

0 

0 

Evaluating Transformation Techniques 

Evduating Comparison Methods 

Evduating Effectiveness, Efficiency, and Reliability 

Evaluating Scalability 

Evaluating Applicability outside UML Domain 

Evaluating UML's ability to support analysis 

Evaluating in Context of Other Approaches 

Breadth over Depth 

Technology and Research Transfer 

11 .I .1 Evaluating Transformation Techniques 

This work emphasized four transformation types-abstraction, generalization, structurdiration, 

and translatiowthat are used to bridge the eight types of UML views we are currently supporting (plus a 

nineth type of view called C2 [Egyed and Medvidovic 19991). 

Our abstraction process was validated in a number of dimensions. First, we validated its rules by 

analyzing their semantic implications along the lines discussed in Section 7.3.1.3. Furthermore, we 

applied our technique on a series of models and evaluated the results in the context of both consistency 

checking and reverse engineering: 



i. Reverse Engineering: our abstraction technique can be used to reverse engineer high-level 

models out of more concrete (lower-level) models. 

ii. Consistency Checking: our abstraction technique can also be used to enable consistency 

checking between existing concrete and abstract models. 

Although the two uses (reverse engineering and consistency checking) have different goals in 

mind, the validation of the principles of our abstraction mechanism remains identical. Some of the models 

we used to evaluate abstraction were provided by industry (e.g., the validation of a small part of a 

Satellite Telemetry Processing, Tracking, and Commanding System w&C) [Alvarado 1998)). Other 

models were self-made. For instance, we reverse engineered and abstracted our own tools Iike AAA 

[Gacek 19981 and UMUAnalyzer (see Section 8) and we validated consistency among half a dozen LTML 

models with up to 100 classes. We also applied our abstraction concept towards consistency checking 

between CTML designs and the C2 architecture description language [Taylor et al. 19961 where we were 

able to demonstrate C2 structural and behavioral violations [Egyed and Medvidovic 20001. It must be 

noted that C2 was neither created by us nor was our abstraction technique build for that use in mind. 

Finally, our abstraction techniques were (and still are being) validated by a number of research 

institutions and we made improvements based on their comments (Mitre Organization and Rational 

Software must be noted). 

We invented the relation abstraction technique in collaboration with Rational Software in 1997 

[Egyed and Kruchten 1999). Independently, at a later time, the group of Racz and Koskimies [Racz and 

Koskimies 19991 came up with a class compression method that exploits the same concepts as our 

relation abstraction technique. They, however, did not create automated abstraction rules nor did they 

create tool support for automated abstraction in their work. Nevertheless, we see their work as a form of 

validation of ours since they independently made similar observations about class patterns. 

Finally, Rational Software adopted our relation abstraction technique and built its own 

implementation called Rosekchitect Fgyed and Kruchten 19991 (implemented by Ensemble Systems 

for Rational Software). Our tool (UMUAnalyter) incorporates all features of RosdArchitect and also 

addresses classifier abstraction, reliabilities, cardinalities, complex rules as well as scalability issues, 



To support structuralization and generalization, we adopted transformation methods of other 

researchers [Koskimies et al. 19981 [Schanberger et al. 1999) [Ehrig et al. 19971. We validated their 

transformation method in the context of consistency checking and found a number of deficiencies for that 

use. It must be noted that some of those transformation methods were not built for consistency checking 

although a few also claimed their approach to be useful for that purpose [e.g., SCED [Koskimies et aI. 

19981). Our work showed that transformation requires more than the simple conversion of modeling 

information. Thus, the context of our framework enables other tools (e.g., like SCED) and methods to be 

evaluated for their usefulness and fitness towards view integration. Our framework also enables other 

tools to used for consistency checking. Our framework thus combines view integration approaches. 

11.1.2 Evaluating Comparison Methods 

There exists an accepted notion of what consistency means and what it does not mean. For 

instance, the case of a model element that was not properly refined denotes a very clear case of an 

inconsistency. Our work, therefore, did not have ta validate what consistency is. Our work only had to 

validate whether our approach is capable of identifying it. In our framework, consistency checking is 

based on consistency rules and on a transformation's ability to transform model elements to make them 

directly comparable in the context of those rules. 

We have built consistency rules based on the semantic dependencies between model elements. 

Those semantic dependencies were derived out of the W definition itself as well as examples of its 

usage. We have then validated consistency rules in context of numerous examples. In sections 7.5.2 and 8 

we showed some of those examples. We have also applied our rules to validate consistency between 

UML and the C2 architecture description language as we discussed above. This implies that our rules are 

generic enough to scale to other types of views outside the UMT., domain. 

