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Effective classroom games should meet three criteria. First, they should be sim-
ple enough to be readily understood by students. Second, they should be engaging
enough to capture students’ attention and interest. Third, they should be rich enough
not only to describe a particular bit of theory, but also to illustrate real-world phe-
nomena. Our classroom game, Stripped-Down Poker, satisfies these three criteria
and has served as a memorable learning experience to students in our undergradu-
ate economics classes on game theory. From one simple game, students can obtain
insights about signaling games, bluffing, converting from extensive to strategic
form, mixed-strategy equilibrium, Bayes’s Theorem, and the value of private in-
formation. The game is especially timely given the recent surge of interest in poker
in popular culture: we find that a growing number of our students play poker or
watch it on television.

PLAYING THE GAME

We like to play Stripped-Down Poker as a game between the instructor and a
student volunteer. To introduce the game to your class, emphasize that you will be
playing a simplified version of poker for real money, and that the volunteer will be
responsible for paying any losses out of his or her pocket.1 One way to heighten
the students’ interest level is for you to pull out money from your own wallet.

Next, describe the nature of the game. Produce the special deck for the game,
explain that it contains only four kings and four queens, and choose a student from
the front row to verify the deck’s contents to the rest of the class. (This student
might also serve as the dealer when you actually play the game.) Explain that only
the professor receives a card during the game; the student player does not. After
each player puts an ante of $1 into the pot, you (the professor) will randomly draw
a card from the dealer, privately observe what it is, and decide whether to fold
or to bet. If you fold, the game ends, and the student wins the pot, gaining your
$1 ante. When betting, place another dollar in the pot, after which the student has
the option to either fold or call. A fold by the student ends the game, this time with
you winning the pot and gaining the student’s $1 ante. Calling requires the student
to add another dollar to the pot and requires you to reveal your card. You win the
pot with a king and lose the pot with a queen. The pot at this stage is $4, so the
winner nets $2 from the loser.2

After describing the rules, ask for a student volunteer.3 Repeat the game 10–20
times. After several rounds, you might ask for a new volunteer to play against you,
either because the first volunteer no longer wants to play or because you want to give
several different students the opportunity to play. We find that students get actively
engaged in the game even when they are not playing: they watch attentively, shout
out advice to the student player, and generally exhibit high energy levels.4

At first glance, many students believe the game is fair. This naı̈ve belief serves
two important purposes. First, it produces more willing volunteers. Second, it
makes the game especially effective for teaching purposes: over the course of
repeated play, the students begin to observe that the professor is winning money
on average from the student volunteers. This strongly motivates the students for
the subsequent analysis of the game.
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For maximum effect, you should attempt to play according to the equilibrium
(minimax) strategy, which is to always bet when you have a king and to bet
one-third of the time when you have a queen. We find it best to use an external
randomization device, such as the second hand of one’s watch. For example, if
the number of seconds in the minute is between 0 and 20, you would bet with a
queen, but if it is between 20 and 60, you would fold with a queen. It is crucial that
you look at your watch in the same way even if you have drawn a king; otherwise,
glancing at your watch could serve as a “tell” to the students that you are holding
a queen and thus destroy your bluffing advantage.5

When you execute this strategy correctly, the expected payoff is $1/3 to the
professor (–$1/3 to the student), no matter what action the student chooses. After
10–20 repeated rounds of the game, we recommend beginning the discussion by
asking the students whether the game is fair. Some students may still think the game
is fair and that you were just lucky to have won a positive amount from the students
after 20 rounds. Others, after seeing the professor’s profits, may now believe the
game is unfair but be uncertain about the source of the unfairness. As a cliffhanger,
we often choose to schedule this game for the last 20 minutes of one class period
and challenge the students at the end of class to see if they can figure out whether
it is a fair game before the next class period, when we do a thorough analysis.

