
This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough. substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original. beginning at the upper left-hand comer and continuing

from left to right in eqwl sections with small overlaps.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6" x 9" black and white

photographic prints are available for any photographs or illustrations appearing

in this copy for an additional charge. Contact UMI directly to order.

PmQuest Information and Learning
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA

800-52 1 -0600

Heterogeneous View Integration

and its Automation

by

Alexander Franz Egyed

A Dissertation Presented to the

FACULTY OF THE GRADUATE SCHOOL

UNIVERSITY OF SOUTHERN CALIFORNIA

In Partial Fulfillment of the

Requirements for the Degree

DOCTOR OF PHILOSOPHY

(Computer Science)

Copyright 2000

August 2000

Alexander Franz Egyed

UMl Number: 3Ot 8075

Copyright 2000 by
Egyed, Alexander Franz

All rights reserved.

UM l Microform 301 8075
Copyright 2001 by Bell 8 Howell Information and Learning Company.

All rights reserved. This microform edition is protected agair;~:
unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, MI 48 1 06-1 346

To my parents Franz and Berta

Acknowledgements

So many people contrib~ted to the making of this work that it seems impossible to thank all of

them. I am very grateful towards my advisor Barry Boehm for all the dedication and support he has given

along these many joyful years. I am also most grateful for all the invaluable suggestions I got from Nenad

Medvidovic.

I would like to thank the reviewers of my thesis including my other dissertation committee

members Lewis Johnson, Bert Steece, and David Wile as well as other reviewers like Nicolas Rouquette.

Also my thanks to all the people who gave suggestions and insights along the way, including the

anonymous reviewers of journal and conference papers I have written. Moreover, I would like to thank

Philippe Kruchten.

My dissertation would have becn impossibk if other researchers would not have provided a

foundation onto which to build upon. 1 greatly value the papers I have read for they opened my eyes onto

the vast challenges that exist but also onto the unique solutions they provided. My work builds upon their

contributions.

Finally yet importantly I would like to thank my family, friends, and colleagues for their support

or just for being there. I value their friendship, encouragement, and companionship.

..
DEDICATIONH.......................u...e..................H............e..... u

... ACKNOWLEDGEMENTSH.e...................... w

... LIST OF TABLES~..................mH...............m................o........He.....................................o........ VUI

... SOFTWARE MODELING 12
.. MODELS AND VIEWS 13

.. COMMON MODUS AND VIEWS 14
... THE UNIFIED MODELING LANGUAGE (UML) 16

.. ARCHITECTURE DESCRIPTION LANGUAGES (ADL) 18
.. STAKEHOLDERS AND MODEL LIFE CYCLES 20

.. INP~RMATION GAP AND INFORMATION DISCONTINU~~Y 23
.. INFORMATION DEGRADA~ON 25

.. SUMMARY 27

3.1 WHAT ARE MODEL REDUNDANCIES? 28
3.2 MKSM INTEGRATION IN MODELS AND VEWS ... 31

... 3.3 WHAT IS INTEGRATION? 32
3.4 THEVIEWINTEGRATIONPROBLEM .. 34

3.4.1 Why Integrate Views?~... 34
3.4.2 Why Integrate Heterogeneous Views?,,.............. 35

... 3.4.3 Why Automate Heterogeneous View Integration? 36
3.5 BR~DGING THE FORMATION GAP: SYNTHESIS AND ANALYSIS 36

... 3.6 POTENTIAL INTEGRATION C O M P I E X ~ 39
3.7 WHAT IS NOT ~'EGRATION? .. 39
3.8 SUMMARY ,.. 41

4 SCOPE AND LIMITATIONS 0" ...~-..~..--t.W.o"rn*"t.~H-*~nrnHw~m"~~~~.~~.~~~~w~~~~ 0 . 0 0 0 0 " . 42

5 MODEL ELEMENTS AND VIEWSH.......m......H.......................e......................... 45

5.1 WHAT ARE MODEL ELEMP(TS. VIEWS. AND MODELS? ... 45
5.2 MODEL ELEMENIS. MODEL ~STANCES. AND USER OBECIS 47

... 5.3 UML MODEL, MODEL E m . AND VIEWS 48
5.4 Vlnv DIMENSIONS ... 49

5.4.1 Level of Generality ... 49
.. 5.4.2 Level of Abstraction 50
.. 5.4.3 Level of Behaviorism 51

5.5 VE~SPACEAND~RELATIONTOVIEWS ... 51
.. 5.6 I~JTERDEPENDENCES OF MODEL E m 54

5.7 SUMMARY .. 55

6 MODEL INCONSISTENCIES 56

.. 6.1 EXAMPLES OF INCONSISTENCIES 56
... 6.1.1 Inconsistency between Class Layers 56

6.1.2 Inconsistency between Class and Sequence Diagram ... 57
6.1.3 Cardinality Inconsistency ... 58

.. 6.1.4 Inconsistency between State and Sequence Diagrams 59
.. 6.2 LIST OF INCONS~STENCIES 61

6.2.1 Inconsistencies in the Abstract Dimension ... 61
6.2.2 Inconsistencies in the Generic Dimension .. 70

... 6.2.3 Inconsistencies in the Behavioral Dimension 75
... 6.3 C L A S S ~ A T ~ O N OF INCONSISTENCIES 78

6.4 ACT IN THE PRESENCE OF INCONSISTENCIES .. 78
6.5 SUMMARY .. 79

.. OUR VIEW INTEGRATION FRAMEWORK 80

7.1 Owtvmv ,., ... 80
.. 7 $2 VW I~JTEGRATION FRAMEWORK 81
.. 7.3 SMPE MODEL TRANSFORMATION 85

.. 7.3.1 Abstraction 89
. .. 7.3.1 1 Classifier Abstraction 89

... 7.3.1.2 Relation Abstraction 91
.. 7.3.1.3 Semantic Rules for Abstraction 91

.. 7.3.1.4 Complex Abstraction 97
7.3.1.5 Abstraction Algorithm .. 99

.. 7.3.1.6 Specialized Abstraction 100
.. 7.3.1.7 Example 101
...................................*...............................*................. 7 . 3.2 Generalization ,, 103

.. 7.3.2.1 Sequence to Statec hart Generalization 104
.. 7.3.2.2 Object to Class Generalization 108

7.3.2.3 Generalization Rules and Automation .. 110
7.3.3 Structuralization .. 110

.. 7.3.3.1 Sequence to Object Structuralization 111
7.3.3.2 Statecharts to Class Strucntralization ... 113

... 7.3.3.3 Structuralization Rules and Automation 114
.. 7.3.4 TransIation 115

... 7.4 COMPLEX TRANSPORMAT~ON 116
.. 7.4.1 Deferred Issues 122

... 7 5 AUTOM ATWG MODEL D E R . ' E R E N T ~ A ~ O N 123

7.5.1 Comparing User-Defined and Derived Elements .. 124
... 7 5.1.1 Comparison Modes 124

... 7.5.1.2 Multiple Interpretations and Realizations 125
7.5.1.3 Ambiguous Interpretations ... I28

... 7.5.2 Consistency Rules I30
... 7.5.2. t List of Inconsistencies 130

... 7.5.2.2 Simple Consistency Checking Example 133
........... 7.5.2.3 Consistency Rules Defined and Applied 136

.. 7.5.3 Triggering Transformation 144
... 7.5.4 User Interaction 146
.. 7.5.5 Deferred Issues 148

... 7.6 MODEL SYNTHESIS AND MAPPING 148
.. 7.6.1 Modelsynthesis 148
... 7.6.2 Model Mapping 149

.. 7.6.2.1 Traceability Types 149
7.6.2.2 Mapping Support ... 150

.. 7.6.3 Deferred Issues 150
.. 7.7 MODEL REPOSITORY 150

7.7.1 Implementing View integration Elements .. 151
... 7.7.2 Evolutionary Scalability Problem 152

.. 7.7.3 Reduced Redundancy Model 153
7.7.3.1 Reduced Redundancy Model for Class Diagrams 156

.. 7.7.3.2 Reduced Model Redundancy and UML 163
7.7.4 Purging ... 165

.. 7.8 SUMMARY 166

................... 8 CASE STUDY 168

8.1 A R C H ~ ~ R E L E V E L ... 168
... 8.2 REFINEMENT TO HIGHER-LEVEL DESIGN 169

... 8.2.1 Overview 169
.. 8.2.2 Transformations 176

... 8.2.3 Consistency Checking 177
.. 8.3 REFINEMENT TO LOWER-LEVEL DESIGN 179

8.3.1 Overview ... 179
.. 8.3.2 Transformations 184

8.3.3 Consistency Checking ... 185
8.4 S C A L M ~ L ~ .. 191

.. 8.5 SUMMARY 192

.. 9 UMUANALY ZER-A TOOL 193

10 RELATED WORKe.......o.................... .. 198

11 EVALUATION. FUTURE WORK, AND SUMMARY 212

.. 1 1.1 EVALUATION 212
.. 1 1.11 Evaluating Transformation Techniques 212

1 1.1.2 Evaluating Comparison Methods .. 214
1 1.1.3 Evaluating Effectiveness, Efficiency. and Reliability 215

... 1 1.1.4 Evaluating Scalability 217
... 1 1.1.5 Evaluating Applicability outside UML Domain 217

.*.........................*.*..*....... 1 1 f . 6 Evaluating UML's ability to support analysis 218
1 1.1.6.1 Reduced Redundancy Model .. 218
11.1.6.2 Explicit and Implicit Treatment of Traces .. 219
1 1.1.6.3 Ambiguous and Partial Interpretations .. 219

... 1 1 . 1.7 Evaluating in the Context of Other Approaches 220
1 1.1.8 Breadth over Depth ... 222
1 1.1.9 Technology and Research Transfer ... 2 2 4

1 1.2 F t r m . ~ WORK .. 224
11.3 CONCLUSION .. 226

I t REFERENCESe.e..................................... 228

vii

................. . Table 1 . Stakeholder Concerns as Architecture Evaluation Criteria from [Gacek et a1 19951 21

... . Table 2 Discontinuity of Roject Information over T im 24

Table 3 . UML Views and Diagrams adapted from [Rumbaugh et a1 . I9991 ... 4 8

Table 4 . Eight Regions of the View Space .. 53

.. Table 5 . List of Inconsistencies on the AbstradConcrete Dimension 130

.. Table 6 . List of Inconsistencies on the GenericlSpecific Dimension 131

.. Table 7 . List of Inconsistencies on the StructuraYBehavioral Dimension 132

. ...*............*................. Table 8 Comparison of View Integration Approaches 199

viii

List of Figures

... Figure 1 : Mathematical Systems Theory 12

.. Figure 2: Software Engineering Theory 13

... Figure 3: Some of Diagrammatic Views support by UML 16

Figure 4: Architectural Views in UML ... 22

.. Figure 5: Information Degradation over Time 27

... Figure 6 . Different Views for Hospital System 28

Figure 7 . View Redundancy .. 29

.. Figure 8: Two Problem Solving Approaches 31

... Figure 9 . Integration to Enable Automated Synthesis and Analysis 37

... Figure 10 . Information Discontinuity. Degradation. and Restoration 38

... Figure 1 1: Complexity in Integrating Views 39

.. Figure 12: Views and ADLs represented in UML 40

Figure 13 . UML Core Elements as defined in [OMG 19991 ... 45

................. . Figure 14 . The Four-Layer Meta-Modeling Architecture of UML [Medvidovic et a1 1999bI 47

Figute 15 . Views Dimensions .. 50

Figure 16 . Views and the Vicw Space .. 52

Figure 17: Potential Mismatch between two Layers (Completeness) .. 57

Figure 18: Potential Mismatch between Class Diagram and Sequence Diagram 58

........................... Figure 19: Potential Mismatch Between a Structural View and two Behavioral Views 59

Figure 20: Potential Mismatch between State-. Sequence- and Collaboration Diagrams 60

... Figure 2 1 . Concrete Relation has no Corresponding Abstraction 61

Figure 22 . Concrete Classifier has no Corresponding Abstraction ... 62

... Figure 23 . Abstract Classifier has not been Refined 63

Figure 24 . Concrete Classifier is of Different Type than its Corresponding Abstraction 64

Figure 25 . Concrete Relation uses Abstract Classifier Instead of its Refinement 64

............. Figure 26 . Abstract Classifier is Replicated at the Concrete Level Although Refinement Exis u 65

.. . Figure 27 Concrete Classifier is Assigned to Multiple Abstract Classifiers 66

.. . Figure 28 Cardinality of Refinement does not Match its Abstraction 66

.. . Figure 29 Direction of Concrete Relation does not Match its Abstraction 67

.. Figure 30 . Concrete Classifier does not Replicate a Method of its Abstraction 68

............................ . Figure 3 1 Concrete Method is of Different Type than its Corresponding Abstraction 68

.*.................................*. Figure 32 Specific Relation has no Corresponding Generalization 70

.................................... . Figure 33 Cardinality of Generic Classifiers does not Match Specific Scenarios 71

... . Figure 34 Direction of Specific Relation does not Match its Generalization 72

.................................. . Figure 35 Specific View uses a Method that is not Defined in Generic Classifier 73

.. Figure 36 . Specific Classifier has not been Assigned to Generic Classifier 73

... . Figure 37 Generic Pre-Condition is Violated in Specific View 74

.. . Figure 38 Structural View does not Support all Behavioral Needs 75

... . Figure 39 Structural Declaration does not Match its Usage 76

.. Figure 40: Categories of Mismatches 78

.. Figure 4 1 : Model-based Development-a view independent representation 80

Figure 42 . View Integration Framework ... 81

Figure 43 . View Transformation and Mapping to Complement View Comparison 83

Figure 44 . Transforming Model Elements between Regions in the View Space 86

Figure 45 . View Dimension and View Transformation Axes .. 87

... Figure 46 . Transformations Currently Supported 88

Figure 47: Classifier (left) and Relation (right) Abstraction-Two Approaches .. 90

Figure 48 . Class Patterns ... 92

.. Figure 49: Simple InputlOutput Structure Patterns for Abstractions 94

Figure 50: Abstraction Rules for O b j e c t Diagrams ... 96

Figure 5 1 . Serial Abstraction~........~... 97

Figure 52: Abstraction Rules for State Diagrams 98

Figure 53: Abstraction Rules for Package Diagrams .. 99

Figure 54 . Abstraction Algorithm ... 99

.. Figure 55 . Cardinality Examples between Classes la0

Figure 56 . Cardinality Examples and their Abstractions ... 101

Figure 57 . Simple Example of Generated Abstractions from three Input Diagrams 102

Figure 58: Generating transitive relationship from Flight to Person .. 103

.. Figure 59 . Sequence to State Generalization-Basics 105

.. Figure 60 . Sequence to State Generalization-Extended 107

.. Figure 6 1 . Minimal Statechart Diagram 107

Figure 62 . Object Diagram .. 108

.. Figure 63 . Generalized Object Diagram Represented as Class Diagram 109

. ... Figure 64 Generalization Patterns 110

... Figure 65 . Sequence Diagram 112

... Figure 66 . Sequence Diagram Structuralized into on Object Diagram 113

... Figure 67 . Structuralizing Statechart views into Clilss Views 114

Figure 68 . Structuralization Patterns .. 115

Figure 69 . Tmsformation Methods and Paths ... 117

Figure 70 . Complex Transformation Paths .. 118

Figure 7 1 . Complex Transformation Algorithm .. 119

Figure 72 . Lack of Intermediate Views in Covering Full Transformation .. 120

Figure 73 . Examples of Equivalence Comparison .. 124

Figure 74 . Examples of Pactsf Comparison ... 124

Figure 75 . One-to-many Comparison ... 126

Figure 76 . Many-to-One Comparison ... 126

Figure 77 . Zero-to-one Comparison .. 127

Figure 78 . Variations in View Comparison ... 127

Figure 79 . Ambiguous Comparison .. 128

xi

Figure 80 . Variations (Ambiguities) in Transformation Results ... 129

Figure 8 1 . Refinement Inconsistency ... 133

Figure 82 . Abstraction Example .. 135

...................... Figure 83 . Example of Consistency Checking between Abstract and Concrete Elements 136

Figure 84 . Example of Consistency Checking between Generic and Specific Elements 141

... Figure 85 . Origin Traces and Interpretations Traces 151

Figure 86 . Evolutionary Complexity ... 153

Figure 87 . Reducing Model Redundancy using UML ... 154

Figure 88 . Reducing Model Redundancy outside UML ... 155

Figure 89: Generic Example of Classifier Abstraction ... 157

... Figure 90: UML-A Model satisfying Classifiers for Multiple Abstractions 158

................................. Figure 9 1: Ambiguity in Accessing Composite Classifiers via Relational Names 159

Figure 92: Deriving correct Projection from Relation Identifier ... 160

... Figure 93 . Generic Example of Relation Abstraction 160

... Figure 94: UML-A Model satisfying Relations for Multiple Abstractions 161

Figure 95: Ambiguity in Accessing Composite Relations via Classifier Names 162

Figure 96: Special Case of Relations using Associations ... 163

.. Figure 97: Linear Integration Work using an Integrated Repository 165

... Figure 98 . Architecture Overview of HMS 168

Figure 99 . HMS Data Types ... 169

Figure 100 . Employees Interacting with Applications using Services .. 170

... Figure 10 1 . Services, their Dialogs, and the Database (DB) 171

Figure 102 . Containers used by Dialogs .. 172

... Figure 103 . Data Types used by Services and Dialogs 172

... Figure LO4 . Mapping hom Design Classes to Architecture Components 173

........................... Figure 105 . Object Diagram Depicting the Relationships between Guests and Hotels 174

Figure 106 . Statechart for EditDZg .. 174

xii

.. Figure 107 . Statechart for CaptureContainer 174

.. Figure 108 . Statechart for ReservationService 175

.. F i g m 109 . Sequence Diagram depicting a Search for a Reservation 176

................. Figure 1 10 . Transformations to support Consistency Checking of Architecture and Design 176

Figure 1 1 1 . Abstracted Design-Level Class Diagram ... 177

.. Figure 1 12 . Structuralized and Generalized Sequence Diagram 178

Figure 1 13 . Generalized Object Diagram ... 178

.. Figure 1 14 . Structurrrlized Statechart Diagrams 179

.. Figure 1 15 . Low-Level Design of Basic H M S Data Types 180

... Figure 1 16 . ReservationServices. ReservationDlg. and its Containers 181

.. Figure 1 17 . Statechart diagram for ReservationCaptureContainer 181

Figure 1 18 . Startchart Diagram for ReservationEditDlg ... 182

Figure 1 19 . Sequence Diagram Capturing the Modification of a Reservation 183

................................. Figure 120 . Transformations to support Consistency Checking between Designs 184

Figure 12 1. Mapping from Low-Level Design Classes to High-Level Design Classes 185

... . Figure 122 Abstracted Low-Level Design Class Diagram 186

... Figure 123 . Abstracted Statechart Diagram for EditDlg 187

Figure 124 . Abstracted Sequence Diagram for modif+-reservation() .. 188

Figure 125 . Structuralization and Generalization of Sequence Diagram ... 189

Figure 126 . Generalized Sequence Diagram to Statechart Diagram ... 190

Figure 127 . Structuralized Statechart Diagrams into Class Diagrams .. 190

Figure 128 . UML-Analyzer Tool Supporting View Integration ... 193

Figure I29 . Complexity in Class Abstraction ... 194

Figure 130 . Inconsistencies between HMS Architecture and High-Level Design 195

Figure 13 1 . Inconsistencies between HMS High- and Low-Level Designs .. 1%

Figure 132 . Reuse and Duplication Elimination during Abstraction .. 197

xiii

Software systems are characterized by unprecedented complefity. One effective means of

dealing with that complexity is to consider a system from a particular persptive, or view (e-g.,

architecture or design diagram). Views enable software developers to reduce the amount of information

they have to deal with at any given time. They enable this by utilizing a divide-and-conquer strategy that

allows large-scale software development problems to be broken up into smaller, more comprehensible

pieces. Individual development issues can then be evaluated without the need of access to the whole body

of knowledge about a given software system. The major drawback of views is that development concerns

cannot truly be investigated by themselves, since concerns tend to affect one another. Successful and

precise product development supported via multiple views requires that common assumptions and

definitions ;Ire recognized and maintained in a consistent fashion. In other words, having views with

inconsistent assumptions about a system's expected environment reduces their usefulness and possibly

renders invalid solutions based on them.

Developing software systems therefore requires more than what general-purpose software

development models can provide today. Development is about modeling, solving, and interpreting, and in

doing so a major emphasis is placed on mismatch identification and reconciliation within and among

diagrammatic and textual views. Our work introduces a view integration framework and demonstrates

how its activities enable view comparison in a more scalable and reliable fashion. Our framework extends

the comparison activity with mapping and transformation to define the 'what' and the 'how' of view

intcgration. We will demonstrate the use of our framework on the Unified Modeling Language (UML),

which has become a de-facto standard for object-oriented software development, In this context we will

describe causes of model inconsistencies among UUL views, and show how integration techniques can

be applied to identify and resolve them in a more automated fashion. Our framework is tool supported.

xiv

1 Introduction

1.1 Overview

Boehm and Ross said, "your project will succeed if and only if you make winners out of all

critical stakeholders" [Boehm and Ross 19891. This notion, coined in requirements engineering, implies

that it is vital to identi@ critical stakeholders, capture their concerns and goals, and resolve conflicts

between them to ensure that the software system under development meets everyone's expectations. By

stakeholder we mean an individual or a group that shares concerns or interests in the system (e.g.,

developers, users, customers, etc.). Software views, such as diagrammatic and textual views in

architecture and design, assist the modeling of concerns. It is thus not surprising that recent standards,

such as the IEEE Recommended Practice for Architectural Description [IEEE Architecture Working

Group 1999) (P147 I), advocate using architectural views to address stakeholder concerns. Concerns can

be of different origins: (I) they can be goals that reflect wishes and expectations of stakeholders; or (2)

they can be conflicts that reflect clashes between those goals. To address concerns, the PI47 1 standard

suggests the use of views, following a widespread practice in software and systems modeling. Views deal

with concerns in the following manners:

Views separate concerns and reduce their overall complexity,

Views describe and analyze concerns to evaluate the feasibiiity of stakeholder gods, and

Views assist in the identification and resolution of conff icts among concerns.

The focus of this work is geared towards architecture, design, and implementation views since

those views describe software systems within the boundary of their expected working environment.

Architecture and design views need to be capable of describing functional and non-functional aspects of

software systems. Among non-functional aspects we include software properties such as feasibility,

security, maintainability, performance, reliability, cost, schedule, or interoperability.

Since architecture and design modeling goes hand in hand with requirements modeling, it

follows that architecture and design views should be used to generally validate concerns early on (as

compared to identifying problems in the codingksting stage resulting in potentially higher costs in fixing

1

them [Boehm 198 11). Architectural and design views are thus synthesized in response to concerns and are

analyzed to validate those concerns.

CunentIy, we are in the fortunate situation of having ample modeling support available.

Researchers and practitioners alike have built strong and powerful fnvnrlptions for modeling software

development issues, covering all activities in the software life cycle from requirements engineering (e.g.,

[Carmel et al. 19831, [Conklin and Begeman 19881, [Dardenne et al, 19931, [Finkelstein et al. 19911,

[Jackson 19951, [Mullery l979], [Potts and Takahashi 19931, [Robertson and Robertson 19991, and

[Sommerville and Sawyer 19971) to architecture and design (see Sections 2.2 and 2.5), to coding and

maintenance. Although most of those views do not cover development concerns in a comprehensive

manner, they have cevertheless shown great promises in addressing individual software difficulties (and

complexity). In particular, architectural models stand out in their innovative way of handling automated

analysis and simulation capabilities, enabIing the identification and evaluation of potential risks early on,

The major drawback of the concept of views is that development concerns cannot truly be

investigated all by themselves. Instead development concerns tend to affect one anther. If a set of issues

about a modeled system is investigated, each one through its own views, then the underlying correctness

requires that assumptions and definitions common to multiple views are recognized and maintained in a

consistent fashion (consistency issue). It seems, however, that the perceived benefits of using software

development views (models) are under-realized since the independent nature of views hinders the

integration of their results. This is a serious dilemma since the independence of views (models) is a

desirable property because it allows development concerns to be addressed separately and individually.

Views thus enable closed-world environments that separate concerns. On the other hand, this

independence manifests itself also in the model's inability to carry-over information from its first

definition (specification) to its subsequent usages. Therefore, the disruption of the development flow

caused by the gap between muItipIe views weakens their benefits. After all, regardless how pretty

software development models look or how effective they are in modeling individual concerns, they do not

add any value to the final product unless the information specified through them can somehow be

transitioned into the final product,

Despite the downside, views are still the only major mechanism in simplifying software

development by reducing its complexity [Brooks 19871 [Rumbaugh et al. 19991 [Nuseibeh 19941. What

makes software so complex and so difficult to grasp is that the amount of information loaded onto a

single person is vastly exceeding the capabilities of the human mind. We are not able to handle thousands

of pieces of information at any given time. Instead it seems that the human short-term memory is quite

limited in that respect. The 7 s rule is a well-known example. This rule states that the human short-term

memory can usually only handle 7 new items (plus or minus 2) at a time. The separation of concerns into

views is a powetful tool in allowing software developers to reduce the amount of information they have

to deal with at any given time [Tam et al. 19991. It has been recognized that "it is not the number of

details, as such, that contributes to complexity, but the number of details of which we have to be aware at

the same time'* [Siegtiied 19961.

Views handle software complexities by allowing development concerns to be addressed, solved,

and interpreted individually. Today, unfortunately, the inclusion of modeling information (e.g., from

domain, architecture, and design) into the final product frequently has to be done through manual

interpretation and conversion of that information. For instance, a programmer has to read the design

specifications and realize them through a programming language. We speak of an information gap

causing a discontinuity of the natural flow of software development. For modeling this entails several

challenges:

Need for support of a broad set of concerns,

Need for validation capabilities to ensure consistency between those views, and

Need for an integrated toolset to support modeling via multiple views.

1.2 Motivation

The motivation of this work is in enabling view integration, View integration allows working

with multiple views without having to live with their negative side effects caused by information

discontinuity (e-g., manual, repetitive labor, and inconsistencies). View integration, which enables

consistency and continuity between views, cannot easily be guaranteed since views embody information

redundancies (information overlap). Redundancy is a side effect of the closed-world environment that

views create. It implies that information and assumptions common to multiple views must be replicated

among all views that need them. For view integration this implies that model redundancy is the primary

cause for inconsistencies among mdtiple views due to information replication. Model redundancy is also

the primary cause for information discontinuity since replication among views is required but not

automated. There are three basic choices on how to handle redundancy:

(I) Create fully orthogonal views

(2) Limit the domain

(3) Bridge the information gap

The first option of creating fully orthogonal, non redundant views is likely the most effective

form of dealing with redundancy since this approach circumvents the problem altogether. The drawback

of this approach is that creating orthogonal views is both infeasible and impractical. Understanding the

reasons for this returns us to the issue of stakeholder concerns. We argued that views are needed to

address concerns (and not vice versa). It follows that views and concerns are inevitable intertwined which

implies that views can only be as orthogonal as the concerns they are modeling. Views, therefore. inherit

redundancies Trom the concerns they are addressing. Option one is not a viable alternative to view

integration.

The second option (limit the domain) avoids redundancy by having ail views implicitly share the

same domain assumptions. The strength of this approach is in having domain-specific views that are

powerful and concise. The drawback. however. is that if interoperability across domains is required. the

view integration problem is back again, potentially worsened due to the lack of "implicit" domain

knowledge or assumptions that were not explicitly modeled.

The third option handles redundancies by building communication links (view connectors)

between views. Using that option implies accepting views with all their benefits, but, also with all their

flaws. However, those flaws may be mitigated in the form of automated connectors that enable

continuous information flow between views. Option three, therefore. bridges the information gap in an

explicit manner via view connectors. We have identified two major threads to support automated

communication across multiple views:

(1) Automated synthesis to enable view transformation

(2) Automated analysis to identify view mismatches (inconsistencies)

Automated synthesis bridges the information gap between views by supporting the

transformation of information that those views have in common. For instance, a common form of

automated synthesis is code generation given some design specification. Thc advantage of automated

synthesis is that same or similar information need not be captured multiple times (manually) but can

instead be transitioned automatically between views (e.g., design information that can be transitioned

automatically into code). Automated synthesis therefore replicates information needed in other views

(redundant information) and provides information continuity across multiple views. The benefit of using

automated synthesis is a reduction (or even elimination) of manual, error-prone, and repetitive activities

in capturing recurring modeling information.

Since automated synthesis is often infeasible, automated analysis may be used to bridge the

information gap by enabling information comparison between views. A common form of automated

analysis is type and constraint checking between (formal) specifications. The advantage of automated

analysis is that inconsistencies between views are identified and even pinpointed automatically (e.g., a

type error in a formal specification). Automated analysis, therefore, compares replicated (redundant)

information across muitipIe views and provides consistency feedback. The benefit of automated analysis

is a reduction of manual, error-prone, and repetitive activities in validating the consistency and integrity

of modeling information.

1.3 Contributions

The main contribution of this work is a framework for view integration. We describe this

framework and its major activities in Section 7. Because of the abundant number of views currently in

existence we decided to follow a breadth and depth approach in dealing with the integration problem. Our

approach had to cover significant breadth in order to come up with a framework that was generic enough

so that it would scale to numerous situations and types of views. Our approach also had to provide

significant depth in order to come up with a framework that was specific enough to be useful. Since the

effort of integrating views rises exponentially (see Section 3.6) it was not possible to provide in-depth

coverage for all selected views. We, therefore, chose one view category and studied its integration

complexities and scalability issues in more detail.

To test our framework, we chose the Unified Modeling Language (UML) [Rumbaugh et al,

19991 [Booch et ill. 19991, which, to date, has had little integration support. In particular, we chose the

class, object, sequence, and statechart views of UML to ensure breadth coverage (Section 5) as well as

the class and object views for depth coverage. We chose class, object, sequence, and statechart views for

breadth coverage because we wanted to have at least one view species for each major view dimension

(see Section 5.4). The rationale for the views we chose for depth coverage was that we wanted a situation

where simple comparison would not suffice (e.g., as in the case of comparing class views of different

levels of abstraction-see also Sections 7.3.1 and 7.5.2).

Another contribution of this work is an analysis of W ' s suitability for dealing with view

integration issues via automated analysis and synthesis. In particular, we wanted to investigate how well

the UML meta-model would adapt to our integration needs and how well ow framework could be fitted

on top of UML. Although we built the framework with UML in mind, our goal was to remain as generic

as possible and to allow other views to be integrated as well. For example, our work on C2-to-UML

integration in [Egyed and Medvidovic 2000) talks about how to use our framework with other types of

views where we show the integration between a design language (UML) and an architecture description

language (C2) [Taylor et al. 19961.

We have analyzed techniques for both synthesis and analysis, and have found ways to automate

parts of them. Although both are equally important for view integration, the emphasis of this work is

more geared towards automated analysis. Section 7.3 will, however, aIso discuss that automated synthesis

is often an enabling technology for analysis (this is one of the reasons why we chose class diagrams for

an in-depth study) and as such we will revisit synthesis in Sections 7.3 and 7.5.

In order to validate our h e w o r k , we followed multiple paths (see Section 11). First, we

validated its ability to handle inconsistencies among the four types of views mentioned above. Then we

validated our framework's ability to include a development view for which it was not intended initially.

To this end, we integrated the UML class and object views with the C2 architecture description language.

Furthermore, we validated the in-depth solutions and associated tool on various real applications for

which we either had models or were able to derive them (e.g., via reverse engineering). We also evaluated

the complexity of ow view integration approach by analyzing its scalability. Besides our framework, we

also evaluated UUL and its ability to deal with view integration in general and our approach in particular.

It was our hypothesis that UML was not created with view integration in mind and this work indeed

identified major deficiencies in UML's ability to support view integration (Section 1 1.1.6).

1.4 Background Information

The absence of view integration is not a new discovery. Quite the contrary, many software

modeling approaches talk about the need of keeping model(s) consistent. Sometimes, process models

provide additional guidelines on what activities one can do to improve the conceptual integrity of models.

For instance, a case study in using the WinWin Spiral Model [Boehm et a1. 19981 suggests using

Architecture Review Boards [AT&T 19931 after the LC0 (life-cycle objectives) and LCA (life-cycle

architecture) stages [Boehm 19963 to verify and validate the integrity of analysis and design. Similar

viewpoints are given by other researchers:

Sage and Lynch [Sage and Lynch 19981 describe various aspects of integration (enterprise wide).

They frequently stress "the important role that architecture plays in system integration." They present

the need for three major views: enterprise view, systems engineering and management view, and

technology implementation view, stressing the need to ensure consistency among these views.

Rechtin [Rechtin 19911 emphasizes strongly the validity and consistency of requirements as well as

the interface definitions. He htrther suggests the need for problem detection and diagnosis.

Gacek, AM-Allah, Clark, and Boehm [Gacek et al. 19951 present the results of a survey of people

frequently involved in the software development process (developers, customers, maintainers,

7

acquisitioners, etc.). They found that, with respect to architects, the three major concerns were "1)

requirements traceability; 2) support of tradeoff analyses; and 3) completeness, consistency of

architecture."

The EEE PI47 1 Committee Architecture Working Group 19991 speaks of Architecture

Evaluation: "The purpose of evaluation is to determine the quality of an architectural description,

and through it assess the quality of the related architecture." They fwther state the need evaluation

criteria against which the architecture should be verified.

[Kuhn 19961, [Humphrey 19951, and [Paulk et al. 1995) who defined the Software and Systems

CMM (Capability Maturity Model) stress the need for integration and quality control as part of the

software life cycle. Especially the SE-SMM (Systems CMM) identifies Integration, Validation, and

Architectural Evolution as key prctcess areas.

Nuseibeh [Nuseibeh 19951 wrote that "inconsistency is an inevitable part of a complex, incremental

software deveiopment process" and that "the incremental development of software systems involves

the detection and handling of inconsistencies."

W a g and Cheng [Wang and Cheng 19981 propose a more rigorous object-oriented design process to

deal with the shortcomings of the OMT [Rumbaugh et aI. 19911 mudet. We share their view when

they say that "the lack of a welldefined semantics for the individual [OMTI models and theu

integration hinders the overall development process."

Shaw and GarIan [Shaw and Garlan 19961 describe architecture very provocatively as being "a

substantial folklore of system design, with little consistency or precision." They further state that

"software architecture found its roots in diagrams and informal prose. Unfortunately, diagrams and

descriptions are highly ambiguous."

Perry and Wolf [Perry and Wolf 19921 realized the importance of software architectures early on and

they state as one of the four major benefits of architectures that they are "the basis for dependency

and consistency analysis."

These references, and many more. talk about the need for (or lack of) view integration. Despite

that, not many solutions exist on how to do automated view integration (Section 10 will discuss some of

those that exist). In some cases, the details of how to enable integration are purposely omitted, such as in

case of the CMM, since they do not wish to favor a particular integration approach. However, in most

cases it seems that architects and designers ate left ill equipped to ensure the integrity of their work.

Some of the techniques that are sometime suggested are often aimed at making people talk to

each other. For instance, the Architecture Review Board [AT&T 19931 or the Inspection Process [NASA

19931 [Fagan 19861 are primarily tailored for getting the most capable people together so that they may

share their findings. These techniques may follow a defined process (e.g., checklists) and may yield very

effective results but the actual activities of identifying and correcting defects are stiIl done manually

without much automated (or automatable) assistance.

1.5 Outline

This work is divided up as follows:

Section 2 discusses model-based software development in general. This section discusses relevant

modeling terminologies as well as various modeling approaches.

Section 3 focuses on the view integration problem itself. The probkm of view redundancy is

explained and (visw) integration is defined. The section also discusses the goals and benefits of view

connectors to automate synthesis and analysis. This section will also illustrate one scalability

problem associated with view integration.

Section 4 summarizes the main scope and limitations of our work. As it was indicated previously, the

view integration problem is too vast to be solved at once. It is conceivable that the view integration

problem is not even solvable entirely. This section will therefore re-iterate key contributions of our

work but also emphasize areas that are out of the scope.

Section 5 revisits modeIs and views, discussing them in the context of their atomic elements as well

as their types and instances. This section is foundational since it establishes view dimensions that

will become very relevant later.

Section 6 then discusses inconsistencies in the face of views and their elements. This section shows

examples and lists all inconsistency types we identified.

Section 7 introduces the basics of our view integration approach that consists of the three major

components Transformation, Differentiation, and Mapping sitting on top of a Repository. This

section is a general overview of some of the latter sections.

Section 8 discusses transformation, the first of the three major components of our integration

approach. Transformation converts model information to simplify validation. Transformation is

subdivided into types following the view dimensions discussed in Section 5.

Section 9 discusses differentiation, the actual consistency checking activity of our approach. This

section introduces consistency rules for the inconsistency types of Section 6 and then illustrates how

those rules must be applied. This section also discusses some ergonomic (e-g., human-computer

interface) aspects of view integration.

Section 10 briefly covers two other important areas of modeiing; that of information capture and

tracing. Both activities have important ramifications towards view integration but are considered out

of the scope of this work.

Section I 1 covers the third and last important piece of our approach-the model repository.

Repository design is hndamentaI for transformation, consistency checking, and their scalability.

Section 12 discusses our tool WAnalyze r that supports the in-depth part of our integration

approach in the context of the objectklass abstraction and consistency checking. The tool is

discussed in the context of an example.

Section 13 discusses other examples in the context of larger models onto which our approach was

applied. One of these examples is discussed in detail.

Section 14 shows related works in this area and discusses them with respect to eight criteria.

Section 15 evaluates our work and its contributions in the context of eight evaluation criteria

Section 16,17, and 18 describe future work, conclusions, and bibliographical entries.

1.6 Summary

This chapter laid out the basic problem of view integration. We gave a brief overview on the

current state of software modeling and pointed out its deficiencies. We also emphasized key contributions

of this thesis and briefly described its outline. Additional background information was given to support

our claim that the proposed problem is indeed important and the problem is severe enough that is needs

attention. The motivation for our work is in addressing deficiencies of model-based software

development that are caused by the lack of automated assistance in identifying and resolving

inconsistencies.

2 Model-Based Software Development

A model of a large sofrware system pennits dealing with complexity that is too dificult to deal
with directly. A model can abstract to a level that is comprehensible to humans, without getting
lost in details. A computer can petform complicated analyses on a model in an effort to find
possible trouble spots, such as timing errors and resource overruns. A model can determine the
potential impact ofa change before it is made, by exploring dependencies in the system A model
can also show how to restructure a system to reduce such effects. [Rumbaugh et al. 19991

2.1 Software Modeling

In science and engineering, we (humans) have made use of abstraction to deal with complexities.

Soware Engineering is no exception and thus emphasizes the need for abstraction in the software

development domain. Sommerville defined that software engineering is pre-occupied with "theories,

methods, and tools which are needed to develop [...I software" [Sommerville 19961. We would extend

this statement to say that those theories, methods, and tools facilitate abstraction to separate concerns.

Model-based software development is d l about abstraction but that alone does not solve

problems. In order to solve complex problems, we need to solve problems in the abstracted model world

and we then interpret model solutions in the real world. Figure L shows this process in the field of

mathematical systems theory. There a problem solver uses some mathematical formula (function f(x)) to

translate a real world problem into a (mathematical) model world problem, The model problem (if it is

simple enough) is then solved to yield a model solution. Applying the translation backward will results in

a solution that is applicable in the reai world. Should the model problem still be too difficult to solve, the

same technique can be applied recursively again (the previous model problem becoming the real

problem). If the refined model problems are easier to solve than the real problems, we will eventually find

a model problem that is simple enough to be solved directly. Figure I shows that, in mathematical

(Real World Real Problem

9

Model Solution

Figure 1: Mathematical Systems Thcory

Real Problem Real Solution

Figure 2: Software Engineering Theory

systems theory, finding a solution for the real problem is reduced to finding a solution for the model

problem. The principles, which guide the mathematical systems theory in Figure 1, are also visible in

software development (see Figure 2).

Figure 2 shows the task of going from a real software problem (e.g., requirements) to a real

software solution (e.g., source code). Since solving real problems directly is often too difficult for large

software projects [Brooks 19951 (although often attempted), models can provide enormous

simpiifications. In Figure 2, diagrams are used to represent the model problem and the model solution

(analogous to Figure 1). Those diagrams could be class diagrams, sequence diagram, state diagnms, or

ocher types of diagrams (to name just a few). The real picture of software modeling is of course more

complex since it usualIy invoIves multiple Ievels of refinement. Nevertheless, the basic idea is still the

same. The model-based problem solving process uses intermediate models to simplify a more complex

solving task. The number of diagram required be may increased as the compIexity of the problem

increases.

2.2 Models and Views

So far we have used the terms model and views in many ways and even interchangeably. We

referred to them as being diagrams, languages, and even mathematical representations. This section

defines these words in more detail and discusses what they imply.

The EEE Draft Standard 1471 Architecture Working Group 19991 refers to a view as

something that "addresses one or more concerns of a system stakeholder." By stakeholder we mean an

individual or a group that shares concerns or interests in the system (e.g., developers, users, customers,

etc.). A model is the union (collection) of all views related to the same problem (e.g., related to the same

software project) and views are partial descriptions of that model in the context of stakeholder concems.

A view is, therefore, a piece of the model that is still small enough for us to comprehend but that also

contains all relevant information about a particular concern. As such, the diagrams depicted in Figure 2

redly show views of the problemtsolution model.

Ideally, there would only be a small set of views covering all deveIopment needs and concems.

In reality, there are many types of views. Recent developments in architectural modeling showed that

even more types of views (e.g., architecture description languages) are needed to address other

development needs and concerns that were not addressed well before. The cwrent advances in

architecture modeling are a strong indication for that. Given the many needs and concerns that can arise

during a software life cycle, it is not surprising that a myriad of specific models and views are in

existence, many of which have their respective advantages that also justify their continuing existence.

Besides modeling concerns, mother reason for the diversity of views lies in their need of having

to address different audiences. Possible audiences include architects, analysts, coders, maintainers,

testers, users, customers, and many more, If the audience is, for instance, a customer or user, then the

emphasis of a model is in having descriptions that are simple and easy to understand. Although

developers would similarly benefit from simple models, reality shows that those simple modeIs

frequently lack the precision required to describe a problem andfor solution in detail. Likewise,

development models are often not ideal for handling customer or maintainers needs, and so forth,

2.3 Common Models and Views

"Until relatively recently, the mast commonly used software design strategy involved

decomposing the design into hnctional components with system state information held in a shared data

area" [Sornmerville 19961. SommervilIe goes on further, stating that "it is only since the late 1980s that

. . . alternative, object-oriented design has been widely adopted,"

Numerous software modeling techniques and methodologies (collection of techniques) have

been developed in the past decades. Among the most notable methodologies (both functional and object-

oriented) are Booch's Object-Oriented Design Method (BOOD) [Booch 19941 [Booch 19961, Coad-

Yourdon Method [Coad and Yourdon 1991aI [Coad and Yourdon 1991bj, Controlled Requirements

Expression (CORE) [Mullery 19791, Data Flow Models (DFD) [DeMarco 19781, Entity-Relationship

Models (ERM) [Chen 19761, Jackson Design Method (JSD) [Jackson 19831, Object Modeling Technique

(OMT) [Rumbaugh et d. 19911, OOSE Method [Jacobson et al. 19921, SADT [Ross 19773 [Schoman and

Ross 19771, Shlaer-Mellor Method [Shlaer and Mellor 19891 [Shlaer and Mellor 19911, Structured

Systems Analysis and Design Method (SSADM) [Cutts 19881 [Weaver 19931, SRD [Orr 19811, and

Warnier-Orr Method [Wamier 19771. It is out of the scope to discuss those development methodologies.

There are numerous comparative studies about the features, strengths, and weaknesses of these techniques

such as [Sommerville 19961. [Cannichael 19941, [Sheard and Lake 19983 and [Song and Osterweil 19921.

The types of models supporting software development can be very distinct in their

characteristics. Many models are (at least partially) graphical in nature, yet other models are more textual,

spanning the use of plain English and some types of formal or semi-formal language. Most of those

modeling techniques have shown promise in at Ieilst some aspect of software development, It was only

natural that people stmed to combine individual models into more comprehensive development

methodologies. Those methodologies emphasize a (usually) small number of views covering the most

important and interesting aspects of development. With time, the community was even able to standardize

some of those development methodologies, providing more generality that, in turn, increased their

applicability to even larger software development domains. The Unified Modeling Language (UML)

[Rumbaugh et al. 19991 is the result of one such endeavor to unify object-oriented analysis and design

techniques and their associated diagrams into a single methodology. UML supports a series of diagrams

(views) and provides a common meta-model underneath them.

State Transhion Diagram I

, I Usecase Diagram ----
I I

1

Figure 3: Some of Diagrammatic Views support by UML

2.4 The Unified Modeling Language (UML)

The Unified Modeling Language (UML) "is the successor to the wave of object-oriented

analysis and design (OOA & D) methods chat appeared in the late '80s and early '90s. It most directly

unifies the methods of Booch, Rumbaugh (OMT), and Jacobson ..." [Fowler 19971. UML is a generic

modeling language that aims at supporting a broad range of development concerns.

In the remainder of this work, we will primarily use the Unified Modeling Language (UML) to

illustrate our view integration approach as well as to describe examples. In this section we will briefly

describe UML, which is currently the leading object-oriented analysis and design model. UML supports a

variety of design views, some of which object-oriented in nature (e.g., class diagrams [Booch 19941

[Rumbaugh et al. 19911) and ochers more functional (e.g., statecharts [Harel 19871). For the most part,

views in UML are graphical; however, there are also textual descriptions, mostly in the form of add-ons

to the graphical notation (e.g., Object Constraint Language [Wanner and Kleppe 19991). UML is the

result of a collaboration between numerous companies and 00 modeling experts and it borrows heavily

from Booch [Booch 19941, OMT [Rumbaugh et al. 19911, and other 00 models such as [Coad and

Yourdon 199 la], [Coad and Yourdon 199 1 b], and [Jacobson et al. 1992).