Consistency rules and their ability to enable direct comparisons between model elements of 

same and different types of views have been used by other view integration approaches. Defining rules is 

mandatory in defining the proper or improper usage of models. Consistency rules therefore describe the 

invariants of sofiware modeling. Our framework extends consistency rules with transformation methods 

that allow their direct comparison in cases where others fail. In this work, we demonstrated that 



transformation can be successfully coupled with consistency checking, resulting in a broader coverage of 

potential inconsistency types. Our approach also stands out in its ability to detect inconsistencies no other 

approach can detect. Section 1 1.1.3 below will discuss those. 

We also built tool support to automatically identify eight types of inconsistencies. The 

inconsistencies found are fundamental types (meaning we believe that they address the most important 

consistent refinement problems). To the best of our knowledge, no one else has been able to identifj them 

yet. 

11.1.3 Evaluating Effectivemsa, Efficiency, and Reliability 

We would have Iiked to support this work with strong indications of its effectiveness, efficiency 

and reliability. The main problem is that such numbers would only make sense in comparison to other 

view integration techniques. To the best of our knowledge no such comparison exists, primarily because 

view integration approaches tend to be very different in their coverage. For instance, our approach is able 

to detect a series of inconsistencies that other approaches cannot detect. It is, therefore, not meaningful to 

compare efficiency or reliability numbers in that context. Despite that, we were able to reason about those 

factors. This section summarizes those. 

We measure effectiveness in terms of our approach's ability to detect inconsistencies that have 

not been addressed by other approaches. For instance, our abstraction method enables the comparison 

between high-level and low-level diagrams. This type of comparison is very important during refinement 

and maintenance of software projects. Validating a higher-level diagram based on a lower-level diagram 

ensurse that properties of higher-level diagrams are maintained in rr consistent fashion. 

We found 21 types of inconsistencies between diagrams at different levels of abstraction. And 

we found additional 30 types of inconsistencies between other types of diagrams. We neither claim that 

this list is complete nor do we claim that our approach could replace other approaches. Quite the contrary. 

View integration is a complex field. Our approach uses a unique approach, however, is not complete at 

this point. The works of [Nuseibeh et d. 19941, [Grundy and Hosking 19961 and others show that other 

approaches are able to handle other situations quite well-in some cases even better than ours (also refer to 

related works in Section 10). For instance, the works on Viewpoints [FinkeIstein et d. 19911 allows the 



detection of inconsistencies that are closer to the requirements engineering domain. Our approach handles 

product models only. However, at the same time it cannot be claimed that our approach is worse. Instead 

we find that both approaches have respective advantages and they complement each other. 

We measure efficiency in the speed in which inconsistencies can be identified. Here we have to 

consider two dimensions-regular and evolutionary efficiency. Our work on view integration is unique in 

its approach to scalability. We found that scalability is a problem that is discussed extensiveiy in the view 

integration community, however, is rarely ever addressed, Our work shows how increased reuse of 

transformation results and a reduced redundancy model are valuable contributions that have strong impact 

onto the efficiency on consistency checking. Instead of having to validate the same model element for 

every consistency checking cycle, past transformation and/or comparison results can be reused. Our 

approach thus improves evolutionary efficiency through extensive reuse. 

Efficiency also has to do with the speed of inconsistency detection within a single validation 

cycle (non-evolutionary). In that context we studies consistency checking between abstract and concrete 

diagrams (via our tool UMUAnalyzer) and found significant improvements of automation. Our tool was 

able to perform abstraction transformations in fractions of seconds that manually would have taken hours 

to perform (recall Figure 129). 

Although our process strongly improves the speed of transformation and consistency checking, 

its impact onto reliability has to be studied further. We applied our consistency checking process onto a 

series of examples and at the same time performed those consistency-checking tasks manually. We then 

compared the results of both approaches in terms of false errors or oversights. Interestingly, we observed 

that both approaches were able to detect inconsistencies that the other was not able to. We also found 

some cases where our approach detected an error where there actually was none. However, in the cases 

we evaluated, we found that the tool was abIe to detect most of the same errors as the human but did so 

much faster. Given the existence of false errors, one nevertheless has to see the findings of our approach 

as indications of potential inconsistencies instead of factual ones (although in some cases the findings are 

quite reliable). This constraint does not disqualify our approach for two reasons: (1) having support which 



locates potential inconsistencies in a very short amount of time is still better than having to find all of 

them manually; and (2) the reliability of our approach can be increased (see Section 11.2). 

