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Preface

The support vector machine (SVM) is a supervised learning method that
generates input-output mapping functions from a set of labeled training data.
The mapping function can be either a classification function, i.e., the cate-
gory of the input data, or a regression function. For classification, nonlinear
kernel functions are often used to transform input data to a high-dimensional
feature space in which the input data become more separable compared to
the original input space. Maximum-margin hyperplanes are then created. The
model thus produced depends on only a subset of the training data near the
class boundaries. Similarly, the model produced by Support Vector Regres-
sion ignores any training data that is sufficiently close to the model prediction.
SVMs are also said to belong to “kernel methods”.

In addition to its solid mathematical foundation in statistical learning
theory, SVMs have demonstrated highly competitive performance in numerous
real-world applications, such as bioinformatics, text mining, face recognition,
and image processing, which has established SVMs as one of the state-of-
the-art tools for machine learning and data mining, along with other soft
computing techniques, e.g., neural networks and fuzzy systems.

This volume is composed of 20 chapters selected from the recent myriad
of novel SVM applications, powerful SVM algorithms, as well as enlighten-
ing theoretical analysis. Written by experts in their respective fields, the first
12 chapters concentrate on SVM theory, whereas the subsequent 8 chapters
emphasize practical applications, although the “decision boundary” separat-
ing these two categories is rather “fuzzy”.

Kecman first presents an introduction on the SVM, explaining the basic
theory and implementation aspects. In the chapter contributed by Ma and
Cherkassky, a novel approach to nonlinear classification using a collection of
several simple (linear) classifiers is proposed based on a new formulation of
the learning problem called multiple model estimation. Pelckmans, Goethals,
De Brabanter, Suykens, and De Moor describe componentwise Least Squares
Support Vector Machines (LS-SVMs) for the estimation of additive models
consisting of a sum of nonlinear components.
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Motivated by the statistical query model, Mitra, Murthy and Pal study an
active learning strategy to solve the large quadratic programming problem of
SVM design in data mining applications. Kaizhu Huang, Haiqin Yang, King,
and Lyu propose a unifying theory of the Maxi-Min Margin Machine (M4)
that subsumes the SVM, the minimax probability machine, and the linear
discriminant analysis. Vogt and Kecman present an active-set algorithm for
quadratic programming problems in SVMs, as an alternative to working-set
(decomposition) techniques, especially when the data set is not too large, the
problem is ill-conditioned, or when high precision is needed.

Being aware of the abundance of methods for SVM model selection,
Anguita, Boni, Ridella, Rivieccio, and Sterpi carefully analyze the most well-
known methods and test some of them on standard benchmarks to evaluate
their effectiveness. In an attempt to minimize bias, Peng, Heisterkamp, and
Dai propose locally adaptive nearest neighbor classification methods by using
locally linear SVMs and quasiconformal transformed kernels. Williams, Wu,
and Feng discuss two geometric methods to improve SVM performance, i.e.,
(1) adapting kernels by magnifying the Riemannian metric in the neighbor-
hood of the boundary, thereby increasing class separation, and (2) optimally
locating the separating boundary, given that the distributions of data on either
side may have different scales.

Song, Hu, and Xulei Yang derive a Kuhn-Tucker condition and a decom-
position algorithm for robust SVMs to deal with overfitting in the presence of
outliers. Lin and Sheng-de Wang design a fuzzy SVM with automatic deter-
mination of the membership functions. Kecman, Te-Ming Huang, and Vogt
present the latest developments and results of the Iterative Single Data Algo-
rithm for solving large-scale problems.

Exploiting regularization and subspace decomposition techniques, Lu,
Plataniotis, and Venetsanopoulos introduce a new kernel discriminant learn-
ing method and apply the method to face recognition. Kwang In Kim, Jung,
and Hang Joon Kim employ SVMs and neural networks for automobile li-
cense plate localization, by classifying each pixel in the image into the object
of interest or the background based on localized color texture patterns. Mat-
tera discusses SVM applications in signal processing, especially the problem
of digital channel equalization. Chu, Jin, and Lipo Wang use SVMs to solve
two important problems in bioinformatics, i.e., cancer diagnosis based on mi-
croarray gene expression data and protein secondary structure prediction.