"UML is a language for specifying, visualizing, constructing, and documenting the artifacts of

software systems, as well as for business modeling and other non-software systems" [Booch et al, 19991.

These different but overlapping uses of the model can only be achieved by supporting a variety of views.

Some of those views (diagrams) are schematically depicted in Figure 3 showing a sequence diagram

(left), a class diagram (right), a use-case diagram (middle-bottom), and statechart diagram (middle-top).

These and other views are briefly explained below. A more detailed discussion of LJML

diagrams is outside the scope of this thesis. We assume the reader to be familiar with the basic UML

design concepts. Please refer to [Rumbaugh et al. 19991 or the "OMG Notation and Semantics Guide for

UML" [OMG 1999) for more detailed descriptions (this work uses UML version 1.3). Additionally,

Fowler 19971 provides a brief overview of UML.

Use Case: Depict the interaction between users and components or between components. In doing

so, use cases provide a high-level view of the usage of a system and Frequently shows the interaction

of multiple functions of that system. For instance, the task of editing a document involves the

functions open document, edit document, and save document.

Interaction (e.g., Sequence and Collaboration diagrams): Sometimes also referred to as Mini-Uses.

Interaction diagmns show concrete examples of how components communicate. They can often be

seen as test cases and depict sequences of interactions (e.g., calls). A call can refer to user interface

invocations (e.g., open file) or to component interactions.

Objects and Classes (e.g., Class diagrams): Classes are the most central view in UML. Class

diagrams depict the relationships between classes and objects, which are the smallest stand-alone

components in 00. Class relationships further depict their generic interactions (e.g., aggregations,

dependencies, etc.).

Packages (e.g., Package diagram): Packages are used to group classes into layers and partitions. As

such they show system decompositions.

State Transition (e.g., State and Activity diagrams): Are used in CTML to describe the states that

classes can go through. In UML, state diagrams are bounded to individual classes. Activity Diagrams

are a generalization of state diagrams in that they can also be used to depict events or other

'transitional* elements across class boundaries.

0 Deployment (e.g., Deployment diagrams): Shows the physical components of the system during

deployment. It presents a physical view of the system and is, therefore, Frequently used to depict the

component dependency of the actual implementation.

The Object Constraint Language (OCL) Warmer and Kleppe L999] supports UML and provides

some limited integration within and between UML diagrams. OCL is a formal language for expressing

constraints on model elements in UML (see Section 5 for more information on modei elements).

2.5 Architecture Oescriptlon Languages (ADL)

The development of design methodologies such as the ones listed in Section 2.3 had stagnated in

the late 80's. Until then, a strong development driver of newer design methodologies was

comprehensiveness to increase their concern coverage and applicability. With the emergence of

architecture description languages (ADLs) in the mid-nineties, a reverse trend started. ADLs, contrary to

methodologies such as SSADM and SADT, are very specialized and often only address specific concerns

(e.g., reliability, presence of deadlocks, dynamism, etc.). Although, ADLs are very restrictive in their

scope, they are nevertheless extremely powerful in analyzing and simulating their respective niches

[Medvidovic et al. 1999b1. More general-purpose languages often lack such extensive anaiytical features.

With W, a new design methodology has emerged that does not have strong analytical capabilities.

Researchers and practitioners, however, have proposed to extend LJML ro support special-purpose

modeling (via ADLs) combined with general-purpose modeling (via UML). This can be done by using

UML's extensibility mechanism and OCL to represent new types of model elements and their semantics

in UML (e.g., [Hofmeister et al. 19991, [Medvidovic and Rosenblum 19991, [Robbins et al. 19981, [Selic

et al. 19941, and [Selic and Rumbaugh 19981). For instance, in [Abi-Antoun and Medvidovic 19991 and

[Robbins et al. 19981 it is shown how the C2 architecture description language [Taylor et ai. 19961 is

represented and transformed into a UML description.

To define what software architecture is, is difficult since not many people can agree on a single

definition. Perry and Wolf [Perry and Wolf 19921 describe architectures as having elements, form, and

rationale. Elements describe the building blocks of architectures and thus denote what is built, form

describes the configuration of how ~nodel elements are interrelated and communicate, and the rationale

gives the reasoning behind the chosen architectural decisions (why).

Shaw and Garlan [Shaw and Garlan 19961 give a more elaborate definition and write that "the

architecture of a software system defines that system in terms of computational components and

interactions among those components. Components are such things as clients and servers, databases,

filters, and layers in a hierarchical system. Interactions among components at this level of design can be

simple and familiar, such as procedure call and shared variable access. But they can also be complex and

semantically rich, such as client-server protocots, database-accessing protocols, asynchronous event

multicast, and piped streams" [Shaw and Garlan 19961.

Recently, there have been attempts in standardizing architectures and their usages. The IEEE

Draft Standard I471 [IEEE Architecture Working Group 19991, one such endeavor, provides the

following definition for software architecture:

Every system has an architecture, deflned as follows:
An architecture is the highest-level conception of a system in its environment where: the
'highest-level' abstracts away porn details of design, implementation and operation of the
system to focus on the system's 'unifiing or coherent form'; 'conception' emphasizes its nature
as a human abstraction, not to be confiued with its concrete representation in a document,
product or other artifact; and ' in its environment' acknowledges that since systems inhabit their
environment, a system 's archirecture reflects that environment. [I EEE Architecture Working
Group 19991

Above definitions are all rather vague and apply to "architecture" as well as to "requirements,"

"design," or "operational concept." Shaw and Garlan's definition actually uses the term design as part of

their definition of software architecture. Also, all of the above definitions provide to little emphasis on the

analysis and interpretation of architectural descriptions. Of course, architectural descriptions are

supported by powerful analysis and simulation capabilities that help resolve stakeholder concerns;

however, dealing with architectural descriptions also requires analyzing and verifying the conceptual

integrity, consistency, and completeness of those descriptions in the context of requirements, design

(lower-level), and implementation. This is where our work fits in. We find that ADLs have accomplished

in the small what we hope more general-purpose languages will accomplish in the future. As such, A D h

do not just provide modeling languages to compose systems but also provide concepts and techniques on

how to analyze and validate them. Our work additionally shows how various modeling languages (from

UML to ADh) can be used together in a consistent manner. Afier all, no single model is adequate in

addressing all stakeholder concerns.

Examples of architectural models (ADLs) are ACME [Garlan et al. 19971, Ah& [Wile 19991,

C2 [Taylor et al. 19961, Chemical Abstract Machine [Inverardi and Wolf 19951, Rapide [Luckham and J.

Vera 19951, Darwin [Magee and Krarner 19961, SADL [Moriconi et d. 19951, and Wright [Allen and

Garlan 19971. Initially, we had not included ADLs into ow view integration framework; however, we

found that there is a great benefit in combining general-purpose modeling languages (e.g., UML) with

specific-purpose modeling languages (see also [Medvidovic and Taylor 20001 for a comparison). We

have therefore investigated ways of combining ADLs and UML in order to improve modeling. In [Egyed

and Medvidovic 19991, we show how our view integration technique can be applied for consistency

checking between UML class/object diagrams and the C2 architectwe description language. We see our

work on UML and C2 integration as initial proof of concept that our approach is also appIicabie beyond

CTML (see Section 1 1.1 S).

2.6 Stakeholders and Model Life Cycles

Modeling architectures and designs implies satisfying a number of potentidly conflicting

concerns (see Section 1). Table 1 (taken fiom [Gacek et al. 19951) summarizes major architecture-related

concerns with respect to goals and wishes of system stakeholders (note that we believe those concerns to

be equally relevant for design). Those concerns can then serve as evaluation criteria for both architecture

and design. As the table suggests, the customer is likely to be concerned with getting fit-order estimates

of the cost, reliability, and maintainability of the software based on its high-level structure. This implies

Table 1, Stakeholder Concerns as Architecture Evaluation Criteria from [Gacek et al. 19951
- -

Stakeholder Concerns / Evaluation Criteria

Customer Schedule and budget estimation
Feasibility and risk assessment
Requirements traceability
Progresstracking
Product line compatibility

User Consistency with requirements and usage scenarios
a Future requirement growth accommodation
a Performance, reliability, interopecability, other quality attributes

Architect Product line compatibility
and Requirements traceability
System Engineer Suppon of tradeoff analyses

Completeness, consistency of architecture

Developer Sufficient detail for design and development
a Framework for selecting / assembling components

Resolution of development risks
Product line compatibility

Interoperator Definition of interfaces with interoperator's system

Maintainer Guidance on software modification
Guidance on architecture evolution
Definition of interoperability with existing systems

that the architecture shoutd be strongly coupled with the requirements to evaluate if the architecture can

satisfy those requirements (see also [Boehm et al. 1998)).

Users need software architectures to clarify and negotiate their requirements for the developed

software system, especially with respect to future extensions to the product. Users will be interested in the

impact of the software structure on performance, usability, and compliance with other system attribute

requirements.

Architects and designers are concerned with translating requirements into high-level

architectures and designs. Therefore, their major concerns are about consistency between the

requirements and the architecture and design during the process of clarifjhg and negotiating the

requirements of the system [Gruenbacher et al. 20001. Developers are concerned with getting an

architectural specification that is sufficient in detail to satisfy the customer's requirements but that is not

so constraining as to preclude different approaches or technologies in the implementation. Deveiopers

then use the architecture (design) as a reference for developing and assembling system components, and

provide a compatibility check for reusing pre-existing components. Interoperators use the software

architecture as a basis for understanding (and negotiating about) the product in order to keep it

interoperable with existing systems. The maintainer will be concerned with how easy it will be to

diagnose, extend, or modify the software.

Modeling with UML can be seen in Figure 4. The figure shows UML views (as well as some

related views) that are needed from an architect's or designer's point of view. The arrows depict the

dependencies between views, The figure should not be taken too literally since we tried to capture the

major flows of dependencies only. For instance, the picture shows that the classes and objects affect the

implementation (e.g,, code in C u) but not vice versa This is, of course, not always true. There are cases

where the impIementation may trigger changes in the design and architecture (e.g., due to choice of

COTS product). As a general rule, it is good practice to anticipate these dependencies and address them

via prototyping and analysis. Further, the associations of the development artifacts (such as classes, use

- Analysis

-- Low-Level Design

Figure 4: Architectural Views in UML

cases, etc.) to the major phases of the life cycle can indicate primary associations at best. Again, we tried

to capture the major associations of those development artifacts and the views in which they are

frequently used. It is this ambiguity in how to associate and relate development artifacts that already

poses our first problem in model-based soha re development,

Traditional life cycle models such as the waterfall process model are less useful in object-

oriented software development because 00 activities overlap with one another potentially causing

chhes between process phases. We tried to indicate this in Figure 4 where some development artifacts,

such as classes and objects, are used and shiued extensively during most of the deveiopment process. This

ambiguity, in the definition of deveiopment stages and phases, is however also a goad thing since it

provides some continuity between the life cycle stages and, thus, brings the development stages closer.

The conceptual breaks, which so frequently happen between the analysis and design stages, are eased.

Figure 4 also shows that there are multiple views needed to address software development, and

that modeling languages such as the UML support some of them. The main message we try to convey

with Figure 4, and with the above discussion, is that UML views relate to one another, but are not

integrated well enough to allow their interaction. We speak of an information gap in that information in

different views may relate, that relztionship may however not be explicitly captured.

2.7 Information Gap and Information Discontinuity

Previously, we discussed that in order to control software complexity, we utilize abstraction as a

strong driving force for software development. Abstraction comes in different dimensions. For instance,

software development projects use processes to create phases and milestones to synchronize and divide

activities. Views (e.g., as enabled through textual and diagrammatic representations) have typically

complemented processes in achieving abstraction. However, the underlying concepts of how views

enable abstraction have strong similarities to those of processes. Both try to depict problems in a discrete

manner through stake holder concerns.

Currently a major challenge in software development is how to best utilize information captured

during the project life cycle. We have observed that significant portions of model descriptions do not find

their way directly into the end product. For instance, requirements capture has been recognized as being a

fundamental part of software development; however, requirements rarely find themselves automatically

included in the source code or the user's manuals, the end-products of software projects, Instead,

requirements tend to be by-products of software development and ultimately are only used for decision-

making along the way (e.g., in how to do the design).

What this implies is that information captured about a system often cannot be automatically

carried through the entire project to find itself in the final product. We speak of a degradation of project

specific information over time. This degradation does not imply loss of information. For instance,

requirements or design information stay available throughout the life cycle of a project, but frequently in

a form that is unsuitable for further processing. Thus, model information often lacks continuity in that it

cannot be transitioned automatically from its definitions to all its usages.

Consider the example in Table 2. There, the cardinality of a relationship between Patient and

Visiting Record is represented in three different forms. The first case shows a requirement describing

their relationship, the second case shows a UML class diagram depicting that same relationship in a

graphical form, and finally, the third case shows the corresponding partial pseudocode. Even in a rather

trivial example such as this one, it is not straightforward to see how the information entered in the

requirements could find its way into the design without human intervention. SimiIarIy, it is not easy to see

how the design information can be transitioned into the code in an automated fashion.

In both process and view oriented development projects, the main cause of information

discontinuity is the discrete basis of infomation capture. All information should be captured and

Table 2 Discontinuity of Project Information over Time

Requirements:

Design:

- - -

There shall be no more than one visiting record per patient and each visiting
record belongs to exactly one patient. I

Patient -- Ow.1 Visaing Recod
-- - - - A

- 1..1 -- -

- - --

Implementation: if (get~atient(aVisitingRecord1 = NULL) then
raise exception;

maintained continuously, but instead we tend to develop software projects through the use of artificial

borders placed by views and processes. The disadvantage of too strictly defined milestones for processes

have long been recognized as problematic (e.g., waterfall model); views exhibit a similar downside.

Views are best used within a defined group of stakeholders, at defined times, and for defined problems.

For instance, the class diagram view (a popular object oriented design view) is primarily used by

architects and designers during the design phase. The use case view (a UML. requirements capture view)

is mostly used by customers, users, and analysts during the initial phases of the projects. Although the

timeline of activities may be blurred, the basic premise stays the same. The result is a discontinuity in that

information entered into one view (diagram) must, at a later time, be converted into other views to be

useful. Take for instance the extreme case of requirements and code. ClearIy, today we have hardly

achieved the ability to automaticdly generate code From requirements, even when requirements are

defined in great detail. This case denotes a discontinuity between requirements and code [Medvidovic et

al. 20011.

The existence of this gap does not imply that process- or view-oriented development approaches

have failed in their quest to simplify software development We already discussed the benefits in

separating concerns. However, both approaches have failed to live up to their promises, even though, we

still need them to reduce the complexity of software projects. Views divide huge projects into more

comprehensible pieces that can be understood and at least partially solved on their own. On the downside,

the discontinuity in msitioning project-related data causes same or similar information to be captured

multiple times for different views, which in turn causes significant extra work. Furthermore, recapturing

information may also introduce additional errors, especially since the activity of replication is often a

manual one.

2.8 Information Degradation

The information gap denotes a discontinuity in how information can be carried over from

previous development activities. The severity of this gap varies. In some cases, some information may be

carried over whereas in other cases, information must be recaptured. For instance, lower-level design

views (e.g., class diagrams) can often be used to generate skeleton code; however, interconnectivities of

classes depicted in those diagrams frequently get lost (e.g., calling dependencies). In other cases, the

information gap is more severe as it was already described in the requirements-to-designlcode example

above. We have learned that certain milestones are particularly vulnerable to information Ioss [Boehm et

ai. 19981 [Boehrn and Egyed 19991). For instance, it is much harder to automatically carry over

information from the early life cycle stage to the design stage than it is to carry over information from the

design stage to the code.

Figure 5 depicts how information may degrade over time. The first example shows the ideal case

of information once captured being fully transitioned into later views without information loss. The

second and third cases depict the more realistic scenarios of partial and full information loss over some

time (information degradation). In partial degradation some information can be salvaged for later use; in

full degradation all information is lost after some time.

The last case in the figure depicts an impossibility (under a closed world assumption). It is not

possible that more complete information is automatically generated over time than was previously

captured. Note that we do not speak of the physical amount of information here but instead of the

completeness of information (percentage). Even in case of reuse (e.g., product lines) that information

must have been entered at one time and made available later on. In the latter case, we speak of continuity

of product information across projects as well as models.

Figure 5 aIso shows that information once entered but lost may have to be reentered later on,

albeit in a different form (second and third case). Also note that information is not physically lost but

instead becomes unusable. Although some information may not need to be carried over (e.g., if it was

only used for decision-making), the example in Table 2 showed that there are cases where information

should find its way through multiple stages of the project life cycle. In those cases where information

must be reentered, we encounter redundancy and work duplication that are also major causes of (view)

inconsistencies.

information reentered

information

time, -
ideal

information
/ I

time -
real

infomatian \

-
extreme

information

impossible

Figure 5: Information Degradation over Time

2.9 Summary

This chapter discussed the issue of model-based software development. First we highlighted the

differences between models and views and gave some examples. We then discussed one such example,

the Unified Modeling Language. in more detail since we will make use of it throughout this work. We

also gave a brief overview of architecture description languages since we used them to validate our work

outside the UML domain. Finally, we re-emphasized the existence and the problem of the information

gap that results in an information discontinuity. It is that discontinuity that decreases the overall usability

of models and views. Vicw integration, the emphasis of this work, discusses ways on how to address that

prob tern.

3 Model Integration

This section will discuss view integration and its problems and challenges. Since redundancies

are the primary cause of inconsistencies and hinder integration, view integration relies heavily on locating

related information (redudundancies).

3.1 What are Model Redundancies?

The major drawback of model-based software development is information discontinuity. We

already demonstrated that concerns, which are modeled through views, cannot be (and should not be)

separated. If a set of issues about a modeled system is investigated, each through its own views, then the

overlying correctness requires that common assumptions and definitions are recognized and maintained

in a consistent fashion. However, consistency between views can not be easily guaranteed since views

embody information redundancies (information overlap) to enable a closed-world environment. Having

inconsistent assumptions about a system's expected environment voids the correctness and usefulness of

views and thus rendering invalid all solutions based on those views. Thus, for views to be useful in

addressing individual concerns, the problem of information redundancy has to be addressed.

i Reauirement .
There may be zero,one, or more W i n g
records per patients and a visiting record

(not found] create

Seauenke VisitinqRecord r = null;
record : Visiting I p = find,first(narne);

>- Ew!zsi j if (p==NUU)
p = new Patient(name);

if ((r=p.get,record())=NUU)
f -- r = new VisitingRecord(p);)

uses.

Patient Processing
-- . . - - . - -

6 Merent Views for Hospital System

Consider the example in Figure 6 (an extension of Table 2). The figure shows the cardinality of a

relationship between Patient and Visiting Record of a hospital system. The cardinality is represented in

different views. One view shows a requirement specification using natural language, another view shows

the design using a UML (Unified Modeling Language [Rumbaugh et al. 19991) class and sequence

diagrams, and yet another view shows a more formal textual view using pseudocode. The example shows

the redundancy between views in that same or similar information appears in different places. For

instance, one can infer the cardinality between Patient and Visiting Record through all views although it

is represented in different manners.

The problem of view redundancy becomes more severe because of the lack of automated suppon

for information sharing between views. This denotes an information gap between views, which leads to

an information discontinuity between related modeling elements (recall Section 2.7). The effect of the

information discontinuity is that data common to multiple views is not carried over automatically. For

instance, assume that the requirement in Figure 6 changes to: 'There must be at least one visiting record

per patient." That change implicitly causes an inconsistency with some of the other views since the

cardinality in the class diagram does not yet reflect that change. The discontinuity between views is

obvious in hat a change in requirements is not automatically propagated to all its dependent views.

Dependent views could be diagrams (e.g., designs) that implement above requirements. The side effect of

the information discontinuity results in the need of having to fill the information gap in a manual fashion.

Thus. if one view is changed, then chis requires a manual detection of all affected modeling elements in

other views as well as their manual updating to again guarantee consistency.

It is, therefore. the redundancies between views that are

the primary causes of inconsistencies. Figure 7 depicts variations

on how views may relate. The first scenario shows two views that

do not share any information and do not otherwise depend on each
A#B hCc8 AcB

other. These views can be considered fully orthogonal (unrelated). 1) 2) 3!

A trivial example is of two views of separate software systems. Figure 7. View Redundancy

The second scenario shows two views that overlap in the information they use or convey. These

two views can be considered as depending on one another since they exhibit some redundant information.

An example was already given in Figure 6 where we depicted four types of views sharing information.

Each of those four views depicted information that was unique and not shared by the others (e.g., the

sequence diagram shows that patient-list calls the create method only if patient is not found - that

information is not inferable from the class diagram). However, all four views also depicted information

that was common across all of them (e.g., the cardinality).

The third scenario shows the cue of two views where the data used by one view is a subset of

the data used in the other view. In this case, view B can be considered fully dependent on View A.

Examples of such a scenario would be views describing different levels of abstraction where view B

denotes a higher-level view and view A denoted a lower-level view. For consistent refinement, view A

needs to describe the same information as view B, only in a lower-level of abstraction involving more

detailed and elaborate descriptions (ergo more information).

There is a possible fourth scenario not depicted in Figure 7 that denotes the extreme case of both

views sharing exactly the same information and no view having any additionid information to present.

Usually such a scenario denotes a case of an unnecessary view since there is little value in describing and

maintaining two separate views without getting any additional value out of them. There are, however,

exceptions. For instance, if code is generated in Java and C++ for different customers andlor platforms

than that code needs to be tirlly redundant. Later, when we revisit automated synthesis, we will also find

that transforming information from one view to another may result in such a scenario. For instance, in

[Abi-Antoun and Medvidovic 19991 we find the case of an automated refinement technique from the C2

architecture description language [Taylor et d. 19961 to UML class and object diagrams. In this case, the

refinement technique produces a UML design out of a C2 architecture where, initially, both are

equivalent and none has additional information to present. Note that the tern refinement, as Abi-Antoun

and Medvidovic use it, is misleading since their technique is only a conversion from one representation

scheme, C2, to another representation scheme, UML with the addition that implicit C2 concepts are

explicitly stated in UML. Another example where two types of views rue very similar (or equal) are UML

sequence and collaboration diagrams. Both types of views could be used to model the exact same

situation using the same information. The only distinction is that aesthetically, a sequence diagram differs

from a collaboration diagram. This difference in appearance may affect a stakeholder's perspective and

thus justifies this case of highly redundant views.

3.2 Missing Integration in Models and Views

Having established the notion of view redundancy, we are now confronted with a major

problem: How should we handle redundancy? Do we even need to care? When we described the

mathematical problem solving approach (recall Figure I) we concluded that modeling finds a solution to

h e real problem by finding a solution to the model problem. For that very reason, software development

models were created; they serve as counterparts to mathematical models, However, are our software

engineering models (like the one we showed in Figure 4) really equivalent to the mathematical model in

solving problems (see Figure 8 for a comparison)?

What if the (software) model, which is created to represent the red world, is not adequate'? A

solution we might find to that model problem would not be correct then. This implies that we are not only

confronted with the challenge of finding a (model) solution to a model problem but also we have to find a

model of the real world that is adequate for our needs. This is like solving the right problem vs. solving

Mathematical Problem Solving, W m l d

Real Problem

F
L

Model Problen

Real Solutio p i
-5
Model Solution

Software Problem Solving

Figure 8: Two Problem Solving Approaches

the problem right [Boehm 1989]! As such, the mathematical problem solving approach is realty doing

three things (corresponding to the three arrows in the left side of Figure 8):

Model the real problem adequately

Solve the model problem

Interpret the model solution in the real world

Revisiting Figure 8, which part of the software model is doing the modeling? Which part is

doing the solving? And which part is doing the interpretation of that solution? We find that models

generally do not sufficiendy address d l those issues. What this implies is that conventional software

development models, such as the UML, are not sufficient in addressing all of h e needs of software

development. After all, what is the usefdness of an implementation of a software product if it does not

satisfy the architecture or design? Similarly, of what use is the architecture if it does not satisfy its

requirements?

The conclusion we draw from this case is that architecting and designing is more than what

conventional development models provide. For us, development is to model, to solve, and to interpret.

Since, modeling languages, such as the UML, just provide assistance, this work will show how they can

be enhanced (integrated) to increase their usefulness. Our work can ensure that consistency and continuity

is improved, thus decreasing the likelihood of defect introductions.

3.3 W h a is integration?

We have used the word Integration or 'what it means to integrate' but so far we have not

described it. This section will do that. The term Integration, as such, is part of everybody's vocabulary.

The Memam-Webster Dictionary [Merriam-Webster 19961 defines the term Integration as:

The act or process or an instance of integrating: as a) incorporation as equals into society
or an organization of individuals of different groups (as races) 6) coordination of mental
processes into a n o m l effective personaliy or with the individual's environment.
[Memam- Webster 19961

Not surprisingly, this set of definitions is very broad and does not apply to software alone. In

software engineering it applies to technologies, organizations, and people; it affects management,

products, humans, politics, standards, models, enterprises, and more. Sage and Lynch's work about

System Integration and Architecting [Sage and Lynch 19981 provides a very comprehensive overview of

what integration means in the context of software and system modeling. They found that "systems

integration is an activity omnipresent in almost all of systems engineering and management." They

further found that "the term lacks precise definition and is used in different ways and for different

purposes in the engineering of systems."

Nuseibeh said that "separating concerns is an important step towards reducing the complexity of

software systems, making them easier to develop, understand and maintain" [Nuseibeh 19941. He,

therefore, concluded that "for complex systems which have been developed from multiple perspectives or

views, some form of view integration is often necessary." Jackson states it even more direct when he says

that ". .. having divided to conquer, we must now reunite to rule" [Jackson 19901.

In software engineering, the word fntegration is used frequently and often refers to the process

of assembling components (or subsystems) into systems. As such, the term integration stands for an

activity that starts later on in the Iifecycle, once some software components have been developed and

need assembly. Another case where the term Integration is used refers to the unification of standards,

processes, and models. For instance, the Integrated Capability Maturity Model (iCMM) of the FAA,

(which is a union of various CMM models (such as the SW-CMM [Paulk et al. 19951, SE-CMM [Kuhn

19961, and SA-CMM [Ferguson 1996]), is one such attempt to integrate existing standards into a more

general standard. The Unified Modeling Language (UML) is another such case, where various object-

oriented development models (Booch, OMT, and pieces of many others) were integrated into a single 00

deveIopment methodology.

In this work, the term Integration is used in yet another way where it indicates quality aspects. A

desirable quality we wouId like to see in a development model across d l its views is consistency. On

closer look, this form of integration is not that different from the other meanings described above. For

instance, when we perform component integration where we evaluate the integrity of components while

assembling them into bigger components (or even systems) that integration is quite analogous to

performing view integration where we evaluate the integrity of views while assembling them into bigger

models. The first case describes product integration, the second view integration. Both are facets of

Integdon (see [Grady 19941 for an overview of these facets).

3.4 The View Integration Problem

3.4.1 Why Integrate Views?

Previously, we gave an overview of an object-oriented development language (UML) and

indicated that it (like others) addresses stakeholder concerns to satisfy their needs, We also briefly

described a process through which we can guide and advise stakeholders on how to use those models and

views in creating a software product in a consistent manner. We also described the deficiency of model-

based development when it comes to solving problems (to model, to solve, and to interpret).

This deficiency of views would not exist if we could have a few pefect views that could be used

by dl stakeholders (as described above) and which would be precise enough, orthogonal, but still easy to

use. These views, unfortunately, do not exist. Instead, we are confronted with a large number of loosely

coupled, sometimes quite independent views that, to make things worse, exhibit redundancies. This is not

really what we want. [Nuseibeh 19961 wrote that "multiple views often lead to inconsistencies between

these views-particularly if these views represent, say, different stakeholder perspectives or alternative

design sotutions."

Thus, if we have to deal with multiple views we would like to have at least tightly coupled ones.

Since views represent only individual aspects of a system model, those views are meant to be together;

only together can they fully describe the model of a system. However, we also need views to be different

and independent enough to provide separation of concerns for stakeholders. What we need are thus views

that are ~ndependent and can stand on their own but their contents (information) being fully integrated

with the contents of the other views to ensure their conceptual integrity. We need View Integration.

We also need integration because views often use different undertying paradigms and, thus, the

results of modeling a problem in one type of view may be different than modeling the same problem in

another type of view. For instance, a non object-oriented analysis and design stage would yield functional

decomposition (which is more suitable to be implemented in a functional programming language). On the

other hand, using an object-oriented design technique would already structure the system in a more

object-centered fashion and thus, its implementation would be more straightforward to implement in an

00 language. In Figure 4, we showed object-oriented views (classes, interactions) and functional views

(data flows, state transitions). In UML, like in other models, those types of views are commonly used

together. Thus if two different people would start modeling the same system, one using 00 techniques

and the other using functional ones, they might end up with two different solutions. Even if both solutions

would correctly solve the problem, they still may not make much sense together, A reason for this is that

hnctional views are structured differentIy than object oriented ones.

Furthermore, if modeling is done separately (one view at a time) we may get inconsistencies

between them. Notations, like UML, describe some of the semantics of its views and how they are

supposed to be used. Nevertheless, those semantic descriptions are rather limited and still enable

inconsistencies. Lifecycle processes are sometimes used to mitigate t,CIat problem; however, those are

usually not detailed enough and not enforceable enough to solve the view integration problem.

What we need is a development model that defines views and their relationships not oniy

syntactically but also semantically (inter-view dependencies). Such a model would also need tool support

to enable automation. The tool support should validate both syntactic correctness and semantic integrity.

Tools today (e.g., Rational Rose) are generally good at enforcing intra-view syntax and semantics, but are

m i y able to handle inter-view dependencies. We see view integration as being about adding semantics

to our models so that the integrity of the whole is improved.

3.4.2 Why Integrate Hetwogeneour Views?

The reason we chose the integration of heterogeneous views is because we needed to cover a

broad set of development concerns. We needed multiple, distinct, and independent views that are clearly

defined and generally understandable; we thus decided to focus on architecture and design views.

Architecting and design are performed early in the development process from a purely engineering point

of view. Both also occur early in the development Iife cycle which means that problems and faults are

still relatively easy (and inexpensive) to fix if identified. Should architectural and design errors be carried

into the implementation phase or even f i r , the cost of fixing them would become some orders of

magnitude higher [Boehm 19811. Siegfried wrote that "there is no replacement for making a sound

systems architecture early in a project" [Siegfried 19961.

Architectural views should also be supported as much as possible by (UML) design views to

validate their refinements. But why stop there? Modeling should also cover requirements and other types

views outside the product-model domain. With heterogeneous integration we mean the integration of a

well-rounded, sufficiently complete set of views to address a large set of concerns [Medvidovic et al.

20011.

3.4.3 Why Automate Heterogenwus View Integration?

We also need to automate view integration mainly because of the complexities involved in

bridging the information gap mmually. When we talk about automated view integration, we also talk

about automated synthesis and automated analysis. What automation provides is a reduction of manual,

error-prone, and repetitive activities in dealing with view redundancies. Automation also implies tool

support for using models, for validating their integrity, and for addressing some other important facets of

view integration (eg., scalability).

3.5 Bridging the Information Gap: Synthesis and Analysis

We discussed previously that views do not easily share information which denotes an

information gap. That information gap cannot be eliminated but its negative side effects can be eased.

There are two general methods for eliminating or minimizing it in an automated fashion.

1. Automated Synthesis: Generating information horn previous activities so that they can be used

at later stages (e.g., generatdsyn thesize code fiom design)

2. Automated Analysis: Verification and validation of model information so that inconsistencies

can be identified (and potentially resolved) automatically.

Synthesis is thus about view transformation and analysis is about view validation (e.g.,

consistency checking). The most effective form of bridging the information gap automatically is synthesis

since it impIicitly incorporates automated analysis. The rationale is that faithful and reliable synthesis

between views requires the understanding of inter-view interrelationships. Automated synthesis, if it is

automated synthesis % of
automated
synthesis

manual
automated </' analysis

information
t

view integration> ,-

F manually
analyzed

automatically
analyzed

time +

Figure 9. Integration to Enable Automated Synthesis and Analysis

done correctly, implies hat the synthesized information is consistent with the source(s) (at least initially

because evolutionary changes may cause inconsistencies later on). However, since synthesis incorporates

analysis, synthesis is also harder to automate. Figure 9 depicts this relationship. The left side shows that

the degree of (view) integration increases as automation increases. Since automated synthesis always

implies automated analysis, it is not possible to increase synthesis without increasing analysis. In terms of

automation, we find three degrees of integration of importance: full integration enabling automated

synthesis and analysis; semi-integration enabling automated analysis only; and no integration where both

synthesis and analysis have to be done manually.

The ideal form of integration is full integration, which implies full automation. If full integration

is not possible, semi-automated integration at least supports some degree of automation in validating

whether or not reentered information remains consistent with previously entered information (consistency

checking). If continuity of data cannot be enabIed through any automated means (either synthesis or

analysis) then there remains no option but to do both activities in a manual fashion.

Although, we do not expect to be able to achieve full automation for both synthesis and analysis

for software in general, we do believe that significant portions can be automated through a rigorous

treatment of the subject (e.g., automated synthesis is achievable in very restricted domains). This work

can be applied onto project-specific information as well as domain-specific information (e.g., product

lines). In both cases, we need to enable information continuity [Egyed et id. 20001. Although details of

% (consistent) information % (consistent) information
complete

amount of information
degradation A f

Y
speed of infonnation

a - restoration (angle)
% time

r

real
Figure 10. Information Discontinuity, Degradation, and Restoration

information continuity may vary betweedwithin projects, the underlying concepts are alike. The gods are

to decrease inforrnation degradation and increase the speed of information restoration. The left side of

Figure 10 shows the ideal case of no inforrnation loss over time; the right side shows disruptions that are

caused by information discontinuities and thus result in some information loss. As it can be seen in Figure

10 (right), minimizing information degradation causes a reduction of the extent of the infonnation loss

(the vertical gap is minimized). Furthennore, maximizing information restoration enables a speedily

recuperation of information Ioss in case of information degradation. The latter case is important since it

improves the ability to recover faster from an information loss.

Automated synthesis minimizes information degradation by enabling some information to be

carried over automaticdly. Similarly, automated analysis minimizes the amount of rework required in

regaining the previous level of information capture after an information degradation and therefore

increases information restoration (e.g., by locating inconsistencies). In Figure 10, the positive effects of

view synthesis can be seen as a reduced vertical drop after an information discontinuity. Similarly, the

figure depicts the positive effects of view analysis through the angle a which indicates an increase in the

sped of information restoration the steeper the angle is. Automated synthesis and analysis complement

each other in the quest for information loss prevention.

3.6 Potential Integration Complexity

Having established what it means to integrate views and what the goals of view integration are

(synthesis and analysis) we have to also discuss the complexities involved in this task (see Figure 11). In

order to exchange and validate information between all views, each view needs to be integrated with aU

other views (assuming they all share information). In our example we have six views which, in the

absence of a common reference model, would require them to be integrated in 15 different ways. Each

additional view would force (n-1) additional ways of integration if "n" is the number of all views to be

integrated. In total, n (n-1) / 2 ways of integration are required for "n" views to be fully integrated.

Clearly. we are confronted with a non-linear explosion of integration work (0(n2) for a big n). We will

show techniques on how to address this problem later.

Figure 11: Complexity in Integrating Views

3.7 What is not Integration?

A usually simplistic notion of view integration is just providing a common meta model. UML is

a good example since its standard provides an extensive meta-model defined by OMG (Object

Management Group [OMG 19991). A severe shortfall of UML (and its simplistic notion) is that a

common meta-model only provides view representation and that it comes up short in fully integrating

views with each other: Although UML and its meta-model define notational and semantic aspects of

individual views in detail, inter-view relationships are not captured in sufficient detail. Without these

additional relationships, the (UML) model is nothing more than a collection of loosely coupled (or

completely unrelated) views. Figure 12 illustrates this by showing UML views as separate entities within

a common environment (the UML meta-model). Although, some views iue weakly integrated (e.g., class

and sequence diagrams), in general, UML views are independent.

Figure 12 also shows that the lack of view integration can extend beyond existing UML views to

non-UML views represented in UML (e.g., ADLs). LlML supports its own extension via mechanisms like

stereotypes, tagged-values, etc. Using these mechanisms enables us to represent new concepts in UML.

For instance, we could choose to incorporate Entity-Relationship modeis [Chen 1976) expressed via

stereotyped and constrained class diagrams. We also discussed that some archikcturd description

Ianguages (e.g., C2) have already been integrated into the UML framework. The major drawback of using

UML's extensibility mechanism to capture additional views is that those views are presented in UML but

not fully integrated. The problem is similar to the above where view representation only describes how

information can be captured in UML. Thus, view representation does not concern itself with whether

information captured through new views is consistent with other parts of the existing model. View

representation would allow the creation of multiple views, each of which would correctly conform to

their specifications; however, their combination would not build a coherent unit. We therefore speak of

C2 for Structure
Wright for local Behavior
Rapide for global Behavior

integration U#L mods/ consists of a

(constrain) co\/ection of /oow/y integmted dIa_~mmmatic views

Figure 12: Views and ADLs represented in UML,

view integration as an extension to view representation to ensure the conceptual integrity (consistency

and completeness) of the entire model across the boundaries of individual views.

This section discussed the meaning of view integration. We emphasized that view integration

extends most of current development models by specifying the semantics of views and their

interdependencies. Based on those semantics, the relationships between multiple views can be qualified

meaningfully and automated techniques can be used to validate their integrity. Besides settling some

tenninotogy issues, this section also talked about the goals of our work and the complexities involved.

This section also briefly mentioned a common misconception of what is not integration (e.g., common

meta model).

4 Scope and Limitations

The primw objective of this work is finding a framework that supports view integration in the

context of transformation and consistency checking between heterogeneous types of views. The emphasis

of this work is towards describing and localizing inconsistencies between multiple views. Consistency

checking, which is part of analysis, addresses this facet of view integration. In the course of investigating

the view integration problem, we found that effective consistency checking mandates transformation

(synthesis) as well. This wark will therefore dso discuss view synthesis and how it assists analysis. To

that end, this work will present a framework for transformation and consistency checking that together

solve the larger problem of view integration, We have also investigated view synthesis and analysis

issues outside the area of this work and therefore were able to gather extensive insights into the

requirements of view connectors (e.g., [Medvidovic et d. 2001) and [Gruenbacher et al. 20001).

Since view integration has a non-linear complexity (recall Section 3.6), this work focuses on a

subset of the problem. It is out of the scope to address the entire palette of design (e,g., UML) views.

Thus our work does not have the aim to be as complete and consistent as possible but instead to be as

complete and consistent as is feasible. [Nuseibeh 19961 shares this view when he talks about viewpoint

integration. This implies that we cannot guarantee that our integration approach will be able to cope with

all situations. Furthermore, our techniques may not work under all circumstances; neither will they

uncover all inconsistencies that could occur. Inconsistencies detected via our techniques must also be

regarded as pofenrial inconsistencies but not as factual ones. The reason is that often not all development

aspects are captured explicitly by the users. Our technique, as other integration approaches, therefore

have to rely on assumptions and heuristics.

To be able to cope with a wide range of views and their implications, we decided to follow a

breadth and depth approach. UML supports nine types of views and we have decided to focus on class,

object, sequence, and statechart diagrams initially. Section 5 will explain that those four types of views

cover the most significant dimensions of the view integration problem, giving our framework sufficient

breadth without having to consider all of UML. Adding other types of views does not invalidate our

framework. For instance, adding collaboration diagrams or activity diagrams to our framework is well

within the boundary of our framework since both can be categorized into our view dimensions. We also

decided to have a depth approach to view integration to investigate the problem in all necessary details.

We therefore, decided to only take a subset of the above views (object and class diagrams) and elaborate

on them to ensure that ow framework also covers depth (something the breadth approach might not have

revealed). For instance, we provide tool support of our approach but Limit tool support to object and class

diagrams only.

The emphasis of our work is generally on the technology side of the view integration problem

(as opposite to the human-computer interaction side). As such, we will discuss view transformation, view

comparison, and repository issues in detail. However, we will not discuss ergonomics-specific user

interaction issues unless they are important for the technology side (e.g., we will not discuss how to

present inconsistencies to users or what to do in order to resolve them). Our emphasis on technology is

necessary since one the biggest unsolved challenges of view integration is scalability. We already

indicated one scalability aspect in Section 3.6, but there are other even more severe challenges that need

to be addressed to enable automated consistency checking. In terms of scalability our approach has

several new and unique solutions.

Another focus of our work is on product models. In Section 2 we fisted and briefly discussed

design and architecture models that are within the umbrella of product models. Product models describe

the to-be-built software system, but not its environment. Our work does not investigate the relevance of

our approach towards other types of models such as process models or property models (see Section 2.6).

Another reason why we emphasize UML in this work is because UML has become a de facto standard for

object oriented software development. Nevertheless, LJML's definition is often ambiguous and many

interreIationships between views are undefined. Since it is not within the scope of this work to formalize

LML we will use others' interpretations and formalizations whenever necessary and applicable (e.g.,

[Cheng et al. 19951 or [~vergaard 19981). We consider it within the scope of this work to investigate

UML.'s ability to deal with view integration issues and to evaluate its deficiencies in that context.

A final restriction of this work is the issue of resolving inconsistencies. We will primarily

investigate the problem of how to identify and locate inconsistencies and we will not investigate how to

automatically resolve them. The reason for that is that inconsistency resolution requires extensive hwnan-

computer interactions and those are well outside the scope of this work (see above).

The following will summarize the scope of this thesis:

1. Describe a view integration banework as a foundation to support the definition and identification of

(potential) inconsistencies.

2. Find techniques to support view integration activities defined in the above framework. For this, we

will partially rely on existing technology and will introduce some of our own.

3. Combine view integration techniques to make them work together. This step is primarily necessary

because we use some techniques from other researchers and those techniques need some adaptation

us to be useful for ow purposes (e.g., [Koskimies et al. 19981).

4. Show how view integration techniques can be applied to simplify consistency checking based on

consistency rules (constraints) and how scalability issues can be addressed.

5. Summarize and list potential inconsistencies that can occur between heterogeneous types of views.

6. Build tool support for all integration activities in the context of ow in-depth approach covering class

and object diagrams.

7. Compare and assess our work towards other view integration approaches.

5 Model Elements and Views

So far we talked about the view integration problem at a very high level. In order to explore its

details more rigorously, we need to fvst settle some terminology issues regarding the meaning of model

elements, views, and models. This section will also categorize views that will serve as a foundation for

our view integration framework later on.

5.1 What are Model Elements, Views, and Models?

Model Elements are the core elements that comprise views and models. For instance, a class

diagram primarily comprises classes and relationships. Upon closer inspection, we aiso find operations,

methods, attributes, parameters, constraints, and other model elements. The Unified Modeling Language

(UML) defines a very rich set of modeling elements, a subset of which is depicted in Figure 13. One of

the interesting features of UML is that its meca model was described using a subset of itself. Figure 13

shows the subset that depicts both the UML mcta model and U M L ' s meta-meta model. The most basic

element of UML is an Element. A Model Element is derived from an element and all other UML elements

itre children of model element.

[OMG 19991

Elements are the foundation of a model and can be atomic or composite. UML defines a series of

atomic elements and then builds on them to describe more complex types of elements. Composite model

elements comprise of atomic ones and are more abstract. The elements depicted in Figure 13 are both

atomic and composite. To instantiate a particular application (e.g., software system), one has to instantiate

the meta model. In our work, we use instantiations of the meta model to demonstrate inconsistency

examples of UML. For instance, Section 6 shows specific examples of inconsistencies.

V i e w are collections of model elements. As it was discussed in Section 2, views address

stakeholder concerns and thus incorporate model elements that are needed to describe the problems and

solutions of those concerns. Nuseibeh describes views "to be loosely coupled, locally managed,

distributable objects, Each [view] encapsulates partial knowledge about a system and its domain-

expressed in a suitable representation scheme-together with partial knowledge about the overall process

of development" [Nuseibeh 19941.

The term Model is ambiguous. Software practitioners use it to describe any form of abstraction

through which the real world could be approximated and analyzed. Sometimes, the term model is used

even more generally to describe development concepts and philosophies. The term Methodology is

sometimes used analogously. In this work, we normally refer to a model as the collection of modeling

infonnation related to a particular software project. We define a view as providing a specific context for

using models and model elements to describe and analyze stakeholder concerns. Since views are

independent from one another, we see the mode[, which captures d l view-related infonnation, as

providing a framework for view integration.

View integration has to happen on a meta-model level so that its instances (our product model)

"inherit" the view integration features we wish to ensure. For the most part, we will not work with

UML's meta-meta model, although there are exceptions (e.g., Sections 7.7 and 11.1.6) because one of our

findings is that UML's meta model inadequately handles some of the view integration details needed to

support scalability. Our findings thus also result in some recommendations on how to improve UML on

both the meta level as well as the meta-meta level.

5.2 Model Elements, Model Instances, and User Objects

"An instance [of a model] is a run-time entity with identity, this is, something that can be

distinguished from other run-time entities. It has a value at any moment in time. Over time the value can

change in response to operations on it" [Rumbaugh et d. 19991. This definition applies to instances of

elements. We also refer to those instances as user objects. For example, if a class defines a "Person" with

properties like name and age then instances of that class could be "personl" of type Person with values

"Alice" and '23" or "person2" of type Person with values "Peter" and " 15." In this example, Alice and

Peter are user objects whose values can change over time (e.g., age could be updated).

1 1 Meta-Meta Model
1

1 Meta Model

Class
I State I Model
i Package

'I I

Figure 14. The Four-Layer Meta-Modeling Architecture of UML wedvidovic et al. 1999b3

Objects
!

I I Sequence Calls

The distinction between meta models, models, and user objects is, however, more subtle. Figure

14 depicts the four-Iayer meta-modeling architecture of UML as defined in medvidovic et at. 1999bl.