11.1.4 Evaluating Scalability 

To date, a number of view comparison approaches have been proposed but the major problem in 

automating them is scalability. We do not make the claim that our approach is free from that problem; 

however, this work discussed a series of measures we have undertaken to address it. 

The basic structure of our view integration framework already addresses scalability. We use 

mapping to restrict what to transfodcompare (instead of random comparison) and we use 

transformation to sirnpli@ how to compare. We integrated our techniques to remember past 

transformation results and, thus, increased the amount of transformation reuse. This implies that instead 

of having to re-verify the entire model every time a change is introduced, we only have to compare the 

effects of changes with the existing other p m  of a model-from an evolutionary standpoint a very 

significant improvement. We demonstrated on an exampie how 9 classifiers, 9 relations, and 14 trace 

links could be reduced to only 5 ciassifiers, 5 relations, and 6 uace links. 

To address evolutionary scalability, we discussed the concept of a reduced redundancy model 

that limits potential inconsistency introduction between user-defined elements and derived elements 

during evohtion (a change propagation issue). Instead of having to define 36 transfornation methods for 

the 9 types of views we are supporting, we demonstrated how a subset of them (only 14 transformation 

methods) are sufficient to enable the same coverage. Finally, we defined a transformation framework 

with associated reliability measures to identify promising transformation paths. Most of those scalability 

concepts have also been implemented in our tool WAnalyze r  demonstrating the automatability of ow 

concepts- 

1 1.1.5 Evaluating Applicability outside UML Domain 

This work primarily concentrated on using UML, although, we claimed that our approach is 

more generally applicable. We therefore integrated another type of view into our framework two show 

two things: (1) our approach's ability to handle other heterogeneous types of views; and (2) our 

approach's ability to link two separate model worlds to ensure consistency between them. In jEgyed and 
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Medvidovic 20001 we showed how ow approach can be used in the context of an architecture description 

model such as C2 [Taylor et d. 19961. That work combines C2 to UML integration to enable a formal 

approach to software development as a complement to a generic (less formal) development approach 

(e.g., W). 

We use the translation method of Abi Antoun-Medvidovic [Abi-Antoun and Medvidovic 19991 

to transform C2 models into an UML equivalent and we then use our abstraction method to enable a 

comparison between the UML equivalent of C2 and the UML abstraction. This type of view comparison 

corresponds to scenario d) of our view transformation framework in Figure 43 where both views (the C2 

architectural view and the UML class diagram view) have to be transformed into a third type of view (an 

UML supported intermediate model [Medvidovic et al. 20011) to enable their direct comparison in 

context of that third intermediate representation. 

11 .I .6 Evaluating UML's ability to support analysis 

In the process of using UML for view integration, we had an excellent opportunity to evaluate 

UML's suitability towards view analysis. In particular we questioned whether UML is suited to support 

automated consistency checking, This section discusses the difficulties of UML in supporting automated 

consistency checking. Although many of the difficulties we found could be minimized to a large extend 

by using UML's extensibility mechanism, we find that there are some exceptions. In particular we find 

the current UML meta-model insufficient in describing and handling transformation results. Furthermore, 

the scalability measures discussed here can only be supported with great difficulties. 

11.1.6.1 Reduced Redundancy Model 

We discussed reduced redundancy models as a means of capturing and maintaining derived 

information without having to worry about their maintenance. The better a reduced redundancy model is 

implemented, the more effective and scalable is view integration in terms of evolution, The only 

disadvantage of the reduced redundancy model is that it cannot be hlly supported in UML. UML's meta 

model has a clear definition on how model eIements have to interrelate and the concept of a bridge (a 



bridge was required in between mode1 elements) is not supported. Bridges are located between model 

elements and each bridge may have two or more attachment placeholders for model elements (ports). 

Not being able to build a good reduced redundancy model does not disable automated 

consistency checking, however, it does decrease its effectiveness. In Section 7.7.3 we showed two cases 

of a reduced redundancy model-one that could be built using UML and a better one that currently cannot 

be built in UML. To enabie a better-reduced redundancy model, we needed to augment the UML meta- 

model, thus violating the UML standard. The changes have, however, only little impact onto how the user 

sees UML. NevetlheIess, this example shows a case, where existing UML concepts are not sufficient in 

supporting view analysis. 