Emulating the natural nose, Brezmes, Llobet, Al-Khalifa, Maldonado, and
Gardner describe how SVMs are being evaluated in the gas sensor commu-
nity to discriminate different blends of coffee, different types of vapors and
nerve agents. Zhan presents an application of the SVM in inverse problems
in ocean color remote sensing. Liang uses SVMs for non-invasive diagnosis
of delayed gastric emptying from the cutaneous electrogastrograms (EGGs).
Rojo-Álvarez, Garćıa-Alberola, Artés-Rodŕıguez, and Arenal-Máız apply
SVMs, together with bootstrap resampling and principal component analysis,
to tachycardia discrimination in implantable cardioverter defibrillators.
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Cancer Diagnosis
and Protein Secondary Structure Prediction
Using Support Vector Machines

F. Chu, G. Jin, and L. Wang

School of Electrical and Electronic Engineering,
Nanyang Technological University,
Block S1, Nanyang Avenue, Singapore, 639798
elpwang@ntu.edu.sg

Abstract. In this chapter, we use support vector machines (SVMs) to deal with two
bioinformatics problems, i.e., cancer diagnosis based on gene expression data and
protein secondary structure prediction (PSSP). For the problem of cancer diagnosis,
the SVMs that we used achieved highly accurate results with fewer genes compared
to previously proposed approaches. For the problem of PSSP, the SVMs achieved
results comparable to those obtained by other methods.

Key words: support vector machine, cancer diagnosis, gene expression, pro-
tein secondary structure prediction

1 Introduction

Support Vector Machines (SVMs) [1, 2, 3] have been widely applied to pattern
classification problems [4, 5, 6, 7, 8] and nonlinear regressions [9, 10, 11].
In this chapter, we apply SVMs to two pattern classification problems in
bioinformatics. One is cancer diagnosis based on microarray gene expression
data; the other is protein secondary structure prediction (PSSP). We note
that the meaning of the term prediction is different from that in some other
disciplines, e.g., in time series prediction where prediction means guessing
future trends from past information. In PSSP, “prediction” means supervised
classification that involves two steps. In the first step, an SVM is trained as
a classifier with a part of the data in a specific protein sequence data set. In
the second step (i.e., prediction), we use the classifier trained in the first step
to classify the rest of the data in the data set.

In this work, we use the C-Support Vector Classifier (C-SVC) proposed
by Cortes and Vapnik [1] available in the LIBSVM library [12]. The C-SVC
has radial basis function (RBF) kernels. Much of the computation is spent on

F. Chu, G. Jin, and L. Wang: Cancer Diagnosis and Protein Secondary Structure Prediction
Using Support Vector Machines, StudFuzz 177, 343–363 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005



344 F. Chu et al.

tuning two important parameters, i.e., γ and C. γ is the parameter related
to the span of an RBF kernel: the smaller the value is, the wider the kernel
spans. C controls the tradeoff between the complexity of the SVM and the
number of nonseparable samples. A larger C usually leads to higher training
accuracy. To achieve a good performance, various combinations of the pair
(C, γ) have to be tested, ideally, to find the optimal combination.

This chapter is organized as follows. In Sect. 2, we apply SVMs to cancer
diagnosis with microarray data. In Sect. 3, we review the PSSP problem and
its biological background. In Sect. 4, we apply SVMs to the PSSP problem.
In the last section, we draw our conclusions.

2 SVMs for Cancer Type Prediction

Microarrays [15, 16] are also called gene chips or DNA chips. On a microarray
chip, there are thousands of spots. Each spot contains the clone of a gene
from one specific tissue. At the same time, some mRNA samples are labelled
with two different kinds of dyes, for example, Cy5 (red) and Cy3 (blue). After
that, the mRNA samples are put on the chip and interact with the genes
on the chip. This process is called hybridization. The color of each spot on
the chip changes after hybridization. The image of the chip is then scanned
out and reflects the characteristics of the tissue at the molecular level. Using
microarrays for different tissues, biological and biomedical researchers are able
to compare the difference of those tissues at the molecular level. Figure 1
summarizes the process of making microarrays.

In recent years, cancer type/subtype prediction has drawn a lot of atten-
tion in the context of the microarray technology that is able to overcome
some limitations of traditional methods. Traditional methods for diagnosis
of different types of cancers are mainly based on morphological appearances

labeled mRNA

for test

labeled mRNA

for reference

hybridized array

cDNA oroligonucleotide

dye 1 dye 2

Fig. 1. The process of making microarrays
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of cancers. However, sometimes it is extremely difficult to find clear distinc-
tions between some types of cancers according to their appearances. Thus,
the newly appeared microarray technology is naturally applied to this muddy
problem. In fact, gene-expression-based cancer classifiers have achieved good
results in classifying lymphoma [17], leukemia [18], breast cancer [19], liver
cancer [20], and so on.