The meta-meta model layer defines a language for specifying UML (the meta-meta model is depicted in

Figure 13). The meta model layer, in turn, defines legal specifications for a given modeling language. FOP

exampie, the UML meta model defines the legal notation and semantics of UML specifications. The

model layer is then used to represent specific software systems (e.g., like the Person cfass above). The

User Objects

model, an instance of the meta rnodei, describes a software product. Finally, the user objects layer

l nstances

corresponds to specific instances of a given model (e.g., like the Alice and Peter objects above). User

objects are the instances of model elements and capture run-time aspects of the product model.

5.3 UML Model, Model Elements, and Views

[Rumbaugh et al. 19993 defines UML as having structure and dynamics (see also Table 3).

Structural views describe software system entities (components) and their relationships

(interconnections). In UML, static views, use case views, implementation views, and deployment views

support structure. Be haviord views describe interactions between software system entities (component)

andlor relationships (interconnections). In UML, state machine views, activity views, and interaction

views are behavioral. The main model elements of UML are listed on the far right column of Table 3.

Views are constructed out of those elements. For instance, class diagrams can be constructed out of

Table 3. UML Views and Diagrams adapted from [Rumbaugh et al. 19991

Major Area

Structwal

Dynamic

Extensibmy

View

Static view

Use case view

Implementation
view

Deployment view

State machine view

Activity view

-- . . -

Interaction view

Diagrams

Class diagram

Object diagram

Package diagram

Use case diagram

Component diagram

Deployment diagram

S tartchart diagram

Activity diagram

Model Elements

Package, subsystem, class,
association, generalization,
dependency, realization, interface

Use case, actor, association, extend,
include, use case generalization

Component, interface, dependency,
realization

Node, component, dependency,
location

State, event, transition, action

State, activity, completion transition,
fork, join

Sequence diagram Interaction, object, message,
activation

Collaboration diagram

all

ColIaboration, interaction,
collaboration role, message

Constraint, ste~~otypc, tagged values

classes, associations, generalization, dependencies, and so forth. This list of model elements is not

complete; instead, Rurnbaugh, Booch, and Jacobson only listed the more significant ones. In this work we

will make use of a subset of UML covering those model elements that are shaded in gray. We, therefore,

cover both structural and dynamical aspects UML has to offer. In the next section, we will also show that

our selection also covers the most relevant other view dimensions.

For a detailed description of the UML notation and semantics please refer to [Rumbaugh et al.

19991. In [Medvidovic and Rosenblum 19991 and [Robbins et al. 1998) it can be further seen how the

UML extensibility mechanism can be applied to model other model representations (e.g., ADLs). In

Section 7.7 we will further show how this mechanism can be used to model view integration elements not

currently present in UML.

5.4 View Dimensions

We extended the view classification of Rumbaugh-Booch-Jacobson [Rumbaugh et al. 19991

shown in Table 3 to cover broader aspects of view integration (see Figure 15). Since views can be very

distinct in what they are meant to convey, we have tried to capture their most significant commonalities.

We found that views can be classified via three dimensions: their level of generality, their level of

abstraction, and their level of behaviorism. The following sections describe what those levels convey.

5.4.1 Level of Generality

The level of generality of views indicates how universally true information communicated in

these views is. For instance, a UML class view depicts a generic representation of modeling information

since it describes invariant facts about software components that must always hold (e.g., humans are

mammals). A counterexample would be an object view that describes less genetic information (e.g., Alice

is a human and Alice is also a mammal). Based on more specific information, it not very intuitive to infer

general information. For instance, we cannot generalize that humans are mammals based on the

observation that Alice (an instance of human) is a mammal. An object diagram therefore does not

communicate the same level of generality as a class diagram. In the three-dimensional projection of

Figure 15 a cIass view would be depicted apart from an object view along the generality dimension.

level of generality

behavioriarn
-/' 'by//- /

Figure IS. Views Dimensions

5.42 Level of Abstraction

The level of abstraction of views indicates how decomposed modeling information depicted in

views is (level of granularity). For instance, a UML package view depicts an abstract representation of

modeling information since it engulfs complex and detailed element (e.g., the package animal engulfs a

wide range of species such as monkeys, horses, and cats). A counterexample would be a class view that

describes less generic information (e.g., monkey, horse, cat). In the context of less abstract information, it

becomes more difficult to comprehend the "bigger picture." For instance, it is much harder to memorize

that horses, cats, and monkeys need air him it is to memorize that animals need air. Although, the class

view communicates the same information as the abstract package view, the level and amount of detail

there obscures abstract information. In the three-dimensional projection of Figure 15, a class view would

be depicted apart from a package view along the abstraction dimension.

The abstraction dimension frequently reflects a system's decomposition. Usually, higher levels

(layers) show the system in a more abstract fashion, whereas lower levels show the system in more detail.

Each layer should represent the complete system. Abstraction also enables model partitioning into

subsystem.

Note that abstraction and generality seem closely related. There is, however, a strong distinction:

whereas a less general view only needs to depict a part of the generic picture, a less abstract view still

needs to depict the entire abstract picture. The less abstract view is also allowed to provide additional

details, however, the less generic view usually only "instantiates" specific examples. Also, generic views

tend to use model elements; less generic views tend to use user objects. Abstract views and less abstract

views, an the other hand, usually stay within one such domain (both are either model elements or user

objects).

5.4.3 Level of Behaviorism

The level of behaviorism of views indicates how much interactive information is communicated

via these views. For instance, a UML statechart view depicts the behavior and interactions of modeling

elements at any given time (e.g., elevator door must be closed before the cabin can go up or down). A

counterexample would be a class view that describes interactions in general (e.g., cabin depends on door).

Based on Iess behavioral information, it is hard, if not impossible, to infer interaction. For instance, based

on the information that "Cabin depends on Door," we have no way of knowing how that dependency is

actually realized. The class diagram, therefore, does not communicate the same level of behaviorism as

the statechart diagram. In the three-dimensional projection of Figure 15, a class view would be depicted

apart from a state view along the behaviorism dimension.

5.5 View Space and its Relation to Views

The three dimensions of abstraction, generality, and behaviorism form a three-dimensional

space-a view space-into which (UML) views can be placed. In the context of this space, views can trade-

off abstraction, generality, and behaviorism relative to one another. For instance, there could be one type

of view that is less generic but more behavioral than another view. Figure 16 depicts the three-

dimensional view space with class, sequence, object, statechart, and C2SADEL views placed in it. For

instance, in the generic dimension, the class view is more generic than the sequence view, whereas, in the

behaviorism dimension, the class view is less behavioral. Class views are also more abstract than

sequence views. Figure 16 also depicts the partitioning of dimensions into ranges. Abstraction can be

divided into abstract and concrete, generality can be divided into generic and specific, and behaviorism

can be divided into structural and behavioral.

The positioning of views into the view space is not absolute. For instance, class views can depict

software systems through various levels of abstraction. The white arrow on the abstraction plane in

Figure 16 depicts that range of freedom. Similarly, a class view can depict s o b a r e systems though

various levels of generality (e.g., hiding some interdependencies in views). The white arrow on the

Figure 16. Views and the View Space

generality plane indicates that fieedom. The levels of freedom in how views are assigned to dimensions

are, however, limited. For instance, a class view depicts a very general form of structure. The amount of

freedom of modeling behavioral system information via class diagrams is therefore very limited. Figure

16 indicates the freedom of class views in the form of a rectangle. The rectangle is actually a prism since

a class views does have some behavioral freedom to describe various levels of behaviorism (e.g.,

different relationship types such as dependencies or associations denote different behaviors).

The view space in Figure 16 also depicts the existence of the information gap visually (recall

Sections 2.7 and 3.5). This gap denotes the view integration dilemma where it is not obvious how one

may bridge the space between views. Also being able to group views into the view space allows us to

reason (or at least speculate) about some interesting issues concerning views:

1) What is the optimd number of views? (e.g., views covering d l view dimensions)

2) What views should be used together? (e.g., coverage of the view space)

3) What is the perfect view? (e.g., a view that spans all view dimensions)

The separation of views into view dimensions alIows us to split them into upper and lower

ranges (e.g., abstract or concrete). We find eight regions in the view space. Table 4 lists those eight

regions and also indicates which view@) we currently support in covering those regions. We mentioned

Table 4. Eight Regions of the View Space

Abstraction

Abstract

Abstract

Abstract

Concrete

Concrete

Concrete

Generality

Generic

Generic

Specific

Abstract

Concrete

Generic

Specific

Specific

Dynamism

Behavioral

Structural

Behavioral

Candidate Views

Statechart views
,

Class views, C ~ A D E L views

Specific

Generic

Structural

Behavioral

Structural

Class views

Sequence views

Object views

Structural

Behavioral

Object views

Statechart views

in Section 4 that we scoped the limits of our view integration framework to four types: class, sequence,

statechart, and object views. Table 4 shows how those four types cover seven out of eight view regions.

The eighth view region (abstract, specific, and behavioral) is not covered by any current UML view and

is therefore left empty.

Note that Table 4 is not meant to categorize views. Instead it is meant to categorize software-

specific information within views. For instance, class diagrams are both useful as abstract and concrete

views. Nevertheless, the information modeled in abstract ctass diagrams is different from the ones

modeled in a concrete class diagram due to decomposition. Note that both Figure 16 and Table 4 depict

the C2SADEL Medvidovic et al. 1999aI me view which is not part of UML. We integrated ow work

with CZSADEL, an architecture description language (ADL), to demonstrate our framework's ability to

handle other types of views outside the UML domain. A pre-requisite for doing this is the ability to

integrate a new view into the view space. [Egyed and Medvidovic 20001 discusses that integration in

more detail since it is outside the scope of this work.

5.6 Interdependencies of Model Elements

Views (class views, sequence views, etc.) are comprised of model elements. In a graphical

representation, there are typically box and arrow types of model elements. For instance, a class view

consists of class "boxes" and association, dependency, or generalization "arrows." Both, boxes and

arrows, are considered model elements; however, these model elements capture only interdependencies

within views (and not between them). There are, additionally, a variety of relationships among model

elements that cannot be captured within single views. For instance, an object that is an "instance" of a

class or a class that is b4part-~f" a package describe inter-view relationships. Some of those relationships

between views are captured in UML implicitIy and others explicitly. For instance. no expIicit relationship

type exists to associate a class to a package. A class is simply linked to a package (grouping effect),

denoting an implicit relationship. The abstraction dependency relationship between classes is explicit in

that the dependency relationship is declared as its own type within UML. Mdti-view development covers

typically two types of interdependencies between model elements:

1) Dependencies within model elements belonging to the same view (intra-view)

2) Dependencies between model eIements belonging to different views (inter-view)

The former are part of regular views, such as class views, and the latter are usually not depicted

in views (although several of them are defined in UML). Inter-view dependencies (as dependencies

between views are often called) are also known as traces. The knowledge of how traces interrelate is

known as traceability. 'Traceability can be easily defined as forward and backward links between a

system and its allocated requirements, and between those requirements and achld design elements"

[Gieszl 19921. In Sections 7.3 and 7.6.2, we will show why knowledge about traces is important for view

integration.

5.7 Summary

This section refined our concepts of model elements, views, types, and instances. The

contribution of this section towards view integration (and consistency checking) is the existence of a view

space into which views (and model elements) can be categorized. Our view space is three-dimensional

and denotes the level of generality, abstraction, and behaviorism a view can exhibit (we will show later

how scalability and automation profit from that discovery). This section further discussed that there are

two types of modeling information-information that describes a product and information that relates

product aspects iunong various views. The latter is commonly referred to traces. It is those traces that

describe the relative positioning of views in the view space (e.g., abstract traces describe that one view is

more abstract than the other).

6 Model Inconsistencies

"Consistency checking between [views] is a vehicle for integrating these [views]. It is the

activity in which two or more [views] compare knowledge and ascertain whether or not the relationships

that supposedly hold between them do indeed hold" [Nuseibeh et d. 1994). This implies that one

important goal of view integration is to provide automatic assistance in identifying view inconsistencies.

Although ensuring the conceptual integrity of models and views may not be fully automatable, there are

various types of inconsistencies that can be identified and even resolved in an automated or semi-

automated fashion. This section will show examples of inconsistencies in UML.

6.1 Examples of Inconsistencies

Having defined views in terms of their dimensions, we will now complement that by showing

more concrete examples of (potential) modeling inconsistencies that can occur between and within those

view dimensions.

6.1 .l Inconsistency between Class layers

The first example shows a simplified air traffic control system (see Figure 17). The system is

presented in two layers and, as it was discussed in Section 5.4.2, each layer must present the system in a

complete fashion. The first layer shows the interaction of the Flight component that has some

dependencies to Mechanic, Pilot and Flight Controller. The second layer refines this relationship by

decomposing the Flight component into Flight Plan, Aircraft, and Flight Authoriuztion-the Flight Plan

being dependent on the Pilot, the Aircrafi with its instance Boeing 747 being dependent on the Mechanic,

and Flight Controller being dependent on Pilot.

Although Flight Controller and Flight are present in the tower level diagram, it remains unclear

whether their relationships are equivalent to those in the higher-level diagram. It would be dangerous (or,

in this case, incorrect) to conclude that there is a dependency simply because there are lines going fiom

Flight, via Pilot, to Flight Controller. Upon closer inspection, we find that both Flight Plan and Flighr

Controller depend on P i h . Since Flight Plan is part of Flight, it follows that even Flight Plan depends

on Pilot. However, the fact that both Flight and Flight Controller share the same dependency to Pilot

.---• .-*. **.-..- ----%...
....-*. . Model Elements of Layer 1

:' flight Cmtroller

Figure 17: Potential Mismatch between two Layers (Completeness)

does not indicate that Flight depends on Flight Controller as the higher-level diagrams requires. Given

the lack of additional information, was can conclude that there is an inconsistency between the

abstraction (top diagram) and the refinement (bottom diagram).

6.1 2 Inconsistency between Clam and Sequence Diagram

Figure 18 depicts another example of an inconsistency in a simple aerodynamic system. The

figure shows a class and a sequence diagram. The class diagram shows that the Car consists of the parts

Tires and Engine. The sequence diagram further indicates a scenario where the impact of speed is

analyzed based on the shape of the car. The sequence diagram shows this for a particular instance of My

Car. Based on the sequence diagram, we can observe that the aerodynamics class accessed operations of

Tires and Curs. Car, in turn, accesses Engine. If we compare this data with the class view, we find an

inconsistency. Sincc Eres is p a t of Car, only the Car object (My Car) should be able to call methods of

Tires (mylkes) . The sequence diagram violates that d e . Possible ways of resolving that inconsistency

are (I) to change the relationship between Car and Tires ; or (2) to change the direction of calls in the

A . - - i' -- -

Possible Mismatch: ; tires - . : : engine
Tires are part of the Carand !. A - . - - - - .

should not be able to call any '*=,..

method of Car (above). This is,
however, the Case below.

- - -

Measurement 1 : V8 : enaing
g~robrnamics - -- L - - - - . . -- - --

1 -. -...... .-. -.-.--. .._. .*._..' ,.-= get FPM
tireshapechanges - - . >- -
with the speed -

-7 I

Figure 18: Potentid Mismatch between Class Diagram and Sequence Diagram

sequence diagram (e.g., the latter could be done by having Aerodynamics pass along the speed of the car

as a parameter).

6.1.3 Cardinality Inconsistency

Figure I9 shows an example of an inconsistency in a hospital system. The class diagram (top)

shows the relationships between a Patient and histher Visiting Record during a stay in a hospital. Even

though a patient may have stayed in the same hospital more than once before. hdshe should nevertheless

have only one current visiting record at any given time. This static rule is violated in both the object

diagram (lower left) and the sequence diagram (lower right). The object diagram shows an instance of

Patient John Smith and it also shows that he has two current visiting records. Similarly, the sequence

diagram shows that a new visiting record is created for John Smith even though one already exists. Note

Possible Mismatch: Connectivrty in
behavioral view (betow) exceeds

Figure 19: Potential Mismatch Between a Structural View and two Behavioral Views

that there is no inconsistency between the object and sequence diagram. In above example,

inconsistencies can only exist between the class and object diagrams, and class and sequence diagrams

since both depict scenarios and it is generally impossible to reason about the validity of scenarios in

context of other scenarios.

6.1.4 lnconrfstency batween State and Sequence Diagrams

The next sample mismatch discussed here is depicted in Figure 20. it shows another perspective

of the hospital system where we can see the system from a clerk's point of view. The clerk is using the

screen to create visiting records for patients. The state diagram of the Screen class (top) shows that

information about a patient is entered and validated and, afta the patient database is checked, a visiting

record is created. The inconsistency is in the treatment of Patient. The sequence diagram creates a new

object of type Patient but the state diagram does not support that action. The sequence diagram (bottom

right) shows that data is validated, patient information is retrieved and, since that given patient is not

found, both patient and visiting record are created.

Fipre 20: Potential Mismatch betwan State-, Sequence- and Collaboration Diagrams

State Diagram for Class Screen >
, user input / visitingrscord 8

) I created i

ID invalid
Enter pressed

i validate input
I I

Figure 20 adds a few extra challenges to our view integration problem since this example does

not always use the same names for same/similar things. For instance, get parient dam and

checkgotientDB may seem identical to us (hums) ; however, For the computer this may not be the

case. Thus, we are confmnted with having to identify a c e relationships (e.g.. through n data dictionary).

The other challenge we see in Figure 20 is even more interesting since it still remains hard to see what

pans of the diagram correspond to one another. For instance. to which model element in the sequence

diagram does the state Visiting Record Creased relate? If we relate it to the creaie arrow that calls Visiting

Record fmm Screen. we would be incorrect. The create arrow just calls the method. No Visiting Record

and no Patient are created at that point So the state Visiting Record Created clearly does not correspond

to that arrow nor the next one, bu t instead, it corresponds to the point when the create method is finished

and execution control is returned to Screen. So. the state Visiting Record Created corresponds to the void

-
rrtipnt

L -
\ a J , d

f

scrnna

validate

<

P
-3
d

,
C
C
C
0)

%
Q
3 I

1

--

i, create i
"- -8 . **. ...-*** > .

create I

>
+

t

between the two create calls. This implies that model elements may not always be traceable from one to

the other although a dependency may exist. Whereas the naming problem in this example can be

approximated with the use of a naming dictionary (which keeps track of all synonymous model element

names), finding an adequate way of relating state diagrams with sequence diagrams is not as simple.

6.2 List of Inconsistencies

Although, a human analyst would be able to reason about the existence of these kinds of

inconsistencies, for a computer to come to the same conclusion is not trivial. For simpte examples like the

ones above, the need for automated assistance in identifying and resolving inconsistencies may not be

obvious; however. in more complex examples involving hundreds or thousands of modeling elements, the

task of finding and resolving inconsistencies may become very time consuming and error prone-

frequently having strong effects on project schedule and cost. Thus, automated assistance in identifying

md resolving inconsistencies would result in major benefits.

6.2.1 Inconairtenciea in the Abstract Dimension

1. Concrete relation bas no corresponding abstraction

This case indicates that a lower-level model relationship between classifiers is not reflected

between their higher-level counterparts. This inconsistency may indicate that the higher-level view does

not capture the complete extent of the component interactions. Figure 21 depicts an example of one such

Dl Jog ParWion CorrWrm Partition

Figure 21. Concrete Relation bas no Corresponding Abstraction

inconsistency between a package diagram and a class diagram. At the package level, we find three major

classifiers: DialogPackage, DataPackage, and ContainerPackage. Also, there are dependency

relationships between DiafogPackage and all the others. The chis diagram reveals more information

about the contents of the packages-DaraPacknge contains the class Guest, DialogPackage contains the

class GuestEditDlg, and ContainerPackage contains the class GuestCaptureContainer. The inconsistency

depicted in the figure is based on the observation that there is a lower-level association relationship from

GuestCaptureContainer to Guest but no such relationship between their corresponding higher-level

packages (from ContainerPackage to DataPackage).

2. Abstract relation has not been refined

Higher-level model relationship between classifiers is not reflected between their lower-level

refinements. This may indicate that the lower-level view does not currectly realize the higher-level one.

3. Concrete classifier has no corresponding abstraction

Lower-level model element is not assigned to any higher-level element. Although, this

inconsistency is more an indication of incompleteness than an error, it nevertheless indicates a problem.

The example in Figure 22 shows the case of the class ReservationCoflection that was not assigned to any

higher-level package although it interacts with classes that are part of those packages.

Data Parlition Dialog Partition

Packago Level

Clam Level

Figure 2 2 Concrete Clrrssifler has no Corresponding Abstraction

4. Abstract d a d l e r has not been refined

Higher-level model element is not assigned to any lower-level elements. Figure 23 depicts an

example of one such inconsistency bctween a package and a class diagram. The package diagram shows

the two classifiers DataPackage and JavaA WT. The class diagram depicts a refinement of DataPackage

only, which includes the classes Reservation, Hotel, and Guest. The package JavaAWT was not refined.

The inconsistency depicted in the figure is based on the observation that there is a dependency from

DataPackage to JavaAWT that was not realized at the class level since the classes corresponding to

JavaA WT are missing.

Plck8ge Level
DeWackage

Claas Level
+hotel ,

Figure 23. Abstract Classifier has not been Retined

5. Concnte relation is of different type than its corresponding abstraction

Higher-level rehion type does not conform to lower-level relation type. For instance, if at a

higher level a relation of type dependency is used, but at the lower level an equivalent relation of type

association is used then this denotes a type inconsistency between layers.

6. Concrete d&er is of different type than its corresponding abstmction

Higher-level classifier type does not conform to lower-level classifier type. Figure 24 depicts a

higher-Ievel classifier AccountActivity that is decomposed into a number of sub classifiers (Transaction,

Puyment, Erpense, Cash, Check, and Creditcard). The classifier AccowttActiviry is an interface class,

63

Higher Level Lonm Lonl

Figure 24. Concrete Classifier is of DiPIerent Type than its Companding Abstraction

which implies that it will only provide operation stubs without implementing them. The lower-level view

has an interface class (Transaction) but also two realizations (Paymeru and Expense). The inconsistency

shown here is based on the observation that the higher level class specifies a partition of the system that

only handles ars interface. The lower-level representation, however, violates that constraint by also

defining realizations.

7. Concrete relation uses abstract c l d e r instead of its refinement

Model relationship from a lower-level classifier (of one partition) to a higher-level classifier (of

another partition) is not reflected between their corresponding high-level classifiers andfor between their

corresponding lower-level chssifiers. Figure 25 depicts an example of one such inconsistency between a

package diagram and a class diagram. At the package level, we find two major classifiers called

DialogPackage and Datapackage. The class diagram reveals more information about the contents of

those two packages-Datapackage contains the classes Guest, Hotel, and Reservation; and

DialogPackage contains the class ReservationEditDlg. The inconsistency depicted in the figure is based

Guest

Lower Lovd

figure 25. Concrete ReJation uses Abstract ~ ~ t r Instead of its Refinement

on the observation that there is a dependent y relations hip fiom ReservationEditDig to Datapackage but

no corresponding higher-level relationship from DialogPackage to DataPackage. Furthermore, there is

no lower-level dependency from ResewationEditDlg to any of the three classes Guest, Hotel, and

Reservation.

8. Abstract relation uscs concrete cladler instead of its abstraction

Model relationship from a higher-level classifier (of one partition) to a lower-level classifier (of

another partition) is not reflected between their corresponding high-level classifiers andfor between their

corresponding lower-level classifiers.

9. Abstract classifier is replicated at the concrete level although refinement exists

An abstract classifier can be replicated at the lower-level if no refinement exists (or is

necessary). However, in the case of Figure 26, a refinement exists but it was not used in the middle layer.

Note that this case probably denotes more an oversight than an actual inconsistency.

Higher tevml

Middle Uwl

Lower Lavd

Figure 26. Abstract Classifier is Replicated at the Concrete Level Although Refinement Exists

10. Concrete c i d e r is assigned to multiple abstract clrrssifiers

A lower-level element cotresponds to multiple higher-level elements. This inconsistency may

indicate that the partitioning of the system is ambiguous or that the lower-lever element in question does

in fact belong to an altogether third higher-level element (e.g., a library class that is used widely

Figure 27. Concrete Classifier is Assigned to Multiple Abstract Classifiers

throughout the application). Figure 27 shows one such example where the class Hotel is assigned to two

separate packages.

11. Cardinality of refinement does not match its abstraction

Cardinality between higher-level classifiers does not conform to lower-level classifiers. Figure

28 depicts an example of a cardinality mismatch between classes of a higher level and their

corresponding lowcr level classes. The higher level view shows the two clases, Guest and Transaction,

with an association between them indicating that there can be one or more (i.e., many) trmsactions per

Lowor Level

Figure 28. C a d d i t y of Refinement does not Match its Abstraction

guest and each transaction can involve only one guest. The lower level view introduces the helper class

Account that masks the true cardinality and interdependency between Guest and Transaction. However, it

can be inferred that if there is at least one account per guest and at least zero transactions per account,

then there can be at least zero transactions per guest. The views are inconsistent since the higher level

view assumes at least one transaction per guest.

12. Direction of concrete relation does not match its abstraction

Relationship between higher-level classifiers does not conform to lower-level classifiers. Figure

29 depicts an example of an association relationship from the higher-level class Account to Deposit

(indicating that Account calls methods prodiced by Deposit). The lower level view introduces the helper

class Transaction and indicates an association relationship from Transaction to Account as weil as a

realization relationship from Deposit to Transaction. Since the realization relationship implies that

Deposit realizes (impIemen ts) Transaction, one can safely assume that Deposit inherits all features from

Transaction which includes Transaction's association to Account. It follows that Deposit should have an

association to Account and not vice versa as the higher tevei view suggests.

Account
- - - - - - - -- - -- - - - . . A - - -

Deposit
H l g h ~ Lwd c - y f m t ~ ~ . - - - -- - - - - . -- . - - -

Figure 29. Direction of Concrete Relation does not Match its Abstraction

13. Concrete classifier does not replicate a method of its abstraction

A lower-level element corresponding to a higher-level element does not exhibit the same

operations (services). Figure 30 depicts an example of a higher-level classifier Guest that was

decomposed into two sub classifiers (Guest and Account). The classifier Guest describes an interface of

two operators called injood-standing and get-balance. Similarly, the decomposed lower-level describes

an interface on its own, The inconsistency shown here is based on the observation that the lower-Ievel

view must at least exhibit the same services as the higher-level view. In our concrete example, the lower-

Lower h v d

Figure 30. Concrete C l d t e r does not Replicate a Method of its Abstraction

level view provides the ingood-standing interface as required by the higher-level view but does not

provide a get-balance interface.

14. Concrete classifier does not replicate an attribute of its abstraction

A Iower-level element corresponding to a higher-Ievel element does not exhibit the same

attributes. This type of inconsistency is analogous to the above one (Figure 30).

14. Concrete method is of dinerent type than its abstraction

A higher-level methods does not have the same interface as its corresponding lower-level

method. For instance, in Figure 3 1, the higher-level class Accounr defines two methods called get-amount

and do-transaction. The get-amount method further specifies that it returns a value of type integer. The

lower-level diagram refines Account into classes A ccount and Transaction. Together, the two classes

Higher Level

Lower Level

~tamtmto: Integer
dodotfaMacuon

Guest :

Fignre 31. Concrete Method is ot Merent Type than its Corresponding Abstraction

68

provide the same methods as the higher-level class Account; however, the interface for the method

get-amount is different.

16. Concrete attribute is of diflerent type than its corresponding abstraction

A higher-level class corresponding to some lower-level classes does not have the same attribute

interface. This case is very similar to the one above.

17. Abstract and public method is hidden in refinement

A lower-level classifier does not provide the same public interface as its corresponding higher-

level abstraction. Consider the example in Figure 31 again. There we saw the case of an incompatible

method interface. The example, however, also showed another type of inconsistency. There we can see

that the class Guest accesses the class Account, which implies that the class Guest could access either one

of the two methods Account provides. At the lower level we see that both classes provide the same

interface (let us ignore the renun type inconsistency). However, at the lower level the class Guest can

only access one of the two methods (get-amount). The other method is not directly accessible to Guest.

18. Abstract and public attribute is hidden in refinement

A lower-level classifier does not provide the same public attributes as its corresponding higher-

level abstraction. This types of inconsistency is analogous to the case above.

19. Abstract pre-conditions may not become stronger in refinement

Pre condition of instance may not become stronger (or be strengthened), Note: child classes may

weaken the pre conditions of methods but not the other way around. If during software development one

wishes to substitute off-the-shelf components. then wc need to ensure that the minimal requirements (e.g.,

pre-conditions) are satisfied. For refinement this implies that a component can substitute another

component, although the latter must either satisfy the same pre-conditions or weaken it. For instance, if a

method "do-tmnsaction" has the pre-conditions that it only works if an account was already created, then

it could be substituted with another method that does not have that pre-requisite.

20. Abstract post-conditions may not become weaker in rehement

Post conditions of inheritance may not become weaker. Note: child classes may strengthen the

post condition of methods but not the other way around. This case is analogous to above.

21. Abstract invariant may not becomc weaker in refsnemsnt

Invariant of inheritance may not become weaker (or be weakened). Note: child c1asses may

strengthen their invariants but not the other way around. This case is analogous to above.

6.2.2 Inconsistencks in the Generic Dimension

1. Specific relation bas no corresponding generzrlizrrtion

Figure 32 depicts a generic class view involving three classifiers: Reservation, GuesrCollection and

Guest. To illustrate the possibIe interactions between those generic classifiers, the sequence diagram

depicts one possible scenario of how an instance of Reservation (r l) calls an instance of GuestCollection

(gc) and an instance of Guest (g). It can be observed that the instance of Reservation interacts with the

instances of GuestCollection and Girest. The inconsistency depicted is based on the fact that the generic

view supports the interaction horn

interact with Guest.

Sequence View

Reservation to GuestCollection, but, does not allow Reservation to

Figure 32. Specilic Relation has no Corresponding Generalization

2. Generic relation bas never been instantiated

This case denotes more an incompleteness (oversight). It indicates that a generic relation has

never been instantiated in any one of the specific models.

3. Specific classifier bas no corresponding generalization

This case corresponds to case (1) above. The only difference is that a specific classifier (instead

of relation) is used that has not been defined at the generic level (e.g., an object that does not have a

class).

4. Generic classifier has never been instantiated

This case denotes more an incompIeteness than an inconsistency. It indicates that a generic

classifier has never been instantiated in any one of the specific models.

5. S p d c &tion is o f different type than its corresponding generalization

Specific relation instance does not conform to relation type. This case is analogous to the

abstractlconcrete counterpart discussed in 6.2.1.

6. Specific classifier is of diflerent type than its corresponding generalization

Specific classifier instance does not conform to classifier type. This case is analogous to the

abstract/concrete counterpart discussed in 6.2.1.

7. Cardinality of generic classifiers does not match specific scenarios

Cardinality between generic classifiers (e.g., classes) does not conform to specific scenarios

(e.g., sequences). Figure 33 depicts a relationship between the two generic classifiers Guest and Account

that was specialized into a more detailed sequence diagram depicting an interaction scenario. The

sequence diagram depicts one instance of Guest called Peter and two instances of Account called a1 and

a2. The sequence diagram further indicates that both instances of Account are known to Guest which

implies that at the generic level there should be at Ieast two Accounts per Guest (there could possibly be

more, but not fewer). The inconsistency between the diagrams is based on the observation that the

sequence view depicts a cardinality of classifier instances, which is not supported by the class diagram.

- *tray. x
Figure 33. C-ty of Generic C l d e r s docs not Match Specific SccllPVios

8. Direction of specific relation does not match its generalization

Figure 34 depicts a generic class view involving the two classifiers GuestEditDlg and

GuestCaptureCntainer To illustrate the possible interactions between those generic ctassifiers, the

sequence diagram depicts one possible scenario of how an instance of GuestEditDIg (gedlg) calls an

instance of GuestCaprureContainer (dm). The inconsistency shown here is based on the observation that

instances call each other (set-hta in both direction); however, the generic view only supports uni-

directional interaction. As such, only the instance of GuestEditDlg is aliowed to call

GuestCaprureContainer and not vice versa.

Generic View Sequence View
- - -

Gut~tEditOlg r
, - - - - 1-

. . - - . . - . . L . . . - .- . - _ . - - I set-data
--.. - -- -- - -- -)I

Figure 34. Direction of Spec& Relation does not Match its Generalization

9. Generic method bas never been instantiated

This case is analogous to its abstractkoncrete counterpart discussed in 6.2.1.

9. Generic attribute has never been instantiated

This case is analogous to its abstractkoncrete counterpart discussed in 6.2.1.

11. Specific method is of different type than its corresponding generalization

This case is analogous to its abstract/concrete counterpart discussed in 6,2.1.

12. SpeciZic attribute is of different type than its corresponding generalizrrtion

This case is analogous to its abstractlconcrete counterpart discussed in 6.2-1.

13. Specific view uses a method that is not defined in generic c l d e r

Figure 35 depicts a generic class view involving the two classifiers ResewationSearchLVg and

ReservationCollection. To illustrate the possible interactions between those generic classifiers, the

search

Figure 35. Specific View uses a Method that is not Defined in Generic Classitier

sequence diagram depicts one possible scenario of how an instance of ReservationSearchDlg (rsdlg) calls

an instance of ResewationCollection (rcoll). The scenario first creates the collection (using operator

corwtruct), and then searches it (using operator rcoll). The inconsistency shown here is based on the

observation the rsdlg uses two operators to access rcoll (construct and search) but one of it was not

defined in the generic view.

14. Specific view uses an attribute that is not defined in generic classifier

This case is analogous to the previous case.

15. Specific classifier bas not been assigned to generic c l d e r

Note that this case is more an indication of oversight than inconsistency. Figure 36 depicts an

example of a generic class view involving the two classifiers ResewationSearchDlg and Reservation, To

find
. Seqwnce View - >I - 1

- get-name *

I)t

.- ge t-riame
,-... . -1 >-

Figure 36. Specific Classifier bas not been Assigned to Generic Classifier

illustrate the possible interactions between the generic classifiers, the sequence diagram depicts one

possible scenario of how an instance of ReservationSearchDlg (d g) calls another instance called rcoll,

which in turn calls two instances of Reservation (rl and r2). The inconsistency shown here is based on

the observation that no classifier type was associated with rcoll.

16. Specific relation has not been d g n d to generic relation

Analogous to next case.

17. Generic pre-condition is violated in specific view

Figure 37 defines a generic condition that the construct method may only create an object of

type Guest if the operation is successful. In the sequence view (specific view) we can see that the

operation construct created an object, although it is labeled a failure.

Guest::construd - il successful abject of

Generlc Vhw type Guest is created
if failure no object b
created

* -

Sequence View construct
[failurej

>
* -

Figure 37. Generic Pre-Condition is Violated in Specific View

1%. Generic post-condition is violated in speciiic view

Analogous to previous case.

19. Specific method used was declared ptivate in generic view

Denotes a case where a generic view published a method that was declared public, but the

specifc view declared that same method as private.

20. Specific attribute used was declared private in generic view

Analogous to previous case.

6.2.3 Inconaistmcies in the Behavioral Dimmion

1. Imported guard was not declared in structural view

Figure 38 depicts an example of a generic class view involving the three cIassifiers Guest,

GuestDlg, and GuestDB. The figure also illustrates the statechart diagram belonging to the class

GuestDlg which shows that the class has three different states depending on the extend of the information

capture, The state transition from guest unspecified to guest identijied uses a guard saying that the

transition only happens if the object "guest::is,vaIid()" returns true, The inconsistency is based on the

observation that the class corresponding to

name.

object guest does not have a method or attribute with that

Figure 38. Structural View does not Support all Behavioral Needs

2. Imported trigger was not declared in structural view

This case is similar to the previous case. Figure 38 also depicts an example in case of the state

transition from guest identified to guesr created. There it says that the trigger of "guestDB::add()" needs

to have been called for that transition to happen. Since the add method is not part of GuestDlg it is

expected that it must be part of another class. The class GuesrDB, however, does not have a method of

that name.

3. Structural view docs not allow an interaction as required by guard

This inconsistency type indicates a case where interactions on the behavioral side are not

reflected in the structural declaration. Figure 38 shows one such example in context of the state transition

from guest unspecified to guest indentifled. It can be seen that this transition depends on an imported

guard from the class Guest. Even if Guest would have a method called is_valid(), there would still exist

an inconsisteny with respect to the allowed interactions. It must be noted that the current definition of the

structural view (the class diagram) does not allow GuestDig to access Guest.

4. Structural view does not allow an interaction as required by trigger

This inconsistency is analogous to the previous one. Figure 38 would not have an inconsistency

with respect to this case if the state transition between guest identified and guest created would have a

method called add(). The class GuestDlg already depends on GuesrDB, thus, the structural definition

supports the required interaction.

5. Relationship between classes is not reflected in statechart

This type of inconsistency is the counterpart to the four types we discussed previously. It states

that if there is a structural dependency between any two classes, then statecharts belonging to those

classes must also interact.

6. Method was declared "query" but is used for non-circular state transitions

This case indicates that the declaration of methods has an impact on how that method can be

used. In Figure 39, we can see a class declaration which defines a set of attributes and methods as well as

some properties of them. The figure dso defines a statechart of that class indicating that the class may go

- .---
clomd ' [=unt=Ol/openO empty 1

!

Figure 39. StrPcturrrl Declaration does not Match its Usage

through the three states closed, empty, andfilling. It can be observed that the method open was declared

as a query which denotes that it cannot change states. The "query" declaration is meant to indicate

methods that do not alter states if they are called. This declaration is inconsistent with the statechart view

where the open method is used for state transitions between closed and empty as well as between closed

and fifting.

7. Method w m declared "action" but is used for arcular state transitions only

Figure 39 illso shows an inconsistency of this type. If a method is declared as action, it is implied

that this method may cause a state transition if invoked. For instance, the method delete causes both

regular and circular state transitions. The inconsistency is with method insert which was defined as action

but is never used for transitions between two different states.

8, Method was declared "activity" but is used for state transitions

If a method is declared as "activity," it is implied that this method is of longer duration. For

instance, a method cdl that waits for a user to press a button is of that type. Activities are usually

associated with states. Should an activity be associated with a transition than this denotes an

inconsistency.

9. Guards leaving state are not mutually exclusive

Figure 39 also shows im example of this case. The state transition open has two exits from the

state closed. In order to decide which transition to use (e.g., the one to empty or the one to filling), guard

conditions must be attached. For the state diagram to be deterministic, those guard conditions must be

mutually exclusive. Currently, there exists an inconsistency in that the two guard conditions overlap in

case of "count==O."

10. GuaMrigger p m or post condition does not mtcb method pre- or post condition

m i s type of inconsistency indicates that guard and mgger conditions must match their

declaration. In Figure 39, the method delete has the condition that it may only be invoked if "count>O." If

it should be invoked otherwise, the result would be undefined. The statechart view, however, defines a

state transition for delete with the guard condition "count=O," which denotes an inconsistency.

.\d'
Figure 40: Categories of Mismatches

6.3 Classification of Inconsistencies

With respect to view inconsistencies we distinguish between three basic types (Figure 40): (1)

inconsistencies within a single instance of a view; (2) inconsistencies between a set of view instances of

the same view dimension; and (3) inconsistencies between a set of view instances of different view types

and dimensions.

In the previous section we did not represent a complete list of inconsistencies, but have instead

focused on inconsistencies between views of different types and dimensions. The reasons for that are

simple: most current view integration approaches make the simplistic assumptions of consistency

checking between the same view instances and types (first and second categories) [Grundy and Hosking

19961 wang et d. 19971. Actually, even UML defines simple consistency rules at those levels. With this

simplistic assumption, consistency checking is often doable via simple comparison. In Section 7 we will

show hat view integration is complicated by having to consider differcnt view dimensions and types. Our

approach works for all three categories.

6.4 Act in the Presence of Inconsistencies

This section emphasized the existence of inconsistencies that are due to the gap between models

and views. "While an approach that is intolerant of inconsistencies and multiple perspectives may be

adopted (and is adopted by many organizations that wish to enforce a disciplined development policy),

there appears to be mounting evidence that such an approach is not tealistic, and that software deveiopers

prefer to work with multiple views ... and languages .., in which inconsistency is toierated" [Nuseibeh

19941.

What this implies is that inconsistencies are not inherently bad. They only become bad if one is

not aware of their existence or does not react to them "Inconsistencies are inevitable in software

development . . . processes and products. They provide a focus for further development .. ., and can be

regarded as 'desirable' in that they highlight issues that need further attention. As such, they should be

tolerated, analyzed and acted upon" [Hunter and Nuseibeh 19971. There have been numerous approaches

to how one should act in the presence of inconsistencies (e-g., [Balzer 19911, [Narayanaswamy and

Goldman 19921, and [Hunter and Nuseibeh 19981).

6.5 Summary

This section discussed potential negative impacts of modeling via multiple views. We started off

by presenting some examples of inconsistencies among two or more types of diagrams. We then

generalized and presented a list of inconsistencies dong the three dimensions presented in the previous

section. We identified those in the course of evaluating a large number of scenarios. We also emphasized

that this work addresses the most complicated and presently mostly unsolved types of inconsistencies-the

inconsistencies between different types of views and view dimensions. Finally, we very briefly discussed

the impact of inconsistencies. With that we wanted to show that having inconsistencies is not a bad thing

per se; however, not knowing about them or not resolving them in time may result in serious

consequences (e.g., negative impact on cost, schedule, etc.).

7 Our View Integration Framework

Nuseibeh, Kramer, and Finkelstein museibeh et al. 19941 wrote that the term view

inconsistency indicates that some form of rule that expresses a relationship between model elements has

been broken. It is these kinds of inconsistency rules we are aiming for in our integration work. However,

rules alone are only limited useful if they cannot be applied automatically to check for consistency. This

implies that there is more to view integration than consistency rules and model constraints. What we also

need is an environment where we can appIy those rules in a meaningful way.

7.1 Overview

As discussed in previous sections, views are abstractions of information relevant to specific

concerns. Views are structured in such a fashion that they arrange and present information in the most

meaningful way to stakeholders (developer, architect, customer, etc.). Figure 41 depicts the outline of a

generic development framework. Software system information is stored in a system model. Stakeholders,

who are primarily arc hi tects and designers from a product modeling perspective, access that model and

manipulate it throughout the course of the development life cycle. The model itself is not (or should not)

be accessed directly. Instead, model information is projected (abstracted) into views. Views are then

manipulated and changes within these views are then reconciled with the underlying model.

Architect 2

\ - < abstract \ \ reconcile
1

\/ \ \
Architect l

Synthesis Analysis

Figure 41: Model-based Devehpment-a view independent representation

We refer to the manipulation of views as synthesis although it must be noted hat this type of

synthesis is mostly manual. Through synthesis, model information is created, modified, and deleted. We

need view analysis to ensure the consistency and conceptual integrity of views and their changes. The

view analysis component is the focus of this work and is described next.

7.2 View lntegratian Framework

To address view integration, we have investigated ways of describing and identifying the causes

of modeling mismatches across UML views. To this end, we have devised and applied a view integration

framework, accompanied by a set of activities and techniques for identifying inconsistencies in an

automatable fashion. Our view integration framework is accompanied by a set of activities and techniques

which are depicted in Figure 42 (this figure is a refinement of Figure 41). As it can be seen, our view

analysis component incorporates three major activities called Mapping, Transformation, and

Dflerentiation.

The system model in Figure 42 represents the model base (e.g., UML model) of the designed

software system (recall Figure 4 1). To create and manipulate these models, there is a need for a synthesis

component (View Synthesis). To date, numerous (system) models and synthesis tools have been

proposed. For instance, our framework is integrated with the Unified Modeling Language, which is used

as the system model, and RationaI RoseTM, which is used as its synthesis tool. We need View Analysis

during software evolution whenever modeling infonnation is added or modified since changes must be

validated against the rest of the system model to ensure their consistency.

Our view integration approach exploits the redundancy between views. For instance, if view A

contains information about view 8, this information can be seen as a constraint on B. The view

integration framework is used to enforce such constraints and, thereby, the consistency across views. In

addition to constraints and consistency rules, ow view integration framework also defines what

information can be exchanged and how information can be exchanged. This is critical for a scalable and

automated inconsistency identification process. View Analysis, a continuous activity, involves the

following major (sub)activities:

Diflerenricrtion: traverses models and views to identify potential inconsistencies within and between

modeling elements. Inconsistencies can be identified automatically through violations of consistency

rules that are validated against the system model. Automated differentiation strongly depends on

mapping and transformation, the other major activities of view analysis.

Mapping: identifies and cross-references related modeling elements that describe overlapping and

thus redundant pieces of information (e.g., as in Figure 6 on page 28). Mapping is often done

manually via naming dictionaries or traceability matrices. Mapping simplifies differentiation in that

it defines what modeling elements should be compared.

Transformation: extracts and converts modeling elements of views in such a manner that they (or

pieces of them) are more understandable in the context of other views. Transformation simplifies

differentiation in that it makes model elements of different types and shapes easier to compare (how).

It can be automated using abstraction, genemlization, structuralization, and translation (discussed

later).

Each view integration activity represents a complex problem in itself. This work will discuss the

details of those activities later. It must be stressed that those activities are not separate but, instead, they

need to be put together to simplifL and improve the overall task of inconsistency detection.

Figure 43 depicts the relationship between Mapping, Transformation, and Dif/erentiation in the

context of four inconsistency detection scenarios. In order to compare the two userdefined views A and

82

B (containing userdefined modeling elements), we could either a) compare them directly; b) transform

(convert) A into 'something like B' so that A becomes more easily comparable to B; c) transform B into

'something likc A' so that B becomes more easily comparable to A; or d) transform both A and B into

'something like C' so that they are more easily comparable in the context of C. The role of mapping is to

scope down transformation and differentiation by specifying what information needs to be exchanged and

what information needs to be compared. The role of transformation is to enable more direct comparison

by converting modeling eiements into similar types and thus defining how modeling elements can be

compared. Transformation also extends the model in that new (automatically generated) modeling

elements are derived from user-defined ones. For instance, the "something-like" boxes represent derived

model information that must also be storcd.