11.1.6.2 Explicit and Impticit Treatment of Traces 

Trace information between views are very important in our view integration framework. For ow 

framework, we need abstraction, generalization, structunlization, translation, origin, and interpretation 

traces. UML only has explicit definitions for one of them: abstraction. Abstraction is defined in LTML as a 

dependency between model elements that is stereotyped as (<Abstractionm. UML supports generalization 

partially as instance and type relationships. This relationship is, however, not an explicit trace nor does it 

apply to all specific model elements. For consistency checking it does not make a difference whether 

mces are treated explicitly or implicitly, however, it turns out that implicit links are only supporting 

those elements they are attached to and not others. We use UML's extensibility mechanism to define 

explicit dependency links for generalization, structunlization, translation, and interpretation. Those links 

are stereotyped accordingly. Explicit dependency links can be used on d l  model elements. 

11.1.6.3 Ambiguous and Partial Interpretations 

Consistency checking takes interpretations and compares them with the (userdefined) original 

model elements. In case of differences, inconsistencies are found. Comparison was discussed as being 

about equality; however, there are exceptions as in the case of ambiguous results. For instance, a call in a 

sequence diagram could either be a query or an action (in a statechart diagram) since we do not know 



whether it causes a state change or not. Since this distinction is important for comparison between the 

sequence and statechart diagrams. capturing transformation results has to handle that ambiguity. 

Similarly, there are cases where transformation yields partial results. For instance, in some cases of 

abstraction the direction of interaction may be computed without knowing the type of the interaction. 

UML does not have an explicit notion of how to describe interpretation relationships between 

user-defined elements and derived elements; nor does it have an explicit notion on how to describe 

ambiguous and partial transformation results. UML's extensibility mechanism can mitigate some of those 

problems. For instance, a dependency relationship stereotyped as ~Interpretationb can be used to simulate 

the interpretation relationship. The issue of partial or ambiguous transformation results is, however, more 

complex since UML has no concept on how to define some variations of them. For instance, it is not 

possible to define a derived relation of unknown type with only some cardinality information attached. 

11.1.7 Evaluating in the Context of Other Approaches 

We also evaluated our work in context of other approaches. In Section 10 we discussed a dozen 

related view integration approaches and rated their strengths and weaknesses in the context of 24 criteria. 

In the following we briefly discuss how our approach competes in this scheme. 

Ergonomics: Our work emphasizes the technology aspect of view integration at the expense of uscr 

interface aspects. We therefore only partially address this problem. The works on JViews and 

Viewpoint are significantly better. 

Analysis: Our work introduces new techniques for enabling automated consistency checking. 

Although other approaches also have strong consistency checking support, our work is abie to detect 

a series of inconsistencies others cannot. Our work therefore complements others. 

Synthesis: Like analysis, our work introduces new synthesis methods that enable improved 

uansformation. Our work therefore complements others. 

Automation: Not many approaches have full tool support from inception to detection of 

inconsistencies. Only five our of twelve other approaches have a similar coverage. 



Identitication: Like many other approaches, we provide extensive assistance for inconsistency 

identification. As discussed above, our approach is able to detect inconsistencies others cannot. 

Resolution: We currendy do not support automated inconsistency resolution, however, we see a lot 

of potential for that. The works on Niews and Viewpoints are good guides. 

Formal Notation: Our approach is based on diagrammatic views. Currently we do not envision the 

need for formal notations since they are less useful for design languages. 

Graphical Notation: We provide extensive support for graphical notations. Since we are supporting 

8 types of views (not including CZ), our work has attempted the largest view coverage yet. Other 

approaches use at most two types of views. 

Document: Our emphasis is on graphical notations. Othcr approaches are more suited for document- 

based validation and verification. 

AbstracWoncrete: Our approach provides the strongest support for consistency checking between 

abstractkoncrete diagrams to date. 

Generi&pecitic: We also provided support for consistency checking between generic and specific 

views. AIthough some other approaches are stronger, we must note that we have not investigated that 

problem nearly as much as abstraction. 

StructuraVBehavioral: Consistency checking approaches for structural and behavioral diagrams are 

generally weak across related views. Ours does not yet contribute extensively either. 

Requirements: We have no support for requirements modeling in our thesis. We have however 

started to investigate this issue in medvidovic et al. 20011 and [Gruenbacher et id. 20001, 

Architecture: We integrated our approach with the C2 architecture description language to validate 

consistency between C2 architectures and UML refinements [Egyed and Medvidovic 19993 [Egyed 

and Medvidovic 20001. 

Design: We strongiy support design modeling (8 our of 9 views). 