ANALYTICAL EXPOSITION

You can lead the classroom discussion in a number of directions. What you
decide to focus on depends on the level of your course and the ideas that you most
wish to illustrate by using the game. The following subsections focus on separate
potential topics. First, we help the students develop an intuitive understanding of
the value of bluffing. Second, we show students how to represent the game in both
extensive and strategic form. Third, we solve for the mixed-strategy Nash equilib-
rium of the game, with probabilistic bluffing and calling. Fourth, we illustrate the
use of Bayes’s Rule by considering the probability of the professor having a king,
given that she has bet. Finally, we use Stripped-Down Poker as a very simple sig-
naling game to illustrate signaling equilibrium concepts. These subsections appear
in a logical progression, but we have tried to make them modular. Feel free to select
the combination of topics that most appropriately meets the needs of your class.

How Should the Players Play?

We prefer to start our discussion of the game by asking the students some
questions to get them thinking and to gauge their understanding. First, you might
take a quick survey to see how many students believe that the game is fair. You
might ask one student to explain why he thinks the game is fair and ask another
student why she thinks it is unfair. Then promise the students a definitive answer
in the analysis to come.

Second, you can ask the students what they would do if they were playing in the
professor’s position. Many students believe that the professor’s optimal strategy
would be to always bet on kings and always fold on queens. When a student
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suggests this strategy, ask the class what the student player’s best response would
be. With a little thought, they should be able to see that if the professor always
folds with queens, then the only time the student gets to move is when the professor
must have a king, and therefore the student should always fold. Note that with this
pair of strategies, the professor earns an expected value of $0. But we have already
observed through playing the game that the professor earned quite a bit of money
from the students!

Next, you can ask what the professor’s optimal strategy would be if the student
always folded. If there is no chance of the student calling, then there is no reason to
avoid betting with queens: the professor can bluff the student into folding even if
the professor holds a poor card. The professor’s optimal strategy is thus to always
bet and earn $1 when the student folds. But if the professor always bets, what
is the student’s optimal strategy? If the professor always bets, then the student
should expect a 50 percent chance of a king and a 50 percent chance of a queen
if he chooses to call. This means if the student calls, his expected payoff is $0.
By contrast, if he folds, he is guaranteed to lose $1, so his optimal strategy is to
always call.

If the student always calls, then what is the professor’s optimal strategy? Then
the professor wins by betting with kings but loses by betting with queens, so her
optimal strategy is to bet with kings and fold with queens, which takes us back
to our starting point. By this intuitive discussion, we manage to demonstrate to
students that there is no mutual best response, and hence no pure-strategy Nash
equilibrium. This leads us to a discussion of probabilistic bluffing.

A third question to ask the students is why the professor kept looking at her
watch before deciding whether to bet or fold. A few students will likely notice this
behavior and ask about it during game play. This is a good time to share with the
students that you did indeed use your watch as a randomizing device, although
you should not say exactly what probabilities you used until you formally solve
the game with the class. By now, though, the students should see intuitively that
the professor cannot get away with bluffing on queens if she does it all the time,
so she might want to consider bluffing randomly with a probability of less than
one.

If your class is not a game-theory course, you might wish to stop with this
intuitive level of analysis and skip ahead to the real-world applications of bluff-
ing that we describe later. For an undergraduate course in game theory, we pre-
fer to continue with a formal analysis of the game, as we describe in the next
two subsections.

Extensive and Strategic Form

Stripped-Down Poker offers a good example for comparing extensive and strate-
gic forms of the same game. This is a sequential-move game, so one can begin by
drawing its extensive form (see Figure 1). You might ask the students how they
would draw the game tree and complete it on the board with their help. We find that
most students do not instantly recognize the initial move “by nature” to deal a card
to the professor, particularly because we use this game as a very early example of
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FIGURE 1. Stripped-Down Poker in extensive form. K = king; Q = queen.

a game of incomplete information. Another common problem is for students to
forget to include an information set indicating that the student has to move without
knowing what card the professor holds.

Because the students’ information set contains two nodes, they cannot use back-
ward induction to solve the game. This leads us naturally to the idea of converting
the game to strategic form and looking for a Bayesian Nash equilibrium using a
game matrix.