Figure 43 also shows that multiple input sources must frequently be used to automatically

transform a modeling element fiom one type into another. Although mode1 elements of different types of

views may overlap in what they are meant to convey, the form and the boundaries of those descriptions

may vary. For instance, in order to generalize the relationships between two classes one needs to andyze

user map IFF,
~efined i 7

Figure 43. View Tramdormation a d Mapping to Complement View C o m p a r i , ~ ~

the instances of those classes and their interrelationships. This implies that in order to convert modeling

information from type A into type B, the transformation method may have to consult additional

information about A and B (multiple sources of information) to transform A, B or both of them.

This work will primarily investigate the activities of transformation and differentiation, and

secondarily the activity of mapping since we try to emphasize automation since transformation and

differentiation embody the strongest prospects for automation. Although mapping is equally important for

view integration, we nevertheless find that mapping is dso the hardest to automate. Mapping requires

intrinsic knowledge about the relationships between modeling elements of systems, a problem also

known as the traceability problem [Gotel and Finkelstein 19941. Although mapping has received

considerable attention in the research community, to date no truly automatablc solutions have been found

to adequately address it.

The other reason why we consider auromtrting mapping less important is da ted to the frequency

of that activity. Mapping between modeling elements needs to be defined only once per model element

permutation (between any two model elements) whereas transformation and differentiation between that

same permutations may happen multiple times throughout the project evolution, The latter is caused by

the continuous need of ensuring consistency between views that is triggered by changes. Not being able

to automate mapping, however, does not preclude automated view integration. Our framework has been

built in such a manner that it can handle incomplete mapping information. Furthermore, our consistency

checking approach can also detect missing or invalid mapping information.

To demonstrate our integration approach, we will illustrate it in the context of the Unified

Modeling Language (UML), Our framework and its activities are also applicable to other sets of

heterogeneous views, although some transformation and comparison rules might have to be adapted. To

date, we have applied our view integration framework on several UML views (class, object, sequence,

and statechart views). We have also expanded the use of the ~ e w o r k beyond UML, to architectural

styles (e.g., C2 [Taylor et d. 19961, pipe-and-filter [Shaw and Garlan 19961, layered, etc.) where we

vaiidate consistency between C2 and UML views [Egyed and Medvidovic 20001 and between AAA

models [Gacek 19981 and UMf. views [Egyed and Gacek 19991.

This work will also demonstrate a prototype tool, called UMUAnalyzer, which implements a

part of our framework. Although it is our goal to provide as much automation as possible, we do not

believe that full automation for view integration is always feasible; consistency checking will likely

incorporate a sizeable human element. However, we do believe that even partial automation can save

considerable time and effort and wc will give examples later. The following subsections will describe our

approach in detail.

7.3 Simple Model Transformation

The importance of transformation is the conversion of modeling information between different

types and views in such a manner that they become more easily comparable, This section will first

discuss the aspects of transformation that are more challenging than simply converting information. We

will therefore introduce simple transformation techniques, explain them in some detail, and then elaborate

on how those simple transformation techniques can be integrated into complex ones.

At first glance, view transformations may appear as being strongly dependent on the types of

views involved. Although this is generally true, we nevertheless found that views can be grouped into

categories and transforming between those categories often involves similar concepts. In Section 5, where

we discussed models, views, and model elements, we found that views can be categorized into three

major dimensions: abstraction, generality, and dynamism (recall Figure 15).

Figure 44 depicts our view space from a different perspective. As discussed in Section 5.4,

model elements belonging to views can be placed into regions in the view space. Figure 44 shows that, by

transforming model dements, their positions in the view space change. For instance, a transformation

process could make a set of model elements more abstract (up arrow), more structural (left arrow), or

more generic (forward arrow). Similarly, transformation could achieve the opposite: making model

elements more concrete, behavioral, or specific. The circular arrow in the middle denotes a case of

transforming model elements kom one type to another without "moving" in the view space. We

categorize transformation according to this structure,.

I

how abstract]
j region
I
I
I
1

;'-more generic

l
region

Figure 44. Transforming Model Ekments between Regions in the View Space

The eight quadrants of the view space we discussed in Section 5.5 should be seen as categorizing

the relative dependency between any two given views (or model elements). For instance, if there rue three

class diagrams A, B, and C of decreasing level of abstraction, then between A and B, A is abstract and B

is concrete but between B and C, B is abstract and C is concrete. The quadrants (regions) depicted in

Figure 44 therefore show the relative relationships between any two given views.

Having three dimensions of views implies four types of transformation axes (Figure 45 depicts

these four types): Abstraction to capture transformation between abstract and concrete views;

Generalization to capture transformation between generic and specific views; Structuralization to capture

t~nsforrnation between structural and behavioral views; md Transhion to capture transformation within

a single quadrant (both input and output type are of the same Ievel of generality, behaviorism, and

abstraction as in the transformation between sequence and collaboration diagrams).

We call the upward transformation process in Figure 45, which yields a more abstract view,

abstraction. Abstraction takes information and simplifies it. For instance, a class diagram can be

abstracted into a more abstract class diagram (see Section 7.3.1). It is important to note that abstraction

Abstraction
(e.g., Class to
C2 diagram)

Stnrcturalization Translation
(0.g.. class
diagram to OCL)

(e.g., sequence to
class diagram)

Figure 45. View Dimension and View Tramfonaation Axes

changes a view's positioning in the view space only dong the abstract-concrete dimension. A pure

abstraction process does not change a view's generality or behaviorism.

The sideways transformation process in Figure 45 is called structuralization. Structuralintion

takes information and extracts its configuration (structure). For instance, a state diagram can be

structunlized into a class diagram (see Section 7.3.3). It is again important to note that structuralization

changes a view's positioning in the view space only on the behaviorism level without changing a view's

abstraction or generality.

The forward arrow in Figure 45 is called generalitorion. Generalization takes information and

merges different interpretations to yield more comprehensive information. For instance, a sequence

diagram depicts only scenarios. It is hard to generalize from a single scenario onto general structure

and/or behavior. However, by merging scenarios together we get a more general view (e.g., a class

diagram). Again, generalization only changes a views positioning at the generality level.

Figure 46 shows the transformation techniques we are currently supporting in our framework.

The arrows depict the transformation methods and the heads of the mow depict the directions of the

transformations. The thick arrows are currently tool supported via our UMUAnalyzer tool discussed in

Section 8. The dashed thick arrow is dso tool supported via the SCED tool developed by Koskimies,

Sysd, Tuomi, and Miinnisto [Koskimies et al. 19981. The remaining arrows are model supported and will

also be discussed later in Section 7.3. Model supported implies that in this work we will describe ways of

Figure 46. Translormations Currently Supported

automating them, although tool support has not been created yet. The scope and limitations section

(Section 4) already discussed the reasons for this decision.

All arrows in Figure 46 are generally uni-directional because the direction of automatic

transformation tends to go from concrete to abstract. from behavior to structure, and from specific to

generic. The rationale for this is that our transformations tend to go from more information to less

information (e.g., abstraction removes lower-Ievel details not significant on an abstract level,

gcneraiization merges commonalities between scenarios, and structuralization omits behavioral

information not significant for the configuration). Since reversing transformation implies going from less

information to more information, it follows that transformations are generally not reversible. This

observation is dso confirmed by Koskimies' tool (SCED).

Additionally, it must be noted that even if transformations would be generally reversible (e.g..

From structure to behavior) here wouid be only little value added since for consistency checking the

direction of transformation is not important (assuming that a reverse transformation does not convert any

additional information that the regular uni-directional transformation would not have transformed - recall

scenarios b) and c) in Figure 43). For consistency checking it is only significant that information is

transformed (regardless of direction) since consistency checking needs transformation only for

comparison purposes.

The following subsections are devoted towards simple model transformation. In order to

automate view transformation, we need to automate the abstraction, structuralization, generalization, and

translation activities. It turns out that the transformation processes for each of the four transformation

types are quite distinct; however, different instances of the same transformation types exhibit similarities.

For instance, the techniques used to abstract class diagrams and the ones used to abstract state diagrams

are very similar. The same observation can be made about generalization and structuralization.

Translation is the cover term for all remaining vansfonnations not covered by above three types.

Translation may, thus, vary more strongly.

Above we discussed the importance of transformation in enabling the conversion of model

information between different types and views so that they become easier to compare to one another. The

following will first discuss the basics of our simple transformation methods which are more challenging

than just simply converting information. We will introduce simple transformation techniques, explain

them in more detail, and then elaborate on how those simple transformation techniques can be integrated

into complex ones. This section will also briefly discuss available tool support.

7.3.1 Abstraction

The process of abstraction deals with the simplification of information by removing details not

necessary at a higher, more abstract level. We distinguish between two types of abstraction-classifier

abstraction and relation(ship) abstraction. Both types of abstractions are based on diagrammatic views

that use box-and-mow representations (e.g., class diagrams, state diagrams, etc.). The following

subsections describe both abstraction mechanisms.

7.3.1.1 Classifier Abstraction

Classifier abstraction is probably the more intuitive abstraction type since it closely resembles

hierarchical decomposition of structures provided in many views. For instance, in UML, layers of

packages can be built using a feature of packages that allows them to contain other packages. Thus, a

package can be subdivided into other packages, forming a tree hierarchy. In classifier abstraction it are

classifiers (e.g., packages, class, states, etc.) that can be grouped ("collapsed") to yield a more simplified

(ergo abstract) view. The relationships of the collapsed, concrete classes then become part of the interface

of the more abstract one. Since UML does not support the composition/decomposition of all types of

classifiers, we introduce the concept of a composite model element in UML that allows model elements to

contain other model elements.

Figure 47 (left) shows a generic example of a classifier abstraction at three levels. The lowest

level contains a concrete view (e.g., class diagram) and depicts four classifiers (A-D) and four relations

between them (a to 8). The middle diagram is an abstraction of the lower-level diagram where the

classifiers B and C are grouped together and form a composite classifier named BC. The relation yas we11

as the classifiers B and C are hidden inside the composite classifier BC and not visible any more at the

middle-level (however the public interfaces of B and C must still be represented by its abstraction BC).

The third and topmost level is a further abstraction that adds another composite classifier BCD that

contains the composite classifier BC from the middle level as well as the ciassifier D fiom the Iowest

levei. Thus, composite classifiers may also contain other composite classifiers forming a tree like

hierarchy. The tree structure is visible through the traces linking the three levels of abstractions in Figure

47 (left).

In the case of the abstracted composite classifiers (e-g., BC), the question remains as to what

type they rue. For instance, if a couple of concrete classes are collapsed into a singe composite class then

the result should be a composite classifier that "inherits" the interfaces fiom the concrete classes. But is

the composite box still a class? UML distinguishes different types of classes; regular class, utility class,

Figure 47: Classitier (left) and Relation (right) AbstrrrctiobTwo Approaches

meta-class, abstract class. Fwthermore, UML supports stereotypes that can be used to create additional

types. If now an abstract class and a regular class are collapsed then is the composite class abstract or

regular? For a transformation tool to support automated abstraction, a set of mles must be provided to

specifj these transformation patterns. These rules will be discussed later.

73.1.2 Rela tion Abstraction

In a relation abstraction [Egyed and Kruchten 19991 it is the relation and not the classifier that

serves as a vehicle for abstraction. Relations (with classifiers) can be collapsed into more abstract

relations. Relation abstraction is needed since maintaining a strict hierarchy of classifiers (as classifier

abstraction requires) is not always possible. For instance, during refinement, model elements may be

introduced that may not refine abstract classes but may instead refine the relationships between thcm.

Figwe 47 (right) shows an example of a relation abstraction using again three levels. The most

concrete level (bottom) contains four classes A, B, C, and D as well as four relations a, f3, y, and 6. The

$->C->8 pattern is collapsed in the middle Iayer by introducing the composite relation 7. Similarly, y+C-

A is collapsed into the composite relation 4. The third level takes a and B fiom the lower level as well as

(from the middle level and further collapses them into the composite relation o. The Iast abstraction

again shows that composite relations may themselves contain other composite relations. Like composite

classifiers, composite relations form a tree-like structure between the levels. Circular dependencies

between composite elements (both classifiers and relations) are not allowed. For instance, < is not

allowed to be an abstraction of o.

73.13 Semantic Rdes for Abstraction

The main challenge during abstraction is to hide less important model elements (e.g., classes in

class diagams) and to only depict the remaining classifiers and their relations as part of the higher-Ievel.

The challenge we need to address is that at a concrete level, the dependencies between abstract model

elements are not explicitly stated. Instead, those dependencies cue hidden within the lower-level model

elements that we would like to hide. Classifier and relation abstractions, therefore, utilize a technique that

allows groups of model elements (classifier or relations) to be collapsed into high-level composite model

elements that s d z e their lower-level semantic dependencies. This paper will describe the patterns.

rules, and an algorithm necessary to do this.

7.3.1.3.1 Absbaction Examples

Take, for instance, Figure

48, which depicts three simple class

diagrams. The first diagram (top)

describes the relationships between

Compact Car, Car, and Driver. I t

asserts that a Car is operated-by a

Driver and that a Compact Car is a

type of Car. Assuming that we do

not care about the class Car but

-
/ man ,
) --.-

has Hotel stays-at .--- i .

Figure 48. Class Patterns

instead would like to know the direct relationship between Compact Car and Driver, then we are actuaIly

asking for an abstracted version of that class diagram where the "helper class" Car and its relationships

have been replaced by a simpler relationship. To find out whether there is indeed such a simpler

relationship between Compact Car and Driver, we need to analyze the semantic dependencies between

Compact Car, Car, and Driver.

The information that a Car is operated by a Driver (association relationship) implies a property

of the class Car (class properties are methods, attributes, and their relationships). The information that

Compact Car is-a Car (inheritance) implies that Compact Car inherits all properties from Car. It follows

that Compact Car inherits the association to Driver From Car which implies that a Compact Car is also

operated by a Driver. This knowledge of the transitive relationship between Compact Car and Driver,

impIies that the classifier Car, as well as the relations is-a and operated-by, could be collapsed into a

composite, more abstract relationship linking Compact Car and Driver directly. That composite relation

should be of type association. This example shows a case where knowledge about the semantic properties

of classifiers and relations allows us to eliminate a helper class and derive a more abstract class diagram

The above example therefore indicates a class abstraction pattern of the form:

Given: Inheritance - > Class -> Association

Implies: Association

This pattern may be used to collapse any occurrence of the "given" pattern into an occurrence of

the "implies" pattern. The second diagram in Figure 48 (middle) depicts a Guest who stays-at a Hotel

which has Rooms. What the diagram does not depict is the (more abstract) relationship between Guest

and Rooms. Semantically this diagram implies that Room are part of a Hotel which, in turn, implies that

the class Room is conceptually within the class Hotel. If, therefore, Guest depends on Hotel, Guest also

depends on all parts of Hotel-including Room (note that this assumption is weaker in that Guest may not

actually depend on all parts of Hotel - we will discuss implications of this later). It follows that Guest

relates to Room in the same manner as Guest relates to Hotel. We again found an abstraction pattern by

analyzing the semantic relationships between the Hotel, Guest, and Room configuration:

Given: Association - > Class c- Aggregation

Implies: Association

Note that the directions of arrows have relevant semantic meanings. If Hotel were part of Room

then we could not automatically assume the correctness of above pattern.

The third example depicted in Figure 48 shows an elevator system where a User operates the

Control (panel) class and depends on the Door when to enternewe the cabin (only if the door state is

"open"). The figure hides the more abstract relationship(s) between User and Elevator. Assuming we

have the knowledge that Cabin, Door, and Control are part of Elevator, we need to analyze how these

three classes could be merged together to form one, more abstract class called Elevator. In the case of

Door and Control, both are classes. A combined composite class of the two should, therefore, be another

class. Grouping is a conceptually simple operation since it involves just the replacement of a group of

classes by a single class. In the case of classes we could, therefore, devise the following simple rule:

Given: Class -r Association -> Class

Implies: Class

Applying the above d e , we find that classes Cabin, Door, and Control become one class, We

aIready know from the second example that if User depends on a part of a class. then User also depends

on the composite class. Thus, User must also have a Dependency and an Association relationship to the

composite cfass Elevator. As mentioned before, the types of classifier abstractions are relevant. For

instance, if we were to abstract two interface classes, then the resulting class will also be an interface

class.

7.3.1.3.2 Abstraction Patterns

For a transformation tool to automatically support abstraction, abstraction rules must be

provided. Figure 49 shows two simple structures for abstraction rules (the top stnictwe is for the classifier

abstraction and the bottom structure is for the relation abstraction). Abstraction rules follow a simple

concept. They define an input and an output pattern analogous to the "given" and "implies" pattern we

used previously. Furthermore. the output pattern should be simpler (more abstract) than the input pattern,

thus, guaranteeing that each applied abstraction rule indeed yields an abstraction.

A classifier abstraction rule should have an input pattern of at least two classifiers with or

without a relation between them. The corresponding output pattern should then be at least a single

classifier. An example or this kind of abstraction pattern was given in the Cabin-Door-Control diagram in

Figure 48. There, we found an input pattern representing a structure of two classes with an association

relationship betwecn them. The output pattern was a single class.

[RelaUombp Classifier Relationship Classifier
Input: x x x x

)

Reiationship j
\ ~Stereolyp .~ 1 dtereotypev aStereorype9

C l d ~ e r
Output:

*Stereotypev

! 1 Cider
7

Relationship Classifier Relationship
Input: x x

C M c r
X 1 a ~ t e r e o r y ~ e ~ 1 a~tereotype* *stereotypu ~S tereo~pes astenotypew - - 3 -

Output patterns must conform to UML constraintsr

Figure 49: Simple Input/Output Structure Patterns for Abstractions

The lower half of Figure 49 shows the equivalent simple rule structure for the relation

abstraction. There the input pattern consists of two relationships connected via a classifier, which can be

abstracted into a single relationship. Figure 48 gave two examples for relation abstraction (Guest-Hotel-

Room and Driver-Car-Compact-Car). Like in the classifier abstraction, the input pattem should be more

complex than the output pattem. Otherwise, the abstraction algorithm presented later could be non-

deterministic. The rules in Figure 48 represent a simple 2(3) to 1 abstraction pattern; however, our

mechanism also applies to more complex input and output patterns, as will be discussed later.

7.3.1.3.3 Rules and Reliabilities

Figure 50 shows a Iist of input and output patterns (rules) for chss abstraction rules. The

structure used in Figure 50 follows that discussed in Figure 49. The left side depicts the class input

patterns and the right side (after "equals") depicts the class output patterns. Rule 3 in Figure 50

corresponds to the Compact-Car-Car-Driver pattern in Figure 48, rule 24 corresponds to the Guest-

Hotel-Room pattern, and rule 46 corresponds to the Elevator-User pattern. We also analyzed the semantic

dependencies between other classes and their relationships and, thus, were able to derive 47 additional

abstraction rules. Note that the direction of relations is indicated by their name. If the relation name is

used with no add-on, then a forward relation (a relation from left to right) is meant. If the string

"Reverse" is added then a backward relation (a relation from right to left) is meant.

The number at the end of each ruie indicates its reliability. Since patterns and rules are based on

semantics. the rules may not always be valid. We use reliability numbers as a form of priority setting to

distinguish more reliable rules from less reliable ones. This priority setting is applied when deciding what

rules to use when, such that more predictable rules are applied first. The reliability numbers can be

between 0 and 100 (100 for high and 0 for low). Since composite model elements are derived through

class abstractions rules and since those rules have reliability numbers attached, it follows that the

composite model elements inherit the reliability number h m the rule(s) from which they were created.

For instance, if a composite relation was created through ruie 24, then the composite relation has the

reliability of 100. If a composite model element itself consists of another composite model element then

the reliability numbers are multiplied as factors of 100. E.g., if a very reliable rule (90) was followed by a

Generalization x Class x Generalization equals Generalization 100
Generalization x Class x Dependency equals Dependency 100
Generalization x Class x Association equals Association 100
Generalization x Class x Aggregation equals Aggregation 100
Dependency x Class x Generalization equals Dependency 50
Dependency x Class x Dependency equals Dependency 100
Dependency x Class x Association equals Association 50
Dependency x Class x Aggregation equals Dependency 70
Association x Class x Generalization equals Association 70
Association x Class x Dependency equals Dependency 50
Association x Class x Association equals Association 100
Association x Class x Aggregation equals Association 100
Aggregation x Class x Generalization equals Aggregation 50
Aggregation x Class x Dependency equals Dependency 50
Aggregation x Class x Association equals Association 90
Aggregation x Class x Aggregation equals Aggregation 100
Generalization x Class x DependencyReverse equals DependencyReverse 100
Generalization x Class x AggregationReverse equals AggregationReverse 100
Dependency x Class x GeneralizationReverse equals Dependency 100
Dependency x Class x AggregationReverse equals Dependency 80
Association x Class x GeneralizationReverse equals Association 100
Association x Class x DependencyReverse equals DependencyReverse SO
Association x Class x AggregationReverse equals Association 70
Aggregation x Class x Generalizationileverse equals Aggregation 100
Aggregation x Class x DependencyReverse equals DependencyReverse 80
GeneralizationReverse x Class x Dependency equals Dependency 50
GeneralizationReverse x Class x Association equals Association 70
GeneralizationReverse x Class x Aggregation equals Aggregation 80
DependencyReverse x Class x Generalization equals DependencyReverse 50
DependencyReverse x Class x Aggregation equals DependencyReverse 100
DependencyReverse x Class x Association equals DependencyReverse SO
AggregarionReverse x Class x Generalization equals AggregationReverse 80
AggregationReverse x Class x Dependency equals Dependency 100
AggregationReverse x Class x Association equals Association 100
GeneralizationRev x Class x GeneralizationRev equals GeneralizationRev 100
GeneralizationReverse x Class x DependencyRev equals DependencyRev 50
GeneralizationReverse x Class x AggregationRev equals AggregationRev 50
DependencyReverse x Class x GeneralizationRev equals DependencyRev 100
DependencyReverse x Class x DependencyRev equals DependencyRev 100
DependencyReverse x Class x AggregationRev equals DependencyRev 50
AggregationReverse x Class x GeneralizationRev equals AggregationRev 100
AggregationReverse x Class x DependencyRev equals DependencyRev 70
AggregationReverse x Class x AggregationRev equals AggregationRev 100
Class x Generalization x Class equals Class 99
Class x Dependency x Class equals Class 99
Class x Association x Class equals Class 99
Class x Aggregation x Class equals Class 99
Class x GeneralizationReverse x Class equals Class 99
Class x DependencyReverse x Class equals Class 99

. . Class x AggregationReverse x Class equals Class 99
Figure 50: Abstraction Rules for CldObject hgrams

less reliable rule (50) then the overall reliability of the resulting composite model element is 90 * 50 1 100

= 45. The heuristics were derived through experimentation with dozens of models (some of which

provided by industry). The heuristics should. however, not be interpreted as fixed. Domain- or company-

specific needs may well require their adaptation.

73.1.4 Complex Abstraction

Thus far, we discussed the basics of our abstraction approach. This section will discuss

extensions to cover more complex types of abstraction issues.

7.3.1.4.1 Serial Abstractions

Serial abstractions were already implied previously when we talked about the possibility of

applying multiple abstraction rules in a sequence. Figure 51 illustrates such a case. There, at the upper

left, an association relationship between Person and Car is described. It is stated that the Person inspects

the Car, that Mechanic is-a Person and that Volkswagen is-a Car (note that the &-a relationship denotes

inheritance).

If it is of interest to know the more abstract relationship between Mechanic and Volkswogen,

then our abstraction process can be applied in sequence to eliminate both helper classes Person and Car.

For instance, rule 2 could be used to eliminate Person and replace it with a simple association

relationship (upper-right). Alternatively, rule 17 could be used to eliminate Car (lower-left). In both

cases, we are left with less complex, more abstract three-class configurations. By applying our abstraction

is-a

Mechanic
. . . . - ,

: Mechanic
f - . - - -- . - - --

Person
E r I X l

Car i

-
is-a

Mechanic ~olicswa~en --

Figure 51. Serial Abstraction

rules on the already partially abstracted diagrams, we can M e r abstract that configuration. For instance,

if we had chosen rule 2 above, then rule 17 could be applied next. Similarly, if we had chosen rule 17

initially, then rule 2 could be used next, In both cases, the resulting abstraction results in an (composite)

association going from Mechanic to Volknvagen. Since these abstraction rules (2 and 7) were equally

reliable (we used the same rules, only in a different order) and resulted in the same composite type (an

association), both results can be merged together into a single association.

Serial abstraction therefore enables more complex abstraction tasks where a larger number of

classes can be eliminated. Generally, all abstraction paths need to be explored, In case an abstraction path

yields a different result than another abstraction path (between the same two classes), both should be

considered valid unless one path yields a significantly more reliable result than the other one.

7.3.1 A.2 Complex Rules

A11 the rules presented in Figure 50 are of the simple three-class to two-class pattern. Those

patterns could be made more complex as well. For instance, the example in Figure 51 could be

transformed into a more complex abstraction rule of the form:

Given: Generalization - > Class - > Aggregation - > Class c- Generalization

Implies: Association

It follows that complex abstraction rules can be used in place of serial abstractions. The

advantages of using more complex abstraction patterns are better reliability and better coverage. The

reliability is improved since ambiguous abstraction paths and, thus, ambiguous abstraction results are

contained. For instance, in Figure 51 we found two abstraction paths. With a complex abstraction rule

like the one above, that ambiguity is eliminated and only a single abstraction is found. Complex

abstraction rules also improve the abstraction coverage (the situations they are applicable to) since those

1 State x Link x State equals State 100
State x LinkReverse x State equals State 100
StartState x Link x State equals StartState 50
State x LinkReverse x Statestate equals StartState 50
State x Link x EndState equals EndState 50
EndState x LinkReverse x State equals EndState 50
Link x State x Link equals Link 100
LinkReverse x State x LinkReverse equals LinkReverse 100

Figure 52: Abstraction Rules for State Dingrams

Package x Dependency x Package equals Package 100
Package x Generalization x Package equals Package 100
Package x DependencyReverse x Package equals Package 100
Package x GeneralizationReverse x Package equals Package 100
Dependency x Package x Dependency equals Dependency 100
Dependency x Package x Genexalization equals Generalization 50
Generalization x Package x Generalization equal Generalization 100
Generalization x Package x Dependency equals Dependency 100

Figure 53: Abstraction Rules for Package Diagmms

complex rules tend to be more specialized. For instance, there are situations were more specialized rules

(e.g., domain specific rules) can be created and validated more easily than more general rules. The

following will discuss that briefly.

7.3.1.4.3 Specific Rules

The current set of rules listed in Figure 50 cover the generic semantic relationships within UML

class diagrams. More specialized rules can be generated based on domain specific knowledge. Also,

currently only association, generalitation, dependency, and aggregation relationships are supported.

Additional information, such its stereotypes or tagged values, could be used to further specialize those

rules. This information may be used I) to refine the meaning of rules and 2) to extend the rule set to

another set of rules. Furthermore, both abstraction methods can be generalized onto other types of

diagrams. Figure 52 and Figure 53 depict abstraction rules for package and state diagrams respectively.

Again, those rules could be specialized if needed.

7.3.1 5 Abstraction Algorithm

Figure 54 depicts the basics of our abstraction algorithm. As input, a concrete model (e.g., class

diagram) needs to be provided, Furthermore, it must be specified which model elements should be

1. input: concrete model elements and collection of classifiers/relations
2. find all paths between each classifier/relation pair
3. for each path

abstract path by recursively applying abstraction rules until:
- a composite model element has been found,
- no abstraction rule can be applied, or
- the reliability of composite model element becomes too small
(reuse existing composite model elements if applicable)

4. for all abstractions corresponding to a single classifier/relation pair
eliminate less reliable results or duplicate results of the same type

Figure 54. Abstraction Algorithm

abstracted. All possible paths between the selected model elements are then identified. Each path is

abstracted individually using the rules from Figure 50. The abstraction process terminates if (1) a suitable

abstraction is found, (2) no more abstraction rules can be applied, or (3) the reliability number of the

composite model element becomes too small (too unreliable). Note that the abstraction process has to be

applied repeatedly for every model element permutation of the input collection. The resulting complexity

of the algorithm (0(n2)) is, however, reduced by reusing intermediate composite model elements that

have k e n abstracted previously. FinalIy, at the end, less reliable paths as well as duplicate paths are

eliminated. For instance, if two different abstraction paths between the same two classes yield the same

types of abstractions, then they can be merged together.

7.3.1.6 Specialized Abstraction

has
Our generic abstraction L! ! ! !

:-J - . 1 ..-
mechanism works for box-and-arrow

Room I

types of diagrams. Abstracting only

stays-at -
0.:. Guest

boxes and arrows, however, oniy covers Figure 55. Cardinality Examples between Classes

some features that diagrams incorporate. Figure 55, depicts a class diagram showing the relationships

between Hotel, Guest, and Room again. Additionally, the figure depicts the cardinality between those

classes. For example, a Guest may stay at one or many Hotels and a Hotel may have zero to many Guests.

Also, a Hotel may have one to many Rooms and each Room belongs to one Hotel (the diamond at the end

of that line shows a part-of relationship that has cardinality one unless defined otherwise). Cardinality

issues are specific to class diagrams in UML. Its abstraction requires additional measures that do not

apply to package or state diagrams.

Abstracting cardinality must, therefore, be treated separately. Otherwise, the process of

abstracting Hotel, Guest, and Roam, loses the cardinality between Guest and Room. How this can be

avoided is depicted in Figure 56 where various cardinality scenarios and their abstractions are shown. The

fmt scenario (a) indicates that for each classifier A there is exactly one classifier B and, similarly, for

each classifier B there is exactly one classifier C. It follows that for each classifier A there must be

Figure 56. Cardinality Examples and their Abstractions

exactly one classifier C. Going through examples "a" to "d," we find that we can derive abstracted

cardinalities by multiplying individual cardinalities associated with the same direction.

Cardinalities may also have ranges as depicted in examples "e" and "f* in Figure 56. In the case

of ranges, the minimum values must be multipIied to yield the abstract minimum range and the maximum

values must be multiplied to yield the abstract maximum range. In case a finite value (e.g., one, two, etc.)

is multiplied with an infinite one (e.g., *, n, many, etc.), the result wiil always be infinite (the exception is

if the finite value is zero, in which case the result will be zero). In case a value is multiplied with a range

(example "e"), the value must be multiplied with the lower and upper bounds individually.

For our abstraction algorithm to also address cardinality issues, we have to rnultipIy the

cardinality numbers whenever two associations or aggregations are abstracted. Other abstraction issues

related to other types of diagrams must be addressed similarly on an individual basis if applicable.

7.3.1.7 Example

Figure 57 gives a simple example of how abstraction rules are applied to generate a simpler,

more abstract class diagram from a collection of three diagrams. Class diagram 1 shows the relationships

Class Dingrun 2
Passenger I

I ; ; -
I ! ' is-used-by - . , Location / I i 4 ~ircraft i

-- I i
I

, ispiloteaby :
! i i Pilot 6 -

is-a is-piloted-by
. -

Employee !' , -
mhicle aircraft is-a employee

is-used-by passenger is-a -
is-a I Passenger I is-a -- Petson

*-

-- --
I

Pilot
- a

Figure 57. Simple Example of Generated Abstractions from &me Input Diagrams

between people in a simplified Air Traffic Control system. It depicts a parent class Person for the main

actors Pilot and Passenger (generalization connectors are used), Diagram 2 describes a Flight, which has

a Location at any given time and which uses an Aircrafl as a vehicle (aggregation connectors are used).

Diagram 3 shows the relationship of the people and the Aircrafi (dependency connectors are used).

Using these three diagrams as input to our abstraction dgorithm, we can generate a simpler

model that only shows the relationships between Person, Pilot, and Flight. Since these components are

not connected directly to one another in the input class diagrams, our abstraction process can derive their

transitive relationships using the rules defined in Figure 50. The relation names in Figure 58 are preceded

by "dx ived~" to indicate that they were generated automatically.

Between Flight and Person, there is a transitive relationship from Flight to Aircrufi to Passenger

and finally to Person. Figure 58 shows the abstraction process. Both Aircrafi and Passenger can be

eliminated by applying rules from Figure 50. Note that the process looks slightly different if Passenger is

eliminated first (the rules would be applied in reverse order). In this example, the result is the same, but

this may not always be the case.

The relation abstraction process outlined above was adopted by Rational Software and

implemented in a tool called RosdArchitect (by Ensemble Systems for Rational Software [Egyed and

Knrchten 19993). As part of this work, we aIso implemented our own version of classifier and relation

abstraction into a tool called UMUAnalyzer. Our version incorporates all features of RosefArchitect. and

also addresses repository issues. scalability issues. retiabilities, classifier abstraction, more complex

abstraction patterns, and C2 architectural style support. Our W A n a l y z e r tool is discussed in Section 8.

vehicle - 1 7
, Aircraft - i s - u s e Passenger L i s a + 1 Penon ; -

Figure 5%: Generating transitive relationship from Flight to Person

7.3.2 Generalization

Generalization aggregates specific information into a more generic form. For instance, a test

scenario depicts one very specific form of interaction. Since it is usually not possible to generalize from

single scenarios (or single examples), generalization takes multiple scenarios and unites them into more

generic scenarios (e.g., sequence diagram) or even generic diagrams (e.g., class diagram). UML, uses

sequence, collaboration and object diagrams to describe specific issues. To generalize those into more

generic diagrams (e.g., class and state diagrams), we have adopted and extended the sequence-to-state

transformation method from Koskimies et- a1 [Koskimies et al. 19983 as well as object-to-class

transformation from Ehrig et al. [Ehrig et al. 1997).

Generalization techniques for various WML views are similar in that they have to take multiple

sources of input and merge them together to infer more generic knowledge. For instance, in the case of

object to class generalization, an object diagram shows specific examples of how objects access other

objects. By merging all information about any two objects' interactions, we can infer the general

interaction of their types-the classes. Likewise, Koskimies' [Koskimies et al. 19981 sequence to state

generalization takes multiple sequence diagrams as input and merges them by interpreting ca l ldre tm as

state changes. Koskimies' approach has the downside that state changes do not always correlate one-to-

one with procedure calls. Thus, we improved their approach by also relating calls to class methods, which

in turn specify whether or not they alter the state. Using this additional information. the sequence to state

consolidation becomes more reliable. Cunently some tool support is available to automate generalization

(e-g., Koskimies' SCED tool [Koskimies et al. 19981 automating sequence to state transformation).

7.3.2.1 Sequence to Statechart Generalization

At least two groups of researchers have been developing ways for generalizing sequence views

into statechart views ([Schonberger et al. 19991 and [Koskimies et al. 19981). Their approaches are very

similar and both are discussed in related works in Section 10. Basically, both make the assumption that

state changes as depicted in statechart views are triggered by method calls. Methods are operations of

classes that can access and m o d i ~ attributes (e.g., variables) of their own classes or other dependent

classes. Sequence diagrams describe when and in what order methods are called. Similarly, a statechart

depicts in what order a class state can change.

Both generalization approaches have drawbacks and the reasons for those are simple. Sequence

views contain some statechart-relevant information, but not all of it. For instance, the information

whether a method call in a sequence diagnm causes (or does not cause) a state change in a state diagram

is ambiguous. Thus, it is difficult and sometimes impossible to generate a complete statechart out of

sequence diagrams. We extended Koskimies' approach in the following:

Use of class information to infer method type (query, action, activity): We use that information to

improve reasoning on whether a method call causes a state change (e.g., yes if action; no if query).

Use of "return" links to differentiate between end-of-methods and new method calls: We use this

information to qualify sequence links (e.g., to add semantic meaning to arrows).

Figure 59 shows an example of transforming two sequence diagrams (top haif) into statechart diagrams

(lower half). The sequence diagrams depict the interaction between a generic File class and a domain

specific GuestAccess class. File is used to store guest information. GuestAccess, in turn, is used to

provide a nicer interface for Fife. The first sequence diagram depicts a scenario where guest (instance of

Guesulccess) constructs a new object called fl (instance of type File) and then opens the file. The second

sequence diagram depicts a scenario where guest reads from$? (of type File) and after the read operation

is finished (after return) adds some data to f2. The sequence diagrams in Figure 59, although only

scenarios, allow one to infer a Iot of generalizable information.

(I) If a method (e.g., construct) creates a new object, then this method must be a state transition

initiating from a start state

(2) If a method (e.g., open) is a regular message link then this method must be either an activity,

action, or query (no state change, regular state change, or circular state change).

(3) If a method (e.g,, read) has to be completed before another method (e.g., add) can be startedn

then those methods cannot lead into parallel states.

Figure 59. Sequence to State GeneralizatiowBasics

Given sequence diagram information, we could not infer of what type open and read are abou~

They could be either circular state transitions, regular transitions between states, or activities as part of a

state. To reason about those ambiguous properties, Figure 59 additionally shows a specification of class

File, There we can tell that open and add are actions and that read is a query. Using that information, we

can derive two statechart diagrams. The k t one (depicted in the lower-left of Figure 59) shows the

construct method initiating out of a start state. Since open is an action, it follows that it causes a state

transition between two states. The stereotype <<end>> attached to one of the states indicates that no

additional information is available to reason about what is going on thereafter. Since nothing can happen

before a start state (horn an object's perspective), this case requires no explicit handling. The second state

diagram in the lower-right of Figure 59 shows two states and two state transitions. The read state

transition is circular since the read method is of type query and cannot change a state. The udd state

transition, however, bridges between two distinct states since it is of type "action." Since sequence

diagrams do not describe the relationships among themselves, we cannot yet reason about how the first

state diagram fits with the second one. The second derived state diagram, therefore, uses the stereotypes

<<begin>> and <<end>> to indicate that other things can happened before or after those states. For

instance, it is possible that the <<end>> state of the first state diagram is identical to the <<begin>> state

of the second. Figure 60 depicts another set of scquence diagrams and their corresponding statechart

diagams. Two additional rules can be observed:

(4) If a method (e.g., destroy) removes an object, then that method must be a state transition

terminating in an end state

(5) If a method (e.g., delete) was not declared, then assume it to be a sate transition

Combining the statechart diagrams in Figure 59 and Figure 60, generalization yields five

interpretations (ail about states of the ctass Fife). Although those interpretations are separate fiom each

other, it is nevertheless possible to combine them to yield a more compact state diagram. Statecharts can

be combined via common state transitions that normally indicate common states. For instance, Figure 60

depicted two similar state transitions; one going via open, add, delete, and close; the other omitting

; auest: J f3:rnq
'QumxSaa ---

open >
add >

delete
1 add ,

Figure 60. Sequence to State Generalization-Extended

delete. We can therefore infer that the method delete may or may not follow the method add, Combined

with Figure 59, it can be seen that either the method open or the method destroy may follow construct.

Combining all those pieces of information, we find a mote compact-minimal-statechart diagram

(see Figure 6 1). Note that transformation for synthesis and transformation for analysis have distinct goals.

For instance, in transformation for synthesis, a minimal statechart diagram is much more beneficial,

whereas for view integration (analysis) bits and pieces are more beneficial. The latter is the case since the

open

- - - - L

--
4--
read

. .

destroy
- - - - - - - - 0. minimal

statechart piece of class 'File'

delete

close
close

Figure 61. Minimnl Statechart Diagram

107

minimized version makes the assumption that sequence diagrams cover all relevant usages. Since it is

possible (even likely) that not all behavioral variations have been modeled as scenarios. the above

assumption may not be valid in these cases.

7.3.2.2 ObjecttoClass&neralization

An object diagram depicts instances of classes and how they interact. As such, an object diagram

represents a scenario of one possible instantiation of a class diagram. Since object diagrams are in

structure simiIar to class diagrams (in fact, UML uses the same view type to represent both), it seems

natural to use class diagrams for generalization purposes. Figure 62 depicts a simple object diagram for

Figure 62. Object Diagram

Figure 63. Generalized Object Diagram Represented as Class Diagram

an elevator system. The diagram depicts a very trivial realization of such a system where only one shaft

with one cabin exists and the elevator can only go between two floors. For the elevator control, sensors

are attached to floors, shafts, and doors, indicating the positioning of the cabin relative to the floors and

the state of the door (open or closed).

Generaiizing an object diagmm is trivial because the semantics of boxes and lines are the same

as in class diagrams. Figure 63 depicts the generalization of Figure 62. If an object does not indicate its

type (its class), a dummy "class" with unknown type must be created. The generalization method

additionally keeps track of how many instances of the same type were attached to the same instance of

another type. For instance, shafiA has exactly one cabid . Thus, there is a one-to-one relationship

between Shafi and Cabin. Further, there are two instances of FIoorDoor (called ShufiDoorl and

ShaftDoorZ). Each instance of FioorDoor has exactly one instance of DoorEngine and three instances of

TouchSensor attached. Thus, there is a one-to-one relationship between FIoorDoor and DoorEngine and a

one-to-three relationship between FhrDoor and TouchSensor.

As with sequence diagrams, multiple object diagrams yield multiple cIass diagrams. Those class

diagrams can then be merged together to yield a minimal class diagram. Unlike with statecharts,

minimizing class diagram has no risks attached and can be done by default since object and class

diagrams are more structural than sequence and state diagrams. Object view to class view generalization

exhibits the following situations (patterns):

(I) If there is a link between objects, then there must also be a link between their corresponding

classes.

(2) If there is more than one object of the same type attached to another object (of a different

type), then this denotes cardinality. The Iower and upper bounds of that cardinality are

derived from the minimum and maximum numbers observed.

(3) If objects of the same type are attached to one another, then there must be a circular link

between their corresponding classes.

7.3.23 Generalization Rules and Automation

The generalization scenarios described in this section are very distinct. They have, however, two

properties in common. First, they transform instances into types (e.g., calls into state transitions or objects

into classes). Second, they combine information fiom multiple instances to yield more generic results.

The information used for generalization are the interdependencies between classifiers (we Figure 64).

Currently, we have adopted a third party tool called SCED [Koskimies et al. 19981 for sequence to state

generalization. We have no tool support for object to class generalization.

7.3.3 Structuralization

Structuralization takes information about behavior to infer structure. For instance, a test scenario

depicts interactions between objects. Since it is usuafly not possible to infer behavior out of structure,

Figure 64. G e n c ~ t i o n Patterns

structuralization is unidirectional from behavior to structure (ergo structuralization). UML uses sequence

and statechart diagmms to describe behavior. To structuralize them, we create object and class diagrams.

In particular, sequence diagrams get structuralized into object diagrams and statechart diagrams get

structwalized into class diagrams (recall, our discussion in Sections 5.4 and 5.5 as to why we chose these

types of views and transformations).

73.3.1 Sequence to Object Structurrlization

A sequence diagram depicts the interactions between multiple objects. For structurdization, ow

primary interests arc what objects interact and what the directions of their interactions are. For

structuralization it does not matter when the interaction happens (as opposed to generalization). There is

no distinction between whether interactions occur frequently over a short period of time or only once

during a lifespm of an object. In both cases, the objects interact.

Figure 65 depicts a complcx sequence diagram. The fijye describes the interactions between a

reservation clerk and a hotel reservation system and the scenario in particular depicts a regular reservation

process: the reservation clerk initiates a make-reservation activity with the reservation application

(ReservationApp). The latter causes service objects and user interface objects to be called, The details of

the interaction are only of secondary importance. For sequence structuralization, only the existence and

direction of interactions matter. For instance, only the object ResewationApp calls the object

Reservation Handler. ReservationHandler, in turn, calls a number of other objects (instances of Hotel,

Guest, Reservation, and Transaction). Note that only the type of objects (their classes) were specified in

the diagram, but not their names.

Figure 66 depicts the structuralized view of Figure 65. The figure shows the same objects, their

interactions, and the methods used. This particular example only represented one-to-one relationships. If

objects of different types wouId interact with the m e object then one could also record what methods

are actually used by what types. For instance, if Hotel would also access Guest via the method find, then

one could distinguish between methods used by Hotel and methods used by Reservation Handler. That

information has no immediate use for view integration for UML; however, it could improve the

Figure 65. Sequence Diagram

understanding of objects, classes and their interrelationships. The sequence diagnm therefore

incorporates a series of structuralizable information. The following lists some common patterns:

If there is a link from one object's bar (vertical pole) to another object's bar, then this

denotes an association between those two objects (direction of association is equal to

direction of link).

If there is a link from one object's bar to another object (its box on top of the bar), then this

denotes an association with the added information that the link method is a constructor (the

method created another object).

If there is a link from one object's bar to another object's termination (cross at the end of an

object's life), then this denotes an association with the added information that the link

method is a destructor (the method destroyed another object),

Figure 66. Sequence Diagram Stmcturalized into on Object Diagram

73.3.2 Statecharts to Class Structuralization

Statechart diagrams depict the generic behavior of classes. UML requires states to belong to

single classes. For structuralization, our interest is how statechiut diagrams of different classes interact.

Figure 67 shows a class diagram with two classes called Cabin and Door as part of our elevator system.

Each class has a statechart diagram attached. The statechart view for Cabin indicates that the cabin may

be either stopped, moving down, or moving up. Similarly, the statechart view for Door indicates that a

door may be opened or closed, or somewhere in between opening or closing. The example in Figure 67

also depicts one interesting relationship between the two statecharts. The statechart view of Cabin

describes that a cabin can only start moving once the state of its Door is closed. The implication of this is

that cabin has to be aware of door and, thus, cabin has to be able to access the state of door. For

structuralization, we learn that there is a potential association From Cabin to Door.

This example shows an interesting transformation variation. So far, it was possible to transform

views by transforming their boxes and arrows, Although both stirtechart and class views use boxes and

arrows, it is not the boxes or arrows that describe relevant information for structuralization. Instead, here

textual annotations in form of events, actions, and triggers are used. Those textual annotation are

nevertheless defined model elements in UML We can observe the following situations:

(1) If a transition of one statechart is tied to a state of another, then this indicates an association

between the classes to which those statecharts belong.

statechart for Cabin
- *.-- -- . - - -

stopped ' - -

-- - -.
statechart for Door

class structure

. C ..- -
opened

Figure 67. Structuralizing Statechart views into Class Views

(2) If there is a transition in one statechart view that is triggered by a transition in another

statechart view, then this indicates an association (in either direction) between the classes to

which those statecharts belong.

(3) If there is a state in one diagram that is tied to a transition in another diagram, then this may

indicate an association between their corresponding classes.