Gene-expression-based cancer classification is challenging due to the fol-
lowing two properties of gene expression data. Firstly, gene expression data are
usually very high dimensional. The dimensionality usually ranges from several
thousands to over ten thousands. Secondly, gene expression data sets usually
contain relatively small numbers of samples, e.g., a few tens. If we treat this
pattern recognition problem with supervised machine learning approaches, we
need to deal with the shortage of training samples and high dimensional input
features.

Recent approaches to this problem include artificial neural networks [21],
an evolutionary algorithm [22], nearest shrunken centroids [23], and a graph-
ical method [24]. Here, we use SVMs to solve this problem.

2.1 Gene Expression Data Sets

In the following parts of this section, we describe three data sets to be used in
this chapter. One is the small round blue cell tumors (SRBCTs) data set [21].
Another is the lymphoma data set [17]. The last one is the leukemia data set
[18].

The SRBCT Data Set

The SRBCT data set (http://research.nhgri.nih.gov/microarray/Supplement/)
[21] includes the expression data of 2308 genes. Khan et al. provided totally
63 training samples and 25 testing samples, five of the testing samples being
not SRBCTs. The 63 training samples contain 23 Ewing family of tumors
(EWS), 20 rhabdomyosarcoma (RMS), 12 neuroblastoma (NB), and 8 Burkitt
lymphomas (BL). And the 20 SRBCTs testing samples contain 6 EWS, 5
RMS, 6 NB, and 3 BL.

The Lymphoma Data Set

The lymphoma data set (http://llmpp.nih.gov/lymphoma) [17] has 62 sam-
ples in total. Among them, 42 samples are derived from diffuse large B-cell
lymphoma (DLBCL), 9 samples from follicular lymphoma (FL), and 11 sam-
ples from chronic lymphocytic lymphoma (CLL). The entire data set includes
the expression data of 4026 genes. We randomly divided the 62 samples into
two parts, 31 for training and the other 31 for testing. In this data set, a small
part of data is missing. We applied a k-nearest neighbor algorithm [25] to fill
those missing values.
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The Leukemia Data Set

The leukemia data set (www-genome.wi.mit.edu/MPR/data_set_ALL_AML.
html) [18] contains two types of samples, i.e. the acute myeloid leukemia
(AML) and the acute lymphoblastic leukemia (ALL). Golub et al. provided
38 training samples and 34 testing samples. The entire leukemia data set
contains the expression data of 7129 genes.

Ordinarily, raw gene expression data should be normalized to reduce the
systemic bias introduced during experiments. For the SRBCT and the lym-
phoma data sets, normalized data can be found on the web. However, for the
leukemia data set, such normalized data are not available. Thereafter, we need
to do normalization ourselves.

We followed the normalization procedure used in [26]. Three steps were
taken, i.e., (a) setting threshold with a floor of 100 and a ceiling of 16000, that
is, if a value is greater (smaller) than the ceiling (floor), this value is replaced
by the ceiling (floor); (b) filtering, leaving out the genes with max /min ≤ 5
or (max−min) ≤ 500 (max and min refer to the maximum and minimum
of the expression values of a gene, respectively); (c) carrying out logarithmic
transformation with 10 as the base to all the expression values. 3571 genes
survived after these three steps. Furthermore, the data were standardized
across experiments, i.e., subtracted by the mean and divided by the standard
deviation of each experiment.

2.2 A T-Test-Based Gene Selection Approach

The t-test is a statistical method proposed by Welch [27] to measure how
large the difference is between the distributions of two groups of samples. If
a gene shows large distinctions between 2 groups, the gene is important for
classification of the two groups. To find the genes that contribute most to
classification, t-test has been used in gene selection [28] in recent years.

Selecting important genes using t-test involves several steps. In the first
step, a score based on the t-test (named t-score or TS) is calculated for each
gene. In the second step, all the genes are rearranged according to their TSs.
The gene with the largest TS is put in the first place of the ranking list,
followed by the gene with the second largest TS, and so on.

