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ABSTRACT

Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and

modules are presented. Guidelines for inclusion of results into these tables are outlined and new entries since June 2010 are

reviewed. Copyright # 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Since January 1993, ‘Progress in Photovoltaics’ has

published six monthly listings of the highest confirmed

efficiencies for a range of photovoltaic cell and module

technologies [1–3]. By providing guidelines for the

inclusion of results into these tables, this not only provides

an authoritative summary of the current state of the art but

also encourages researchers to seek independent confir-

mation of results and to report results on a standardised

basis. In a recent version of these tables (Version 33) [2],

results were updated to the new internationally accepted

reference spectrum (IEC 60904–3, Ed. 2, 2008), where this

was possible.

The most important criterion for inclusion of results into

the tables is that they must have been measured by a

recognised test centre listed elsewhere [1]. A distinction is

made between three different eligible areas: total area;

aperture area and designated illumination area [1]. ‘Active

area’ efficiencies are not included. There are also certain

minimum values of the area sought for the different device

types (above 0.05 cm2 for a concentrator cell, 1 cm2 for a

one-sun cell and 800 cm2 for a module) [1].

Results are reported for cells and modules made from

different semiconductors and for subcategories within each

semiconductor grouping (e.g. crystalline, polycrystalline

and thin film). From Version 36 onwards, spectral response

information has been included when available in the form

of a plot of the external quantum efficiency (EQE) versus

wavelength, normalized to the peak measured value.

2. NEW RESULTS

Highest confirmed ‘‘one-sun’’ cell and module results are

reported in Tables I and II. Any changes in the tables from

those previously published [3] are set in bold type. In most

cases, a literature reference is provided that describes

either the result reported or a similar result. Table I

summarises the best measurements for cells and sub-

modules, while Table II shows the best results for modules.

Table III contains what might be described as ‘notable

exceptions’. While not conforming to the requirements to

be recognized as a class record, the cells and modules in

this Table have notable characteristics that will be of

interest to sections of the photovoltaic community with

entries based on their significance and timeliness.

To ensure discrimination, Table III is limited to

nominally 10 entries with the present authors having
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Table I. Confirmed terrestrial cell and submodule efficiencies measured under the global AM1.5 spectrum (1000W/m2) at 258C (IEC 60904–3: 2008, ASTM G-173–03 global).

Classificationa Effic.b

(%)

Areac

(cm2)

Voc

(V)

Jsc

(mA/cm2)

FFd

(%)

Test Centree

(and Date)

Description

Silicon

Si (crystalline) 25.0� 0.5 4.00 (da) 0.706 42.7f 82.8 Sandia (3/99)g UNSW PERL [17]

Si (multicrystalline) 20.4� 0.5 1.002 (ap) 0.664 38.0 80.9 NREL (5/04)g FhG-ISE [18]

Si (thin film transfer) 16.7� 0.4 4.017 (ap) 0.645 33.0 78.2 FhG-ISE (7/01)g U. Stuttgart

(45 mm thick) [19]

Si (thin film submodule) 10.5� 0.3 94.0 (ap) 0.492h 29.7h 72.1 FhG-ISE (8/07)g CSG Solar (1–2 mm

on glass; 20 cells) [20]

III–V cells

GaAs (thin film) 27.6W 0.8 0.9989 (ap) 1.107 29.6j 84.1 NREL (11/10) Alta Devices [4]

GaAs (multicrystalline) 18.4� 0.5 4.011 (t) 0.994 23.2 79.7 NREL (11/95)g RTI, Ge substrate [21]

InP (crystalline) 22.1� 0.7 4.02 (t) 0.878 29.5 85.4 NREL (4/90)g Spire, epitaxial [22]

Thin Film Chalcogenide

CIGS (cell) 19.6� 0.6i 0.996 (ap) 0.713 34.8j 79.2 NREL (4/09) NREL, CIGS on glass [5,23]

CIGS (submodule) 16.7� 0.4 16.0 (ap) 0.661h 33.6h 75.1 FhG-ISE (3/00)g U. Uppsala,

4 serial cells [24]

CdTe (cell) 16.7� 0.5h 1.032 (ap) 0.845 26.1 75.5 NREL (9/01)g NREL, mesa on

glass [25]