(4) If there is a state in one diagram that is tied to a state in another diagram, then this may

indicate an association between their corresponding classes,

7.3.3.3 Structuraliurtion Rules and Automation

Both structuralization examples exhibited similarities since in both cases it is knowledge about

the interrelationships between two groups of data that helps infer structure. In case of sequence to object

structuralization, it is the links between the T-like graphical items in sequence diagrams that denote

interdependencies (see left side of Figure 68). Similarly, in the case of state to class structuralization, it is

the links between statecharts belonging to separate ciasses that denote interdependencies (see right side of

Figure 68. Structuralization Patterns

Figure 68). Note that in the latter case, there must not always be graphical elements relating to

interdependencies, Instead, textual annotations could be used. The information used for structuralization

are the interdependencies between elements belonging to different classifiers (see Figure 68).

7.3.4 Translation

Translation is the fourth transformation category discussed in this thesis. Translation handles

conversion of modeling information without altering its level of abstraction, behaviorism, or generality.

For instance, in CTML there are two types of views to model specific behavior: sequence diagrams and

collaboration diagrams. Instead of having to provide abstraction, structurdization, and generaIization

techniques for both sequence and collaboration diagrams, we could instead provide a translation from,

e.g., collaboration diagram to sequence diagrams and abstraction, generalization, and structuralization on

sequence diagrams only. Thus, translation can minimize the effort required to realize additional

transformation methods.

Translation also enables the switching of models to continue the transformation sequence. To

revisit Figure 43, we see another example where transformation would be very helpful. In scenario d) we

discussed the case of having to transform both views into a third common view to enable comparison. Of

course, this third view could be any graphical view discussed before; however, it could also be some

formal constraint language underneath h e graphical notation. Applied to UML, we could choose the

Object Constraint Language (OCL) warmer and Kleppe 19991 as an alternative view for describing and

comparing modeling information. Thus, OCL could be used to represent the 'something like C' box in

Figure 43 (d). Translation is then needed to transform modeling information fiom UML into OCL.

Another scenario in which translation becomes important is when it comes to replacing or

substituting existing views with new types of views. For instance, in the case of UML, we might find the

class view not always the ideal view for representing generic and abstract concepts. Instead, we might be

tempted to choose a type of view outside our defined modeling environment (e.g., UML, in our case). For

example, if we wish to build a software system consisting of dynamic and concurrent components we

could choose the architectural style C2 [Taylor et a]. 19961, In [Abi-Antoun and Medvidovic 19991 a

translation technique is shown for converting C2 modeling information into UML. The issue of

translation is not further explored in this thesis.

7.4 Complex Transformation

The comparison of different types of views is greatly simplified through the four types of

transformations discussed before. However, on a grander scale, these techniques also have to be

integrated with one another to ensure continuity and scalability. This section therefore addresses critical

aspects of complex transformation-that of finding transformation paths. We refer to the integration and

serial execution of simple transformations as complex transformations.

In simple terms, complex transformation is needed whenever no simple transformation exists.

Figure 69 summarizes the complete list of simple transformation paths currently supported through our

framework. Technically, the figure should depict a fully connected graph where each view (box) is

connected to every other view (box). Since we are supporting nine categories of views (behavior versus

structure; instance versus type; and concrete versus abstract), it follows that we would needed 36

transformation methods. Currently we only support 14. Despite the partial coverage of needed

transformation methods, we can still compare all views with one another. The solution is in the

integration and serial execution of multiple transformation methods.

Figure 70 depicts examples of how a complex transformation bridges a concrete sequence view

with an abstract class view. Having 14 simple transformation paths available (Figure 69). we can derive a

number of complex transformation paths for bridging a concrete sequence diagram with an abstract class

diagram. For instance, we could structuralize the sequence view to an object view, abstract the (still

behavior .. structure

Figure 69. Tdormation lMethals and Patbs

concrete) object view to an abstract object view, and finally generalize from the object view to the class

view. This complex transformation scenario involves the serial execution of three transformation

methods, resulting in a number of intermediate models. This particular example, depicted as "a)" in

Figure 70 is, however, only one of many transformation options. Exiunple "b)" shows that an abstract

class view can also be derived by structuralizing the sequence view to an object view, generalizing the

object view to a class view, and finally abstracting the class view.

Examples "c)" and "d)" show additional paths for deriving class views. Altogether, there are six

paths but no transformation path is superior to the other unless differences in reliability allow their

elimination (our reasoning in Section 7.3.1 on how to reuse and eliminate transformation results remains

valid for complex transformation). Thus, all (or most) paths should be followed since together they may

yield more comprehensive results. hnproved comprehensive results are achieved because different

intermediate models are used during complex transformation (such as object or state diagrams in the

behavior structure

Figure 70. Complex Transformation Paths

above example). These intermediate models contain different model information and thus result in

different interpretations. Subsequent transformation, therefore, builds on different intermediate models

and interpretations, which, in turn, may build complementary results.

The advantage of having a transformation framework, such as the one in Figure 69, is that it

limits the number of possible transfornation paths. If bi-directional transformation were fully

automatable, then we could potentially derive a much larger number of transformation paths between any

two views. The uni-directional nature of transformation, combined with the fact that no circular

transfomation paths exist, results in a waterfall-like transfomation framework. The background arrow in

Figure 69 depicts this. The large gray arrow indicated in the figure, shows that views can only be

compared by transforming views from the upper-left to the lower-right. Those transformation paths

follow along the lines depicted in Figure 43 "c)" and "d)" in page 83 where one view is transformed so

that it is more easily comparabIe in the context of the othet. In case two views fall conceptually into the

same view quadrant (e.g., both are concrete, specific, and behavioral as in the case of sequence and

1. Check for (transitive) traces from one to the other.

If none found then stop.

2. Pind common denominator

If none found then stop.

3. Pind all transformation paths between each view and its denominator
4. Serially execute remaining transformation paths

5. Combine execution results
-

Figure 71. Complex Transformation Algorithm

collaboration diagrams), translation can be used to transform one to the other andlor a direct comparison

can be attempted (the latter case is supported through the technique depicted in Figure 43 "a)").

However, how can we compare views where neither one can be transformed to the other? For

instance, how can we compare an object diagram with a state diagram? There is no simple or complex

transformation path available. Our framework enables their comparison indirectly by finding a common

denominator. In the case of object and state diagram, a common denominator is a class diagram. The

object diagram can be generalized to a class diagram and, similariy, the statechart diagram can be also

structuralized to a class diagram. In the context of the class diagrams, the two can then be compared. This

comparison scenario falls dong the line depicted in Figure 43 "d)."

Figure 71 describes the complex transformation algorithm. The algorithm requires source and

target views as an input. The first step checks, whether trace information between the source and target

environment exist. The trace information guides the transformation process and, if none is found,

indicates that fully automated transformation is not possible. Step two searches for a common

denominator based on existing transformation methods. Again, if none is found, then transformation is

not possible. Based on the denominator, all possible transformation paths can be identified and executed

(steps 3 and 4). After execution, results can be combined or unreliable ones can be eliminated.

One remaining issue is the quality of intermediate models in handling complex transformations.

The question is, are the intermediate models adequate for this task? For instance, if an intermediate view

is used to compare a source and target view, but the intermediate model only captures a part of the

redundancy between source and target views, then that view alone does not enable a comprehensive view

transformation and subsequent comparison. Figure 72 depicts such a case in the context of sequence,

redundancy between
sequence and class views

(potential source for

(object A b k only part of the

view redundancy space (only
partial transformation)

Figure 72. Lack of Intermediate Views in Covering Full Transformation

class, and object diagrams. Sequence and class diagrams share some modeling information, thus

exhibiting some amount of redundancy. The figure depicts the redundancy as overlaps between the

modeIing spaces (ellipses) covered through sequence views and class views respectively. As we had

discusses in Section 7, it is the view redundancy that enables automated analysis. Or in other words, it is

the information that is shared in multiple views that might become inconsistent.

For transformation this entails two challenges: (1) view transformation should transform all

redundant information; and (2) intermediate views need to capture all redundant information. As it was

discusses previously, our framework does not support a direct transformation between sequence and class

views. Instead, that transformation is broken up into two sequential and simpler transformations, e.g.,

using object views as intermediate views between them. Object views, however, only capture a part of the

redundancy between sequence and class views (see Figure 72). Thus, this type of complex transformation

is not fully effective and information is lost in the process. There are three potential options for

addressing this issue:

(1) Introducing additional intermediate views: For instance, if a single intermediate view does not

adequately cover dl redundant model information, then additional views could be introduced andlor

the current views be extended. For instance, in our sequence to class transfomtion problem, we

could use statechart views in addition to object views to transform a wider range of modeling

information (recall our discussion that all complex transformation paths need to be explored).

(2) Building simple transformations: Instead of using intermediate views to transform sequence to class

views, a direct transformation method would be introduced. That step would not require an

intermediate view and thus could handle all redundant information. Since ow goal is to minimize

transformations, we could choose to implement a direct sequence to class transformation covering

only those modeling elements that are not covered through complex transformations. Thus, we would

not have to build a complete additional transformation method.

(3) Extending the underlying model: Instead of just transforming information that is needed by the

derived view, additional information can be added. For instance, structuralization from sequence to

object would also add class information. Since views cannot support that additional information, they

would have to be annotated somehow. In Section 7.7 we briefly discuss the need of models to

comprehensibly cover multiple views. These model(s) are prime candidates to store that additional

information. In [Egyed and HiIIiard 20001, we discuss how model information can be made richer

using a decorative stance [Hilliard 1999) in view integration.

In practice, any one or more of the options above could to be adopted to enable more

comprehensive coverage of transfonnation needs. In the case of the sequence to class transformation, the

introduction of the statechart view is sufficient. In other cases, however, other options have to be

considered as well. Since intermediate views only cover a limited range of complex transformation needs,

it also follows that there is a trade-off between the numbers of views needed. Basicdly, there are as many

transformation methods and types of views needed as is necessary to ensure comprehensive coverage of

all possible view interactions (and their redundancies). We have found that the folIowing options limit

transformation paths:

Reliability numbers associated with (simple) transformation methods (note that we only

discussed them in detail in Section 7.3.1 but they also apply to other transformation methods)

Unidirectional transformation methods (bidirectional ones would result in a larger set of

transformation paths)

Remembering transformation results (instead of eliminating intermediate and final results, they

can be stored for later use)

Treating levels of abstraction separately (instead of transforming between the lowest level and

the highest level, only adjacent levels need to be transformed)

7.4.1 Deferred Issues

Transformation cannot be seen as isolated in the context of our view integration framework. The

following critical aspects will be addressed by other parts of our framework:

o Modeling Transformation Redundancy (see Section 7.7)

o Scalability Issucs (see Section 7.7)

o Types of Traces Needed to Support SimpieKomplex Transformations (see Section 7.6.2)

o InterpretatiodRealization Relationships (see Section 7.6.2)

Above sections on simple and complex transformation discussed the problem of transformation

in detail. We primarily focused on the problem of automated abstraction and only indicated informal

solutions for generalization, structurdization, and translation. Although alI four types of transfmnation

are equally important, we explained in Section 4 why we have emphasized more strongly on one over the

other. The methods we discussed to support abstraction, generalization, structuralization, and translation

rue dependent on the types of views we support in our thesis (Figure 46). For instance, structuralization

only discussed sequence-to-object and statechart-to-class transformations since only these are needed to

support our limited number of views. Recall Section 5.5, were we outlined that our limited set of views

are sufficient in covering all three heterogeneous view dimensions. Naturally, if other views were needed,

our framework would have to be extended by support by supporting additional transformation methods.

7.5 Automating Mdel Differentiation

Transformation converts modeling information between various view dimensions and makes that

information more abstract, more generic, or more structural in the process. The converted information is

referred to as derived information and, ideally, it reflects the redundancies between view dimensions

(e.g., converting a sequence diagram to a class diagram implies taking 1111 information from the sequence

diagram that is potentially redundant with a ciass diagram). In Section 7.2, we discussed that it is the

redundancy between views that poses constraints on views. Since derived information represents the

redundancies between views, derived information can also be seen as constraints. The role of

differentiation is to take derived model elements and to compare them with user-defined model elements,

with the purpose of identifying differences (ergo differentiation). Since differences between user-defined

information and derived information generally indicate constraint violations, those differences can be

considered inconsistencies.

Based on traceability information (see mapping in Section 7.6.2) it can be specified what

information needs to be compared. For instance. if there are two views with no mapping between them

then this may imply the views are not related to one another. A direct comparison between two unrelated

views is not necessary. Ideally, differentiation should be abIe to compare views directly without any

additional overhead. However, as it was discussed in Section 7, it is frequently not straightforward to

compare views such as sequence and state diagrams directly. Differentiation is thus complicated by

syntactic and semantic differences between views. We. therefore, use transformation to convert model

information to allow a direct comparison between derived elements and all user-defined elements that

relate to it (e.g., transformation of a sequence diagram to a derived statechart diagram and the subsequent

comparison between that derived statechart diagram and the corresponding user-defined statechart

diagram). Different vdues in derived and user-defined model elements denote inconsistencies. Mapping

and transformation support differentiation 1) by constraining what information has to be compared

(through mapping) and 2) by defining how information has to be compared (through transformation).

Mapping and Transformation are therefore enabling technologies for more effective, less complex, and

more scaleable differentiation.

Differentiation is, however, more than just comparing model efements. Differentiation must also

address what to do if inconsistencies are found. Transformation and mapping m y simplify comparison

but that does not imply that all of diffenntiation is simplified. For inconsistency checking, differentiation

is responsible for three major tasks: I) applying transformation methods; 2) comparing their results; and

3) reporting the findings to the user. The following sections will address all three aspects in more detail.

7.5.1 Comparing User-Defined and Derived Ekmnta

Differentiation has to take derived elements and compare them with existing user defined

elements. Depending on the types of views (as well as their transformations), the comparison may vary:

7.5.1.1 Comparison Modes

Equivalence comparison: There are

cases where transformation yields derived

results that Fully correspond to user-

defined elements. For instance, if an

abstraction process derives an association

between two lower-level classes, then

those same two classes should also have

corresponding higher-level classes with

an association between them (see Figure

73). The comparison between both values

is to ensure equality.

Part-of comparison: There are cases

where transformation cannot generate a

complete picture of the real situation. For

Abstract
--

D e e d "1
Concrete Eq . . . - - .-

I

Reservation Guest I

Figure 73. Examples of Equivalence Comparison

Guest] 1..1 Generic - rt-o i . 1 - -r ? ̂--- I

--
Derived ACCOlmt ;

. -. . . - - - - - -. . - - , - -

Figure 74. Examples of Part-of Comparison

instance, a sequence diagram likely only depicts a subset of an object's potential interactions. If a

sequence diagram is genedized into a class diagram, then it follows that the derived class diagram

only depicts a part (subset) of the existing user-defined class diagram. For instance, in Figure 74 the

sequence diagram shows calls from the object Peter to the object at. Since Peter is of type Guest and

since a1 is of type Account, it follows that at a derived but more generic level, the class Guest must

depend on the class Account. That observation is c o n f w d by the real (user-defined) class diagram

(top of Figure 74), however, that diagram additionally conveys that Account may also access Guest.

The compslrison between derived and user-defined elements, therefore, needs to ensure a part-of

relationship.

Whether the comparison has be done in the "part-of-mode" or the "equivalence-mode" depends

on the type of inconsistency (recall Section 6). Consistency checking between specific views and generic

views is more likely to use pm-of comparison. Consistency checking between abstract and concrete

views is more Iikely to use equivalence comparison. There are, however, exceptions to both. Later we

will see that consistency rules need to specify their comparison modes.

7.5.1.2 Multiple Interpretations and Realiitions

Another complication of comparison is the issue of multiple derived interpretations and/or

multiple user-defined realizations. For instance, there are transformation methods such a clilss abstraction

that may yield multiple results. If such a case occurs, then comparing those multiple results with a single

user-defined realization may become more challenging. The following describes those cases and

discusses ~ l e s for handling them.

Figure 73 depicted the trivial case of a one-to-one relationship between a derived model element

and a user-defined model element. The bottom of the figure showed a concrete class diagram and the top

showed the conesponding abstract class diagram. By abstracting the concrete class diagram using our

class abstraction mechanism, an intermediate class diagram is breated (middle). The elements of the

intermediate diagram are derived interpretations of the concrete diagram and correspond directly to the

abstract diagram on the top. Checking

for consistency between them is

therefore simply a comparison of the

derived value with their corresponding

user-defined values on a one-to-one

basis.

Figure 75 depicts a less trivial,

though similar example. Here, the

abstracted class diagram was slightly

modified and depicts two (abstract)

relationships between the classes. The

abstraction of the concrete diagram does

not change and again yields the same

intermediate class diagram. However, the

. . /---- . _ Hotel - - - - !r-- - I Guest Abstract --------;. . - - -s tapa . - .-
- - -

Figure 7S.Oneto-many Comparison

Hotel Concrete - .. - ; Resewation
1

reservation
1 Guest

- _ stamat _ - - --
- I ~ e s e w a t l o ~ I - -

- -- j Guest / -
Concrete Hotel 1 . . - . -- t 1 Guest * stays-at V

Figure 7 6. Many-to-One Comparison

relationship between the intermediate class diagram and the

abstract class diagram is more complicated. The derived classes in the intermediate model still correspond

one-to-one to the abstract classes, but the single intermediate retationship has two alternatives. The

intermediate relationship could beIong to either the abstract relation has-resentationfor or the abstract

relation stays-at. Therefore, for comparison we also need to consider the possibility that a derived

element may belong to one of several abstract relationships.

Figure 76 depicts a third scenario in the context of the same situation. Again a concrete class

diagram is abstracted into an intermediate class diagram. In this scenario, the abstract class diagram has

only a single association relationship, whereas the derived but abstract class diagram has two

relationships. Comparison, therefore, also needs to consider the possibility that several derived elements

may correspond to a single abstract element.

Figure 77 depicts a forth scenario in the context of the same situation. Again a concrete class

diagram is abstracted into an intermediate class diagram. In this scenario, the abstract class diagram has

the proper classes but no relation between
Abstract j Hotel

them. Comparison, herefore, also has to

--
I Guest

consider the lack of a comparable Derived i Hotel
- - - - --. Guest

element.

evaluation of intermediate (derived)
L 8 - --

Figure 77.Zero-twne Comparison
model elements together with their user-

defined model elements, we require a more advanced form of repository. In Section 7.7 we will discuss

the concept of a reduced redundancy model and its ability to integrate user-defined and derived

information. Our repository currently supports zero or more derived elements to be associated with each

userdefined element. In the case of the non-existent user element in Figure 77, our repository creates a

dummy user-defined model element that is of type unknown. The reason for the creation of the dummy

element is that this scenario can then be treated in the same manner as the others.

Figure 78 depicts all supported comparisons between user-defined and derived elements. Case

(a) shows the one-to-one scenario where one user-defined model element is compared with only one

derived mode1 element at any given time. Note that this scenario does not disallow multiple derived

interpretations as long as each interpretation is compared with exactly one userdefined model eiement.

Case (b) shows the scenario were two

interpretations are compared with a single

userdefined model element. In this

scenario, both derived interpretations

must be compared with the userdefined

realization (note that we use the tern

realization to indicate userdefined

elements that are comparable to derived

interpretations).
d e)

Figure 78. Variations in View

f

Comparison

Case (c) shows the scenario of one interpretation for two userdefined model elements. In this

scenario, the derived interpretation must be matched with at least one of the userdefined ones, A

combination of cases (b) and (c) can also happen where two derived interpretations exist for two user-

defined model elements. There, both derived interpretations are compared with both userdefined model

elements. Case (d) shows the scenario where a derived interpretation is found but no user-defined model

element is known. Case (e) is a counterpart to case (d) in that a user-defined element exists but no derived

element is generated. Both latter cases are indications of incompleteness and, depending on the types of

views, may also show inconsistencies.

Consistency rules, which will be discussed later, do not need to explicitly specify what to do in

the case of multiple interpretations or realizations. Instead, our underlying view integration hmcwork

has to ensure that the above constraints are enforced.

7 . 1 Ambiguous Interpretations

A final complication of comparison is the issue of R j j = >
ambiguity. Figure 79 depicts the situations that may apply: (1) - II -. I
the interpretation is ambiguous and either the one or the other

applies; or (2) the realization is ambiguous and, again, either
Figure 79. Ambiguous Comparison

one or the other applies. Figure 80 depicts an example that

shows some cases of variations (ambiguities) among interpretations. At the bottom, two input diagrams

are shown. The left diagnm is a sequence view describing the interactions between a guest and his

account. Since the create method constructs a new object, we can infer that create is a <<constructon>.

A constructor causes a state change from a start state to a regular state (see Section 7.3.3). The state

diagram at the top of Figure 80 indeed shows rhe create method in that form. The impact of the deposit

method on the state diagram is, however, less clear. Since no additional information is available, we have

to assume deposit to be either a query (does not change state) or an action (may change state).

The {action or query) tag indicates an ambiguity for this interpretation. However, it is still

valuabIe to capture those values since they do constrain the situation somewhat (e.g., we exclude the

deposit -

Generic

Derived

Specific
Generic

i Account :

withdraw
deposit

. - 7 , s - ." . -* A -. - . - . . A. -- , . . - - ,. 7 a .. F.2. ..,.--.A *3-%>-7: . - . . . = > " * *

create = (constructor)
deposit = (action or query){post: balance>O)
withdraw = (action or quely)
getbalance = (query)

" . - - -* .
{post: [balance>O])

Figure 80. Variations (Ambiguities) in Transform~tion Results

possibility that it is an activity). For deposit we also have a second interpretation, which comes from the

class diagram-the post condition must result in a balance greater than zero. That information allows

deposit to be associated with the Account Balance state since that state has the same invariant. The state

diagram depicts deposit to cause a state change from Account Neutral to Account Balance. Thus deposit

is an action. This observation does not violate the (action or query} constraint since the derived

interpretation allows deposit to be an action. The example in Figure 80 has no inconsistency; however.

given the constraints the diagrams pose onto one another. a number of potential inconsistencies may

occur: (I) if create is ever used as a message that does not create an object; (2) if deposit is used as a

constructor; (3) if deposit would be declared a <<query>>; (4) if deposit has the post condition

{balance=O} or even {baIance>=O); and so forth. Thus, ambiguous transformation results still support

consistency checking and must be captured.

Inconsistencies are identified when derived interpretations and userdefined realization do not

match. The comparison is done either in the "part-of' mode or the "equivalence" mode (as it was

discussed above). The comparison rules and ambiguity issues discussed above must be supported

implicitly and thus do not have to be specified explicitly as part of consistency rules. Comparison is

simplified by not having to compare between all views (or model elements). There is no value in

comparing specific views with one another since they only exhibit usage scenarios. For instance, if one

scenario claims A to be equal to 6 and the other claims A to be equal to 9, this does not always imply

inconsistency. It only implies that A could either be 6 or 9 (an ambiguity). Comparisons between specific

views and generic views are, however, meaningful. Similarly meaningful are comparisons among generic

views as well as with their abstractions. In some cases, comparisons within single diagrams may also be

meaninghl. Those cases are, however, much simpler because direct comparisons without transformations

often suffice.

7.5.2 Consistency Rules

7.5.2.1 List of Inconsistencies

In the course of evaluating UML we have identified about fifty types of inconsistencies. Section

6 discussed and illustrated them in detail. The following tables summarize those inconsistencies.

Although we believe that all types of inconsistencies identified in this section can be detected

automatically, we have not yet analyzed and automated them in suflicient detail to support that ciaim.

The tables indicate the degree of tool support we have in place currently. Full support implies that both

transformation and consistency checking can be done automatically. Semi support implies that only

transformation has been automated and consistency checking still has to be done manually. We will

discuss our tool and its automation in detail later in Section 8.

Table 5. List of Inconsistencies on the AbstractiConcrete Dimension

1 2 1 Abstract relation has not been refined

1

1 4 1 Abstract classifier has not been refined 1 General I Full I

Description

Concrete relation has no corresponding abstraction

3

1 5 1 Concrete relation is of different type than its corresponding abstraction I ~ e n e r i

Views

General

r I \

Concrete classifier has no corresponding abstraction

Tool

Full

General Full

Abstract classifier is replicated on concrete level although refinement exists

Concrete relation uses abstract classifier instead of its refinement

Abstract relation uses concrete classifier instead of its abstraction

Concrete classifier is assigned to multiple abstract classifiers

General

General

Cardinality of refinement does not match its abstraction

Direction of concrete relation does not match its abstraction

Concrete classifier does not replicate a method of its abstraction

Concrete classifier does not replicate an attribute of its abstraction
--

Concrete method is of different type than its corresponding abstraction

Concrete attribute is of different type than its corresponding abstraction

General + &
Class

Class

6

Class I
Class I

-

-

-

-

F

-
-

-

-

-

-

-

-

-
-

Concrete classifier is of different type than its corresponding abstraction

17 1 Abstract and public method is hidden in refinement 1 Class I

General Full

18

Table 6. Lit of Inconsistencies on the CenericlSpecifrc Dimeasion

Abstract and public attribute is hidden in refinement I Class

General

General

General

19

20

2 1

Abstract pre-conditions may not become stronger in refinement

Abstract post-conditions may not become weaker in refinement

Abstract invariant may not become weaker in refinement

1

2

3

4

5

6

Description

Specific relation has no corresponding generalization

Generic relation has never been instantiated

Specific classifier has no corresponding generalization

Generic classifier has never been instantiated

Specific relation is of different type than its corresponding generalization

Specific classifier is of different type than its corresponding generalization

Views

General

General

General

General

General

General

Tools

Cardinality of generic classifiers does not match specific scenarios

Direction of specific relation does not match its generalization

Generic method has never been instantiated

General

General

Generic attribute has never been instantiated General

Specific method is of different type than its corresponding generalization

Specific attribute is of different type than its corresponding generalization

Specific view uses an attribute that is not defined in generic classifier 1 General I

General

General

Specific view uses a method that is not defined in generic classifier General

Specific relation has not been assigned to generic relation

Specific classifier has not been assigned to generic classifier

General

General

Generic pre-condition is violated in specific view

Generic post-condition is violated in specific view

Specific method used was declared private in generic view

General

General

General
- - - - --

Specific attribute used was declared private in generic view

State transition does not match method declaration

Table 7. List of Inconsistencies on the StructurrrUBebaviorPI b a s i o n

General

SC-S
- -

State description does not match method declaration

Method call order is violated

Description

SC-S

SC-S

I I Imported guard was not declared in smctural view 1 SC-C

2 1 Imported trigger was not declared in structural view I SC-C I
- - -

3 I Structural view does not allow an interaction as required by guard

Relationship between classes is not reflected in statechart

4 Structural view does not allow an interaction as required by trigger SC-C

1 7 1 Method was declared "action" but is used for state transitions I SC-C I I

6

1 9 1 Guards leaving state are not mutually exclusive

Method was declared "query" but is used for non-circular state transitions

8

SC-C

7.5.2 3 Simple Consistency Checking Example

In Section 7 above, we indicated that automated consistency checking requires rules for

validating constraints (redundancies). In our framework, rule validation is reduced to a simple

comparison of user-defined and derived model elements. Section 7.5.1 further complemented this by

introducing and discussing comparison rules in the case of ambiguity or muItiplicity. An issue that still

remains is how and where to apply those comparison rules, To enable automated comparison, we need to

specify conditions that indicate what consistency actually is. To that end, consistency rules must specib

the groups of model elements they apply to as well as the conditions that must remain valid so that those

groups of model elements can be considered consistent. The following will introduce consistency rules

and will discuss them in the context of examples.

Figure 81 depicts an example of an inconsistency between two class diagrams at different levels

of abstraction. The diagrams depict a simplified view of a hotel management system. The system is

presented in two layers and has the constraint that each layer is supposed to present the system in a

Method was declared "activity" but is used for non-circular state transitions

10

complete fashion although at different levels of

abstraction. The first layer (top) shows the interactions

between the classes Hotel and Guest. It is stated that a

Guest may stay at a Hotel and hat a Guest may have

reservations for Hotels. The more concrete layer

SC-C

(bottom) shows

Hotel as well

Guardtrigger pre- or post condition does not match method condition

refinements of the

as a refinement

SC-C

classes Guest and

of one of their

. . - - . . . - :o.: - -- - --- .__ -
Hotel kt---

- -- ..-- o... -----. Guast ..-i 1

o.. , -- _--st8~Vsy8f_-_
- --:

-. -. d 0.: -

Figure 81. Refinement Inconsistency

relationships. It can be observed that Hotel was decomposed into having a Building which has Room.

The cIass Guest still exists; however, its dependencies to the classes Building and Room are refined via

the helper class Reservation. Since both diagrams (refinement and abstraction) depict the same part of the

hotel management system, it follows that the information depicted within them must be consistent with

one another. The issue of consistency is, however, hard to validate-even in a simple example as the one

above- because:

- The class Hotel is not present in the lower-level design.

- The relationship between Guest and Room (the latter being part of Hotel) is obstructed by the

helper class Reservation.

The example actually contains two inconsistencies. If we assume Room to be a surrogate of

Hotel (which it partially is) then the cardinality between Guest and Hotel should be identical to the

cardinality between Guest and Room. The higher-level design states that a guest may stay at most at one

hotel at any given time, whereas the lower-level design states that a guest may stay at zero, one, or more

hotels at any given time-an inconsistency. The second inconsistency in the example is in the direction of

the relations. Whereas the higher-level diagram states that Guest may have reservations for Hotel (the

uni-directional nature of the association implies that Guest may access methods of Hotel), the lower-level

diagram depicts the class Reservation at the center of that interaction-another inconsistency,

In Section 7.2, we discussed that inconsistencies arc based on redundancies between diagrams.

Figure 81 illustrated this in the case of abstract information that poses constmints on refinements, For

instance, the knowledge that Guest and Hotel interact at an abstract level is a constraint that such an

interaction must also be implemented at a lower level (equivalence comparison). Similarly, the lack of an

interaction at an abstract Ievel is a constraint on the lower level not to interact.

In Section 7.3 we, therefore, discussed on how to use transformation to enable the comparison

between different types of diagrams. In particular, for the example in Figure 81, we need abstraction.

Figure 82 depicts the findings of that abstraction process. The bottom diagram shows the lower-level

design from Figure 81. Our abstraction process is M y tool supported and uses abstraction rules (see

Section 7.3.1.3.3) to automatically replace more complex class patterns with less complex (more abstract)

ones. The abstraction process described in

Figure 81 involves two steps. The first step

merges the classes Room and Building into a

composite class Hotel. The composite class

Hotel "inherits" the interfaces from Building

and Room and, thus, has relations to

Reservation and Guest. The second abstraction

step eliminates the helper class Reservation

since it obstructs our view onto the direct

relationship between Guest and Hotel. The

final result is a derived diagram where the

direct relationships between Guest and Hotel

are depicted (top of Figure 82). We refer to

i Hotel cunent?y..staysysat [Guest
I_----
. / :o.: o.:t -I -

--

Figure 82. Abstraction Example

this diagram as the (abstract) interpretation of the lower-level diagram since it is directly comparable with

the higher-level diagnm in Figure 8 1.

To illustrate the process of comparison, consider Figure 83. The top and bottom rows depict the

user-defined diagrams from Figure 8 1. The two rows in the middle are the derived diagrams we got after

abstraction (see Figure 82). Since transformation and consistency checking relies on the existence of

mapping information (see Section 7.6.21, Figure 83 also depicts trace information in form of vertical

arrows that link elements between rows (trace mappings are shown as dashed arrows, e.g., between

Building and Hotef). Additionally, transformation created interpretation relationships between some

derived elements and higher-level elements to indicate that those elements are comparable, We refer to

derived model elements that are comparable as interpretations. As a general rule, interpretations tend to

be final ansformation results as in above case were the most abstract model elements have become

interpretations. Interpretation relationships are represented as solid vertical arrows with circles on both

ends.

Hig her-Level- o.: - --

Hotel ; -
has reservation- for
t"

- . . . - - -
k "*. .. -0- 1

I I *
- .

t

/ :
.I ' . . - a . :.r ' - *

7
I aI" . , -
L-. - -- - - - -'i - -

* - - ,*
-- -<-.

----4. I ---.= i---------.
Building I i -1 Room ko.: "*&, . - - -- - . - - - - - - - - .- -

Figure 83. Example of Consistency Checking between Abstract and Concrete Elements

75.2.3 Consistency Rules Defined and Applied

Based on the relationships between user-defined and derived elements, consistency rules can be

validated. The following shows a consistency rule that states that for each interpreted relationship there

must be a realization. Note that a realization is the opposite of an interpretation. If interpretations depict

derived elements that are comparable to user-defined elements then realizations depict the corresponding

user-defined elements that are comparable to derived elements.

Concrete relation has no corresponding abstraction:

I V r E relations, is-classmodel (r) A is-abstraction(r1 A I
is-interpretation(r1 realization(r1 # NULL

Above rule applies to relations in the model. In Figure 83 relations are the horizontal arrows

between classifiers (e.g., between Guest and Hotet). Above rule then qudifies what relations are actually

meant- The following restrictions are defined: (1) onIy those relations that are part of class models (all in

our case); (2) only those relations that are abstractions (all derived and high-level ones in our case); and

(3) only those relations that are interpretations (only the two abstract relations in the second row from

top). This rule, therefore, only applies to abstracted relations of class diagrams that are comparable to

user-defined ones. The rule then states that the realizations of those relations must also exist. In our

example this rule is not violated since for both abstracted relations we also find at least one realization.

Direction of concrete relation does not match its abstraction:

V r E relations, is-classmodel (r) A is-abstraction (r) A

realization (r->destination) = (realization(r1) ->destination)

This rule applies to the same relations as the previous rule with the additional constraint that

realizations must exist. Since realizations exist for both interpreted relations, this rule is applied to both.

The rule states that the relations in question must have the same destination, For instance, both reiations

in the higher-level diagnm in Figure 83 go from Guest to Hotel (see arrow head). The "(realization(r))-

>destinationw part of above rule, therefore, returns {Hotel] in both cases. Note that "realization(r)'* yields

the user-defined, higher-level relations (has~esewationfor, stays_at) and that "->destinations" yields

the destination set of these relations (there may be multiple destinations since UML allows more than one

destination per relation). On the other hand, the "reaIization(r->destination)" part of above rule returns

{Horel] for one relation and (Hote1,Guestj for the other (note that associations without mows denote bi-

directional associations). It follows that in one case, above consistency rule is valid whereas in the other

case the rule is violated. The violation reveals that the interpreted result has a different direction of

interaction than its realization.

Concrete c l d ~ e r is of different type than its corresponding abstraction:

V r E relations, is-classmodel (r) A is-abstraction (r) A

1 is-interpretation(r1 A realization(r) + NULL type (r) = I
type (realization(r))

This ruIes again applies to the same set of relations as above one and states that the interpreted

relationship must be the same as the type as the user-defined one with which it is compared. The ?ype(r)"

part results in an association in both cases. Since the realizations for both relations "type(realization(r))"

are also associations, it folIows that no inconsistency of this type exists.

Cardinality of refiinement does not match its abstractioo:
pp-p-p

V r E relations, is-classmodel (x) A is-abstraction (r) A

is-interpretation (r) A realization (r) * NULL A type (r) = massociation" A

type f realization (r) 1 = nassociationn cardinality (r) =

cardinality (realization (r)

This rule also applies to all relations as the previous one but further qualifies that those relations

must be of type "association." It states that the cardinality of that association has to match the cardinality

of its realization. Note that this rule is rather generic in that it could be refined to check for source andor

destination cardinalities. Also it could be refined to check for lower and upper bounds. Comparing

cardinalities is also an example where one-to-one comparison cannot be easily implemented. For

instance, a user could specify the same cardinality as [1..5] or as [1,2,3-51. Comparing cardinality,

therefore, requires the normalization of its contents (another transformation).

We analyzed the consistency cases between abstract and concrete diagrams and we identified 21

consistency rules (see Table 5). In Figure 83 most of those rules were not violated. Nevertheless, we

would have to validate all rules against the model to ensure that. The consistency rules we discussed thus

far followed along the same pattern and the rulcs were very similar. Rules can, nevertheless, get more

complicated. Consider the following example:

Abstract relation has not been refined

V r E relations, is-classmodel (r) A is-realization (r) A is-ref ineable (r)

3 ir E r->interpretations, is-abstraction(ir1 A is-classmodel(ir->origin)

This rules uses a number of different constructs for validation. The "is-refineable(r)" part

verifies whether or not other model elements of the same level have been refined. This is necessary since

we do not want to accidentally declare the most refined class diagram has having relations that have not

been refined. This rule is also different in that the "implies part" is more complicated. Since we are not

searching for interpretations but for realizations ("is-realization(r)") and, as we discussed in Section

7.5.1.2, since more than one interpretation may exist per realization, it follows that each interpretations

has to be searched. In above case, we want to ensure that a refinement exists for a refineable element.

Thus, we need to find at least one interpretation that is an abstraction from something else. That alone is

not sufficient since we learnt in Section 7.4 that complex transformations are also possible. Thus, there

could be a stnrcturalized sequence diagram that was then abstracted. In that case, the abstracted

information would qualify as an abstraction ("is-abstraction(ir)") although it was not derived from a

direct refinement. We, therefore* need to additionally specily the origin of that derived element as being

from a class model. We can use "is-classmodel" again for that purpose and provide as an input the

elements from which the derived elements were built of ("ir->originw). Origin traverses the classifier tree

in Figure 83 downward until user-defined elements are found (e.g., Building, Room, and its relation).

Above examples only discussed relations. Handling abstract and concrete classes (classifiers) is

very similar:

Concrete classifier has no corresponding abstraction:

V c E classifiers, is-classmodel (c) A is-abstraction (c1 A

is-interpretation (c) * realization(c) # NULL

Concrete classifier is of different type than its corresponding abstraction

V c E classifiers, is-classmodel (c) A is-abstraction (c) A

is-interpretation(c1 A realization(c) * NULL
realization(c->destination) = (realization(c1) ->destination)

Abstract c l d ~ e r bas not been refined

V c E classifiers, is~classmodel(c) A is-realization(c1 A is-refineable(c1

a 3 ic E c- >interpretations, is-abstraction (ic) A is~classmodel (ic- >origin)

Above rules emphasized in equivalence comparison (recall Section 7.5.1.1). Indeed, equivalence

comparison is the pre-dominant form of comparison on the abstract-concrete dimension but there are

exceptions such as:

Abstract prelconditions may not become stronger in retiaemcnt

V m E methods, is-classmodel (m) A is-abstraction (m) A is-interpretation(m1

I A realization (m) t NULL A precondition (m) + NULL precondition(m1 7 I I precondition (realization (m))

This rule validates methods of class diagrams. Methods are services (e.g., functions) that classes

provide as an interface. For instance, the Reservation class in Figure 83 may have methods like

set_am'vul_date or set-number-of-days. Some of those methods may have preconditions. For instance, a

method set-arrival-&re may have the precondition that the arrival date cannot be the current date nor

any past date. Thus, a reservation can only be made at least one day in advance. A refinement should

ideally have the same pre-condition (equivalence), however, it is valid to weaken it a bit. For instance, if

dwing refinement another method is created which has the relaxed pre-condition that no past arrival dates

should be used, then this refinement does not contradict the abstraction. The refinement method still

provides the same services as the original one only that it provides additional functionally. Note that this

case should not be seen as allowing a requirements change. The validation that a reservation has to be

done at least a day in advance still has to happen. Having a relaxed way of refinement supports concepts

like class libraries or COTS (commercial-off-the-shelf) packages that frequently do much more than

required. For instance, if the refined method is a part of a COTS package and it meet the same or weaker

pre-conditions then it can be used as a substitute of that abstract element. Should above consistency rule

not be applicable in other situations, it could be deleted, ignored, or replaced by a more adequate one. For

instance, we could replace the b>" operator with a "=" if desired.

Defining consistency rules between specific and abstract elements is very similar to consistency

rules for abstract and concrete elements. It was already indicated above that the types of inconsistencies

are very similar. The main difference between consistency rules for abstraction as compared to those for

generalization are the part-of reIationships,

Specific relation has no corresponding generalization:
. - - .- I V r E relations, is-classmodel (r) A isgeneralization(r1 A

is-interpretation (r) = realization (r) # NULL

Direction of specific relation does not match its generalization

V x E relations, is_classmodel (r) A is-generalization (r) A I
I is-interpretation (r) A realization (r) # NULL = I

Cardinality of generic classifiers does not match specific scenarios

- - -- I V r E relations, is-classmodel (r) A is-generalization (r) n 1
is-interpretation (r) A realization (r) # NULL A type (r) = massociationN A

type(realization(r))= "associationa cardinality(r1 s

cardinality(realization(r))

Above examples showed that consistency checking for generalization involves the same pattern

of consistency rules for abstraction. The main differences are the use of the "is,generalization" construct

and the more frequent use of the "s" operator instead of the "=" operator.

Figure 84 shows a comparison example between generic and specific diagrams, The figure is

analogous to Figure 83. The top area and bottom areas again represent user-defined diagrams. On top, we

find a class diagram depicting the generic relationship between Hotel, Guest, and Reservation. On the

bottom, we find two specific diagrams depicting instances of the generic scenario. In particular, the

bottom left shows an object diagram with the objects Peter, Ann, and Mary which are instances of Guest,

the objects Shoreslnn and BeachResorr which are instances of Hotel, and the object R3 which is an

instance of Reservation. It is depicted that Ann stays currently at the Shoreslnn, Peter currently stays at

both hotels, and has a reservation for the Shoreslnn (e.g., for some later date), and Mary has neither a

reservation for any hotel nor does she stay at any one of the hotels.

The other specific diagram on the bottom right is a sequence diagram that depicts how a

particular instance of Reservation (called R3) is used to make a reservation for Mary at the Shoreslnn. We

see that the reservation object instantiates the Mary object (Mary had not exist at that time) followed by

verifying availability of space (is-available method) and reserving space (reserve-guest method) at the

Shoreslnn. The Shoreslnn object calls the Mary object using its setflog method (e.g., possibly to indicate

that this person has some reservation for some place).

The middle area in Figure 84 depicts derivations of the specific views using some of the

generalization techniques discussed in Section 7.3.2. For instance, the object diagrarn was generalized

into a class diagram showing the three classes Hotel, Reservation, and Guest. Additionally, the

generalization process was able to derive some cardinality information based in the specific object

diagram. For instance, we cm observe that the object diagram has the cases of zero, one, or two guests

staying at hotels. This implies, on a generic level, ~ 5 3 t Guesl may be related to zero-to-two Hotel objects.

Other cardinality observations can be made in a similar manner. The sequence diagram was also

generalized into a class diagram. However, as it was discussed in Section 7.4, no direct transformation

be tween sequence and class diagrams exists. Therefore, our transformation process used complex

transformation to generate first an object diagram out of the scquence diagram followed by a

generalization of that object diagram into a class diagram.

The generalization of the sequence diagram was not able to reason about the types of relations

between the classes Hotel, Reservation, or Guest. Those relations are therefore indicated as dashed arrows

(type = NULL). Although the relations are of unknown type, we still were able to indicate the directions

of the interactions. Also, the sequence diagram shows method calls that can be structuralized and then

generalized into a class diagram. For instance, the observation that the R3 object uses the create method

to instantiate the Mary object implies that Mary's type, which is Guest, must also have a method called

create. Additional observations could be made about the sequence diagram; however, they are omitted

here since they are not relevant for this example.

Since the generalization process requires mapping information, they are specified in form of

generalization dependencies. Generalization dependencies are depicted as vertical dashed arrows. The

generalization arrows between user-defined views and derived views were generated automatically. The

generalization arrows between user-defined elements (e.g., between the generic and specific level) were

defined manually. Like in Figure 83, interpretation arrows are used to denote elements that are directly

comparable. The lines with circular mows on both ends indicate such interpretations.

Checking for consistency between the generic and specific views is analogous to checking

consistency between the abstract and concrete dimension. Consistency checking traverses the model and

applies consistency rules whenever applicable. Thus, it traverses the model to find model elements for

which the input condition holds and thcn validates the output condition. The example has a number of

inconsistencies:

Inconsistent cardinality between the class and the object diagram (e.g,, between Hotel and Guest)

Inconsistent direction of relations between the class and the object diagram (in particular between

Reservation and Guest)

Inconsistent direction of relations between the class and the sequence diagram (two cases between

Reservation and Guest and between Guest and Hotel)

Inconsistent method declaration and usage between the class and the sequence diagram (method

setfrog is not declared in class diagram but used in sequence diagram)

Based on the examples shown, it can be observed that comparing generic and specific views is

very similar to comparing abstract and concrete views. In both cases, diagrams are transformed to enable

a direct comparison. In both cases the resulting comparison rules are therefore very much alike, The

challenge of comparison is to identify interpretation relationships and comparison modes (e.g., part-of or

equivalence). In both cases (generalization and abstraction) the actual comparison is complicated by

partial, ambiguous, or multiple interpretations per comparable userdefined element. This section already

discussed how to deal with those problems.

The examples of abstraction and generalization showed that consistency checking is greatly

simplified through transformation. For instance, identifjing rhe cardinality inconsistency between the

generic and specific diagram can only be done by investigating entire diagrams. This is one reason why

simple one-to-one comparisons without prior transformations are often not very powerful (recall Section

7.2).

In the following, we will discuss the issue of how to trigger transfonnation as part of consistency

checking. Since the comparison examples in Figure 83 and Figure 84 showed an awkward overhead in

the use of model elements (especially trace mows), Section 7.7 about repositories will discuss

improvements. In particular, evolutionary aspects of view integration greatly depend on improvements

made on the repository side.

7.5.3 Triggering Transformation

We discussed the workings of t~nsformation methods in Section 7.3. This section further shows

how transformation methods are triggered to enable comparison. Although, we see model transformation

as the enabling technology to ease comparison, we still found that transformation remains fairly

independent from comparison. Accordingly, we see the need to support two fundamental modes of

transformations:

1. Transforming of the entire model prior to its comparison

2. Transforming on a need basis for specific comparison (localized transformation)

The reason for the independence of transformation from comparison is in the interface between

them. We already discussed that transformation only generates derived information. In differentiation,

144

deived information is used to reason about consistency issues. The causal dependency between

comparison and transformation is, therefore, only that transformation has to happen before comparison. It

does not matter whether transformation was done immediately preceding comparison or whether it was

done some longer period of time ago. Similarly, it does not matter whether only a partial transformation

was carried out satisfying only a particular consistency checking need, or whether a more complete model

transformation was performed. It has no negative influence onto consistency checking if more than

required transformations were performed.