Finally, only some top genes in the list are used for classification. The stan-
dard t-test is applicable to measure the difference between only two groups.
Therefore, when the number of classes is more than two, we need to modify
the standard t-test. In this case, we use the t-test to measure the difference
between one specific class and the centroid of all the classes. Hence, the defi-
nition of the TS for gene i can be described as follows:
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TSi = max
{∣
∣
∣
∣
xik − xi

mksi

∣
∣
∣
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xij/nk (2)
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xij/n (3)
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∑

k

∑
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(xij − xik)2 (4)

mk =
√

1/nk + 1/n (5)

There are K classes. max{yk, k = 1, 2, . . . K} is the maximum of all yk. Ck

refers to class k that includes nk samples. xij is the expression value of gene
i in sample j. xik is the mean expression value in class k for gene i. n is the
total number of samples. xi is the general mean expression value for gene i.
si is the pooled within-class standard deviation for gene i.

2.3 Experimental Results

We applied the above gene selection approach and the C-SVC to process the
SRBCT, the lymphoma, and the leukemia data sets.

Results for the SRBCT Data Set

In the SRBCT data set, we firstly ranked the importance of all the genes with
TSs. We picked out 60 of the genes with the largest TSs to do classification.
The top 30 genes are listed in Table 1. We input these genes one by one to the
SVM classifier according to their ranks. That is, we first input the gene ranked
No.1 in Table 1. Then, we trained the SVM classifier with the training data
and tested the SVM classifier with the testing data. After that, we repeated
the whole process with the top 2 genes in Table 1, and then the top 3 genes,
and so on. Figure 2 shows the training and the testing accuracies with respect
to the number of genes used.

In this data set, we used SVMs with RBF kernels. C and γ were set as 80
and 0.005, respectively. This classifier obtained 100% training accuracy and
100% testing accuracy using the top 7 genes. In fact, the values of C and γ have
great impact on the classification accuracy. Figure 3 shows the classification
results with different values of γ. We also applied SVMs with linear kernels
(with kernel function K(X,Xi) = XT Xi) and SVMs with polynomial kernels
(with kernel function K(X,Xi) = (XT Xi + 1)p and order p = 2) to the
SRBCT data set. The results are shown in Fig. 4 and Fig. 5. The SVMs with
linear kernels and the SVMs with polynomial kernels obtained 100% accuracy
with 7 and 6 genes, respectively. The similarity of these results indicates that
the SRBCT data set is separable for all the three kinds of SVMs.
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Table 1. The 30 top genes selected by the t-test in the SRBCT data set

Rank Gene ID Gene Description

1 810057 cold shock domain protein A
2 784224 fibroblast growth factor receptor 4
3 296448 insulin-like growth factor 2 (somatomedin A)
4 770394 Fc fragment of IgG, receptor, transporter, alpha
5 207274 Human DNA for insulin-like growth factor II (IGF-2); exon 7

and additional ORF
6 244618 ESTs
7 234468 ESTs
8 325182 cadherin 2, N-cadherin (neuronal)
9 212542 Homo sapiens mRNA; cDNA DKFZp586J2118 (from clone DK-

FZp586J2118)
10 377461 caveolin 1, caveolae protein, 22 kD
11 41591 meningioma (disrupted in balanced translocation) 1
12 898073 transmembrane protein
13 796258 sarcoglycan, alpha (50kD dystrophin-associated glycoprotein)
14 204545 ESTs
15 563673 antiquitin 1
16 44563 growth associated protein 43
17 866702 protein tyrosine phosphatase, non-receptor type 13 (APO-

1/CD95 (Fas)-associated phosphatase)
18 21652 catenin (cadherin-associated protein), alpha 1 (102 kD)
19 814260 follicular lymphoma variant translocation 1
20 298062 troponin T2, cardiac
21 629896 microtubule-associated protein 1B
22 43733 glycogenin 2
23 504791 glutathione S-transferase A4
24 365826 growth arrest-specific 1
25 1409509 troponin T1, skeletal, slow
26 1456900 Nil
27 1435003 tumor necrosis factor, alpha-induced protein 6
28 308231 Homo sapiens incomplete cDNA for a mutated allele of a myosin

class I, myh-1c
29 241412 E74-like factor 1 (ets domain transcription factor)
30 1435862 antigen identified by monoclonal antibodies 12E7, F21 and O13

For the SRBCT data set, Khan et al. [21] 100% accurately classified the
4 types of cancers with a linear artificial neural network by using 96 genes.
Their results and our results of the linear SVMs both proved that the classes
in the SRBCT data set are linearly separable. In 2002, Tibshirani et al. [23]
also correctly classified the SRBCT data set with 43 genes by using a method
named nearest shrunken centroids. Deutsch [22] further reduced the number of
genes required for reliable classification to 12 with an evolutionary algorithm.
Compared with these previous results, the SVMs that we used can achieve
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Fig. 2. The classification results vs. the number of genes used for the SRBCT data
set: (a) the training accuracy; (b) the testing accuracy

100% accuracy with only 6 genes (for the polynomial kernel function version,
p = 2) or 7 genes (for the linear and the RBF kernel function versions).
Table 2 summarizes this comparison.