CdTe (submodule) 12.5� 0.4 35.03 (ap) 0.838 21.2j 70.5 NREL (9/10) ASP Hangzhou,

8 serial cells

Amorphous/nanocrystalline Si

Si (amorphous) 10.1� 0.3k 1.036 (ap) 0.886 16.75f 67 NREL (7/09) Oerlikon Solar Lab,

Neuchatel [26]

Si (nanocrystalline) 10.1� 0.2l 1.199 (ap) 0.539 24.4 76.6 JQA (12/97) Kaneka (2 mm on glass) [27]

Photochemical

Dye sensitised 10.4� 0.3m 1.004(ap) 0.729 22 65.2 AIST (8/05)g Sharp [28]

Dye sensitized (submodule) 9.9� 0.4m 17.11 (ap) 0.719h 19.4h,j 71.4 AIST (8/10) Sony, 8 parallel cells [6]

Organic

Organic polymer 8.3W 0.3m 1.031 (ap) 0.816 14.46j 70.2 NREL(11/10) Konarka [7]

(Continues)
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Table I. (Continued)

Classificationa Effic.b

(%)

Areac

(cm2)

Voc

(V)

Jsc

(mA/cm2)

FFd

(%)

Test Centree

(and Date)

Description

Organic (submodule) 3.5� 0.3m 208.4 (ap) 8.62 0.847 48.3 NREL (7/09) Solarmer [29]

Multijunction devices

GaInP/GaAs/Ge 32.0� 1.5l 3.989 (t) 2.622 14.37 85 NREL (1/03) Spectrolab (monolithic)

GaAs/CIS (thin film) 25.8� 1.3l 4.00 (t) — — — NREL (11/89) Kopin/Boeing (4 terminal) [30]

a-Si/mc-Si (thin film cell) 11.9� 0.8n 1.227 1.346 12.92j 68.5 NREL (8/10) Oerlikon Solar Lab, Neuchatel [8]

a-Si/mc-Si (thin film submodule)j,l 11.7� 0.4l,o 14.23 (ap) 5.462 2.99 71.3 AIST (9/04) Kaneka (thin film) [31]

Organic (2-cell tandem) 8.3� 0.3m 1.087 (ap) 1.733 8.03j 59.5 FhG-ISE (10/10) Heliatek [9]

a CIGS¼CuInGaSe2; a-Si¼ amorphous silicon/hydrogen alloy.
b Effic.¼ efficiency.
c (ap)¼ aperture area; (t)¼ total area; (da)¼designated illumination area.
d FF¼fill factor.
e FhG-ISE¼ Fraunhofer Institut für Solare Energiesysteme; JQA¼ Japan Quality Assurance; AIST¼ Japanese National Institute of Advanced Industrial Science and Technology.
f Spectral response reported in Version 36 of these tables.
g Recalibrated from original measurement.
h Reported on a ‘per cell’ basis.
i Not measured at an external laboratory.
j Spectral response reported in present version of these tables.
k Light soaked at Oerlikon prior to testing at NREL (1000 h, 1 sun, 508C).
lMeasured under IEC 60904–3 Ed. 1: 1989 reference spectrum.
m Stability not investigated. References [32] and [33] review the stability of similar devices.
n Stabilised by 1000 h, 1 sun illumination at a sample temperature of 508C.
o Stabilised by 174 h, 1 sun illumination after 20 h, 5 sun illumination at a sample temperature of 508C.
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Table II. Confirmed terrestrial module efficiencies measured under the global AM1.5 spectrum (1000W/m2) at a cell temperature of

258C (IEC 60904–3: 2008, ASTM G-173–03 global).

Classificationa Effic.b

(%)

Areac

(cm2)

Voc

(V)

Isc

(A)

FFd

(%)

Test centre

(and date)

Description

Si (crystalline) 22.9� 0.6 778 (da) 5.6 3.97 80.3 Sandia (9/96)e UNSW/Gochermann [34]

Si (large crystalline) 21.4� 0.6 15780 (ap) 68.6 6.293 78.4 NREL (10/09) SunPower [35]

Si (multicrystalline) 17.55� 0.5 14701 (ap) 38.31 8.94f 75.3 ESTI (8/10) Schott Solar

(60 serial cells) [10]

Si (thin-film polycrystalline) 8.2� 0.2 661(ap) 25 0.32 68 Sandia (7/02)e Pacific Solar