This is a great opportunity to reinforce a concept that many of our students
find difficult. We suggest beginning by asking the students, “How many possible
strategies does each player have?” Some students mistakenly believe each player
has two strategies, because students easily confuse strategies with actions. Others
mistakenly believe that each player has four strategies, because they fail to notice
that the student cannot condition his strategy on the card type. In fact, the professor
has four possible strategies (two actions at each of two decision nodes) and the
student has two strategies (two actions at a single information set).

Next, write the 4 × 2 game matrix on the board (see Figure 2), but allow the
students to help you fill in the expected payoffs. Ask the class, for example, “What
is the expected payoff to the professor if she always bets and the student always
calls?” Give them a minute to think about the question, and then ask for a volunteer
to explain the answer. Your better students may be able to tell you the answer right
away; if not, point out that for this pair of strategies, the possible payoffs are either
(−2, +2) when the professor has a king or (+2, −2) when the professor holds a
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FIGURE 2. Matrix showing Stripped-Down Poker in strategic form.
K = king; Q = queen.

FIGURE 3. Matrix showing elimination of dominated strategies, with best
responses underlined.

queen. These two cards occur with equal probability, so the expected payoff to
each player is $0 in the upper-left cell of the payoff matrix.

With that example under their belts, you can ask the students to calculate the
rest of the entries in the payoff matrix. To engage the entire class in thought (rather
than just the few bright students who always volunteer answers), you might ask the
class to take a few minutes to make the calculations at their desks, in consultation
with their classmates. You can stroll around the room to monitor their progress
and answer questions that individual students might be more comfortable asking
privately than in front of the entire class. After a few minutes, reconvene the class
and ask student volunteers to help you fill out the rest of the payoff matrix on the
board. The full matrix should be as shown in Figure 2.

Next, ask the students whether there are any dominated strategies. Note that the
strategies FB and FF are both strictly dominated for the professor by BB but that
BB and BF are not dominated. After eliminating the strictly dominated strategies
(see Figure 3), find each player’s best responses (see How Should the Players Play?
section) and observe that there is no pure-strategy Nash equilibrium.
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Mixed-Strategy Nash Equilibrium

Once pure-strategy Nash equilibria are ruled out, it is time to look for a mixed-
strategy equilibrium.

Let p represent the probability that the professor plays BB (i.e., that she Bluffs).
Let q represent the probability that the student plays Call.

For a player to be willing to mix over two strategies, she must be indifferent between
them; otherwise, she would play her preferred pure strategy. This must be true for
each player, and this insight enables us to find the equilibrium mixing probabilities.
To keep each opponent indifferent, we have the following two equations:

0p − 0.5(1 − p) = −p + 0(1 − p) ⇒ 1.5p = 0.5 ⇒ p = 1/3

0q + 1(1 − q) = 0.5q + 0(1 − q)d ⇒ 1 = 1.5q ⇒ q = 2/3.

Thus the mixed-strategy Nash equilibrium of this game is

(1/3 BB + 2/3 BF; 2/3 Call + 1/3 Fold).

Or, rewriting the professor’s strategies with a more intuitive interpretation,

(1/3 Bluffing + 2/3 Truthtelling; 2/3 Call + 1/3 Fold).

At this point, you might ask the students to guess what you were doing when
looking at your watch during game play. You can then discuss how you used your
external randomization device and take the opportunity to discuss the importance of
keeping one’s opponent guessing. Ask the students, for example, why you looked
at your watch even when you held a king (as described above).

Next, you can compute the expected value of the game to each player. The pro-
fessor’s expected payoff in equilibrium is a weighted average of the four possible
payoffs in Figure 3:

(2/9)(0) + (1/9)(1) + (4/9)(1/2) + (2/9)(0) = 1/3.

Because the game is zero-sum, the student’s expected payoff is simply the opposite:
–1/3.

We finally have a definitive answer for the students on whether the game is fair,
and the answer is a resounding “no.” In equilibrium, the professor can expect to win
$1/3 from the student for each round of the game.6 The source of the unfairness is
information asymmetry. Unlike the student, the professor has private information,
and she can use bluffing to press this advantage.