There are respective advantages and disadvantages in what transformation mode to choose. It

has been our finding that in reality both transformation modes have to be supported. Initially,

transformation on a need basis may be sufficient. Since transformation results should never be discarded

unless they have become obsolete, a more completely transformed model becomes available over time by

default,

There is also another scenario of not wanting to do transformation although their results might

have impact onto comparison. For instance, if the model is changed, new inconsistencies could be

introduced. Some of those inconsistencies are temporal since they only happen as part of the changing

process. For instance, creating a new relation between two classes may require the deletion of the old

reiation followed by the creation of the new one. The first step of deleting the old relation, however,

could cause an inconsistency. Since that inconsistency is imrnediateIy resolved once the new relationship

is created, it is of little use to identify it. We refer to such an inconsistency with only a short lifetime as a

temporal inconsistency. It must be noted that the life-time of a temporal inconsistency may be as short as

a minute but could also be as long as days or weeks (e.g., changing larger parts of a model). It may,

therefore, not be desirable to do consistency checking on those parts of a model that are in the process of

revision. To that end it is not always desirable to force transformation prior to comparison. On the other

hand, only if transformation is forced immediately prior to comparison are derived interpretation and

comparison results up-to-date. The ability to separate evolutionary aspects of software modeling from

consistency checking is, therefore, another advantage of using a separate transformation and consistency

checking approach. Our view integration model supports three modes of operation:

1) Transformation only without comparison,

2) Compiuison without prior transformation, and

3) Comparison with minimal (forced) prior transformation

The first case of transformation only implies the use of ow transformation methods as synthesis

methods. The results of transformation are not (yet) used for consistency checking. The second case of

comparison without prior transformation implies the use of our comparison methods for analysis only. No

transformations are performed prior or afterwards and no derived interpretations are generated. In the

second case, comparison can only draw From previous transformations results. The third and final case of

comparison forces a minimal amount of prior transformation. This last case shows the use of both

synthesis and analysis methods together. The synthesis happens prior to analysis to ensure that the model

is up to date and that analysis can detect the latest inconsistencies. It is the users choice the select the

fitting consistency-checking mode.

The amount of transformation required for consistency checking depends on the selections

made. For instance, if consistency needs to be validated between two diagrams then transformation can be

limited to those two diagrams. If consistency needs to be validated given only a single diagram then d l

other diagrams that are tnnsformable into that diagram need to be transformed. It is not very useful,

although possible, to validate consistency between individual model elements since it has been our

finding that often complete diagrams must be investigated to reason about single elements.

7.5.4 User Interaction

Consistency checking in itseIf may be seen disjoint from user activities but it is not separate.

Consistency checking requires extensive feedback from users during all activities. The most manual

activity of our view analysis framework is mapping. Nevertheless, transformation and differentiation

cannot always be done fully automatically. Thus, the user at [east needs to specify the extent and modes

of transformation and comparison. In more advanced cases, the users may also have to address and

resolve ambiguities (e.g., during transformation) to get more meaningful comparison results.

Besides consistency checking, view integration also needs to resolve inconsistencies. Two issues

are important here: how to resolve inconsistencies and when to resolve inconsistencies. The issue on how

to resolve inconsistencies may be intuitive. The issue of when to resolve it is less so since one would

assume that inconsistencies must be resolved right away. Instead, there are good reasons why

inconsistencies cannot be resolved immediately. As an example we mentioned temporal inconsistencies

previously where a model change can cause inconsistencies that will be resolved sooner or later. Other

cases involve incomplete information where it is sometimes not possible to resolve an inconsistency due

to the lack of more specific information. There has been extensive works on living with inconsistencies

that handle issues like what inconsistencies to search for, how to present them, how to repair them, and

when to repair them [Balzer 19911 [Finkelstein et d. 19911 [Nuseibeh 19961.

Like transformation, the differentiation activity is more challenging then just comparing model

information. For one, we have to deal with similar issucs as in transformation (e.g., reuse and redundancy

of comparison results) but we also have to deal with more ergonomic types of decisions since view

comparison causes more interactions with the users (humans), Our work does not address human

computer interactions (recail Section 4) but the following fists some of the concerns that may arise:

Ignoring inconsistencies: The user may be aware of some types of inconsistencies and may chose to

ignore any feedback on them.

Show dYshow what has not been shown before: The user could chose to be presented with all

inconsistencies every time an analysis is performed or the user could chose only to be presented with

only the new ones.

Passive feedback: Instead of requiring the user to acknowledge and/or immediately respond to

inconsistencies, the feedback should be more passive, leaving it to the discretion of the user when

and how to handle them.

Prioritizing inconsistency feedback: This can be done by keeping track of the reliability of the

n n s format ion techniques used.

Suppressing multiple feedbacks per modeling element: Since a single defect may be detected in

different ways, a detection mechanism may also produce multiple defect reports about single defects

which could be compressed.

Inconsistency detection mechanism shodd err to the benefit of not indicating inconsistencies

although there is one instead of indicating inconsistencies where there are not any. The rationde for

that is that otherwise the amount of feedback to the user would exceed practical considerations.

7.5.5 Deferred Issues

Like transformation, differentiation cannot be seen in isolation. The following items will be

addressed in later sections:

o Modeling Multiple Derived Results (see Section 7.7)

o Evolutionary Scalability (see Section 7.7)

o Types of -aces needed to support comparison (see Section 7.6.2)

o Dummy element for derived interpretations that do not have user-defined counterparts (see

Section 7.7)

7.6 Model Synthesis and Mapping

Science and engineering alike stress the importance of being able to produce and reproduce data.

The production of a software system involves the creation of modeling information that either specifies

the system itself or assists during the decision making process. A general technique for enabling

reproduction is tracing ones steps from inception to conclusion. If done properly, tracing will outline

every step along the way of how a problem was transformed into a solution, including intermediate

results and findings. This section address model synthesis (the production) and model mapping (the re-

production).

7.6.1 ModelSynthesis

Most model information for software can be categorized into two mjor categories: (1)

Information that is relevant for the construction of a software system; and (2) information primarily

needed for decision making along the way. This work primarily emphasizes the former-the specification

of system relevant information. Creating model elements is mostly a manual activity performed by a

single or by multiple users. The issue of how to develop software models using UML has been discussed

in great detail in works like Rumbaugh et al. 1999), [Booch et al. 19991, [Jacobson et al. 19991, [Fowler

19971, [Siegfried 19961, [Kruchten 19981, [Carrnichael 19941, Fliens 19951, Magee and Kramer 19991,

and [Wirfs-Brock et d. L9901. It is outside the scope of this work to provide development

recommendations.

Our tool, W A n a l y z e r , uses Rational Rose@ as a synthesis tool. Rational Rose is used to

create, modify, and delete elements of the UML model. Our tool also uses Rational Rose to visualize

transformation and consistency checking results (see Section 8).

7.6.2 Model Mapping

Mapping identifies relationships between modeling information of different views. Mapping

therefore describes overlapping and often redundant pieces of information. We allbeady discussed the

importance of mapping for view integration and discovered that mapping frequently has to be done

manually and can (if done properly) significandy improve scalability and reliability. Mapping can be

supported via naming dictionaries or traceability matrices [Gieszl 19921 [Gotel and Finkelstein 19941.

7.6.2.1 Traceability Types

For automated transformation and differentiation we identified a number of tracability types that

need to be supported. Only some of those are actually used by the users most others are represented by

our consistency checking framework:

Abstraction traces: to link abstract and concrete diagrams (e.g., high-level and low-level diagrams)

Stnrctumlization traces: to link structutal and behavioral diagrams (e.g., statechart and class

diagrams)

Generalization traces: to link generic and specific diagrams (e.g., sequence and class diagrams)

Interpretation/realiation traces: to identify derived model elements that are directly comparable with

user-defined model elements (for the most part transformed elements)

Origin traces: to link derived model element to their original user-defined elements that served as

input to the transformation process

7.6.2.2 Mapping Support

Mapping can be supported and partially automated and validated using analysis patterns, shared

interfaces, and inter-view dependency traces. If done manually, mapping may result in an additional

source of possible defects in that potentidly two views are related that actually do not relate to one

another or vise versa. Mapping also increases the manual overhead in applying integration techniques.

The goal is therefore to have some automated mapping technology. As it was outIined in Section 4 that

this work does not aim at discussing how to automate mapping. The reason for this limitation is that

mapping is a very complex problem in its own rights. Not discussing automated mapping does, however,

not mean that no automated support for traceability is available.

7.6.3 Deterred Issues

Mapping, like transformation, cannot be seen in isolation in context of our view integration

framework. The following issues are dcferred to the next section:

o Implementation of ttrtcability types (see Section 7.7)

o Scalability Issues due to trace explosion (see Section 7.7)

7.7 M ode1 Repository

The model repository is the central database for model elements. It provides both storage space

and access points. In our view integration framework in Figure 42, the model repository was depicted

outside of the view analysis component, and is, therefore, not discussed in every detail in this work. The

main reason for that is that we chose a modeling language that is already predefined (e.g., UML). UML is

supported by a meta-model that describes the definitions and interactions of model elements in detail

(recall Section 5.3). For more information about UML's meta model, please refer to [OMG 19991. The

major reason why we do have a model repository section in this work is to define the interfaces between

our analysis component and the repository as well as suggest improvements and extensions to allow a

better and more scalable consistency handling.

7.7.1 Implementing View Integration Elements

For the most part, transformation does not require specific model elements. For instance, an

abstraction of a class diagram yields another class diagram that in turn can be model in the same manner

as the first one. To distinguish between user-defined and derived information, derived elements are

annotated with the stereotype derivedn.

UML t .3 supports abstraction through the dependency relationship stereotyped as abstraction%

Similarly, UML supports some forms of generalizations. In UML, the supported generillization

relationship, however, only applies to certain types of model elements and not to all (in theory every

specific model element could be generalized). We. therefore, decided to create our own version of the

generalization dependency which is modeled like abstraction in form of the dependency relation UML

provides (annotated as ageneralizationw).

Origin traces link derived information to their user-defined ones. Since derived information may

be based on intermediate derived information, the abstraction, generaiization, and structwdization links

are often not adequate in determining the original user-defined elements that enabled the transfomation

of a particular derived element. The origin trace, always a transitive link between derived and user-

defined information, is also modeled via dependency relations. Figure 85 depicts origin traces in context

Hig her-Level- o..e

I Hotel -
has- reserva tion, for

0.: --
Guest 1

I

Figure 85. Origin Traces and Interpretations Traces

of the example from Figure 83 (note that we did not display origin traces in Figure 83 to reduce

confusion). Storage wise, an origin m e is simply a shortcut,

7.7.2 Evolutionary Scalability Problem

Transformation improves reuse and has also a considerable positive impact onto scalability

(reuse). Reusing tnnsfonnation results also improves evolutionary consistency checking during later

cycles. It must be noted that previous examples only described single consistency checking tasks at a

single time (a brief moment during the software life-cycle). Since consistency checking cycles m y to be

repeated frequently during longer projects, the higher- and lower level class diagrams in Figure 8 1 might

have to be vdidated multiple times (at teast once per cycle). Having transformation results from past

review cycles can, therefore, simplify the next review, again through reuse. For instance, if neither the

lower-level diagram nor the higher-level diagrams were changed, then there would be no need for a re-

evaluation. Remembering past consistency checking results, however, also implies keeping track of

transformation results for a longer period of time. This latter aspect introduces a new scalability problem.

Assume that our hotel management system discussed before has grown to a large model and now

contains 50 (user-defined) diagrams. Using transformation, we can easily come up with hundreds if not

thousands derived views (intermediate views) using various transformation combinations. Assume that

we now modify a model element in one of the user views. As a consequence, we would have to make

sure this change is properly propagated to the other 49 userdefined views. Additionally, and this is the

problem, we might also have to update all derived views (the intermediate views we had generated during

transformation) since they might have become inconsistent as well. The latter would cause an enormous

diseconomy of scale (red1 the n2 complexity challenge we had discussed previously). In case of our

example in Figure 82, if we change the lowermost diagram (most concrete view) then both abstractions

might get dTected by that change and may be in need of updating. Figure 86 depicts this problem

schematically. It shows that for a couple of user-defined views, a series of derived views may be

generated. If a change is introduced, a large number of consistency checking activities have to be

performed.

An easy solution to this

problem is the creation of derived

views (interpretations) on a need

basis and only for individual

review cycles. For instance, the

abstractions in Figure 82 could be

created to support the comparison

with the higher-level diagram in

Figure 81. After completion of

that review cycle, both derived

abstractions could be deleted.

Deletion would indeed solve the

-.
1

User-Defined Views

transformation overhead otherwise. Two reasons add to that overhead: (I) the same transformations must

be repeated multiple times during evolution; and (2) user feedback as part of transforrnrrtion results might

get lost. Recall Section 7.5.4 where we discussed that there is a benefit in separating transformation from

consistency checking. That benefit would be taken away if we would delete dl derived model elements

after usages.

A simple solution to above problem would be the localized deletion of modeling information.

Instead of deleting derived information after every review cycle, that information is kept in the repository

for Future reuse. If a change in the model causes derived information to become inconsistent then a

localized deletion is performed that eliminates obsolete elements. This solution improves the situation but

is still not ideal since lots of changes cause the deletion of a large body of derived information. We will

discuss this problem next.

7.7.3 Reduced Redundancy Model

The concept of a reduced redundancy model is a way of handling derived modeling information

without having to worry about keeping them consistent. A reduced redundancy model is an internal

representation of diagrams that tries to minimize redundancy. The problem we have with derived model

153

elements is that they exhibit a high d e p e of redundancy; or to be precise they are completely redundant

since otherwise an automated transformation method would not be able to create them. Figure 82 shows

substantial redundancies in that some model elements are replicated twice or even three times (e.g.,

Guest). In larger examples, the amount of replication is even more severe.

Previously, we discussed that redundancies are a major cause for inconsistencies. Due to the

highdegree of redundancies in derived views, the number of inconsistencies that can occur rises

significantly. Additionally. the high-degree of redundancy results in exponential increase of storage

space. In a worst-case scenario, each type of model element may potentially be transformed into all other

types, already causing a strong overhead. However, since those derived elements are again transformable

into all other types (recdl complex transformation in Section (I)) , the storage overhead could explode.

Instead of storing "n" elements, we might have to store ns(n- I)*(n-2)*(n-3).. . elements. This case is

obviously a worst case scenario and the redity is by far not as bad, however, it is still a major concern.

A reduced redundancy model is a compression method for modeling information with the added

benefit that inconsistencies are less likely to occur. The fact that space for storing modeling information is

reduced in the process is another positive side effect. The reduced redundancy model is an important

concept in improving scalability for UML consistency checking. It allows derived information to be

stored without having to worry about their maintenance.

Figure 87 shows a reduced redundancy model of our example From Figure 82 using W L

constructs. The figure depicts the same classes and relations as Figure 82 but uses less replication. Thus,

instead of three instances of Guest (in Figure

82). Figure 87 only uses one instance. The

savings are considerable: The class diagrams

in Figure 82 used 9 classes, 9 relations, and 14

trace links (the latter not depicted in the

figure). The more compressed class diagram in

Figure 87 only uses 5 classes, 8 relations, and

Figure 87. Reducing Model Redundancy using UML

154

8 trace links. Figure 87 is, therefore, a compression of Figure 82 in that it uses less model elements to

describe the same interdependencies. Keep in mind that a reduced redundancy model improves the

internal representation of modeling information. A user could still derive each diagram depicted in Figure

82 out of the reduced redundancy model (we will discuss that later).

As we discussed above, the advantage of a reduced redundancy model is reduced storage space

and less consistency checking between user-defined and derived model elements. As an example of less

consistency checking overhead, consider the following: If the name of the class Guest is changed to

Patron in Figure 87, then this change causes no inconsistency in the process. On the other had , a change

like that in one of the class diagram in Figure 82 would cause an immediate inconsistency with the other

two diagrams. In Figure 87, this type of change does even require updates but instead the change is

implicitly updated.

The reduced redundancy model is also an example were the WML definition is brought to its

limits since the situation depicted in Figure 87 is not yet perfect. On the one side, there is still redundancy

as in the case of the currently-stays-at and resentation relations. On the other side, the interfaces of

classes become askew. For instance, the user-defined class Building has only two relations in Figure 82

but three relations in Figure 87. Those deficiencies cannot be addressed within the boundaries of the

UML standard. Instead, we found that we had to introduce new concepts that go beyond UML.

Figure 88 depicts an even less redundant model of the problem above. This version improves the

previous one since it only needs 5 classes, 5 relations, and 6 trace links. Its creation, however, requires the

concept of a bridge that links model elements together (both classes and relations). Bridges are depicted

as black circles where classes and

relations are attached. Figure 88

completely eliminates both problems we

identified with respect to Figure 87. first,

the redundant relations are eliminated

and, second, the cIasses only see their true

-

/ Hotel <

~ m m a G u y
- - --- . - 1 , 0.2

Figure 88. Reducing Model Redundancy outside UML

155

number of relations. For instance, the class Building now has exactly two bridges to relations. Also,

building consistency rules for Figure 87 is much harder than building consistency rules for Figure 88.

Additionally, the amount of computing effort required to navigate a more redundant model (as in Figure

87) is also much higher than navigating the less redundant model in Figure 88. The compactness of ow

reduced redundancy model, therefore, results in a higher accessibility of its model elements.

The only disadvantage of the reduced redundancy model in Figure 88 is that it cannot be

supported in UML. U M L ' s meta model has a clear definition on how model elements have to interrelate

and the concept of a bridge is not supported. Bridges are located between model elements and each bridge

may have two or more attachment placeholders for model elements (ports). At least two ports are needed

since a bridge is used to link at least two model elements.

7.7.3.1 Reduced Redundancy Model for Class Diagrams

Since the emphasis of our work is geared towards class diagrams, this section discusses both

their creation and access in context of the reduced redundancy model. The specification of a bridge is

analogous to the specification of an AssociationEnd in its role to mitigate between Association and

C~ussifer (see [OMG 1999)). The usage of bridges during model synthesis is also analogous to rhat of

AssociationEnd. If a model element is derived (e-g., abstracted) then the derived element is attached to all

external bridges it absorbs. Figwe 88 shows this in the context of the Hotel classifier and the reservation

and currently-stays-at relations. Hotel absorbs the classifiers Building and Room as well as their internal

relation. Externally, two bridges remain to the relations that lead to Guest and Reservation. The major

remaining issue is how to handle the access to a reduced redundancy model. In particular, is it possible to

generate the original userdefined and derived views out of the reduced redundancy model? If yes, then

this would imply that the original representations remained intact and there would be no negative side

effect in using reduced redundancy models.

Figure 89 shows a generic example of three class diagrams on different levels of abstraction, The

lower-most layer contains the original view (e-g., detailed structuMUbehavioral view) and depicts four

classifiers (A-D) and four relations between them (a to 6). The middle layer groups the classifier B and C

Derived = (A,8CD={BCtD))
= {a$)

Figure 89: Generic Example of Classifier Abstraction

into a composite classifier named BC. The relation y as well as the classifiers B and C are absorbed into

the composite classifier BC and not visible any more. The third and top-most layer further abstracts by

adding another composite classifier BCD which contains the composite classifier BC from the middle

layer as well as the original classifier D from the lower-most layer.

The right hand-side of Figure 89 additionally depicts identifiers for accessing user-defined and

derived views. Those identifiers are built out of classifiers or relations and are stored as part of view

descriptors (a view descriptor describes information that is stored explicitly about views). If the user-

defined view on the bottom needs to be reconstructed out of the reduced redundancy model then either

the descriptor {A,B,C,D) or the descriptor {a ,~ ,y ,6) can be used. We refer to those descriptors as the

identifiers of views and, as it can be seen, there are two types of identifiers that could be used for class

diagrams-one consists of classifiers and the other consists of relations (hybrids are possible too but not

explored here). Derived views can be accessed as well. For instance, the middle layer can be accessed

using either one of the following three forms: (A*BC,D}, {A,{ B,C},D} , {A+BC=(B,C},D} where the

last form is the most complete one.

Identifiers can dso be based on reIations. Using relations as identifiers may seem counter-

intuitive at Cirst glance since people often find classifiers to be the more dominant design features. In fact,

for classifier abstraction it even turns out that identifiers based on relations are ambiguous. We found,

however, that during relation abstraction in the next section, it is the relations-based identifiers and not

the classifier-based ones that yield unambiguous identifiers. Thus, both types are needed to allow

seamless navigation between them.

Before we can discuss how to eliminate the ambiguity in identifiers, we will describe how to

restore and access views in cases where no ambiguities are present. Figure 90 (upper-left) shows the

reduced redundancy model for all the three layers in Figure 89 (Figure 90 is alike Figure 88). Besides the

discussed scalability and storage improvements, the minimal redundancy model also has the added

advantage that model information as well as their abstractions (and other possible transformations) are

stored and accessed at a single location.

Using the ciassifier identifiers, the process of re-creating a view out of a reduced redundancy

model is straightforward. We only need to take each cfassifier permutation and find all (direct) relations

between them. For { A,B,C,D}, possible permutations are (A,B }, { A,C), { A,D), (B,C), { B,D), and

(C,D). Between (A) and (B) exactly one relation P exists. If this process is repeated, the remaining

D
I

I

P" f\ . '

6

C Y

A h B B

Original = {A,B,C,D}

-
. . . . -. - - - - - . - - - -

Derived = {A,BCD={BC,D))

-- - - -

Derived = {A,BC={B,C),D)

Figure 90: UML-A Model satisfying Chdfiers for Multiple Abstractions

relations are found. The same process can be followed in case of identifier (A, BCD) which yields the

two relations a and B.

Since the reduced redundancy model plus the identifiers are sufficient in reconstructing all three

diagrams in Figure 89, they can be deleted. After all, they can be re-constructed on a need bases at a later

stage (e.g., if a user would like to modify one of them). In terms of computations, the re-construction only

has a n2 complexity where n represents the number of model elements in the identifier. Since the reduced

redundancy model is only an internal representation. we refer to diagrams that are constructed out of it as

projections. It must be noted that projections are not labeled derived in order to not conhse them with

user-definedlderived model elements in the previous chapters.

We indicated above that identifiers based on classifiers are unambiguous, however, identifies

based on relations are not. We investigated the issue and found a solution. The problem is depicted in

Figure 91 which shows the ambiguity in using relations as identifiers for classifier abstractions (we use

the same example as before). The figure shows that the identifier {a, p, 61 of our example in Figure 90

will yield two possible projections. The Ieft projection is based on the original view whereas the right one

is based on the derived view. In order to find an unique identifier, we have to first decide what it is that

we want to achieve. In view integration, when we query for information related to some modeling

rutifacts then one of the following two scenarios are most likely:

a) Query is based on original modeling information for user-enabled manipulation

b) Query is baed on the minimal derived modeling information for consistency checking

Using the additional information about usage, the relation identifier becomes unique. The left

diagram in Figure 91 shows the result of the query based on the original modeling information (scenario

Figure 91: Ambiguity in Accessing Composite Classifiers via Relational N a m

let classifier = (}
let paths = (}

(A) V from E relations, V to B relations and from t to
paths->put(from->find-path(to1)

(B) V p E paths
p = abstract(p)
classifier->union(p-~relation8->cla~sifiezsO 1

(C) V from E classifier, V to E classifier and from # to
if (to E from->abstractionsO) classifier->remove(frorn)

Figure 92: Deriving correct Projection from Relation Identifier

I let relations s input

-

(a)). Since the original view does not contain derived interpretations, the process of creating a user-

defined view is simple (original approach applied to user-defined elements only). The second scenario is

a bit more difficult to understand but yields a correct result as well. The procedure is as follows:

The relations variable in Figure 92 is the input to the procedure. If we follow our previous exarnpIe, we

need to set relations = (a p, 6). Part (A) then computes all possible paths between those relations which

yields paths = ((c*C.y.B.P} .{aC.S). (&B.y,C.S 1, (a A $ }) . Note that the path (cA.b.B, yC.6) is not

valid since this path uses P, one of the input relations.

Part (B) takes each individual path, searches for its abstraction(s) and stores classifiers found in

the variable class#iers. The role of the abstract function is to take a path and collapse its structure in such

a way that the final path is of the simple form (relation, classifier. relation}. In our example, the (a,C,G}

path is already of that form. What remains is to abstract the remaining three paths that are still more

complex. The abstraction procedure takes each path (e,g., {a,C,y,B,P I) , queries whether there is already

Figure 93. Ctneric Example of Relation Abstraction

an existing composite classifier (e.g., as it is for (C,y,B}-note that this query is based on (BC} which is

an unique identifies). If yes, then the existing classifier is returned, otherwise, the pattern {C,y,B) is

collapsed into the composite classifier BC, and (a,BC,fi} is returned. The same procedure is repeated for

all other paths. Part (B) also gathers all (user-defined) classifiers involved in abstracted paths (now

((a,BC,$ } ,{a,C,G}, (&BC,G}, (a,A,p) 1). Thus, the variable classifiers will end up containing { BC,A,B,

C,D) (duplicate classifiers are eliminated. Finally, Part (C) eliminates all those classifiers that already

have abstractions of them in the list. In our example, B and C are refinements of BC and are removed.

The remaining list of classifiers is (A,BC,D}. This result conforms to the right hand side of Figure 91 and

can now be used as an unambiguous identifier.

The same process can be repeated for relation abstraction. To that end, Figure 93 shows an

example of a simple view that is abstracted using again several layers of abstraction. The original view

abstracted in the middle layer by introducing a composite relation 7 and, similariy, y->C->b is abstracted

into 6. The third layer takes a and B from thc original layer as well as < from the middle layer and Further

abstracts that pattern in the composite relation o. The left hand-side of Figure 93 shows the identifiers for

composite relations.

Figure 94 shows the reduced redundancy model for Figure 93. As discussed in classifier

abstraction, the goal of the model is to exhibit as little redundancy as possible. This is again achieved by

overlaying all model elements (original and derived ones) onto the same structure (see upper left part of

Figure 94). Composite relations are f inked to the original classifiers since they do not get modified in the

process. This structure is analogous to the one given in classifier abstraction. The process of projecting

views out of it is therefore also analogous.

. . . .- -- - - - - - .- -* .. - . ._ _ _
-9

Original = {A,B,D) Derived = {A,B,D)

- -- . - - - - - . --

Figure 95: Ambiguity in Accessing Composite ReIations via Classifier Names

The ambiguity that accompanies some forms of identifiers exists here too. However, in this case

it are the classifier-baxd identifiers (e.g.. {A,B,D)) which are ambiguous. Figure 95 shows examples of

ambiguous results based on the identifier {A,B,D} which results in two potential projections. The

solution to this problem is identical to the one given in classifier abstraction instead that the roles of

relations and classifiers are reversed. The left hand-side of Figure 95 shows the projection of {A,B,D)

onto the original model, the right hand-side shows the most abstracted projection that combines the

original and derived modeling information. The latter projection is again derived by finding all paths

between A, B, and D, collapsing those paths using the rule set defined below, and eliminating all

refinements of selected composite relations.

The last step, the elimination of refinements (Pan (C) of our algorithm in Figure 92), may seem

however unnecessary. For composite classifiers, this step was necessary since a single classifier may have

one, two, or more relations. One rhe other hand. a single relation was thus far only depicted as being

exactly between two classifiers (or one in case of a circular relation). Although, relations are indeed used

mostly in a dual fashion, there are exceptions. For instance, associations in UML class diagrams are

aIIowed to link more than two classifiers. Figure 96 shows such a relation, Here the relation a links three

classifiers A, B, and C. If a

composite relation 6 is introduced

that collapses a-X->b. The search

for a projection for (AJS} would

yield a as well as 8 where a is a

refinement of 6. Thus, Part (C) of

the procedure discussed in Figure

92 is still necessary to eliminate a

figm the result.

Figure 96: Special Case of Relations using Associations

7.7.3.2 Reduced Model Redundancy and UML

The reader may wonder why we do not extend the concept of a reduced redundancy model to all

views CTML has to offer including its rneta-model. Primarily the reason is that reduced redundancy

models have the strongest benefits in grossly redundant cases. Derived views are completeiy redundant

with user-defined ones (we discussed this beforehand). Given the degree of redundancy, the noticeable

impact of compressing the model is thus much stronger. Also, since UML does not specify how to store

and maintain derived information, integrating those into the existing UML meta-model is more doable

without major implications on the standard.

NevertheIess, providing a less redundant modei base for all of UML would indeed be a very

effective solution overall. In fEgyed and Hilliard 2000), we explore this option in context of architecture

description languages. There we argue that in order to address view integration, we need to consider the

classification of views first BasicaIly we distinguish between Fixed Views and View-Independent

Models: Fixed views are stand-alone and support their interaction with other views through some

explicitly defined form of data andor coctrol integration. Most (if not all) architectural definition

languages as welt as UML fall into the category of fixed views. View-independent models, on the other

hand, incorporate all relevant information about multiple views under one common roof with the

advantage that information must not be exchanged or updated explicitly.

The trade-off is between them is expressivity and consistency: If one accepts the idea that the

drivers of mhitecting are stakeholders and their concerns, then view-independent models make the

assumption that all stakehoIders' concerns can be uniformly captured in a single representational scheme.

If they can, then having a single model greatly simplifies the "integration problem." Although

comprehensive modeIs have emerged in the recent past, these models do not qualify as being view-

independent, Take for instance CrmL which incorporates a number of views such as class diagrams, state

diagrams, and sequence diagrams. Even though UML incorporates these views under one common meta-

model, the actual storage does not exclude redundancy. It does not violate the tTML notation to create two

classes with a defined relationship between them and have their instances (objects) contain contradictory

relationships. What the UML meta-model has achieved is not view integration but only view

representation under a common roof [Egyed and Medvidovic 1999).

On the other hand, requiring a view-independent representation of having no (or only minimal)

model redundancy is somewhat of a utopia, however a desirable one since it promises working with

multiple views without having to deal with consistency issues. The classification from fixed views to

view-independent models is not a discrete one but continuous and manifests itself through three major

stances:

Constructive stance: Development views of systems are individually constructed. To understand the

model is to understand the sum of all its views and their relationships.

Projective smce: Views are projected out of the modei to allow its inspection and/or manipulation.

The model itself is all-comprehensive and views are needed to extract the essence of particular

concerns (like reduced redundancy model extended to all of UML,).

Decorative stance: Development views may be partially constructive and projective, Here a base

representation exists that is annotated with additional information supporting a limited form of view

projection.

Whereas the constructive and projective stances represent the extremes of view integration (none or full),

the decorative stance takes the middle ground. Our work has shown that a decorative integration approach

can be used even if the models and views were originally designed for a constructive stance (e.g., as in

164

case of most ADLs and UML). Furthermore, the decorative stance can support notions discussed in

[Finkelstein et al. 199 1] where it is argued that some amount of inconsistency cannot always be avoided.

The advantage of a (fully) reduced redundancy model for view integration is a simplification of

integration work. A reduced redundancy model covering not only derived element but also user-defined

ones could be used as a reference model. In an ideal case that reference model would exhibit no view

redundancy and it would reduce the view integration complexity to a linear problem as depicted in Figure

97. With the existence of a reference model, the integration work could be reduced to translating each

view so that it is fdly (or sufficiently) represented in that reference model. Then we could define

consistency and completeness rules based on the reference model. Thus, each view only needs to be

translated once and all consistency and compIeteness rules needed only to be represented in one type of

style (language, etc.) and not in a view-dependent form (as it is currently). A reduced redundancy model

is a simple approximation of such a reference model, however, much more work is needed.

7.7.4 Purging

Using a reduced redundancy model, a change in a user-defined view is implicitly updated on ail

derived views. A fully reduced (thus minimal) redundancy model could therefore eliminate the

consistency problem between user-defined and derived views altogether. However, it is very hard to

realize such an integrated and minima1 model. We found that it is possible to achieve partial view-

independence but a complete one is often unrealistic. This is the reason why we referred to our model as a

View 2
View 6

Figure 97: Linear Integration Wotk using an Integmted Repository

reduced redundancy model instead of a minimal one. In cases where view-independent representations

fails. affected (and possibly inconsistent) derived modeling elements must be deleted (purged). The

purging activity traverses the model and removes all derived elements that might have been affected by

an initial change. This activity. although not trivial. results in only a parrial deletion of derived modeling

information and can be done without consistency checking. Here it comes to our advantage that

transformation creates extensive trace links. Purging makes extensive use of those traces and principally

works as follows:

Purging (input: changed model element)

1) Is any derived information affected by it?

If yes then recursively call purging for those derivations

2) Delete changed model element

7.8 Summary

This section discussed the details of our view integration approach. Fit, we talked about

transformation as an enabiing technology for consistency checking. Transformation simplifies

comparison (consistency checking) by converting model elements of different type and dimension in such

a manner that they become easier comparable. We discussed simple transformation techniques and we

discussed complex ones to extend the scope of the simpie ones.

This section also discussed the problem of consistency checking after transformation. We first

showed various situations that required different comparison modes. We then showed that the underlying

consistency checking framework needed to address problems dealing with multiple derived

interpretations and multiple realizations. Also we showed that transformation results must be considered

with care in that they may contains ambiguities. Consistency checking was shown to be driven by

comparison rules that specify input and output conditions. The input conditions defined where the rule is

applicable (e-g., what model elements) and the output conditions defined what has to be satisfied for

consistency to be enswed.

The problems of model synthesis and mapping were briefly discussed since they are important

aspects of modeling and consistency checking. Both are however out of the scope of this work since they

have to be done mostly manually by users. Model synthesis deals with the creation of architectural and

design diagrams. Mapping further provides the inter-dependencies between those diagrams. The quality

of model synthesis and mapping has a significant impact onto view analysis (e.g., reliabilities).

Finally, this section discussed issues on how to store and access modeling information in UML.

As such, we showed that transformation reuse improves evolutionary consistency checking but we also

showed that our technique causes another scalability problem. We therefore introduced a reduced

redundancy model as a way of handling derived information without having to keep them consistent. To

allow reduced redundancy modeis to be used analogous to regular models we showed how regular models

could be projected out of reduced redundancy models.

Case Study

In this chapter we will apply our consistencychecking framework on a complex UML model.

The problem model addresses the design and refinement of a Hotel Management System (HMS) dealing

with reservation, counter, and accounting services. The services reflect the following needs:

Reservation Services is used by clerks (employees) to make reservations for potentid guests.

Reservations may be made for any one of the participating hotels.

Counter Services is used by clerks for check-in and check-out activities as well as for basic

payment and expense handling (e.g., room fees).

Accounting Service is used for handling and maintaining monetary issues related to guest

activities in general. Accounting Services deals with issues like overdue fees or Iate charges.

8.1 Atchitecture Level

Figure 98 depicts the high-level architectural view of the HMS. The major components are the

ApplicationPackage, DialogPuckuge, ServicePackage, AccessPackage, and DataPackage. Clerks, who

are employees of the hotel chain, use the ApplicutionPackage to access the three applications for

reservation, counter, and accounting services. All three applications make use of the same DialogPackage

to display information to the users (as well as for user input). The ServicePackage implements the

business logic of the applications and offers services such as make reservation, find guest, or make

payment. The DataPackage defines business objects (e.g., Guest, Hotel, Transaction, or Room) used by

other packages and, finally, the AccessPackage is a front-end (wrapper) to a centralized database. All

packages are executed on the local machines the clerks are using. The AccessPackage, therefore, is also a

front-end for network services to a distant database.

Figure 98. Architecture Overview of EiMS

In the folIowing, we will gradually reveal more details about the HMS refining it over two

additional levels, the high-level design and the low-level design, using a variety of diagrammatic views

from class diagrams via object and sequence diagrams to statechart diagrams. Since the model is very

complex only a partial consistency checking study will be shown here. Our emphasis is the coverage of

multiple consistency checking scenarios involving at least two examples for each transformation type.

8.2 Refinement to Higher-Level Design

In the course of constructing the KMS, the architectural view from section 8.1 was refined twice.

The following discusses the first refinement called the High-Level Design, which contains a series of

class, object, sequence, and statechart diagrams.

8.2.1 Overview

The class view of the high-level design is far more detailed than the equivalent one in the

architectural level. To display it in a single figure would make it too complex. In the following, multiple

figures are used to capture pieces of the architectural components (e.g., DiulogPackage, ServicePackage)

and heir interactions.

Figure 99 depicts the basic

data types of the HMS and their

relationships. The figure shows that the

HMS has to handle data like Guest,

their Security deposits in case of

reservations, or their Payment and

Expense descriptions in case of their

actual stays at a Hotel. It is also stated

that a Guest may either stay at a Hotel

0..1

O..n O..n
O..n -

Quest OA O..n I
-. -- -. - - . i- I

Figure 99. K M S Data Types

or may have a reservation for it. The diagram also captures some basic Employee information and their

access Privileges. The latter information is required to know what guest-related data can be accessed and

manipulated by what employee (e.g., ReservationClerk, CounterClerk, Managerclerk). For instance, a

counter clerk has the privileges to check-in a guest or to add expense or payment charges. However, a

counter clerk has no ability (or privilege) to make other types of monetary interactions (e.g.. late

reminders, service charges, etc.).

Figure 99 also depicts some cardinality information between the basic HMS data types. For

instance, it is stated that a Guest may have reservations for zero, one, or more Hotels at any given time or

that a Guest may stay at most at one Hotel at any given time. It is also stated that a Guest must always

have a Security (e.g., in the form of a credit card), regardless of whether the guest stays at the hotel or has

a reservation for it- This is done to ensure that late fees or cancellation fees can be charged at a later time.

The HMS provides three basic service packages corresponding to the needs of the three types of

employees who have access to the system (Figure 100). The ResewationService is used by employees

responsible for making reservations, Counterservice is used by employees within hotels (mainly for

check-idcheck-out types of activities), and AccountingService is used by the financial group of

employees who are maintaining guest accounts and their transactions. According to the service structure,

the HMS provides three applications to access those services (ResemtionApp, CounrerApp, and

AccountingApp). Additionally, a ManagerApp is provided to allow access to all three types of services.

The access tights (privileges) are stored together with the employee information (see Figure 99).

Figure 100. Employees Interacting with Applications using Services

Figure 101. Services, their Dialogs, and the Database (DB)

Figure 10 1 depicts the kinds of dialogs (e.g,, InsertionDlg, EditDlg, SearchDlg) that can be used

by the services. Dialog classes are user interface classes and display data on computer screens and capture

user inputs. For instance EditDlg is used to allow cterks to modify information of common HMS data

types (e.g., hotel, guest, etc.). Other dialogs foliow the same structure and provide user interfaces for

inserting, deleting, searching, or listing of HMS data types. It can be observed in Figure 101 that not all

dialogs are used by all services equally. For instance, the ReservationService requires access to

SearchDlg and InsertionDIg (directly), and EditDlg, DeletionDlg or ListDlg (indirectly). This means that

ReservationSeruice may call SearchDIg to search for a reservation, which, in turn, may call dialogs like

EditDlg to display a found reservation record. It can also be observed that the dialogs access the database.

Figure 102 refines what didogs are using what containers. Containers are pieces of a user

interface that handle self-contained elements of a dialog. For instance, a search container provides a user

interface for searching data which is similar for all types (e.g., hotel, guest, transaction, etc.). The other

containers (CaptureContainer and ListContainer) provide similar interfaces for modifying and listing.

The reason for separating dialogs from

containers is to increase reuse and improve
I

maintenance. For instance, the EdirDlg for -
ud#g mj i cr~an~ansiim-

reservations incornorates a reservation

capture section as well as a guest and hotel

search section. Similarly , SearchLllg for hotel - _ _ _ _ _ - _
- I

and guest respectively provide their own I

Figure 102 Containers used by Dialogs
search bnctionalities.

Instead of programming guest and hotel searches twice, we only provide one as part of the

Searchcontainer which both can access. The CaptureContainer can aiso be reused by WitDlg and

InsertationDlg, thus, requiring the implementation of data capture capabilities only once instead of twice.

Containers also improve maintenance because if the specification of a data type changes, only the

containers need to be updated (once) instead of requiring multiple similar updates in different dialogs.

Figure 103 depicts the relationships between services, dialogs, and their data types in more

detail. The left side of the figure shows the three service types (ReservationSe~vice, CounterSewice, and

AccountingService) and indicates what data types are used by them. For instance, AccountingService only

needs to have access to Guest, Payment, and Erpense data types but does not need access to the Hotel

data type. Similarly, the different dialogs only require access to some data types. For instance, SearchDlg

only requires knowledge of Guest, Hotel, Payment, and Expense (it cannot be used to search for security

Figure 103. Data Types used by Services and Dialogs

deposits). The DeletionDlg does not requires access to any HMS data type since it comprised only of a

simple question. The other dialogs, however, do need access to all HMS data types, however, at varying

cardinalities. For instance, UitDig displays only one guest at a time whereas ListDlg displays a

potentially iarge number of guests.

Having discussed the breakdown of classes, we also need to show how those classes relate to the

components in the architecture level. Figure 104 shows the mapping of some the high-level design classes

to the architecture. The mappings are indicated through abstraction relationships. For instance,

ManagerApp, AccountingApp, and CounterApp are refinements of the architecture component

ApplicationPuckuge. Not all design classes are included in this mapping since some classes do not have

direct counterparts. For instance, the container classes in the high-level design do not directly map to my

architectural component. This is not a problem since our consistency checking approach can handle

incomplete mapping information.

Before we discuss the consistency issue between the high-level design class diagrams and the

architecture-level component diagram, we will introduce other types of diagrams. In the following, we

will show pieces of object, sequence, and statechart diagrams supporting above class structure.

Figwe 105 shows an instantiation of some of the data types in Figure 99. Figure 105 depicts a

collection of guests and hotels as well as their retationships. For instance, it can be seen that Peter stays at

the Shoreslnn hotel for which he dso has a reservation. Ann currently stays both at the Shoreshn and at

Figure 104. Mapping from Design Cl~lsscs to Architecmre Components

Figure 105. Object Diagram Depicting the Relationships between Guests and H O W

the NiceHotel. She also had to give a credit card (CC1234) as a security. It can also be seen that the

BeachResort hoteI currently has no guest or any reservations. Also, the guest Rene has neither a

reservation for a hotel nor does he currentfy stay at any hotel.

Figure 106 depicts a statechart diagram for the class EditDlg. Recall Figure 101 where we

introduced EditDlg and explained that it is used to capture and display HMS data. We also discussed

previously that EditDIg uses multiple containers to capture HMS data. The statechart diagram in Figure

106 states that EditDlg transitions from state idle to state valid if and only if all inputs (dl containers)

have a valid input. It is, therefore, left to the state m I all containers::vrl~d 1 .(vdd

CaptureContainer) to determine whether '-0 1-0 I

0 0 ,- - r
ReservationDlg transitions from idle to valid.

Figure 106. Statechart for EdilDIg
Figure 107 depicts the state diagram of

one such container. Indeed, the capture container

offers the state valid which indicates that the ---------L --- t 9 e-lameaUsV@O>-

- - - [~ ~ k V * ~ (J L - -- .-- --A/ !
information entered currently constitutes a valid -- - ...

(ciwnm E DataTyPe}

input. A valid input is determined by investigating s m b c h n t l o r ~

a 'if -
-

--
the isValid() method of an object called element.

(e.g., Guest or Hotel). For instance, if the container handles guests records (e.g.,

GuestCaptureContainer), then element is of type Guest. It is left to the object Guest to know whether it is

valid or not. Being valid means that the information captured currently is sufficient to describe a guest.

Normally, name, address, and security (e.g., credit card) information are required for a valid guest entry.

Figure 108 shows the statechart .-----------. -
S ~ f o r d u s 1
D.r)prr-- 1

I

diagram for the class ReservationService.
I ReservaUonDlg.~~~~~mrctO .-----.

.----I m
Recall from Figure 101 that

ReservationSewice implements some of the

business logic for K M S applications

(ReservationSewice in particular implements

the business logic involving reservations).

After instantiation, a ReservationService

object is in the idle state. It is left unspecified
- -

how to transition from idle to the state Figure 108. Statechart for ReseryotionSemicc

capture, however, it can be observed that

such a transition is possible. If all required information about reservations has been captured (done via

dialogs), the state of ReservationService transitions to complete. From this state is it possible to actually

create, modifl, or delete a reservation entry in the database.

Figure 109 depicts a sequence diagram showing the timing of certain activities during the

process of modifying a reservation. First the nwdifl_reservation(I method is called in ReservationService,

which, in turn, reads the reservation (via method read-reservation()) and then opens a dialog window

(via method show-dialog()). The dialog window waits until all reservation information has been captured

(note that interactions with containers become relevant here but were omitted). Thereafter, the dialog

queries the database to find the new hotel information, which is then instantiated as a new Hotel object.

At the end, the reservation is updated by calling the DB method edit-reservation().

Figure 109. Sequence Diagram depicting a Search for a Reservation

8.2.2 Tmnsformations

The refinement of the architecture level into the high-level design increased the information

content of the model by an order of magnitude. Since the architecture only provided one view,

consistency checking within the architecture level is not necessary. However, with the added design

information, we are now confronted with about a dozen diagrams part of different subsystems and levels

of abstractions. Figure 110 shows the basic structure how those diagrams inter-relate. The top level

Figure 110. Tradorm~tions to support Consistency Cbeckiag of Architecture and Design

depicts the architecture level which currently holds one diagram (Figure 98). The architecture was refined

into a series of class diagrams depicted at the lower right area of the high-level design in Figure 110.