(1–2mm on glass) [36]

CIGS 15.7� 0.5 9703 (ap) 28.24 7.254f 72.5 NREL (11/10) Miasole [11]

CIGSS (Cd free) 13.5� 0.7 3459 (ap) 31.2 2.18 68.9 NREL (8/02)e Showa Shell [37]

CdTe 10.9� 0.5 4874 (ap) 26.21 3.24 62.3 NREL (4/00)e BP Solarex [38]

a-Si/a-SiGe/a-SiGe (tandem) 10.4� 0.5g,h 905 (ap) 4.353 3.285 66 NREL (10/98)e USSC [39]

a CIGSS¼CuInGaSSe; a-Si¼ amorphous silicon/hydrogen alloy; a-SiGe¼ amorphous silicon/germanium/hydrogen alloy.
b Effic.¼ efficiency.
c (ap)¼ aperture area; (da)¼designated illumination area.
d FF¼fill factor.
e Recalibrated from original measurement.
f Spectral response reported in present version of these tables.
g Lightsoaked at NREL for 1000 h at 508C, nominally 1-sun illumination.
hMeasured under IEC 60904–3 Ed. 1: 1989 reference spectrum.

Table III. ‘Notable Exceptions’: ‘Top ten’ confirmed cell and module results, not class records measured under the global AM1.5

spectrum (1000 Wm�2) at 258C (IEC 60904–3: 2008, ASTM G-173–03 global).

Classificationa Effic.b

(%)

Areac

(cm2)

Voc

(V)

Jsc

(mA/cm2)

FF

(%)

Test centre

(and date)

Description

Cells (silicon)

Si (MCZ crystalline) 24.7� 0.5 4.0 (da) 0.704 42 83.5 Sandia (7/99)d UNSW PERL, SEH

MCZ substrate [40]

Si (large crystalline) 24.2� 0.7 155.1(t) 0.721 40.5e 82.9 NREL (5/10) Sunpower n-type

CZ substrate [12]

Si (large crystalline) 23.0� 0.6 100.4(t) 0.729 39.6 80 AIST (2/09) Sanyo HIT, n-type

substrate [41]

Si (large multicrystalline) 19.3� 0.5 217.7(t) 0.651 38.8f 76.4 AIST (7/09) Mitsubishi Electric

honeycomb [42]

Cells (other)

GaInP/GaAs/GaInAs (tandem) 35.8� 1.5 0.880 (ap) 3.012 13.9 85.3 AIST (9/09) Sharp, monolithic [43]

CIGS (thin film) 20.3� 0.6 0.5015 (ap) 0.740 35.4e 77.5 FhG-ISE (6/10) ZSW Stuttgart,

CIGS on glass [13]

a-Si/nc-Si/nc-Si (tandem) 12.5� 0.7 g 0.27 (da) 2.01 9.11 68.4 NREL (3/09) United Solar

stabilised [44]

Dye-sensitised 11.2� 0.3h 0.219 (ap) 0.736 21 72.2 AIST (3/06)d Sharp [45]

Luminescent submodule 7.1� 0.2h 25(ap) 1.008 8.84 79.5 ESTI (9/08) ECN Petten,

GaAs cells [14]

a CIGS¼CuInGaSe2.
b Effic.¼ efficiency.
c (ap)¼ aperture area; (t)¼ total area; (da)¼designated illumination area.
d Recalibrated from original measurement.
e Spectral response reported in present version of these tables.
f Spectral response reported in Version 36 of these tables.
g Light soaked under 100mW/cm2 white light at 508C for 1000 h.
h Stability not investigated.
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voted for their preferences for inclusion. Readers who have

suggestions of results for inclusion into this table are

welcome to contact any of the authors with full details.

Suggestions conforming to the guidelines will be included

on the voting list for a future issue.

Table IV shows the best results for concentrator cells

and concentrator modules (a smaller number of ‘notable

exceptions’ for concentrator cells and modules additionally

is included in Table IV).

Fourteen new results are reported in the present version

of these Tables.

The first new result in Table I is an outright record for

solar conversion by any single-junction photovoltaic

device. An efficiency of 27.6% has been measured at

the National Renewable Energy Laboratory (NREL) for a

1 cm2 thin-film GaAs device fabricated by Alta Devices,

Inc.. Alta Devices is a Santa Clara based ‘‘start-up’’ seeking

to develop low-cost, 30% efficient solar modules [4].