Coding: We directly do not support coding, however, through reverse engineering we are able to 

generate low-level class diagrams which can be abstracted and validated. 



Forward: Strong support like all others. 

Reverse: Our approach is equally useful for reverse engineering since we created transformation 

methods and built consistency rules that work independent of development flow. 

Change Management: We have partially addressed the change management problem of view 

integration. We find that our approach adds a new and unique way of dealing with this issue via ow 

improved reuse. 

Basic: In terms of scalability our approach adds new concepts. We showed that the basic scalability 

probIem of having to compare all views with all others can be improved through complex 

transformation and improved reuse. Basically no other approach has addressed that issue. 

Within Cycle: We showed that reusing transformation results improves scalability for other 

consistency checking activities within the same validation cycle. 

Evolutionary: We showed that reuse improves evolutionary validation. We, however, found that 

evolutionary reuse results in extensive disadvantages in terms of change management. We, therefore, 

introduced the reduced redundancy model to mitigate that problem. No studies were performed 

whether our approach indeed improves evolution since our emphasis was not geared towards that. 

Process Support: we provide no process support 

Property Support: we provide no property support 

Summarizing, our approach adds value over existing consistency checking approach in its 

improved and comprehensive handling of abstractions and refinement, and in its strong improvements in 

scalability. 

11.1.8 Breadth over Depth 

View integration of heterogeneous types of views is an elaborate subject. During the creation of 

this work, it became more obvious that the problem is too extensive to be completely addressed by us as 

part of this thesis. This caused a diiemma since it was our goal to provide a view integration framework 

that could scale beyond one or two types of diagrams. In fact, this is another dimension in which our 

work is distinguishable from other view integration solutions. Our framework was meant to cover a more 



comprehensive set of views: from abstract to concrete; from generic to specific; and from structural to 

behavioral. To address this problem we chose a breadth and depth approach to view integration. 

Breadtb to consider a wide range of views 

Transformation is improved if multiple views are evaluated (recall sequence to statechart 

transformation) 

View integration has more complexity if a wide range of models has to be supported 

Integration must cover extensive types of diagrams and views 

Some view integration concerns cannot be revealed unless multiple views are investigated 

Depth to consider complexity aspects 

a Important view integration concerns cannot be revealed if views we not evaluated in detail 

0 Scalability and complexity concerns only become obvious by a rigarous treatment of the entire 

consistency checking process 

a Full automatability can only be cIaimed if entire "analysis lifecycle" from mapping to 

transformation to comparison is supported 

Our solution to this dilemma was to explore both options. We selected a set of diagrams CTML 

provided that sufficiently covered all model dimensions (recall Section 5). The superficial treatment of all 

those dimensions allowed us to build a framework that is comprehensible in the types of views it 

supports. For instance, the integral part of transformation as part of our view integration framework is a 

direct derivitative of having had to evaluate a wide range of development models. Only by doing that, we 

realized how difficult it is to directly map and compare two different types of diagrams. Furthermore, h e  

broad view coverage made us aware of the complexity of view integration in terms of how may 

transformation methods had to be supplied. Our solutions of using intermediate models and compIex 

transformation are a direct result of addressing this broad problem. 

In order to also understand the intricacies of stepby-step consistency checking in depth, we 

chose one type of transformation-abstraction in our case-and explored it in all detail. The in-depth 



treatment of abstraction allowed us to build a h e w o r k  that is comprehensible. Our in-depth treatment 

of abstraction resulted in a tool support that covers the entire view analysis life cycle including many of 

the scalability measures we discussed. The depth approach also resulted in a number of discoveries that 

the breadth approach would not have found. For instance, the evolutionary scalability problem and its 

need for a reduced redundancy model is a direct lesson learnt. Further, the creation of consistency rules 

and how they are supported by the model was only possible by investigating the details of abstraction. 

1 1.1.9 Technology and Research Transfer 

Our tool, W n d y z e r  is currently being evaluated by two groups within Mitre organization. 

A subset of our tools functionality was also implemented in a tool called RosdArchitect (for Rational 

Software). Additionally, about a dozen other groups requested the tool and are evaluating it for different 

uses. We found that its ability to abstract class diagrams makes it also very useful for reverse engineering. 

11.2 Future Work 

Our work provided a framework for automated and scalable consistency checking. In the course 

of discussing the details of our Framework we revealed a series of cases where more work has to be done. 

We only investigated two types of UML views in depth. Future work requires the continuing validation of 

our framework towards other types of UMt views as weil as outside views (e.g., ADLs). Also we would 

like to apply our framework to larger, industrial projects. 