Additionally, the design level provided an object diagram (Figure 105), a sequence diagram

(Figure 109). and several statechart diagrams. From Chapter 5.5 we know that the object diagram is

structural and specific, the sequence diagram is behavioral and specific, the statechart diagrams are

behavioral and generic, and the class diagrams are structural and generic. Those diagrams are accordingly

represented in the specific andfor behavioral sections of the high-level design. Given the cunent state of

the model, the following four transfomtions are necessary to enable consistency checking between the

currently existing diagrams:

1. Abstraction between the high-level-design class diagrams and the architecture-level class diagram,

2. StructuraIization between the high-level-design sequence and object diagrams,

3. Generalization between the high-leveldesign object and class diagrams, and

4. Structumlization between the high-level-design statechart and class diagrams.

8.2.3 Consistency Checking

Figure 11 1 depicts the result of abstracting the high-level design classes into a form that is

suitable for comparison with the architectwe-level diagram from Figure 98. Figure I I 1 was generated

with our W A n a l y z e r tool. It can be observed that the basic structure of the abstraction is similar to

Figure 98. However, on closer inspection, a series of inconsistencies can be observed:

I . The actor Managerclerk is not connected to Application

2. The roles of ServicePackage and DialogPuckage are reversed which causes the direction of the

relationship between them to be reversed

Figure 111. Abstracted Design-Level Class Diagram

3. Concrete classes like SearchContainer and Employee have not been assigned to abstract classes

4. Concrete relationships like the association between ReservationApp and ReservationService have not

been realized in the abstraction

5, The database (DB) class is not connected to DataPackage

Figure 112 depicts the result of -r-I
7-

shown in Figure 109. The result is an H ~ I

interpreted class diagram that should be *consbucr~
*c--o -,

structuralization and subsequent
[---tkna

consistent with the high-level class
t .-----I ~~

, I 1 --dhkeO : -,-o

. ----- ..A-

Gwst - . *tw-
diagrams. Since the sequence diagram is a t %t-W

.c-wl
1

specific view, the consistency checking has +t-m~

generalization of the sequence diagram I 1

to follow the part-of mode in that it is not Figure 112. Structuralized and Generalized
Sequence Diagram

expected that it completcly represent the

generic class diagrams. Thus, validating the consistency involves the validation that the sequence diagram

does not contradict the class diagrams. The following inconsistencies can be observed:

1. Methods like DB::get-hotel() or Guest::construct() are not defined in generic view (see Figure 101)

2. The relationship between ReservationService and InsertionDlg, DB and Guest, and DB and Hotel are

not defined in generic view

reservation-for
The third required transformation is a _- 0..3 . - O..I - _

Gwwt 1- - - 4 Hotd 1
generalization from an object diagram (Figure 105). '-1 - 2---A

0.2 I
1.2 OA stays-at

Again, a class diagram (Figure 1 13) is the result of that s m n t y

0..1 transformation which needs to be consistent with the ----
q

high-level class diagrams. Note that consistency
Figure 113. Generalized Object Diagram

checking between the sequence diagram and object

diagram is not necessary since their validation is done implicitly by using the design-level class diagrams

as a common denominator. Since the object diagram is also a specific view, consistency checking follows

the part-of mode. The following inconsistencies can be observed:

1. The relationship between Guest and Security is different (note: Figure 99 defines that relationship as

aggregation which is impossible in Figure 113 because of the zero-to-one cardinality)

2. The cardinality between Guest and Security as well as between Guest and Hotel (stays-at

relationship) are different.

Figure 114 is the forth and final

transformation required for consistency checking
----- .- - - . A .- -i tbVaadQ I - *isvalid() I
/ m e w k m r g

between the architecture and high level design. I ------- . - - -
* - - - - - - Reslnmtkrr

Figure 114 depicts the resuIt of the structuralization isValid0

of the three statechart diagrams in Figure 106, Figure 114. S t r u c t u d d Sta-rt Diag-

Figure 107, and Figure 108. The knowledge of

statechart ownership and references are used here to infer class-relevant information. If can be observed

that methods like isValid() and construct() have not been declared in the class views. Otherwise, no

inconsistencies exist.

8.3 Refinement to Lower-Level Design

As it can be seen in above diagrams, having transformation methods simplifies consistency

checking enormously. However, thus far, we only showed consistency checking within class diagrams

and between class diagrams and other views. This was primarily caused because the architecture-level

only provided a single class diagram. This section will refine the higher-level design diagrams and show

other types of transformation and consistency checking.

8.3.1 Overview

Since the lower-level design view contains as large amount of model elements, we will focus on

some pieces onIy in this section. Figwe 115 shows the refined version of the data types we previously

discussed in Figure 99. As can be seen, the basic data types are still present (e-g.. Guest, Hotel, etc.),

-
I - .

i (k ~ r r r ~ l r r r e l q 1 I

Figure 115. Low-Level Design of Basic HMS Data Types

however, their attributes and relationships have been further augmented. For instance, the class

Reservation was introduced to refine the reservationfor relationship from Figure 99. Accordingly, some

attributes of the classes in the lower-level design have been augmented. For instance, Figure 115 defines

additional methods and cardinalities.

Figure 116 is a refinement of the RestrrvationSerwice, ReservationDlg, and Container classes

from the high-level design. The figure again depicts some already known classes such as

ReservarionService as well as their refinements. For instance, ResewationEditDlg is a refinement if

EditDlg (Figure 10 1) and GuestSearchConrainer is a refinement of SearchConrainer (Figure 102). Figure

116 shows that ReservutionService calls ReservationEdirDlg to modify reservations

(modiji._reservationI)). ResewationEditDlg, which is a subclass of Dialog, displays reservation, hotel,

and guest data via the ReservationCaptureContainer, HotelSearchContainer, and GuestSearchContainer.

Containers like GuesrSearchContainer can be used to quickly locate guest data (e.g., membership

Figure 116. ResewationSewices, ReservationDlg, and its Containers

number) or they can be used to make a rough search followed by listing the findings in a separate dialog

(GuestListDlg).

As a refinement of the CnptureContainer in Figure 107, Figure 117 depicts the

ReservationCaptureContainer. ReservationCaptureContainer displays reservation data on the screen and

validates provided input. It is specified that its state can only transition from ReservationCapture to

ValidReservationCapture if and only if currentReservation.vali&te() returns me. From Figure 116, we

know that currentReservation linked fkom ReservationCaptureContainer points to the HMS data type

Reservation (note the label +currentReservation originating from ResewationCaptureContainer),

indicating that the vali&teO method of the class Resenpation is meant.

Figure 117. Statechart diagram for ReservationCapmnContaiaer

Figure 118. Startchart Diagram for ReservationEditDlg

Figure 118 shows the statechart diagram for ReservationEditDlg, which is a refinement of

EJirDlg from Figure 106. ReservationEditDlg is fairly complex since it must capture the interactions

between the dialog and all its containers. After construction, ReservationEditDlg is in the idle state. Once

show-dialog() is invoked, the state of ResewationEditDlg transitions to HotelCapture. Once hotel

information has been completely (vdidly) captured, ReservationEnirDlg transitions to

ReservationCapttire. After the successful capture of reservation. guest, and security information,

ReservationEditDlg reaches the valid state. Now the user (clerk) has the option of pressing the OK button

on the screen to make modifications to the reservation. The cancei button could have been used

throughout the process.

Figure 119 depicts a sequence diagram showing how classes interact during modifying a

resevation. The links in the sequence diagram reflect the ordering of method calls. It can be seen that the

modification of a reservation invoives the Resewatiodervice making a call to ReservationEdisDlg which

in turn instantiates needed data types and containers. Once the entered data is valid, the database is called

to make the actual modification (edit-reservation()).

At the end, the sequence diagram in Figure 119 proceeds in displaying the same record again by

calling the show-dialog() method. The previous construct methods are not needed this time since the

objects still exist.

Figure 119. Sequence Diagram Capturing the Modification of a Reservation

0.3.2 Transformations

The refinement of the high-level design into the low-level design again increased the

information content of the model. Since the high-level design and architecture were already checked for

consistency, this step only needs to validate the consistency between the high-level design and low-levei

design. Note that we could also validate the consistency between the architecture and the low-level design

but we would benefit only little through it, To understand this, assume for a moment that all three levels

of abstraction are completely consistent. In that case the comparison between the architecture and high-

level design would reveal no inconsistencies and neither would the comparison between the high-level

design and low-level design. If we would now also compare the low-level design with the architecture,

we would naturally also not find any inconsistency since we indirectly proved this already. It follows that

we only need to validate the consistency between the two design levels.

Like before, validating consistency involves the transformation of diagrams in such a manner

that they become directly comparable to the remaining diagrams. Like Figure 1 I0 previousIy, Figure 120

again shows the relationships between the lower-level design diagrams and the higher-ievel ones. Given

the current state of the model, the following five transformations are necessary to enable consistency

checking between the currently existing diagrams:

0

sequence diagram ,0

--

Figure 120. Trmsformations to support Consistency Checking between Desigus

1. Abstraction between the low-level class diagrams and the high-level class diagrams,

2. Abstraction between the low-level statechart diagrams and the high-Ievel statechart diagrams,

3. Abstraction between the low-level sequence diagrams and the high-level sequence diagrams,

4. Suvcturalization followed by generalization between the low-level sequence and class diagrams,

5. Generalization between the low-level sequence and statechart diagrams, and

6. Structuralization between the low-level statechart and class diagrams.

To enable consistency checking, Figure 121 depicts the mapping between some of the lower-

level classes and higher-level classes. For instance, it can be observed that Creditcard, Cash, and Check

are refinements of Payment or that CuestSearchContainer and HotelSearchContainer realize

SearchContainer. This type of trace information is again needed to ensure automated transformation and

consistency checking.

Figure 121, Mapping from Low-Level Design Classes to High-Level W g n Classes

8.3.3 Consistency Ch~king

Figure 122 depicts the result of abstracting the low-level design classes into a form that is

suitable for comparison with he high-level class diagram from Figure 115 and Figure 116. Figure 122

was again generated with our WAnalyzer tool. Since we did not depict the complete lower-level class

diagram, the abstraction only reflects a part of the high-level diagram. The following inconsistencies can

be observed:

There is only one association between Hotel and Guest, and this association has the wrong direction

Classes Employee and Privileges were not refined

Cardinality between Guest and Expense is wrong (note that association type and cardinality between

Guest and Payment is correct since the diamond head in Figure 99 corresponds to a cardinality "I")

Relationship between Hotel and PaymentSecurity is illegal

Relationships from SearchContainer and CaprureContainer to InsertionDlg and ListDlg are not

allowed by abstraction

Likewise, relationships from Containers to Guest and Hotel are illegal

Figure 122. Abstracted Low-Level Design Class Diagram

Since the class ReservationCaprureContainer is a refinement of the high-level class

CaptureContainer, it follows that the statechart diagrams attached to them relate in the same manner. The

statechart diagram in Figure 117 thus refines the statechart diagram in Figure 107. Since the basic

structure between both statechart diagrams is identical (box and mows relate in a one-to-one fashion),

the abstraction process leaves Figure 117 unmodified. Comparing Figure 117 and Figure 107, we find

that all interconnectivities are consistent. Figure 107 states that element.isValid() must be true for a

transition to happen and Figure 107 also defines that element must be a DataType (e.g., Guest, Hotel,

etc.). We can see from Figure 116 that currentReservation (as defined in Figure 117) is a link to the

Reservation data type as it was defined in Figure 115- Currently, however, we did not specify the

traceability (mapping) that Reservation implements one of the data types of the high-level design-we

found an inconsistency. The absence of the construct() and destruct() methods (from Figure 1 17) is not an

inconsistency since those methods were not yet defined in CaptureContainer in the high-level design.

The class ResewationEditDlg is also a refinement of the class EditDlg. The statechart diagram

corresponding to ReservationEditDlg (Figure 1 18) is, however, more complex than the one corresponding

to EdirDlg (Figure 106). If we assume that the idle and valid states correspond to one another, then we

get an abstraction of ReservationEditDlg that looks like Figure 123. It must be noted, that all information

that is not known on a higher-level is omitted and transitive relationships were created. For instance, chere

is only one path from idle to valid. This path uses intermediate states like HorelCapture. We also know

from the lower-Ievel class diagrams that attributes like hotelsearcher link to containers (see Figure 1 16).

With that we can infer that the methods show-dialog() and the valid states of several SearchConrainer

and CaptureConrainer are needed for Figure 123 to transition from idle to valid. Circular links within idle

are also possible but not easily abstractable since cance1::pressed is refemng to a class that is not defined

(nor known) at the higher-level. A blank circular link is therefore depicted. Likewise, the backward

transition from valid to idle is blank, indicating that it is possible to do it but it cannot be inferred how.

We can observe the following inconsistencies:

Circular transition not allowed in abstraction

Backward transition not allowed in abstraction

Method call guestsearch as used in Figure 1 18 is not defined

Method call show-dialog() is used in lower level to transition between idle and valid but is not used

at higher level.

Figure 123. Abstracted Statechart Diagram for EditDlg

Under nonnal circumstances. consistency checking between specific views is not very

meaningW since specific views represent usage scenarios and scenarios may vary. For instance. if one

specific view defines A=9 and the other defined A=S, then this denotes no inconsistency. However, based

on trace information (mapping). we may choose to force comparisons between specific views. In our

model, we make the claim that the sequence diagram in Figure 119 is a refinement of the sequence

diagram in Figure 109 since both depict the same scenario on how to modify a reservation by changing

the hotel. To allow consistency checking between the two sequence diagrams, Figure 119 must be

abstracted. Abstracting a sequence diagram is similar to abstracting a class diagram. It involves the

grouping of classes and the derivation of transitive relationships. Like with statechart diagrams before.

method cdls that were not defined in the abstraction may be omitted. Figure 124 depicts the abstraction

of Figure 119 and it can be observed thn the abstraction looks very similar to the high-level sequence

diagram. Note that we did not explicitly state a trace imm handle-event (lower-level) to do-capture

(higher-level). The following inconsistencies can be observed:

1. The method call: get_hotel() was not refined as well as its subsequent method call set-reservation()

2. The method call do_capture() was called three time although only one was expected

Figure 124. Abstracted Sequence Diagram for rnodifi-msenrdion()

The forth type of transformation we need to perform is a suucturalization followed by a

generalization of the low-level sequence diagram. The result of that operation is a low-level class diagram

that should be consistent with our current class diagrams. We find the following inconsistencies:

1. The calling dependencies between ReservationEditDlg, GuestCaptureContainer and

HotelCaprureContainer are not allowed

2. The class Button does not exist

Figure 125. Stmcturalization and Genemtization of Sequence Diagram

Note that the methods handlegvent() or activate() and the relationships to DB are undefined in

Figure 115 and Figure 116, however, they do exist in the lower-level class definition. For brevity. their

definitions were omitted previously.

For the fifth transformation, the generalization of the sequence diagram in Figure 119 to a

statechart diagram like Figure 118, we again need additional traceability (mapping) information to

proceed. A sequence diagram (like the one in Figure 119) can be used to create pieces of multiple

statechart diagrams belonging to multiple component. Here we will demonstrate it on the case of

ResewationEditDlg. It can be observed that ReservationEditDlg receives and sends out information

during the course of modifying a reservation. We define construct() as a constructor and the methods

show-dialog() and activate() as actions. Using that information, the sequence diagram can be uansfonned

into a statechart diagram which looks like Figure 126. It can be seen that the conrrruct() method

Figure U6. Generalized Sequence Diagram to Statechart Diagram

transitions form a start state to a regular state, the methods set-data() and handle-evenfl are circular state

transitions indicating that they are queries (or undefined), and the methods show-dialog() and activate0

are regular state transitions. No information can be inferred about the state names, however, some of the

conditions that enable state transitions can be taken over. It can be observed that the two statechart

diagrams are almost consistent, except for the last show-dialog() method. The original statechart diagram

in Figure t 18 requires the occurrence of another state transition [cancel::pressed] or [ok::pressed] before

show-dialog() may be called again.

The sixth, and final, transformation is a structurdization between the statechart and class

diagrams. Figure 127 shows the result of transforming the two statechart diagrams in Figure 117 and

Figure 1 I8 into a class diagram that becomes comparable to Figure 115 and Figure 116. The following

inconsistencies can be observed:

1. Class Button is not defined

2. Class Reservation does not have a valiaizte() method

3. Classes ReservationCaptureContainer and ReservationEditDlg do not have destroy0 methods

Egure 127. Stnrctutalized Statechart Diagrams into Class Diagram

8.4 Scalability

Without any scalability measures and without our view integration framework, consistency

checking of 19 user-defined diagrams would require up to 17 1 transfomtions andor consistency checks

(not counting model elements). Additionally, such an approach would also require up to 22

transformation types. In context of the HMS, such an unscalable approach would actually have to perform

1 18 transformations and 17 transformation methods.

Our consistency checking approach is geared towards scalable consistency checking supporting

extensive reuse. In context of the HMS, our approach only requires 17 transformations and 7

transformation methods. It must however, be noted that the worst case scenario of our approach could

require up to 342 transformations and 8 transformation methods for 19 diagrams. This scenario would

happen if 18 concrete sequence diagrams were to be transformed to I abstract class diagram. Our

experience at looking at dozens of UML models shows that such a worst case scenario is unlikely.

Simifarly unlikely are other cases that yield bad performances. Our approaches' performance improves

the more types of diagrams ilrc used. Above worst case showed the use of only two types of diagrams that

are located in the most extreme "corners" of our transformation fhmework.

Even if such a worst case scenario would occur, the number of msformations would only be a

factor of two higher, not significantly worsening the unscalable approach, however, our approach would,

in a worst case scenario, still only require 8 transformation methods (versus 22). We therefore see our

approach as both an improvement in the number of transformations to be performed under "normal"

usages as well as an improvement in the number of transformation methods to be implemented to support

consistency checking. Our approach therefore also lowers the entry barrier to enable large scale and

scalable consistency checking.

Finally, our approach also scales well if additional types of diagram are introduced. For

instance, if collaboration diagrams need to be supported by our approach only a single translation method

between sequence and collaboration diagrams needs to be added. We already added C2 ADL

(C2SADEL) and also only required a single translation method. Thus, these two additional diagrzlm types

only add two transformation methods. An unscalable approach would require the additional of 44

transformation methods on top of the 22 already existing ones. In such a scenario, our approach improves

the number of methods required by an order of magnitude.

8.5 Summary

This section presented a non-trivial case study of a hotel management system and demonstrated

our approach in context of 19 diagrams. We showed the transformations required to pedorm consistency

checking and we listed the inconsistencies the 19 diagrams currently exhibit. We concluded the

discussion by comparing some scalability numbers between our approach versus a non-scalable one.

9 UM UAnalyzer-A Tool

The UMUAnalyzer tool implements our view transformation framework in the context of

object, class, and C2SADEL diagrams. Figure 128 depicts some screen snapshots of the tool.

UMUAnalyzer is integrated with Rational RosefM for the purpose of using it to create and modify views

(synthesis). Rational Rose models are converted through an automated process into a system model called

UML-A where they an analyzed via UMUAnalyzer (UML-A is an adaptation of UML to support

advanced consistency checking concepts like reduced redundancy models). Generated modeling

information as well as identified model inconsistencies can be fed back into Rational Rose for

visualization. Figure 128 shows Rational RoseTM in the lower right as well as the UMUAnalyzer main

window to the upper-left. The tool uses transformation rules (upper-right) to convert class and object

models. Models loaded into UMUAnalyzer can then be msformed and analyzed with respect to their

consistency (lower-left).

Figure 128. UMEAdyzer Tool Supporting View Integration

At the current state, the tool supports class and object diagram abstraction and consistency

checking. Other transformation techniques are still being implemented. The tool also supports the

scalability measures discussed in this work to enable their evaluation. Some industrial companies have

participated in its creation andor evduation. For instance, we have collaborated with Rational Software

on our relation abstraction technique [Egyed and Kruchten 19991. Rational Software also implemented

that technique in a tool called Rose/ArchitectTM.

Future plans are to integrate a model consttaint parser and checker component (depends on

availability of OCL parser and checker) as well as to integrate additional transformation techniques.

However, even at its current state by only supporting partial automated transformation we have already

observed an enormous benefit in using it. Figure 129 shows a populated UML model of our hotel

management system containing both user-defined and derived modeling elements. Figure 129 is

analogous to our reduced redundancy model we discussed in Chapter 7.7.3. As it can be seen, the task of

Figure U9. Complexity in Class Abstraction

Figure 130. Inconsistencies between HMS Architecture and High-Level Design

abstracting a class model can be considerably complex and time consuming if done manually. Proper

cIass abstraction rcquires the exploration of all possible path combinations folIowed by the application of

proper class abstraction rules. The tool reduces this task to mere fractions of a second.

Figure 130 depicts the list of inconsistencies between the architecture and design level of the

E M S system (see Chapter 8) as generated by UMUAnalyzer. Each entry first describes the nature of the

inconsistency followed by the list of involved model elements. For instance, the fmt entry in Figure 13 1

states that the concrete class HMS::High-Level Design::SeurchContoiner has not been realized in

abstraction (recall the lack of a container package in the architecture level). In case of inconsistencies

among relationships, usually multiple involved model elements are listed. For instance, the inconsistency

"abstract relationship has different direction than refinement" indicates a problem between the two

packages HMS::Archtitecture::Se~icePackage and HMS::Architecture::DkfogPackage, saying, that this

Figure 131. Inconsistencies between HMS High- and Low-Level Designs

relationship exists in the high-level design but has a different direction. Figure 131 also lists the

inconsistencies among the high-level and low-level designs.

Egure 132 depicts some statistics gathered by the UMUAnalyzer tool during the process of

abstracting the high-level design into the architecture. During download, roughtly 80 relationships are

created. Those relationships are part of the design and architecture diagrams of the HMS. During the

course of abstracting the relationships among Clerks, ServicePackage, DialogPackuge,

ApplicationPackage, AccessPackuge, and DataPackage, derived relationships are added to the model.

Those derived relationships represent the more abstract interdependencies which are created by grouping

concrete relationships. Our abstraction process also supports some scalability measures like reuse and

elimination of duplicate but similar abstracted relationships. It can be obsewed that those two scalability

measures eliminate the bulk of the derived elements. We have observed a similar pattern while

abstracting over a dozen different and non-trivial class diagrams. We have also obsetved that the amount

Figure 132. Reuse and Duplication Elimination during Abstraction

of reuse increases over time as the repository is extended. The amount of reuse may peak up to 100%

within reuse cycle, however, due to purging and evolutionary changes in the model, the degree of reuse

may vary. We observed an avenge of 40-8096 reuse within review cycies.

10 Related Work

In one form or another, the view integration problem has been worked on by numerous

researchers. This section discusses theu works and also discusses in what ways theu works differ from

ours. It i s important to note that other view integration approaches are not independent or in any way

orthogonal to ours. [Sage and Lynch 1998) wrote that 'Infortunately, there appear to be no detailed

definitions that distinguish between various types of integration, and this may appear to make the subject

disjoint. . .- [However] integration is generally always being performed, but it is not clear as to where it is

performed or how to accomplish it successfully."

This section presents and discusses twelve related view integration approaches. Instead of

discussing them individually, we found criteria on how to enable their comparison in a more meaningful

fashion. Those criteria are partially based on our framework and could be considered subjective.

However, even in case of subjectivity, these criteria enable reasoning about how their approaches relate to

ours. The set of criteria may not be compIete, but they cover a number of important architectural

considerations, and can serve as a baseline for future work.

10.1 Overview

View intcgration is part of every aspect of the development life cycle and, thus, our work, and

the related work presented in this section, fit somehow into the greater scheme of the view integration

problem. Because of the depths of the integration problem it is far out of the scope of this work to present

a complete survey. We start this overview with the works of Sage and Lynch [Sage and Lynch 19981

because they are one of the few people who have attempted to summarize all key aspects of integration

even across the boundary of software. Their work on System Integration and Architecting covers

integration aspects, principles, and practices on the system level going far down into details of systems

and software development. Their recent summary is an excellent work of 50 pages and we could not

possibly provide a better one here. In that work, they tsllk about the need for integration on the systems

engineering level and present the results and findings of numerous researchers. Systems engineering

Table 8. Comparison of View Integration Approaches

Automation

Identification m.88.8.881
Resolution a . E
Formal Notation @-. 0 m a 0 1
Graphical Notation 8
Document

differs from software engineering in that it tries to cover all that is offered by the latter but more. It also

covers hardware aspects and how software is integrated with it. With that in mind they address the need

of model integration, as it is addressed in our work, although the scope of their work did not permit more

than an overview.

Since consistency-checking approaches are abundant, we decided to place the focus of this

section onto automatable approaches. With that we exclude all manual validation and verification

techniques such as inspection [NASA 19931, review boards [AT&T 19931 and others. Boehm's paper on

verification and validation techniques [Boehm 19891 provides an excellent overview of such techniques.

10.2 Comparison of View Integration Approache8

In the folIowing subsections we discuss automated or automatable view integration approaches.

In ow evaluation we considered twelve cases. Although, those cases do not all address consistency

checking, they do solve some significant portions of it. For instance, we decided to also include

approaches that only automate transformations (e.g., SCED [Koskimies et al, 19981). The types of

approaches we considered are depicted as columns in Table 8. The first column represents our approach;

the remaining columns represent related approaches.

As we indicated previously, we defined a set of criteria in dealing with view integration issues

(and consistency checking issues in particular). The eight criteria were then refined into 2 to 5

characteristics each. Table 8 shows the ratings of all approaches. The following ratings were given: none,

weak, strong. The rating none implies that that criterion is not satisfied by that approach. A none rating is

also given when the criteria does not apply or is insignificant. The weak and strong ratings are given

when some support or extensive support is available. We believe that no view integration approach is

complete and, therefore, decided not to give any stronger ratings. The following approaches were

evaluted (listed in alphabetical order)

AAA (Architect's Automated Assistant): Abd-Allah and Gacek address the problem of

component integration [AM-Allah 19963 [Gacek 19981. That task involves the interpretation of

components and their characteristics followed by reasoning about potential inconsistencies

among them Their approach is very unique since they investigate inconsistencies on a very

high-level. For instance, if a software product is composed of a number of components-some of

which may be COTS (Comaretcial-of-the-Shelcthen based on certain properties of those

components potential inconsistencies could occur.

Belbouche-Lemus: Belhouche and Lemus take a more formal approach to view integration in

the context of statecharts and dataflow diagrams [Bekhouche and Lemus 19961. Their work

reflects the opinion that views are independently created and analyzed, however, formal

transformations should be used to support consistency checking (we have taken a similar stance).

Their approach seems automatable, although, they do not provide tool support at this point.

Delugach: Delugach took two types of diagrams, data-flow diagrams (DFD) and class diagrams,

and transformed them onto a conceptual graph [Delugach 19961. What makes his work unique is

that he then verbally describes the relationships of components in that conceptual graph. That

process can be automated and a modeler can then read those descriptions (which are in plain

English) and reason about their validity.

Engels et al: Ehrig, Engels, Heckel and Taentzer worked on the problem on how to merge

object diagram into more generic types of diagrams [Ehrig et al. 19971. Object diagrams are

combined stepwise into a more generic model by merging two views at a time until all of them

are merged. In doing so, they explore different generalization paths along they way. Their work

is very useful for the generalization of specific views into generic ones. Besides, their approach

can also be used for showing how a method changes an object diagram over time. For instance,

if a method (function) adds, removes, modifies a current object model then this kind of

knowledge can be used for consistency checking.

JViews (MViews): Grundy, Hosking, Mugridge, and Warwick have created several modeling

environments-most notably Niews (a successor of MViews) [Grundy et al. 19961. They

primarily focus on code and lower-level designs, however, were able to address a series of view

integration problems in that domain.

Keller et al.: Schonberger, KelIer, and Khriss concentrated on scenario diagrams and how they

can be transformed and merged into statechart diagrams [Schonberger et al. 19991 [Khriss et al.

19981. They do this by matching method calls to state changes. Although they not provide tool

support, they present detailed algorithms that also address concurrency issues. Even though they

did not have view integration in mind, their work is fundamental when it comes to view

integration.

SADL: His approach is different to the previous one in that he provides a formal language and

trimsformation taws with which transformations are guaranteed to remain consistent

[Riemenschneider 19991. In particular, his work is geared towards consistent refinement of

abstract descriptions to a level of detail that allows its direct implemcntation,

SAAGE: Robbins, Medvidovic, Redmiles, and Rosenblum used the UML notation and modeled

their architecture description language (ADL) in UML [Medvidovic and Rosenblum 19991. Abi-

Antoun and Medvidovic then took that translation specification and automated it in their

SAAGE tool [Abi-Antoun and Mcdvidovic 19991. Like SADL's work, their work guarantees

consistent refinement (at least initially).

SCED: The work of Koskimies, Sysd, Tuomi, and Mannisti) is very similar to Keller et d. since

it also involved sequence to statechart transformation [Koskimies et al. 19981. Although, the

techniques of KeIler's group are more in-depth, Koskimies's group was able to provide tool

support (SCED).

ViewPoints: The work of hterbrook, Finkelstein, Hunter, KMmer, and Nuseibeh on

Viewpoints [Eaterbrook and Nuseibeh 19951 is also close to ours in that it presents some views

and corresponding rules to identify inconsistencies within and between them [Finkelstein et d.

199 11 [Nuseibeh et al. 19941. Their strongest contribution is a framework with which they

provide mechanisms for detecting, classifying and resolving inconsistencies. Their work

emphasizes the eariy parts of the life cycle strongest-requirements and architecture-and they

provide several tools in the process.

VisualSpecs: The work of Bourdeau, Cheng, and Wang, acknowledges and addresses a

deficiency of modeling Ianguages, like UML or OMT, which has to do with the lack of precision

and formalism [Cheng et al. 19951 [Wang and Cheng 19981 [Wang et al. 19971. They propose

ways on how to eliminate that problem by integrating formal methods into OMT [Rumbaugh et

al. 199 11. So they substitute object models with algebraic specifications, various OMT semantics

with algebraic semantics and instance diagrams with algebras. Reasoning about diagrams can

then be shifted onto the more precise formal specifications,

The following sections will discuss the above approaches in context of our evaluation criteria. We defer

the evaluation of our approach to Section 1 1.1.7.

10.3 Integration Criteria

The lntegrarion Criteria addresses the extent of how view integration has been addressed. In

particular we are interested in the ergonomics, analysis, synthesis, and automation of individual

approaches.

Ergonomics addresses human-computer interface issues. For instance, how is information

communicated to the users and how are users able to influence the integration process? Mews (a

successor of MViews) [Grundy and Hosking 19961 [Grundy et al. 19961 handles many facets of

ergonomic issues related to user interactions [Grundy et al. 19981. As such, they also deal with issues on

how to present inconsistencies curd how to act in their presence. Similarly strong, from an ergonomic

point of view, is the work on ViewPoints [Finkelstein et al. 19941 which addresses the life cycIes of

inconsistencies. AAA only handle simple user-interaction in defining and analyzing consistency issues

and thus received a weak rating. All other approaches do not address ergonomic issues in context of

consistency checking.

Analysis addresses an approach's ability to reason in the presence of a model description. AAA

defines and then analyzes conceptual features of components. Based on the values of those features,

potential inconsistencies are identified. Belhouche-L.emusTs approach transforms diagrammatic

descriptions like dataflow diagrams and statecharts into a formal representation. In the context of that

representation, diagrams can be analyzed and inconsistencies identified. JViews takes a different

approach where diagrammatic and textual description (e.g., source code) are captured in a well-defined

model repository (the base model). It is in that model where inconsistencies are identified based on the

semantic relationship between model elements of that model. Viewpoints takes multiple approaches to

consistency detection and handling, although those mostly involve the description of a problem in some

formal language and its detection and resolution in context of that language. VisualSpecs' approach is

analogous to Belhouche-Lemus and ViewPoints. Diagrammatic types of views are transformed into

algebraic specifications, diagram instances are transformed into algebras, and the semantics that hold

between diagrams and their instances are transformed into algebraic semantics. VisualSpecs then uses

those algebraic semantics to reasons about the consistency between algebras. SADL's approach is very

different in that no explicit analysis component exists but instead synthesis implicitly also covers

analysis. His approach builds on well-defined semantics and uses proof-carrying transformation steps that

guarantee that transformations remain consistent. SADL therefore merges synthesis and analysis.

The synthesis criteria addresses whether consistency checking only involves the direct

comparison of elements or whether transformation is part of that process. We found that most integration

approach use some form of transformation. In many cases, transformation involves the translation of

some given model into a more rigorously defined formal notation (e.g., Belhouche-Lemus, SADL,

ViewPoints, VisudSpecs). Reasoning is then done in context of that formal representation. In many other

cases, t~nsformation is used to provide a common repository (e.g., Engels et al., Keller et al., SAAGE,

SCED). In some cases, no explicit transformation is used. Instead model information is annotated (made

richer) to allow extended reasoning. For instance, AAA describes components in form of conceptual

features that are added to component definitions; JViews provides a common repository and base model

to enable a uniform reasoning environment; and Delugach creates descriptions of models in plain English

(a generic reasoning environment for manual analysis).

Most integration approaches support automation and have tool support. We gave a strong rating

when tool support is available for modeling, analysis and, inconsistencies detection, We gave a weak

rating when only partial tool support is available (e.g., SCED only supporting synthesis but not analysis)

or when no tool support is available but algorithms are defined (e.g., Keller et al.).

10.4 Modes Criteria

The modes criteria indicate the usefulness of an approach in dealing with the entire life cycle of

inconsistencies. Most importantly are the detection and resolution of inconsistencies.

All approaches are useful for inconsistency identijiwrion. Some approaches received a strong

rating if they defined analysis and synthesis rules (e-g., consistency rules and transformation rules) in

such detail that inconsistencies can be identified in a fully automatable process (e.g., AAA, Belhouche-

Lernus, JViews, ViewPoints, VisualSpecs). The weak reatings are giver. if only partially consistency

checking is automatable (or automated) (e.g., Delugach, Engels et al., Kelier et a]., SAAGE, SCED). For

instance, in case of SCED only transformation is automated which simplifies comparison considerably.

Nevertheless, the actual comparison still has to be done manually. A very exceptional case is SADL's

approach. His approach gives no direct support for automated consistency checking since he uses a

process that guarantees consistent refinement. However, since his synthesis steps gumntee consistency,

he received a strong rating.

Inconsistency resolution is the natural extension to inconsistency detection. Resolution is,

however, also very hard to accomplish. Only SADL's approach enables the automatic resolution of

inconsistencies (strong rating), although, this rating may be misleading since his approach avoids having

to deal with inconsistencies. Nevertheless, his approach supports a form of view integration that does not

require any inconsistency handling. All others have to handle inconsistencies somehow. Mews and

Viewpoints provide some support (mostly user interface and process type) to deal with inconsistencies.

That support helps but does not provide full automation (partial rating). All other approaches do not

support inconsistency resolution.

10.5 Media Criteria

The media criteria addresses the types of models required to support view integration. Most

integration approaches support graphical modeling languages such as the UML. Some other approaches

are at least partially based on formal notations. Even in cases where synthesis and analysis requires a

formal notation (e.g., Belhouche-Lemus, Viewpoints, VisualSpecs), graphical counterparts exist (with the

exception of SADL). Only two approaches could be useful for informal types of media like documents.

Delugach's approach produces such media for analysis and Viewpoints uses some structured form of

requirements evaluation. Pure document-driven consistency checking approaches are not handled in this

work, Please refer to [Boehm 19891 for an overview.

10.6 View Dimensions Criteria

The view dimension criteria coven the types of diagrams that could be supported by various

approaches. In our works, we distinguished inconsistencies between abstract and concrete views, generic

and specific views, structural and behavioral views, and within a single type of views.

Whereas most integration approaches showed strong similarities for some of the previous

criteria, when it comes to the applicability wc find strong deviations. Only one approach handles

consistent refinement (abstraction) in a strong manner-SADL. Two other approaches have partial support

for it. We gave partial support when the consistency checking between refinement and abstraction

assumes one-to-one traces. For instance, JViews can validate consistency between a source code type of

view and a class diagram type of view (note that there are differences to the UML definition of class

diagrams). However, Mews assumes the mapping from source code to class diagram to be one-to-one.

Thus, a source code class corresponds directly to a class diagram class and so forth. We believe that this

case constitutes a proper abstractionlrefinement relationship since the source code level shows

information not present in the class diagram level, although, their approach only deals with the most

trivial ftom of abstraction (weak rating). SAAGE also got a weak rating since it transforms C2

architectural diagrams into UML object diagrams, That rransfonnation could be considered a refinement

since C2 implicit information is explicitly stated in LML. Nevertheless, like in the case of JViews, the

distinction between abstract and concrete is very weak. Accordingly weak are the findings in relevance to

consistent refinement.

We found that view integration approaches tend to be most useful for consistency checking

between generic and specflc views. Engels et al's approach merges object diagrams (instances) together

using some type of reference model for naming and consistency issues. Although this work does not

actually address consistency checking, their work can be hndarnental in generalizing specific views into

more general ones. Their approach uses a stepwise generalization, creating intermediate models in the

process. The result of the generalization process is an integrated object diagram with more generic

properties. Their approach is also unique in that they relate object diagrams to one another and define

what kind of methods cause their differences. For instance, consider a constructor method in context of

object diagrams. If the input to a method is an empty object diagram (no objects), and the output of the

method is an object diagram with one object then one can infer that that constructor metticid created an

object. That additional information about the relations between object diagrams can then be used to

further argue about generic consistency issues.

Keiler et al's approach and SCED's approach are very similar. Both take (multiple) sequence

diagrams (which are specific views) and merge them into more generic statechart diagrams. That

generalization process interprets message calls between objects as triggers of state changes. Given a

collection of sequence diagrams, repetitive patterns between and within them can be used to cross-

reference and merge their transformations into statechart diagrams. When we adopted their approaches.

however. we found that their approaches have a number of deficiencies. For instance, the assumption that

a method call triggers a state change is true in many cases but there are exceptions: A state change in a

class may also be triggered by a state change in another class without them having to communicate. There

are also hidden complexities with concurrency issues. For instance, if two objects run concurnntly and

they exchange messages then it is important to know at what time that state changes occurred. The SCED

approach adopted a rather simplistic solution whereas the Keller et al. approach tried to address some

concurrency issues.

VisualSpec is the fourth approach to receive a strong rating. As it was already discussed, it

transforms informal diagrammatic schema into formal algebraic specifications and algebras. Types are

transformed into algebraic specifications and instances are transformed into algebras. The typefinstance

relationship is similar to our generidspecific relationship. VisualSpec then defines diagrammatic

semantics in form of algebraic semantics. Consistency checking involvcs the validation of algebras in

context of those algebraic semantics.

Delugach's approach is the only case that received a partial rating. The remaining approaches

did not pilss the threshold. Delugach's approach interprets diagrammatic views (e.g., class diagrams) and

converts their contents into plain English. The produced documents can then be read sequentially and in

that context it can be reasoned about inconsistencies. His approach, like some others, do not actually

provide automated consistency checking, however, through the transformation process it is claimed that

some types of inconsistencies are more easily identifiable. We believe that his approach is only useful in

context of generic and specific views since, on that level, the semantic relationships are still

understandable enough to enable ii direct comparison. In case of abstraction and structuralimtion, we find

that a simple one-to-one comparison is of little use. Transforming a diagrammatic view into plain English

does not simplify that.

Consistency checking between structural and behavioral views is among the weakest supported

forms we observed. We only gave the approaches of Belhouche-Lemus and Viewpoint a strong rating,

not because they explicitly investigated consistency between structural and behavioral views but because

the formal notation they support allows behavioral reasoning.

10.7 Life-Cycle Criteria

We dso evaluated related approaches in context of their usefulness during the software life

cycle. The life-cycle cn'reria is therefore split into requirements, architecture, design, and coding. Note

that it is not our intention to favor a particular process model. The sequencing of specifications should not

be interpreted as waterfall-like. Instead, we chose those criteria to denote an approach's usefulness in

dealing with the different types of semantic models present during those development stages.

The requirements criterion indicate the usefulness of integration approaches in dealing with

high-level types of information. Requirements are typically captured less formally (often in plain English)

and typically cover a wider range of development issues even outside the boundary of the actual product.

Almost all approaches with the exception of ViewPoints cannot be used on that level. Even Viewpoint

resorts to a formal specification of requirements and evaluates them in that context.

The architecture captures high-level components, their relations as well as their roles and

responsibilities. Architectural descriptions are still abstract enough so that their components are intuitive

p m of software systems. Only one of the approaches we evaluated could be considered purely

architectural. The AAA approach evaluates architectural components that could be legacy systems, in-

house developed components, or COTS (commercid-off-the-shelf) components. AAA analyzes

consistency between them by andyzing conceptual dependencies of their characteristics. For instance, if a

component is concurrent and it is composed with a component that is sequential, the concurrent

component may potentially use the sequential one in a concurrent fashion causing faults.

The Viewpoints' approach also seems more architectural although that was not explicitly stated

as such by the authors and we gave them a weak rating here. Both SADL and SAAGE come from the

architecture community. The emphasis of their works is strongty motivated in the context of architecture

description languages. Nevertheless, both cIaim that automated refinement even through the code level is

possible. However, it is our opinion that their languages get rather awkward if used in the small. Both

approaches only support one type of modeling language and, at this point, they are not sufficiently

equipped to deal with lower-level concerns (e.g., design patterns [Gamma et d. 19941, etc.).

Most approaches iue at least partially useful for design modeling (except for AAA) since they

tend to use some design-level constructs. As such Belhouche-Lemus is based on dataflow diagrams and

statecharts; Delugach evaluates class-like diagrams; Engels et al. is based on object diagrams; Mews

also uses class-like diagrams; Keller et al. and SCED use sequence and statechart diagrams; and

VisualSpecs is based on OMT (OMT is similar to UML). Viewpoint got a weak rating since we saw only

little support for design type diagrams although they state that some exists. SAAGE and SADL do not

support design notations, however, both claim their notations to be useful for designs (weak ratings).

10.8 Flow Criteria

The direction of development flow and how changes are propagated are two important aspects of

view integration. We find that all techniques support forward engineering (more waterfall-like scenario).

Also, most approaches could be used for reverse engineering. The exceptions are the four architectural

approaches AAA, SADL, SAAGE, and ViewPoints. In case of AAA, reverse engineering does not make

sense since it is needed for component composition. En case of SADL, SAAGE, and Viewpoints, reverse

engineering is probably possible but because on their reliance on formal notations without common

design notations it might be harder to realize (it is hard to relate implementation construct to architectural

constructs).

Change management, the last flow criterion, denotes the ability to make changes at some later

point. For instance, what happens if one of VisualSpecs diagrams is changed after an algebraic

specification was generated and it had been instantiated? Naturally, the simple solution would be a re-

generation of the algebras based on the new diagram, however, that approach would require a complete

re-evaluation of that diagram for consistency checking. If only a small part of the diagram changed than

not ail should be reevaluated. Change management, (herefore, requires a smart and well-defined way of

dealing with evolutionary changes. We did not find strong support for change management among the

dozen approaches we evaluated. Two approaches, Niews and Viewpoint, defined that notion and have

incorporated some solution, however, that problem remains largely unsolved.

10.9 Scalability Criteria

Thc scalability criteria are meant to evaluate solutions with respect to the single largest challenge

of view integration-that of scalability. View integration does not scale well and in this work we discussed

a number of reasons why. Evaluating dated works we find that scalability has not been addressed in

deiail. The most basic scalabiliry problem of view integration is the fact hat all model elements (and all

views) have to be compared with d l other model elements (and views). Only JViews provides the start of

a partid solution by introducing a base model that compactly handles modeling information. We found

that extensive reuse during consistency checking is the key for improvements. No other view integration

approach addresses scalability in a similar strong manner.

10.1 0 Other Models Criteria

The final criteria with which we evaluated related works are their usefulness towards other areas

of software development. Note that our emphasis thus far was about product modets that describe

software systems. Other types of models include process models and property models.

Process models describe development activities. Examples of process modek are the waterfall

model [Royce 19701 and the spiral model [Boehm 19881. Integration could, for example, validate the

conformance of a development process to the actual process. We found that onIy JViews (integrated with

Serendipity [I [Grundy and Hosking 19961) provides process coverage,

Properry models, additionally, evaluate non-functional aspects of software systems. For instance,

software properties could be performance, reliability, security, etc. AAA, SADL, and SAAGE have some

support for those although they do not model them explicitly.

The works presented above do not cover the complete picture of what is going on in view

integration. However, it gives an overview of the major approaches. The diversity of the work above is

another reason why this work thrives not to just add another technique. Many approaches described in

this section are excellent and, thus, our work tries to also take the best of what already exists.

11 Evaluation, Future Work, and Summary

11.1 Evaluation

A critical aspect of a new approach is its evaluation. In this section, we will discuss the kinds of

validations we have performed and the observations we have made. Evaiuating a body of work like this

embodies a number of complexities, especially since we did not set off with a well-bounded problem nor

did we end up with a well-bounded solution. Thus, a mathematical proof of correctness cannot be cast

across the entirety of our work. Nevertheless, validation is possible and we chose to follow a series of

dimensions:

0

0

0

0

0

0

0

0

Evaluating Transformation Techniques

Evduating Comparison Methods

Evduating Effectiveness, Efficiency, and Reliability

Evaluating Scalability

Evaluating Applicability outside UML Domain

Evaluating UML's ability to support analysis

Evaluating in Context of Other Approaches

Breadth over Depth

Technology and Research Transfer

11 .I .1 Evaluating Transformation Techniques

This work emphasized four transformation types-abstraction, generalization, structurdiration,

and translatiowthat are used to bridge the eight types of UML views we are currently supporting (plus a

nineth type of view called C2 [Egyed and Medvidovic 19991).

Our abstraction process was validated in a number of dimensions. First, we validated its rules by

analyzing their semantic implications along the lines discussed in Section 7.3.1.3. Furthermore, we

applied our technique on a series of models and evaluated the results in the context of both consistency

checking and reverse engineering:

i. Reverse Engineering: our abstraction technique can be used to reverse engineer high-level

models out of more concrete (lower-level) models.

ii. Consistency Checking: our abstraction technique can also be used to enable consistency

checking between existing concrete and abstract models.