Results for the Lymphoma Data Set

In the lymphoma data set, we selected the top 70 genes. The training and
testing accuracies with the 70 top genes are shown in Fig. 6. The classifiers
used here are also SVMs with RBF kernels. The best C and γ obtained are
equal to 20 and 0.1, respectively. The SVMs obtained 100% accuracy for both
the training and testing data with only 5 genes.



350 F. Chu et al.

Fig. 3. The testing results of SVMs with RBF kernels and different values of γ for
the SRBCT data

Fig. 4. The testing results of the SVMs with linear kernels for the SRBCT data

For the lymphoma data set, nearest shrunken centroids [29] used 48 genes
to give a 100% accurate classification. In comparison with this, the SVMs that
we used greatly reduced the number of genes required.

Table 2. Comparison of the numbers of genes required by different methods to
achieve 100% classification accuracy

Method Number of Genes Required

Linear MLP neural network [21] 96
Nearest shrunken centroids [23] 43
Evolutionary algorithm [22] 12
SVM (linear or RBF kernel function) 7
SVM (polynomial kernel function, p = 2) 6
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Fig. 5. The testing result of the SVMs with polynomial kernels (p = 2) for the
SRBCT data

Fig. 6. The classification results vs. the number of genes used for the lymphoma
data set: (a) the training accuracy; (b) the testing accuracy
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Results for the Leukemia Data Set

Alizadeh et al. [17] built a 50-gene classifier that made 1 error in the 34
testing samples; and in addition, it cannot give strong prediction to another
3 samples. Nearest shrunken centroids made 2 errors among the 34 testing
samples with 21 genes [23]. As shown in Fig. 7, we used the SVMs with RBF
kernels with 2 errors for the testing data but with only 20 genes.

Fig. 7. The classification results vs. the number of genes used for the leukemia data
set: (a) the training accuracy; (b) the testing accuracy
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Fig. 8. An example of alphabetical representations of protein sequences and protein
mutations. PDB stands for protein data bank [30]

3 Protein Secondary Structure Prediction

3.1 The Biological Background of the PSSP

A protein sequence is a linear array of amino acids. Each amino acid con-
sists of 3 consecutively ordered DNA bases (A, T, C, or G). An amino acid
carries various kinds of information determined by its DNA combination. An
amino acid is a basic unit of a protein sequence and is called a residue. There
are altogether 20 types of amino acids and each type of amino acids is de-
noted by an English character. For example, the character “A” is used to
represent the type of amino acid named Alanine. Thus, a protein sequence
in the alphabetical representation is a long sequence of characters, as shown
in Fig. 8. Given a protein sequence, various evolutionary environments may
induce mutations, including insertions, deletions, or substitutions, to the orig-
inal protein, thereby producing diversified yet biologically similar organisms.

3.2 Types of Protein Secondary Structures

Secondary structures are formed by hydrogen bonds between relatively small
segments of protein sequences. There are three common secondary structures
in proteins, namely α-helix, β-sheet (strand) and coil.

Figure 9 visualizes protein secondary structures. In Fig. 9, the dark ribbons
represent helices and the gray ribbons are sheets. And the strings in between
are coils that bind helices and sheets.

3.3 The Task of PSSP

In the context of PSSP, “prediction” carries similar meaning as that of clas-
sification: given a residue of a protein sequence, the predictor should classify
the residue into one of the three secondary structure states according to the
residue’s characteristics. PSSP is usually conducted in two stages: sequence-
structure (Q2T) prediction and structure-structure (T2T) prediction.
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Secondary Structure

Dark Ribbon :
a -helix

Gray Ribbon :
ß-sheet

String :
coil

Fig. 9. Three types of protein secondary structures: α-helix, β-strand, and coil

Sequence-Structure (Q2T) Prediction

Q2T prediction predicts the protein secondary structure from protein se-
quences. Given a protein sequence, a Q2T predictor maps each residue of the
sequence to a relevant secondary structure state by inspecting the distinct
characteristics of the residue, e.g., the type of the amino acid, the sequence
context (that is, what are the neighboring residues), and evolutionary infor-
mation. The sequence-structure prediction plays the most important role in
PSSP.