Although automation can save considerable time and effort and improve the overail quality of 

model and product, full automation is certiliniy unrealistic today and will likely remain so for some time 

to come. This impIies that synthesis and analysis will continue to incorporate a sizeable human 

commitment. Feasible and practical view integration must therefore adhere to specid considerations and 

ergonomic constraints posed by human users (e.g., architect, designer, programmer). This problem 

requires a stronger attention towards formalisms, model design (construction), distribution, and human 

interactions than we have given to date. The following activities would W e r  improve our integration 

approach: 



Improving Reliability: The reliability of our approach can be improved by improving the reliability 

of transformation and consistency checking. This task involves the refinement and validation of 

transformation and consistency rules. 

Inconsistency Resolution: Currently our approach is limited to inconsistency detection. Although we 

do not believe in automated inconsistency resolution, we do believe that assistance m be given by 

suggesting options on how to resolve them. Resolution involves a stronger emphasis on human 

computer interactions. 

Smart Transformations: The challenge of model evolution is that re-generation frequently overwrites 

instead of adapts. Tzrke, for instance, code generators that can produce skeleton code out of designs. 

Frequently those generators assume waterfall-like situations where changes to the code may get lost 

after the re-generation of the design. Smart transformation allows the continuous evoiution of several 

models with an intelligent way of updating them. 

Product Families: It has been recognized that product lines exhibit strong potential for reuse-both of 

program code and modeling data. What has been greatly neglected is that product lines also enable a 

stronger potential for automated refinement and consistency checking (plus some limited forms of 

inconsistency resolution) since the similarities in products enable a more meaningful comparison. 

Distributed Modeling: Distributed systems are important for modeling in two fashions: (1) to modet 

distributed products; and (2) to support distributed modeling. Whereas the former has received strong 

attention in the research community, the latter has lagged behind. Modeling needs to become 

distributed to make use of new and powerful interaction technologies (such as the web) as well as to 

handle an increasingly distributed workforce. Consistency checking among distributed models is one 

example of the chdlenges of distributed modeling. 

Model Connectors: The problem of component connectors has received strong attention by the 

research community for some time now. Seeing modeling integration in analogy to architectural 

description languages (ADLs) may however shed new light onto this problem. ADLs talk in terms of 

components and connectors. If models (views) are the components of model-based development, 



then how can ADL knowledge about connectors help in finding the bridges between their model 

components? This facet is an alternative way of seeing view integration. 

Component-based modeling involves the use of COTS (commercial-off-the-shelf) components in 

software products. Our research so far has indicated that component-based and model-based 

development does complement one another well in enabling refinement and inconsistency detection. 

11.3 Conclusion 

Model-based software development handles complexities by allowing development concerns to 

be addresses, solved, and interpreted on an individual basis (separation of concerns). Model-based 

software development is thus essential in developing large-scale, complex, and labor-intensive software 

systems. The widespread acceptance of modeling languages such as the Unified Modeling Language 

(UML) attest to that. Models, despite their invaluable strengths, exhibit one major weakness. To enable a 

separation of concerns, models form their individual closed-world environments. These closed-world 

environments hinder the communication and interaction between individual views. Interaction, however, 

must happen to enable information exchange and to ensure consistency. 

This work presented a view integration framework with support for automated synthesis and 

analysis. Our synthesis techniques assist thc replication of information between views. Automated 

synthesis reduces the manual, error-prone, and repetitive activities that occur during the exchange of 

modeling information. Our analysis techniques validate consistency between replicated information 

present in multiple views. Automated analysis reduces the manual, error-prone and repetitive activities 

that accompany consistency checking. 

The key to scalable and less complex consistency checking is in automated transformation 

coupled with the reuse of transformation results. The observation that transformation can simplify 

consistency checking was already made by other researchers (e-g., [Koskimies et al. 19981). however, 

none of them addressed the scalability problem related to handling and maintaining derived information. 

Our work, therefore, introduced a series of scalability improvements (reduced number of transformation 

methods and reduced redundancy model). 



Currently, we have automated our view integration framework in context of class, object, and C2 

diagrams. We have aIso shown the benefits of using ow integration techniques in saving considerable 

human effort and in its ability to locate types of inconsistencies that no other inconsistency approach can 

locate (automatically). Also our approach enables inconsistencies to be identified ;ts early on as they are 

created. Every time new data is added to the model, our approach and tool can be used to validate them. 
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