Although the two uses (reverse engineering and consistency checking) have different goals in

mind, the validation of the principles of our abstraction mechanism remains identical. Some of the models

we used to evaluate abstraction were provided by industry (e.g., the validation of a small part of a

Satellite Telemetry Processing, Tracking, and Commanding System w&C) [Alvarado 1998)). Other

models were self-made. For instance, we reverse engineered and abstracted our own tools Iike AAA

[Gacek 19981 and UMUAnalyzer (see Section 8) and we validated consistency among half a dozen LTML

models with up to 100 classes. We also applied our abstraction concept towards consistency checking

between CTML designs and the C2 architecture description language [Taylor et al. 19961 where we were

able to demonstrate C2 structural and behavioral violations [Egyed and Medvidovic 20001. It must be

noted that C2 was neither created by us nor was our abstraction technique build for that use in mind.

Finally, our abstraction techniques were (and still are being) validated by a number of research

institutions and we made improvements based on their comments (Mitre Organization and Rational

Software must be noted).

We invented the relation abstraction technique in collaboration with Rational Software in 1997

[Egyed and Kruchten 1999). Independently, at a later time, the group of Racz and Koskimies [Racz and

Koskimies 19991 came up with a class compression method that exploits the same concepts as our

relation abstraction technique. They, however, did not create automated abstraction rules nor did they

create tool support for automated abstraction in their work. Nevertheless, we see their work as a form of

validation of ours since they independently made similar observations about class patterns.

Finally, Rational Software adopted our relation abstraction technique and built its own

implementation called Rosekchitect Fgyed and Kruchten 19991 (implemented by Ensemble Systems

for Rational Software). Our tool (UMUAnalyter) incorporates all features of RosdArchitect and also

addresses classifier abstraction, reliabilities, cardinalities, complex rules as well as scalability issues,

To support structuralization and generalization, we adopted transformation methods of other

researchers [Koskimies et al. 19981 [Schanberger et al. 1999) [Ehrig et al. 19971. We validated their

transformation method in the context of consistency checking and found a number of deficiencies for that

use. It must be noted that some of those transformation methods were not built for consistency checking

although a few also claimed their approach to be useful for that purpose [e.g., SCED [Koskimies et aI.

19981). Our work showed that transformation requires more than the simple conversion of modeling

information. Thus, the context of our framework enables other tools (e.g., like SCED) and methods to be

evaluated for their usefulness and fitness towards view integration. Our framework also enables other

tools to used for consistency checking. Our framework thus combines view integration approaches.

11.1.2 Evaluating Comparison Methods

There exists an accepted notion of what consistency means and what it does not mean. For

instance, the case of a model element that was not properly refined denotes a very clear case of an

inconsistency. Our work, therefore, did not have ta validate what consistency is. Our work only had to

validate whether our approach is capable of identifying it. In our framework, consistency checking is

based on consistency rules and on a transformation's ability to transform model elements to make them

directly comparable in the context of those rules.

We have built consistency rules based on the semantic dependencies between model elements.

Those semantic dependencies were derived out of the W definition itself as well as examples of its

usage. We have then validated consistency rules in context of numerous examples. In sections 7.5.2 and 8

we showed some of those examples. We have also applied our rules to validate consistency between

UML and the C2 architecture description language as we discussed above. This implies that our rules are

generic enough to scale to other types of views outside the UMT., domain.

Consistency rules and their ability to enable direct comparisons between model elements of

same and different types of views have been used by other view integration approaches. Defining rules is

mandatory in defining the proper or improper usage of models. Consistency rules therefore describe the

invariants of sofiware modeling. Our framework extends consistency rules with transformation methods

that allow their direct comparison in cases where others fail. In this work, we demonstrated that

transformation can be successfully coupled with consistency checking, resulting in a broader coverage of

potential inconsistency types. Our approach also stands out in its ability to detect inconsistencies no other

approach can detect. Section 1 1.1.3 below will discuss those.

We also built tool support to automatically identify eight types of inconsistencies. The

inconsistencies found are fundamental types (meaning we believe that they address the most important

consistent refinement problems). To the best of our knowledge, no one else has been able to identifj them

yet.

11.1.3 Evaluating Effectivemsa, Efficiency, and Reliability

We would have Iiked to support this work with strong indications of its effectiveness, efficiency

and reliability. The main problem is that such numbers would only make sense in comparison to other

view integration techniques. To the best of our knowledge no such comparison exists, primarily because

view integration approaches tend to be very different in their coverage. For instance, our approach is able

to detect a series of inconsistencies that other approaches cannot detect. It is, therefore, not meaningful to

compare efficiency or reliability numbers in that context. Despite that, we were able to reason about those

factors. This section summarizes those.

We measure effectiveness in terms of our approach's ability to detect inconsistencies that have

not been addressed by other approaches. For instance, our abstraction method enables the comparison

between high-level and low-level diagrams. This type of comparison is very important during refinement

and maintenance of software projects. Validating a higher-level diagram based on a lower-level diagram

ensurse that properties of higher-level diagrams are maintained in rr consistent fashion.

We found 21 types of inconsistencies between diagrams at different levels of abstraction. And

we found additional 30 types of inconsistencies between other types of diagrams. We neither claim that

this list is complete nor do we claim that our approach could replace other approaches. Quite the contrary.

View integration is a complex field. Our approach uses a unique approach, however, is not complete at

this point. The works of [Nuseibeh et d. 19941, [Grundy and Hosking 19961 and others show that other

approaches are able to handle other situations quite well-in some cases even better than ours (also refer to

related works in Section 10). For instance, the works on Viewpoints [FinkeIstein et d. 19911 allows the

detection of inconsistencies that are closer to the requirements engineering domain. Our approach handles

product models only. However, at the same time it cannot be claimed that our approach is worse. Instead

we find that both approaches have respective advantages and they complement each other.

We measure efficiency in the speed in which inconsistencies can be identified. Here we have to

consider two dimensions-regular and evolutionary efficiency. Our work on view integration is unique in

its approach to scalability. We found that scalability is a problem that is discussed extensiveiy in the view

integration community, however, is rarely ever addressed, Our work shows how increased reuse of

transformation results and a reduced redundancy model are valuable contributions that have strong impact

onto the efficiency on consistency checking. Instead of having to validate the same model element for

every consistency checking cycle, past transformation and/or comparison results can be reused. Our

approach thus improves evolutionary efficiency through extensive reuse.

Efficiency also has to do with the speed of inconsistency detection within a single validation

cycle (non-evolutionary). In that context we studies consistency checking between abstract and concrete

diagrams (via our tool UMUAnalyzer) and found significant improvements of automation. Our tool was

able to perform abstraction transformations in fractions of seconds that manually would have taken hours

to perform (recall Figure 129).

Although our process strongly improves the speed of transformation and consistency checking,

its impact onto reliability has to be studied further. We applied our consistency checking process onto a

series of examples and at the same time performed those consistency-checking tasks manually. We then

compared the results of both approaches in terms of false errors or oversights. Interestingly, we observed

that both approaches were able to detect inconsistencies that the other was not able to. We also found

some cases where our approach detected an error where there actually was none. However, in the cases

we evaluated, we found that the tool was abIe to detect most of the same errors as the human but did so

much faster. Given the existence of false errors, one nevertheless has to see the findings of our approach

as indications of potential inconsistencies instead of factual ones (although in some cases the findings are

quite reliable). This constraint does not disqualify our approach for two reasons: (1) having support which

locates potential inconsistencies in a very short amount of time is still better than having to find all of

them manually; and (2) the reliability of our approach can be increased (see Section 11.2).

11.1.4 Evaluating Scalability

To date, a number of view comparison approaches have been proposed but the major problem in

automating them is scalability. We do not make the claim that our approach is free from that problem;

however, this work discussed a series of measures we have undertaken to address it.

The basic structure of our view integration framework already addresses scalability. We use

mapping to restrict what to transfodcompare (instead of random comparison) and we use

transformation to sirnpli@ how to compare. We integrated our techniques to remember past

transformation results and, thus, increased the amount of transformation reuse. This implies that instead

of having to re-verify the entire model every time a change is introduced, we only have to compare the

effects of changes with the existing other p m of a model-from an evolutionary standpoint a very

significant improvement. We demonstrated on an exampie how 9 classifiers, 9 relations, and 14 trace

links could be reduced to only 5 ciassifiers, 5 relations, and 6 uace links.

To address evolutionary scalability, we discussed the concept of a reduced redundancy model

that limits potential inconsistency introduction between user-defined elements and derived elements

during evohtion (a change propagation issue). Instead of having to define 36 transfornation methods for

the 9 types of views we are supporting, we demonstrated how a subset of them (only 14 transformation

methods) are sufficient to enable the same coverage. Finally, we defined a transformation framework

with associated reliability measures to identify promising transformation paths. Most of those scalability

concepts have also been implemented in our tool WAnalyze r demonstrating the automatability of ow

concepts-

1 1.1.5 Evaluating Applicability outside UML Domain

This work primarily concentrated on using UML, although, we claimed that our approach is

more generally applicable. We therefore integrated another type of view into our framework two show

two things: (1) our approach's ability to handle other heterogeneous types of views; and (2) our

approach's ability to link two separate model worlds to ensure consistency between them. In jEgyed and

2 17

Medvidovic 20001 we showed how ow approach can be used in the context of an architecture description

model such as C2 [Taylor et d. 19961. That work combines C2 to UML integration to enable a formal

approach to software development as a complement to a generic (less formal) development approach

(e.g., W).

We use the translation method of Abi Antoun-Medvidovic [Abi-Antoun and Medvidovic 19991

to transform C2 models into an UML equivalent and we then use our abstraction method to enable a

comparison between the UML equivalent of C2 and the UML abstraction. This type of view comparison

corresponds to scenario d) of our view transformation framework in Figure 43 where both views (the C2

architectural view and the UML class diagram view) have to be transformed into a third type of view (an

UML supported intermediate model [Medvidovic et al. 20011) to enable their direct comparison in

context of that third intermediate representation.

11 .I .6 Evaluating UML's ability to support analysis

In the process of using UML for view integration, we had an excellent opportunity to evaluate

UML's suitability towards view analysis. In particular we questioned whether UML is suited to support

automated consistency checking, This section discusses the difficulties of UML in supporting automated

consistency checking. Although many of the difficulties we found could be minimized to a large extend

by using UML's extensibility mechanism, we find that there are some exceptions. In particular we find

the current UML meta-model insufficient in describing and handling transformation results. Furthermore,

the scalability measures discussed here can only be supported with great difficulties.

11.1.6.1 Reduced Redundancy Model

We discussed reduced redundancy models as a means of capturing and maintaining derived

information without having to worry about their maintenance. The better a reduced redundancy model is

implemented, the more effective and scalable is view integration in terms of evolution, The only

disadvantage of the reduced redundancy model is that it cannot be hlly supported in UML. UML's meta

model has a clear definition on how model eIements have to interrelate and the concept of a bridge (a

bridge was required in between mode1 elements) is not supported. Bridges are located between model

elements and each bridge may have two or more attachment placeholders for model elements (ports).

Not being able to build a good reduced redundancy model does not disable automated

consistency checking, however, it does decrease its effectiveness. In Section 7.7.3 we showed two cases

of a reduced redundancy model-one that could be built using UML and a better one that currently cannot

be built in UML. To enabie a better-reduced redundancy model, we needed to augment the UML meta-

model, thus violating the UML standard. The changes have, however, only little impact onto how the user

sees UML. NevetlheIess, this example shows a case, where existing UML concepts are not sufficient in

supporting view analysis.

11.1.6.2 Explicit and Impticit Treatment of Traces

Trace information between views are very important in our view integration framework. For ow

framework, we need abstraction, generalization, structunlization, translation, origin, and interpretation

traces. UML only has explicit definitions for one of them: abstraction. Abstraction is defined in LTML as a

dependency between model elements that is stereotyped as (<Abstractionm. UML supports generalization

partially as instance and type relationships. This relationship is, however, not an explicit trace nor does it

apply to all specific model elements. For consistency checking it does not make a difference whether

mces are treated explicitly or implicitly, however, it turns out that implicit links are only supporting

those elements they are attached to and not others. We use UML's extensibility mechanism to define

explicit dependency links for generalization, structunlization, translation, and interpretation. Those links

are stereotyped accordingly. Explicit dependency links can be used on d l model elements.

11.1.6.3 Ambiguous and Partial Interpretations

Consistency checking takes interpretations and compares them with the (userdefined) original

model elements. In case of differences, inconsistencies are found. Comparison was discussed as being

about equality; however, there are exceptions as in the case of ambiguous results. For instance, a call in a

sequence diagram could either be a query or an action (in a statechart diagram) since we do not know

whether it causes a state change or not. Since this distinction is important for comparison between the

sequence and statechart diagrams. capturing transformation results has to handle that ambiguity.

Similarly, there are cases where transformation yields partial results. For instance, in some cases of

abstraction the direction of interaction may be computed without knowing the type of the interaction.

UML does not have an explicit notion of how to describe interpretation relationships between

user-defined elements and derived elements; nor does it have an explicit notion on how to describe

ambiguous and partial transformation results. UML's extensibility mechanism can mitigate some of those

problems. For instance, a dependency relationship stereotyped as ~Interpretationb can be used to simulate

the interpretation relationship. The issue of partial or ambiguous transformation results is, however, more

complex since UML has no concept on how to define some variations of them. For instance, it is not

possible to define a derived relation of unknown type with only some cardinality information attached.

11.1.7 Evaluating in the Context of Other Approaches

We also evaluated our work in context of other approaches. In Section 10 we discussed a dozen

related view integration approaches and rated their strengths and weaknesses in the context of 24 criteria.

In the following we briefly discuss how our approach competes in this scheme.

Ergonomics: Our work emphasizes the technology aspect of view integration at the expense of uscr

interface aspects. We therefore only partially address this problem. The works on JViews and

Viewpoint are significantly better.

Analysis: Our work introduces new techniques for enabling automated consistency checking.

Although other approaches also have strong consistency checking support, our work is abie to detect

a series of inconsistencies others cannot. Our work therefore complements others.

Synthesis: Like analysis, our work introduces new synthesis methods that enable improved

uansformation. Our work therefore complements others.

Automation: Not many approaches have full tool support from inception to detection of

inconsistencies. Only five our of twelve other approaches have a similar coverage.

Identitication: Like many other approaches, we provide extensive assistance for inconsistency

identification. As discussed above, our approach is able to detect inconsistencies others cannot.

Resolution: We currendy do not support automated inconsistency resolution, however, we see a lot

of potential for that. The works on Niews and Viewpoints are good guides.

Formal Notation: Our approach is based on diagrammatic views. Currently we do not envision the

need for formal notations since they are less useful for design languages.

Graphical Notation: We provide extensive support for graphical notations. Since we are supporting

8 types of views (not including CZ), our work has attempted the largest view coverage yet. Other

approaches use at most two types of views.

Document: Our emphasis is on graphical notations. Othcr approaches are more suited for document-

based validation and verification.

AbstracWoncrete: Our approach provides the strongest support for consistency checking between

abstractkoncrete diagrams to date.

Generi&pecitic: We also provided support for consistency checking between generic and specific

views. AIthough some other approaches are stronger, we must note that we have not investigated that

problem nearly as much as abstraction.

StructuraVBehavioral: Consistency checking approaches for structural and behavioral diagrams are

generally weak across related views. Ours does not yet contribute extensively either.

Requirements: We have no support for requirements modeling in our thesis. We have however

started to investigate this issue in medvidovic et al. 20011 and [Gruenbacher et id. 20001,

Architecture: We integrated our approach with the C2 architecture description language to validate

consistency between C2 architectures and UML refinements [Egyed and Medvidovic 19993 [Egyed

and Medvidovic 20001.

Design: We strongiy support design modeling (8 our of 9 views).

Coding: We directly do not support coding, however, through reverse engineering we are able to

generate low-level class diagrams which can be abstracted and validated.

Forward: Strong support like all others.

Reverse: Our approach is equally useful for reverse engineering since we created transformation

methods and built consistency rules that work independent of development flow.

Change Management: We have partially addressed the change management problem of view

integration. We find that our approach adds a new and unique way of dealing with this issue via ow

improved reuse.

Basic: In terms of scalability our approach adds new concepts. We showed that the basic scalability

probIem of having to compare all views with all others can be improved through complex

transformation and improved reuse. Basically no other approach has addressed that issue.

Within Cycle: We showed that reusing transformation results improves scalability for other

consistency checking activities within the same validation cycle.

Evolutionary: We showed that reuse improves evolutionary validation. We, however, found that

evolutionary reuse results in extensive disadvantages in terms of change management. We, therefore,

introduced the reduced redundancy model to mitigate that problem. No studies were performed

whether our approach indeed improves evolution since our emphasis was not geared towards that.

Process Support: we provide no process support

Property Support: we provide no property support

Summarizing, our approach adds value over existing consistency checking approach in its

improved and comprehensive handling of abstractions and refinement, and in its strong improvements in

scalability.

11.1.8 Breadth over Depth

View integration of heterogeneous types of views is an elaborate subject. During the creation of

this work, it became more obvious that the problem is too extensive to be completely addressed by us as

part of this thesis. This caused a diiemma since it was our goal to provide a view integration framework

that could scale beyond one or two types of diagrams. In fact, this is another dimension in which our

work is distinguishable from other view integration solutions. Our framework was meant to cover a more

comprehensive set of views: from abstract to concrete; from generic to specific; and from structural to

behavioral. To address this problem we chose a breadth and depth approach to view integration.

Breadtb to consider a wide range of views

Transformation is improved if multiple views are evaluated (recall sequence to statechart

transformation)

View integration has more complexity if a wide range of models has to be supported

Integration must cover extensive types of diagrams and views

Some view integration concerns cannot be revealed unless multiple views are investigated

Depth to consider complexity aspects

a Important view integration concerns cannot be revealed if views we not evaluated in detail

0 Scalability and complexity concerns only become obvious by a rigarous treatment of the entire

consistency checking process

a Full automatability can only be cIaimed if entire "analysis lifecycle" from mapping to

transformation to comparison is supported

Our solution to this dilemma was to explore both options. We selected a set of diagrams CTML

provided that sufficiently covered all model dimensions (recall Section 5). The superficial treatment of all

those dimensions allowed us to build a framework that is comprehensible in the types of views it

supports. For instance, the integral part of transformation as part of our view integration framework is a

direct derivitative of having had to evaluate a wide range of development models. Only by doing that, we

realized how difficult it is to directly map and compare two different types of diagrams. Furthermore, h e

broad view coverage made us aware of the complexity of view integration in terms of how may

transformation methods had to be supplied. Our solutions of using intermediate models and compIex

transformation are a direct result of addressing this broad problem.

In order to also understand the intricacies of stepby-step consistency checking in depth, we

chose one type of transformation-abstraction in our case-and explored it in all detail. The in-depth

treatment of abstraction allowed us to build a h e w o r k that is comprehensible. Our in-depth treatment

of abstraction resulted in a tool support that covers the entire view analysis life cycle including many of

the scalability measures we discussed. The depth approach also resulted in a number of discoveries that

the breadth approach would not have found. For instance, the evolutionary scalability problem and its

need for a reduced redundancy model is a direct lesson learnt. Further, the creation of consistency rules

and how they are supported by the model was only possible by investigating the details of abstraction.

1 1.1.9 Technology and Research Transfer

Our tool, W n d y z e r is currently being evaluated by two groups within Mitre organization.

A subset of our tools functionality was also implemented in a tool called RosdArchitect (for Rational

Software). Additionally, about a dozen other groups requested the tool and are evaluating it for different

uses. We found that its ability to abstract class diagrams makes it also very useful for reverse engineering.

11.2 Future Work

Our work provided a framework for automated and scalable consistency checking. In the course

of discussing the details of our Framework we revealed a series of cases where more work has to be done.

We only investigated two types of UML views in depth. Future work requires the continuing validation of

our framework towards other types of UMt views as weil as outside views (e.g., ADLs). Also we would

like to apply our framework to larger, industrial projects.

Although automation can save considerable time and effort and improve the overail quality of

model and product, full automation is certiliniy unrealistic today and will likely remain so for some time

to come. This impIies that synthesis and analysis will continue to incorporate a sizeable human

commitment. Feasible and practical view integration must therefore adhere to specid considerations and

ergonomic constraints posed by human users (e.g., architect, designer, programmer). This problem

requires a stronger attention towards formalisms, model design (construction), distribution, and human

interactions than we have given to date. The following activities would W e r improve our integration

approach:

Improving Reliability: The reliability of our approach can be improved by improving the reliability

of transformation and consistency checking. This task involves the refinement and validation of

transformation and consistency rules.

Inconsistency Resolution: Currently our approach is limited to inconsistency detection. Although we

do not believe in automated inconsistency resolution, we do believe that assistance m be given by

suggesting options on how to resolve them. Resolution involves a stronger emphasis on human

computer interactions.

Smart Transformations: The challenge of model evolution is that re-generation frequently overwrites

instead of adapts. Tzrke, for instance, code generators that can produce skeleton code out of designs.

Frequently those generators assume waterfall-like situations where changes to the code may get lost

after the re-generation of the design. Smart transformation allows the continuous evoiution of several

models with an intelligent way of updating them.

Product Families: It has been recognized that product lines exhibit strong potential for reuse-both of

program code and modeling data. What has been greatly neglected is that product lines also enable a

stronger potential for automated refinement and consistency checking (plus some limited forms of

inconsistency resolution) since the similarities in products enable a more meaningful comparison.

Distributed Modeling: Distributed systems are important for modeling in two fashions: (1) to modet

distributed products; and (2) to support distributed modeling. Whereas the former has received strong

attention in the research community, the latter has lagged behind. Modeling needs to become

distributed to make use of new and powerful interaction technologies (such as the web) as well as to

handle an increasingly distributed workforce. Consistency checking among distributed models is one

example of the chdlenges of distributed modeling.

Model Connectors: The problem of component connectors has received strong attention by the

research community for some time now. Seeing modeling integration in analogy to architectural

description languages (ADLs) may however shed new light onto this problem. ADLs talk in terms of

components and connectors. If models (views) are the components of model-based development,

then how can ADL knowledge about connectors help in finding the bridges between their model

components? This facet is an alternative way of seeing view integration.

Component-based modeling involves the use of COTS (commercial-off-the-shelf) components in

software products. Our research so far has indicated that component-based and model-based

development does complement one another well in enabling refinement and inconsistency detection.

11.3 Conclusion

Model-based software development handles complexities by allowing development concerns to

be addresses, solved, and interpreted on an individual basis (separation of concerns). Model-based

software development is thus essential in developing large-scale, complex, and labor-intensive software

systems. The widespread acceptance of modeling languages such as the Unified Modeling Language

(UML) attest to that. Models, despite their invaluable strengths, exhibit one major weakness. To enable a

separation of concerns, models form their individual closed-world environments. These closed-world

environments hinder the communication and interaction between individual views. Interaction, however,

must happen to enable information exchange and to ensure consistency.

This work presented a view integration framework with support for automated synthesis and

analysis. Our synthesis techniques assist thc replication of information between views. Automated

synthesis reduces the manual, error-prone, and repetitive activities that occur during the exchange of

modeling information. Our analysis techniques validate consistency between replicated information

present in multiple views. Automated analysis reduces the manual, error-prone and repetitive activities

that accompany consistency checking.

The key to scalable and less complex consistency checking is in automated transformation

coupled with the reuse of transformation results. The observation that transformation can simplify

consistency checking was already made by other researchers (e-g., [Koskimies et al. 19981). however,

none of them addressed the scalability problem related to handling and maintaining derived information.

Our work, therefore, introduced a series of scalability improvements (reduced number of transformation

methods and reduced redundancy model).

Currently, we have automated our view integration framework in context of class, object, and C2

diagrams. We have aIso shown the benefits of using ow integration techniques in saving considerable

human effort and in its ability to locate types of inconsistencies that no other inconsistency approach can

locate (automatically). Also our approach enables inconsistencies to be identified ;ts early on as they are

created. Every time new data is added to the model, our approach and tool can be used to validate them.

12 References

Abd-Allah, A.: "Composing Heterogeneous Software Architectures," PhD Dissertation, University
of Southern California, Los Angeles, CA 0089-078 1, USA, 1996.

Abi-Antoun, M. and Medvidovic, N.: "Enabling the Refinement of a Software Architecture into a
Design," Proceedings of the 2nd International Conference on the Unijfed Modeling Language
(UML), Fort Collins, CO, October 1999.

Allen, R., Garlan, D.: "A Formal Basis for Architectd Connection," ACM Transactions on
Sofnvare Engineering and Methodology, July 1 997.

Alvarado, S.: "An Evaluation of Object Oriented Architecture Models for Satellite Ground
Systems," Proceedings of the 2nd Ground Systems Architecture Workshop (GSAW), El Segundo,
CA, February 1998.

AT&T: "Best Current Practices: Software Architecture Validation," AT&T, Murray Hill, NJ, 1993.

Baker, R.: "Tolerating Inconsistency," Proceedings of 13th Intemational Conference on Sojhvare
Engineering (ICSE-13). pp. 158- 165, May 1991.

Belkhouche, B. and Lemus, C,: "Multiple View Analysis and Design," Proceedings of the
Viewpoint 96: International Workshop on Multiple Perspectives in Sofnvare Development, October
1996.

Boehm, B.W.: Software Engineering Economics, Prentice Hall, 198 1.

Boehm, B. W.: "A Spiral Model of Software Development and Enhancement," IEEE Computer,
21 (S), pp. 6 1-72, May 1988.

Boehm, B. W.: "Verifying and Validating Software Requirements and Design Specifications,"
Software Risk Management (Boehm ed.), IEEE Computer Society Press, pp.205-2 18, 1989.

Boehm, B. W.: "Anchoring the Software Process," IEEE Software, pp. 73-82, July 1996.

Boehm, B., Egyed, A.: "Optimizing Software Product Integrity through Life-Cycle Process
Integration," Journalfor Computer Standards and Interfaces, 21(1), pp. 63-75, May 1999.

Boehm, B., Egyed, A., Kwan, J., Madachy, R.: "Using the WinWin Spiral Model: A Case Study,"
IEEE Computer, pp. 33-44, July 1998.

Boehm, B. W., Ross, R.: "Theory W Software Project Management: Principles and Examples,"
IEEE Transactions on Software Engineering, pp. 902-916, July 1989.

Booch, G.: Object-Oriented Analysis and Design with Applications, Addison-Wesley, 1994.

Booch, G.: Object Solutions: Managing the Object-Oriented Project, Addison-Wesley, 1996.

Booch, G., Rumbaugh, I., Jacobson, I.: The Unified Modeling hguage User Guide, Addison
Wesley, 1999.

Brooks, F.P.: The Mythical Man-Month, Addison Wesley, 1995.

Brooks, F. P. Ir.: "No Silver Bullet: Essence and Accidents of Software Engineering," IEEE
Computer, April 1987.

Camel, E., Whitaker, R., George, J.: "PD and Joint Application Design: A Transatlantic
Comparison," Communications of the ACM, pp. 40-48, June 1983.

Carmichael, A,: Object Development Methods, New York, SIGS Books, 1994.

Chen, P.: "The entity relationship model towards a unified view of data," ACM Transactions on
Database Systems, pp. 9-36, 1976.

Cheng, B. H. C., Wang. E. Y., Bourdeau, R. H., and Richter, H. A.: "Bridging the Gap Between
Informal and Formal Approaches to Software Development," Proceedings of Sofnvare
Engineering Research Forum, November 1995.

Coad, P., Yourdon, E.: Object-Oriented Analysis, Yourdon Press, 1991a.

Coad, P., Yourdon, E.: Object-Oriented Design, Yourdon Press, 1991b.

Conklin, J., Begeman, M.: " 0 1 s : A Hypertext Tool for Exploratory Policy Discussion," ACM
Transaction of Information Sysrerns, pp. 303-33 1, October 1988.

Cutts, G.: "Structured systems analysis and design methodology," Information Technology for
Organizational Systems, EIsevier, pp.363-70, 1988.

Dardenne, A., Fickas, S., and Lamsweerde, A.: "Goal-Directed Concept Acquisition in
Requirement Elicitation," Proceedings of 6th lnternational Workshop on Sofhvare Specification
and Design (IWSSD 61, pp. 14-2 1, October 1993.

Delugach, H. S.: "An Approach to Conceptual Feedback in Multiple Viewed Software
Requirements Modeling," Proceedings of the Viewpoint 96: lnternutional Workshop on Multiple
Perspectives in Sofiware Development, October 1996.

DeMarco, T.: Structured Analysis and System Specification, New York, Yourdon Press, 1978.

Easterbrook, S., Nuseibeh, 8.: "Using Viewpoints for Inconsistency Management," IEE Sojbvare
Engineering Journal, November 1995.

Egyed, A.: "Using Model Transformation to Detect Inconsistencies between Heterogeneous
Views," submitted to the 8th Conference on Foundations of Soware Engineering (FSE 8), 2000.

Egyed, A. and Gacek, C.: "Automatically Detecting Mismatches during Component-Based and
Model-Based Development," Proceedings of the 14th IEEE International Conference on
Automated Sofhvare Engineering, pp. 19 1- 198, October 1999.

Egyed, A. and Hilliard, R.: "Architectural Integration md Evolution in a Model World,"
Proceedings of 4' Intemational Sufnvore Architecture Worhhop co-located with ICSE 2000.
Limerick, Ireland, June 2000.

Egyed, A. and Kruchten, P.: "Rosdhrchitect: a tool to visualize architecture," Proceedings of the
3 2nd Hmaii In re rnational Conference on System Sciences (HICSS), Maui, HI, January 1999.

Egyed, A. and Medvidovic, N.: "Extending Architectural Representation with View Integration,"
Proceedings of the 2nd Inrematio~l Conference on the Unified Modeling Language (UML), Fort
Collins, CO, October 1999.

Egyed, A. and Medvidovic, N,: "A Formal Approach to Heterogeneous Software Modeling,"
Proceedings of fd Foundational Aspects of Sofitare Engineering (FASE), Berlin, Germany,
March 2000.

Egyed, A., Mehta, N., and Medvidovic, N.: "Software Connectors and Refinement in Family
Architectures," Proceedings of 3rd Intemtional Workshop on Development and Evolution of
Sof iare Architectures for Product Families (IWSAPF), h Palmas de Gran Canaria, Spain,
March 2000.

Ehrig, H., Heckel, R., Taentzer, G., Engels, G.: "A Combined Reference Model- and View-Based
Approach to System Specification," International Journal of Software Engineering and Knowledge
Engineering, 7(4), pp. 457-477, 1997.

Eliens, A.: Object-Oriented Software Development, Addison Wesley, 1995.

Fagan, M. E.: "Advances in software inspections," IEEE Transactions on Software Engineering
(TSE), 12(7), pp. 744-75 1, 1986,

Ferguson, J. e. al.: "Software Acquisition Capability Maturity Model," Technical Report
CMUSEI-96flR-020, ESC-TR-96-020, Pittsburg, PA, 1996.

Finkelstein, A., Gabbay, D., Hunnter, A., Kramer, J., Nuseihbeh, B.: "Inconsistency Handling in
Multi-Perspective Specifications," Transactinns on Sofwure Engineering (TSE), 20(8), pp. 569-
578, August 1994.

Finkelstein, A., Krarner, J., Nusibeh, B., Finkelstein, L., Goedickc, M.: "Viewpoints: A
Framework for Integrating Multiple Perspectives in System Development," International Journal
on Software Engineering and Knowledge Engineering, pp. 3 1-58, March 199 1.

Fowler, M.: UML Distilled: Applying the Standard Object Modeling Language, Addison-Wesley,
1997.

Gacek, C., Abd-Allah, A,, Clark, B. K., and Boehm, B.: "On the Definition of Software System
Architecture," Proceedings of the First International Workshop on Architectures for Sofrware
Systems, pp. 85-95, Seattle, WA, 1995.

Gacek, C.: "Detecting Architectural Mismatches During System Composition," PhD Dissertation,
Center for Software Engineering, University of Southern California, Los Angeles, CA 90089-
078 1, USA, 1998.

Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns Elements of Reuseable Object-
Oriented Software, Addison Wesley, 1994.

Garlm, D., Monroe, R., and Wile, D.: "ACME: An Architecture Description Interchange
Language," Proceedings of CASCON '97, November 1997.

Gieszl, L, R.: "Traceability for Integration," Proceedings of the 2nd Conference on Systems
Integration (ICSI 921, pp. 220-228, 1992.

Gotel, 0. C. 2. and Finkelstein, C. W.: "An analysis of the requirments traceability problem,"
Proceedings of the First internutional Conference on Requirements Engineering, pp. 94- 10 1,
1994.

Grady, J.O.: Systems Integration, Boca Raton, FL, CRC Press, 1994.

Gruenbacher, P., Egyed, A., and Medvidovic, N.: "Separation of Concern in Requirements
Negotiation and Architecture Modeling," Proceedings of Workshop on Multi-dimensional
Separarion of Concerns in Sofnvare Engineering co-located with K S E 2000, Limerick, Ireland,
June 2000.

Grundy, J., Hosking, J., Mugridge, W.: "Supporting flexible consistency management via discrete
change description propagation," Sofiwore Practice and Fxperience, 26(9), pp. 1053- 1083, 1996.

Grundy, J. C., Hosking, J. G.: "Constructing Integrated Software Development Environments with
MViews," Journal of Applied Sopare Technology, 2(3/4), pp. 133-160, 1996.

Grundy, J. C., Hosking, J. G., Mugridge, W. B., and Amor, R. W.: "Support for Constructing
Environments with Multiple Views," Proceedings of the Viewpoint 96: Intentational Workshop on
Multiple Perspectives in Sufiware Development, October 1996.

Grundy, J. C., Mugridge, W. B., and Hosking, J. G.: "Static and dynamic visualisation of software
architectures for component-based systems," Proceedings of the 10th international Conference on
Sojhare Engineering and Knowledge Engineering, pp. 426-433, June 1998.

Harel, D.: "Statecharts: A Visual Formalism fot Complex Systems," Science of Computer
Programming, 8 , I98?.

Hilliard, R.: "Views and Viewpoints in Software Systems Architecture," Position paper for the
First Working IFfP Conference on Sojhare Architecture, February 1999.

Hofmeister, C., Nord, R. L., and Soni, D.: "Describing Software Architecture with UML,"
Proceedings of the First Working IFIP Conference on Software Architecture (WICSA I), pp, 145-
159, San Antonio, TX, February 1999.

Humphrey, W.S.: A Discipline for Software Engineering, Reading, MA, Addison-Wesley, 1995.

Hunter, A. and Nuseibeh, B.: "Analysing Inconsistent Specifications," Proceedings of 3rd

International Symposium on Requirements Engineering (RE97), January 1997.

Hunter, A., Nuseibch, B.: "Managing Inconsistent Specifications: Reasoning, Analysis, and
Action," A CM Transactions on Sojhvare Engineering and Methodology, 7(4), pp. 335-367,
October 1998.

IEEE Architecture Working Group: "Recommended Practice for Architectural Description," IEEE
P1471/05.2 Information Technology Draft, December 1999,

Inverardi, P., Wolf, A. L.: "Formal Specification and Analysis of Software Architectures Using the
Chemical Abstract Machine Model," lEEE Transactions an Sofiware Engineerirtg, April 1995.

Jackson, M.: "Some Complexities in Computer-Based Systems and Their Implications for System
Development," Proceedings of lnternarional Conference on Computer Systems and Sofrware
Engineering (CompEuro 90). pp. 344-35 1, Tel-Aviv, Israel, May 1990.

Jackson, M.A.: System Development, London, Prentice Hall, 1983.

Jackson, M.: Software Requirements & Specifications, Addison-Welsey, 1995.

Jacobson, I.M., Christerson, M., Jonsson, P., Overgaard, G.: Object-Otiented Software
Engineering : A Use Case Driven Approach, Addison-Wesley, 1992.

Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process, Addison
Wesley, 1999.

Khriss, I., Elkoutbi, M., and Keller, R,: "Automating the Synthesis of UML Statechart Diagrams
from Multiple CoHilboration Diagrams," Proceedings for the Conference of the Unifed Modeling
Language, June 1998.

Koskimies, K., Systii, T., Tuomi, J., Mhnisto, T.: "Automated Support for ModeIling 00
Software," IEEE Sofiware, pp. 87-94, January 1998.

Kruchten, P.B.: The Rational Unified Process, Addison Wesley, 1998.

Kuhn, D. A.: A Discription of the Systems Engineering Capability Maturity Model Appraisal
Method Versiorr I. I, Carnegie Mellon University, Pittsburgh, PA, 19%.

Luckham, D. C.. J. Vera, J.: "An Event-Based Architecture Definition Language," IEEE
Transactions on Software Engineering, September 19%.

Magce, I. and Kramer, J.: "Dynamic Structure in Software Architectures," Proceedings of the 4th
ACM SIGSOFT Symposium on the Foundations of Sofrware Engineering, San Francisco, CA,
October 1996.

Magee, J., Kramer, J.: Concurrency: State Models and Java Programs, Wiley, 1999.

Medvidovic, N., Rosenblum, D. S., and Taylor, R. N.: "A Language and Environment for
Architecture-Based Software Development and Evolution," Proceedings of the 2 l ~ t International
Conference on Sofhvare Engineering (ICSEP9). pp. 44-53, May 1999a.

Medvidovic, N., Egyed, A., and Rosenblum, D.: "Round-Trip Software Engineering Using UML:
From Architecture to Design and Back," Proceedings of the 2nd Workchop on Object-Oriented
Reengineering (WOOR) , pp. 1-8, Toulouse, France, September 1999b.

Medvidovic, N., Gruenbacher, P., Egyed, A., and Boehm, B.: "Software Lifecycle Connectors:
Bridging Models across the Lifecycle." submitted to 23rd Internatiorull Conference on Sofiware
Engineering (ICSE 2001). Toronto, Canada, 200 1.

Medvidovic, N, and Rosenbium, D. S.: "Assessing the Suitability of a Standard Design Method for
ModeIing Software Arc hi tectures," Proceedings of the First Working IFiP Conference on Sofiware
Architecture (WICSAI), pp. 16 1- 182, Feb~ary 1999.

Medvidovic, N., Taylor, R. N.: "A Classification and Comparison Framework for Software
Architecture Description Languages," IEEE Transactions on Sofrware Engineering, 26(1 1, pp. 70-
93, January 2000.

Merriam-Webster: Memam-Webster's Collegiate Dictionary, Merriarn-Webster Incorporated,
1996.

Moriconi, M., Qian, X., Riemenschneider, R. A.: "Correct Architecture Refinement," IEEE
Transactions on Software Engineering, April 1 995.

Mullery, G.: "CORE: A Method for Controlled Requirements Specification," Proceedings of 4th
Inremutional Conference on Sofnvare Engineering (ICSE 4). pp. 126- 135, September 1979.

Narayanaswamy, K. and Goldman, N.: "'Lazy' Consistency: A Basis for Cooperative Software
Development," Proceedings of International Conference on Computer-Supported Cooperative
Work (CSCW92), pp. 257-264, Toronto, Ontario, Canada, November 1992.

NASA: "Software Formal Inspection Process Standard," NASA-S7V-2202-93, 1993.

Nuseibeh, B.: "Computer-Aided Inconsistency Management in Software Development," Technical
Repon DOC 95/4, Department of Computing, lrnperial College, Lundon SW7 2BZ 1995.

Nuseibeh, B.: "Towards a framework for managing inconsistency between multiple views,"
Proceedings of the Viewpoint 96: International Workshop on Multiple Perspectives in Somare
Development, October 1996.

Nuseibeh, B., Kramer, J., Finkelstein, A,: "A Framework for Expressing the Relationships
Between Multiple Views in Requirements Specification," IEEE Transactions on Sofrware
Engineering, pp. 760-773, October 1994.

Nuseibeh, B.: "A Multi-Perspective Framework for Method Integration," PhD Dissertation,
Imperial College of Science, Technology and Medicine, London, England, October 1994.

Nuseibeh, B.: "To Be And Not To Be: On Managing Inconsistency in Software Development,"
Proceedings of 8th International Workshop on Software Specification and Design (IWSSD-8), pp.
164-169, Scloss Velen, Germany, Mach 1996.

OMG: Unified Modeling Language Specification Version t .3, OMG, 1999.

On, K.: Structured Requirements Definition, Topeka Kansas, Ken Orr and Associates, 198 1.

~vergaard. G.: "A Formal Approach to Relationships in the Unified Modeling Language,"
Proceedings of the Workshop on Precise Semantics for Software Modeling Techniques (PSMT'98),
1998.

Paulk, M.C., Weber, C. V., Curtis, B., Chrissis, M. B., Eds.: The Capability Maturity Model:
Guidelines for Improving the Software Process, Reading, MA, Addison-Wesley, 1995.

Perry, D. E., WoIf, A. L.: "Foundations for the Study of Software Architectures," ACM SIGSOFT
Sojbvare Engineering Notes, October 1 992.

Potts, C. and Takahashi, IC: "An Active Hypertext for System Requirements," Proceedings of the
7th International Workshop on Sofhvare Specification and Design (IWSSD 7), pp. 62-68,
December 1993.

Racz, F. D. and Koskimies, K.: "Tool-Supported Compression of UML Class Diagrams,''
Proceedings of the 2& Internationa[Conference on the Unified Modeling Language ((UML).
October 1999.

100. Rechtin, E.: "System Architecting, Creating & Building Complex Systems," Prentice Hall,
Englewood Cliffs, NJ, 199 1.

101. Riemenschneider, R. A.: "Checking the Correctness of Architectural Transformation Steps via
Proof-Carrying Architectures," Proceedings of the First Working IFIP Conference on Software
Architecture (WICSA I), pp. 65-8 1, February 1999.

102. Robbins, J. E., Medvidovic, N., Redmiles, D. F., and Rosenblum, D. S.: "Integrating Architecture
Description Languages with a Standard Design Method," Proceedings of the 20th International
Conference on Sofiware Engineering (ICSE 98). pp. 209-2 1 8, Kyoto, Japan, April 1998.

103. Robertson, S., Robertson, J.: Mastering the Requirements Process, Addison-Welsey, 1999.

104. Ross, D. T.: "Structured Analysis (SA): A language for communicating ideas," lEEE Transactions
on Software Engineering, 3(1), pp. 16-34, 1977.

105. Royce, W. W.: "Managing the development of large software systems: Concepts and techniques,"
Proceedings of 9th International Conference on Somare Engineering (I CSE 9), 1970.

106. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F,: Object-Oriented Modeling and Design,
Prentice Hall, 199 1.

107. Rurnbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference Manual,
Addison Wesley, 1999.

108. Sage, A. P., Lynch, C. L.: "Systems Integration and Architecting: An Overview of Principles,
Practices, and Perspectives," System Engineering, The Journal of the lnternational Council on
Systems Engineering, Wiley Publishers, 1(3), pp. 176-226, 1998.

109. Schoman, K., Ross, D. T.: "Structured analysis for requirements definition," IEEE Transactions on
Sofrware Engineering, 3(1), pp. 6- 15, 1977.

1 10. Schonberger, S., Keller, R. K., and Khriss, I.: "Algorithmic Support for Model Transformation in
Object-Oriented Software Development," Theory and Practice of Object System (TAPOS), 1999.

11 1. Selic, B., Gullekson, G., Ward, P. T.: Real-Time Object Oriented Modeling, New York, John
Wiley and Sons, 1994.

112. Selic, B. and Rumbaugh, J. "Using UML for ModeIing Complex Real-Time Systems,"
http:l/www.objectime.com/otVtechnicaVumln,pdf, March 1998.

113. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline, Prentice
Hall, 1996.

114. Sheard, S. A. and Lake, J. G.: "Systems Engineering Standards and Models Compared,"
Proceedings of the 8th International Symposium on Systems Engineering (INCOSE), pp. 589-605,
Vancouver, Canada, 1998.

115. Shlaer, S., Mellor, S. J.: Object-Oriented Systems Analysis: Modeling the World in Data, Yourdon
Press, 1989.

1 16. Shlaer, S., Mellor, S. J.: Object Lifecycles: Modeling the World in States, Yourdon Press, 199 1.

1 17. Siegfried, S.: Understanding Object-Oriented Software Engineering, IEEE Press, 1996.

1 1 8. Somrnerville, 1.: Software Engineering, Addison-Wesley, 1996.

119. Sommerville, I., Sawyer, P.: Requirements Engineering: A Good Practice Guide, John Wiley &
Sons, 1997.

120. Song, X., Osterweil, L. 3.: "Toward Objective, Systematic Design-Method Comparisons," IEEE
Software ,9(3), pp. 43-53, 1992.

121. Tarr, P., Osher, H., Harrison, W., and Sutton, S. M. Jr.: "N Degrees of Separation: Multi-
Dimensional Separation of Concerns," Proceedings of the 2Ist International Conference on
So_Fware Engineering (ZCSE t l) , pp. 107-1 19, Los Angeles, CA, May 1999.

122. Taylor, R. N., Medvidovic, N., Anderson, K. N., Whitehead, E. J. Jr., Robbins, J. E., Nies, K. A*,
Oreizy, P., Dubrow, D. L.: "A Component- and Message-Based Architectural Style for GUI
Software," IEEE Transactions on Sofiware Engineering, 22(6), pp. 390-406, 1996.

123. Wang, E. Y. and Cheng, B. H. C.: "A Rigorous Object-Oriented Design Process," Proceedings of
the Intemtional Conference on Sofrware Processes (ICSPS), June 1998.

124. Wang, E. Y., Richter, H. A., and Cheng, B. H. C.: "Formalizing and Integrating the Dynamic
Model within OMT," Proceedings of the 18th International Conference on Sofiware Engineering
(ICSE), May 1997.

125. Wrvmer, J., Kleppe, A.: The Object Constraint Language, Reading, MA, Addison Wesley, 1999.

126. Wamier, J.D.: Logical Consmction of Programs, New York, Van Nostrand, 1977.

127. Weaver, P.: Practical SSADM, London, Pitman, !993.

128. Wile. D.: "AML: An Architecture Meta-Language," Proceedings of the 14" International
Conference on Automated Sofhvore Engineering (ASE'99), Cocoa Beach, FL, October 1999.

129. Wirfs-Brock, R., Wilkerson, B., Wiener, L.: Designing Object-Oriented Software, Prentice Hall,
1990.