The second new result in Table I is an efficiency

improvement to 19.6% for a 1 cm2 single-junction copper–

indium–gallium–selenide (CIGS) cell fabricated by and

measured at NREL [5]. Although CIGS efficiency of 20%

and higher has been reported previously by two groups (see

Table III), this has been for cells appreciably less than

1 cm2 in area, the minimum considered reasonable for

efficiency comparisons in these Tables and for milestones

in most of the international programs.

A third new result in Table I is 12.5% efficiency for

an eight cell 35 cm2 CdTe submodule fabricated by

Advanced Solar Power (ASP) Hangzhou, also measured by

NREL.

A fourth new result in Table I is for a dye sensitized

submodule with efficiency of 9.9% reported for a 17 cm2

submodule fabricated by Sony [6] and measured by the

Japanese National Institute of Advanced Industrial Science

and Technology (AIST). This is quite close to the record of

10.4% efficiency for the best individual dye sensitised

cell yet confirmed (of more that 1 cm2 area).

Another outstanding new result is the measurement of

8.3% efficiency at NREL for a 1cm2 organic cell fabricated

by Konarka [7], representing a massive improvement over

the company’s previous 5.15% record entry. An inter-

mediate result of 6.5% was measured in July 2010.

Another new result in Table I is for a double-junction

amorphous/microcrystalline silicon cell with stabilized

efficiency of 11.9% reported for a 1.2 cm2 cell fabricated

by Oerlikon and Corning [8] and again measured by

NREL, after stabilization.

Table IV. Terrestrial concentrator cell andmodule efficiencies measured under the ASTMG-173–03 direct beam AM1.5 spectrum at a

cell temperature of 258C.

Classification Effic.a

(%)

Areab

(cm2)

Intensityc

(suns)

Test centre

(and date)

Description

Single cells

GaAs 29.1�1.3d,e 0.0505 (da) 117 FhG-ISE (3/10) Fraunhofer ISE

Si 27.6�1.0f 1.00 (da) 92 FhG-ISE (11/04) Amonix back-contact [46]

Multijunction cells

InGaP/GaAs/InGaAs

(2-terminal)

42.3�2.5i 0.9756 (ap) 406 NREL (9/10) Spire, bi-facial

epigrowth [15]

GaInP/GaInAs/Ge

(2-terminal)

41.6�2.5e 0.3174(da) 364 NREL (8/09) Spectrolab, lattice-matched [47]

Submodules

GaInP/GaAs;

GaInAsP/GaInAs

38.5�1.9i 0.202 (ap) 20 NREL (8/08) DuPont et al.,

split spectrum [16]

GaInP/GaAs/Ge 27.0�1.5g 34 (ap) 10 NREL (5/00) ENTECH [48]

Modules

Si 20.5�0.8d 1875 (ap) 79 Sandia (4/89)h Sandia/UNSW/ENTECH

(12 cells) [49]

Notable exceptions

GaInP/GaAs (2-terminal) 32.6�2.0e 0.010 (da) 1026 FhG-ISE (9/08) U. Polytecnica de Madrid [50]

Si (large area) 21.7�0.7 20.0 (da) 11 Sandia (9/90)h UNSW laser grooved [51]

a Effic.¼ efficiency.
b (da)¼designated illumination area; (ap)¼ aperture area.
cOne sun corresponds to direct irradiance of 1000W/m.
dNot measured at an external laboratory.
e Spectral response reported in Version 36 of these tables.
fMeasured under a low aerosol optical depth spectrum similar to ASTM G-173–03 direct[52].
gMeasured under old ASTM E891–87 reference spectrum.
hRecalibrated from original measurement.
i Spectral response reported in the present version of these tables.
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Figure 1. (a) Normalised external quantum efficiency (EQE) for the new organic and GaAs cell results in this issue and for the new

CdTe and dye-sensitised submodule results; (b) Normalised EQE for the three new CIGS cell and module entries in this issue plus for

the three new silicon cell andmodule results; (c) EQE of the composite cells for the new concentrator cell and submodule entries in the

present issue.
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The final new result in Table I is for a double-junction

organic solar cell with 8.3% efficiency measured for a

1.1 cm2 cell fabricated by Heliatek [9] and measured by the

Fraunhofer Institute for Solar Energy Systems (FhG-ISE).