Structure-Structure (T2T) Prediction

For common pattern classification problems, it would be the end of the task
once each data point (each residue in our case) has been assigned a class label.
Classification usually do not continue to a second phase. However, the prob-
lem we are dealing with is different from most pattern recognition problems.
In a typical pattern classification problem, the data points are assumed to be
independent. But this is not true for the PSSP problem because the neigh-
boring sequence positions usually provide some meaningful information. For
example, an α-helix usually consists of at least 3 consecutive residues of the
same secondary structure state (e.g., . . . ααα . . .). Therefore, if an alternative
occurrence of the α-helix and the β-strand (e.g., . . . αβαβ . . .) is predicted, it
would be incorrect. Thus, T2T prediction based on the Q2T results is usually
carried out. This step helps to correct errors incurred in Q2T prediction and
hence enhances the overall prediction accuracy. Figure 10 illustrates PSSP
with the two stages.

Note that amino acids of the same type do not always have the same sec-
ondary structure state. For instance, in Fig. 10, the 12 -th and the
20 -th amino residues counted from the left side are both F. However, they
are assigned to two different secondary structure states, i.e., α and β.
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Fig. 10. Protein secondary structure prediction: the two-stage approach

Prediction of the secondary structure state at each sequence position
should not solely rely on the residue at that position. A window expanding
towards both directions of the residue should be used to include the sequence
context.

3.4 Methods for PSSP

PSSP was stimulated by research on protein 3D structures in the 1960s [31,
32], which attempted to find the correlations between protein sequences and
secondary structures. This was the first generation of PSSP, where most meth-
ods carried out prediction based on single residue statistics [33, 34, 35, 36, 37].
Since only particular types of amino acids from protein sequences were ex-
tracted and used in experiments, the accuracies of these methods were more
or less over-estimated [38].

With growth of knowledge on protein structures, the second generation
PSSP made use of segment statistics. A segment of residues was studied to
find out how likely the central residue of the segment belonged to a secondary
structure state. Algorithms of this generation include statistical information
[36, 40], sequence patterns [41, 42], multi-layer networks [43, 44, 45, 49], mul-
tivariate statistics [46], nearest-neighbor algorithms [47], etc.

Unfortunately, the methods in both the first and the second generations
could not reach an accuracy higher than 70%.

The earliest application of artificial neural networks to PSSP was carried
out by Qian and Sejnowski in 1988 [48]. They used a three-layered back-
propagation network whose input data was encoded with a scheme called
BIN21. Under BIN21, each input data was a sliding window of 13 residues
obtained by extending 6 sequence positions from the central residue. The fo-
cus of each observation was only on the central residue, i.e., only the central
residue was assigned to one of the three possible secondary structure states
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(α-helix, β-strand, and coil). Modifications to the BIN21 scheme were intro-
duced in two later studies. Kneller et al. [49] added one additional input unit
to present the hydrophobicity scale of each amino acid residue and showed a
slightly higher accuracy. Sasagawa and Tajima [51] used the BIN24 scheme to
encode three additional amino acid alphabets, B, X, and Z. The above early
work had an accuracy ceiling of 65%. In 1995, Vivarelli et al. [52] used a hybrid
system that combined a Local Genetic Algorithm (LGA) and neural networks
for PSSP. Although LGA was able to select network topologies efficiently, it
still could not break through the accuracy ceiling, regardless of the network
architectures applied.

A significant improvement of the 3-state secondary structure prediction
came from Rost and Sander’s method (PHD) [53, 54], which was based on
a multi-layer back-propagation network. Different from the BIN21 coding
scheme, PHD took into account evolutionary information in the form of mul-
tiple sequence alignments to represent the input data. This inclusion of the
protein family information improved the prediction accuracy by around six
percentages. Moreover, another cascaded neural network conducted structure-
structure prediction. Using the 126 protein sequences (RS126) developed by
themselves, Rost and Sander achieved the overall accuracy as high as 72%.

In 1999, Jones [56] used a Position-Specific Scoring Matrix (PSSM) [57, 58]
obtained from the online alignment searching tool PSI-Blast (http://www.
ncbi.nlm.nih.gov/BLAST/) to numerically represent the protein sequence. A
PSSM was constructed automatically from a multiple alignment of the high-
est scoring hits in an initial BLAST search. The PSSM was generated by
calculating position-specific scores for each position in the alignment. Highly
conserved positions of protein sequence received high scores and weakly con-
served positions received scores near zero. Due to its high accuracy in finding
the biologically similar protein sequences, the evolutionary information carried
by the PSSM is more sensitive than the profiles obtained by other multiple
sequence alignment approaches. With a neural network similar to that of Rost
and Sander’s, Jones’ PSIPRED method achieved an accuracy as high as 76.5%
using a much larger data set than RS126.

In 2001, Hua and Sun [6] proposed an SVM approach. This was an early
application of the SVM to the PSSP problem. In their work, they first con-
structed 3 one-versus-one and 3 one-versus-all binary classifiers. Three tertiary
classifiers were designed based on these binary classifiers through the use of
the largest response, the decision tree and votes for the final decision. By
making use of the Rost’s data encoding scheme, they achieved the accuracy
of 71.6% and the segment overlap accuracy of 74.6% for the RS126 data set.

4 SVMs for the PSSP Problem

In this section, we use the LIBSVM, or more specially, the C-SVC, to solve
the PSSP problem.
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The data set used here was originally developed and used by Jones [56].
This data set can be obtained from the website (http://bioinf.cs.ucl.ac.uk/
psipred/). The data set contains a total of 2235 protein sequences for training
and 187 sequences for testing. All the sequences in this data set have been
processed by the online alignment searching tool PSI-Blast (http://www.ncbi.
nlm.nih.gov/BLAST/).

As mentioned above, we will conduct PSSP in two stages, i.e., Q2T pre-
diction and T2T prediction.

4.1 Q2T Prediction

Parameter Tuning Strategy

For PSSP, there are three parameters, i.e., the window size N , and SVM
parameters (C,γ), to be tuned. N determines the span of the sliding window,
i.e., how many neighbors to be included in the window. Here, we test four
different values for N , i.e., 11, 13, 15, and 17.

Searching for the optimal (C, γ) pair is also difficult because the data
set used here is extremely large. In [50], Lin and Lin found an optimal pair,
(C, γ) = (2, 0.125), for the PSSP problem with a much smaller data set (about
10 times smaller compared to the data set used here). Despite the difference of
data sizes, we find that their optimal pair also benefits our search as a proper
starting point. During our search, we change only one parameter at a time.
If the change (increase/decrease) leads to a higher accuracy, we continue to
do a similar change (increase/decrease) next time; otherwise, we reverse the
change (decrease/increase). Both C and γ are tuned with this scheme.

Results

Tables 3, 4, 5, and 6 show the experimental results for various (C, γ) pairs
with the window size N ∈ {11, 13, 15, 17}, respectively. Here, Q3 stands for

Table 3. Q2T prediction accuracies of the C-SVC with different (C, γ) values:
window size N = 11

Accuracy

C γ Q3(%) Qα(%) Qβ(%) Qc(%)

1 0.02 73.8 71.7 54.0 85.5
1 0.04 73.8 72.4 53.9 85.1
1.5 0.03 73.9 72.6 54.2 84.9
2 0.04 73.7 73.1 54.4 84.0
2 0.045 73.7 73.3 54.5 83.8
2.5 0.04 73.6 73.3 54.8 83.4
2.5 0.045 73.7 73.3 55.2 83.4
4 0.04 73.3 73.4 55.9 82.0
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Table 4. Q2T prediction accuracies of the C-SVC with different (C, γ) values:
window size N = 13

Accuracy

C γ Q3(%) Qα(%) Qβ(%) Qc(%)

1 0.02 73.9 72.3 54.8 84.9
1.5 0.008 73.6 71.4 54.3 85.0
1.5 0.02 73.9 72.6 54.7 84.8
1.7 0.04 74.1 73.6 54.8 83.4
2 0.025 74.0 73.0 55.1 84.3
2 0.04 74.1 73.9 55.0 83.9
2 0.045 74.2 74.1 55.9 83.5
4 0.04 73.2 73.9 55.5 81.7

Table 5. Q2T prediction accuracies of the C-SVC with different (C, γ) values:
window size N = 15

Accuracy

C γ Q3(%) Qα(%) Qβ(%) Qc(%)