This represents rapid progress from the 6.1% result from

Heliatek measured in June last year and reported in the

previous version of these Tables. An intermediate result of

7.7% was measured in March 2010.

Following a similarly vigorous burst of activity in the

multicrystalline silicon module area reported in the two

previous versions of these Tables, where four groups

exceeded the previous record for module efficiency over

the two reporting periods, a fifth group has done even

better. In Table II, a new efficiency record of 17.55% is

reported for a large (1.5m2 aperture area) module

fabricated by Schott Solar [10] and measured by the

European Solar Test Installation, Ispra (ESTI).

Also reported in Table II is a record result for a thin-film

module, with a large improvement to 15.7% reported for a

1m2 CIGS module fabricated by Miasole [11] and

measured by NREL.

The first new result in Table III relates to an efficiency

increase to 24.2% for a large 155 cm2 silicon cell fabricated

on an n-type Czochralski grown wafer, with the cell

fabricated by SunPower [12] and also measured by NREL.

Another new result in Table III is the further

improvement of a small area (0.5 cm2) CIGS cell fabricated

by Zentrum für Sonnenenergie- und Wasserstoff- For-

schung (ZSW), Stuttgart [13] to 20.3% efficiency as

measured by FhG-ISE. This cell is smaller than the 1 cm2

size required for classification as an outright record, as

previously discussed.

The final new result in Table III is for a luminescent

concentrating submodule using high performance GaAs

cells placed along the edge of a luminescent plate to

convert the collected luminescent radiation. An efficiency

of 7.1% was confirmed for a 25 cm2 test device fabricated

by ECN, Netherlands [14] and measured by ESTI.

Two more new results are reported in Table IV for more

conventional concentrator cells and systems. The first is a

new efficiency record for any photovoltaic cell with 42.3%

efficiency measured by NREL at 406 suns concentration

(irradiance) for a 1 cm2 cell fabricated by the Spire

Corporation [15]. A new approach was used whereby a low

bandgap InGaAs cell was grown on one side of a GaAs

wafer, with the wafer then flipped over and an intermediate

bandgap GaAs followed by a high bandgap InGaP cell

grown on the other side.

The final new result represents a new record for the

conversion of sunlight to electricity by any means. An

efficiency of 38.5%was measured by NREL for a very small

area (0.2 cm2) spectral-splitting submodule at about 20 suns

concentration as the result of a multi-institutional effort

headed by DuPont [16]. This complete lens/cell assembly

uses a dichroic reflector to steer light to two different two-cell

stacks, one on a GaAs substrate and one on an InP substrate.

The external quantum efficiencies (EQE) normalized to

the peak EQE values for the new organic cell results of

Table I are shown in Figure 1(a) as well as the response for

the GaAs cell and CdTe and dye-sensitised submodules of

Table I. Also shown is the decomposition into the top and

bottom cell response for the 8.3% Heliatek tandem cell of

Table I. Interestingly, both cells in the stack have largely

overlapping spectral response range, although complemen-

tary in some aspects.

Figure 1(b) shows the normalized EQE of the new CIGS

and silicon results in the present issue of these tables. Quite

striking is the almost identical responses of the NREL and

ZSWCIGS cells with the higher current from the ZSW cell

attributed to a slightly lower bandgap edge. The normal-

ized responses of both cells in the Oerliken/Corning

micromorph tandem cell are also shown.

Figure 1(c) shows the absolute EQE for the different cells

contributing to the new concentrator cell and submodule

results of Table IV. The much narrower response bandwidth

of the bottom InGaAs cell in the 42.3% Spire monolithic

stack compared to the response of the bottom Ge in the

41.6% Spectrolab device [3] reflects a higher bandgap.

This gives a higher voltage output that contributes to the

improved performance. The EQE for the 38.5% submodule

differs slightly from results reported elsewhere [16] due to

incorporation of the effect of the dichroic reflector used in

this system. Each of the four cells in this system is contacted

separately, removing the need for current matching.

3. DISCLAIMER

While the information provided in the tables is provided in

good faith, the authors, editors and publishers cannot

accept direct responsibility for any errors or omissions.
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