2 0.006 73.4 70.8 54.2 85.2
2 0.03 74.1 73.6 55.6 84.0
2 0.04 74.2 73.9 55.7 83.7
2 0.045 74.0 73.7 55.4 83.7
2 0.05 74.0 73.7 55.4 83.6
2 0.15 69.0 63.3 32.7 91.9
2.5 0.02 74.0 73.0 55.6 84.0
2.5 0.03 74.1 74.0 55.9 83.5
4 0.025 74.0 73.8 55.8 83.4

Table 6. Q2T prediction accuracies of the C-SVC with different (C, γ) values:
window size N = 17

Accuracy

C γ Q3(%) Qα(%) Qβ(%) Qc(%)

1 0.125 70.0 63.6 36.0 91.3
2 0.03 74.1 73.5 56.2 83.7
2.5 0.001 71.3 68.1 52.4 83.5
2.5 0.02 74.0 68.1 52.4 83.5
2.5 0.04 74.0 75.0 55.8 83.1

the overall accuracy; Qα, Qβ , and Qc are the accuracies for α-helix, β-strand,
and coil, respectively.

From these tables, we could see that the optimal (C, γ) values for win-
dow size N ∈ {11, 13, 15, 17} are (1.5, 0.03), (2, 0.045), (2, 0.04), and (2, 0.03),
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Table 7. Q2T prediction accuracies of the multi-class classifier of BSVM with dif-
ferent (C, γ) values: window size N = 15

Accuracy

C γ Q3(%) Qα(%) Qβ(%) Qc(%)

2 0.04 74.18 73.90 56.39 84.18
2 0.05 74.02 73.68 56.09 83.39
2.5 0.03 74.20 73.95 56.85 83.22
2.5 0.035 74.06 73.93 56.70 82.99
3.0 0.35 73.77 73.88 56.55 82.44

respectively. The corresponding Q3 accuracies achieved are 73.9%, 74.2%,
74.2%, and 74.1%, respectively. A window size of 13 or 15 seems to be the
optimal window size that could most efficiently capture the information hid-
den in the neighboring residues. The best accuracy achieved is 74.2%, with
N = 13 and (C, γ) = (2, 0.045), or N = 15 and (C, γ) = (2, 0.04).

The original model of SVMs was designed to do binary classification. To
deal with multi-class problems, one usually needs to decompose a large classifi-
cation problem into a number of binary classification problems. The LIBSVM
that we used does such a decomposition with the “one-against-one” scheme
[59].

In 2001, Crammer and Singer proposed a direct method to build multi-
class SVMs [60]. We also applied such a multi-class SVMs to PSSP with the
BSVM (http://www.csie.ntu.edu.tw/ cjlin/bsvm/). The results are shown in
Table 7. Through comparing Table 5 and Table 7, we found that the multi-
class SVMs using Crammer and Singer’s scheme [60] and the group of binary
SVMs using “one-against-one” scheme [59] obtained similar results.

4.2 T2T Prediction

The T2T prediction uses the output of the Q2T prediction as its input. In T2T
prediction, we use the same SVMs as the ones we use in the Q2T prediction.
Therefore, we also adopt the same parameter tuning strategy as in the Q2T
prediction.

Results

Table 8 shows the best accuracies reached for window size N ∈ {15, 17, 19}
with the corresponding C and γ values. From Table 8, it is unexpectedly
observed that the structure-structure prediction has actually degraded the
prediction performance. A close look at the accuracies for each secondary
structure class reveals that the prediction for the coils becomes much less
accurate. In comparison to the early results (Tables 3, 4, 5 and 6) in the first
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Table 8. The T2T prediction accuracies for window size N = 15, 17, and 19

Accuracy
Window
Size (N) C γ Q3(%) Qα(%) Qβ(%) Qc(%)

15 1 2−5 72.6 77.9 60.8 74.3
17 1 2−4 72.6 78.0 60.4 74.5
19 1 2−6 72.8 78.2 60.1 74.9

stage, the Qc accuracy dropped from 84% to 75%. By sacrificing the accuracy
for coils, the predictions for the other two secondary structures improved.
However, because coils have a much larger population than the other two
kinds of secondary structures, the overall 3-state accuracy Q3 decreased.

5 Conclusions

To sum up, SVMs performs well in both bioinformatics problems that we
discussed in this chapter. For the problem of cancer diagnosis based on mi-
croarray data, the SVMs that we used outperformed most of the previously
proposed methods in terms of the number of genes required and the accu-
racy. Therefore, we conclude that the SVMs can not only make highly reliable
prediction, but also can reduce redundant genes. For the PSSP problem, the
SVMs also obtained results comparable with those obtained by other ap-
proaches.
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