To demonstrate that the advantage comes exclusively from the private informa-
tion (e.g., not merely from the order of moves), you might ask your students to
compare these results to those of a related game with no information asymmetry.
There are two obvious ways to do this: either deal the card face up so that both
players see it, or deal it so that neither player sees it. In the first case (Face-Up
Stripped-Down Poker), the student should clearly call the bet only if the card is a
queen, and given that strategy, the professor should clearly bet only if the card is
a king. Thus, in equilibrium, the professor wins $1 if the card is a king and loses
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FIGURE 4. A geometric exposition of Bayes’s Rule. K = king; Q = queen.

$1 if the card is a queen, so the expected payoff is $0. In the second case (Blind
Stripped-Down Poker), the professor must bet before knowing the value of the
card. In this case, the professor has a single information set when she moves, so
the strategic form is a 2 × 2 matrix instead of a 4 × 2 matrix. This game has a pure-
strategy equilibrium where the professor always bets, the student always calls, and
the equilibrium payoff to each player is again $0. Thus, when both players have
the same information, it is a fair game after all.

Bayes’s Rule

Stripped-Down Poker is ideal for illustrating the use of Bayes’s Rule to update
probabilities. After discussing the fact that you actually played your equilibrium
mixed strategy during the game, always betting with kings but betting only one-
third of the time with queens, ask the students the following question: “Given
that I have bet, what is the probability that I am holding a king?” Typical student
responses are 1/2 or 2/3, neither of which is correct. Point out that these beliefs
crucially determine the student’s optimal decision whether to bet or fold. If the
student underestimates the probability that the card is really a king given that the
professor has bet, he may call more often than is optimal, which the professor
could then exploit (see endnote 6).

Now the students should be motivated to learn Bayes’s Rule. The rule can be
illustrated quite simply for this game by using a square diagram (see Figure 4). The
left half of the square represents the state of the world in which the professor gets
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a king (half the area of the square; probability is 1/2); the right half represents the
state in which she gets a queen (the remaining half of the area and probability). The
square is divided vertically into thirds to represent the possible mixing realizations:
in the left half the professor bets in each third; in the right half she bets in only one
of the thirds.

Each of the diagram’s six segments represents a probability of 1/6. In four
of the segments (probability = 4/6 = 2/3), the professor bets, and in three of
those, she has a king—that is, 3/4 of her bets are made with a king and 1/4
with a queen. This visual, geometric representation helps students understand
conditional probabilities and Bayes’s Rule, concepts they generally find confusing
and unintuitive.

With the diagram in hand, the corresponding algebra for the probability that the
professor bets, and for the conditional probability that she has a king, is easier for
students to follow: let P(K) and P(Q) represent the probabilities of being dealt a
king and a queen, respectively, and let P(B) be the probability that the professor
bets. Using standard notation to denote conditional probabilities, we first obtain
P(B):

P(B) = P(B|K)P(K) + P(B|Q)P(Q)

= (1)(1/2) + (1/3)(1/2)

= 1/2 + 1/6

= 2/3.

Then we use Bayes’s Rule to obtain P(K|B):

P(K|B) = P(K and B)/P(B)

= P(B|K)P(K)/[P(B|K)P(K) + P(B|Q)P(Q)]

= (1)(1/2)/[(1)(1/2) + (1/3)(1/2)]

= (1/2)/(2/3)

= 3/4.

So, given that the professor has bet, the probability of a king is not 1/2, not 2/3,
but actually 3/4. With this knowledge, we can check to make sure that the student
really does want to play his proposed equilibrium strategy.7 If the student folds,
his payoff is –$1. If he calls when the professor bets, he has a probability of 3/4
of losing $2 and a probability of 1/4 of winning $2, for an expected payoff of –$1.
So he is indeed indifferent between calling and folding and thus should be willing
to follow his equilibrium mixture.

Poker as a Signaling Game

Because real-world poker clearly involves strategic signaling and screening, we
like to use Stripped-Down Poker as a simple introduction to the topic of dynamic
games of incomplete information. Most games designed to illustrate signaling
equilibria, such as the well-known Beer/Quiche game (Cho and Kreps 1987) or
the Attacker/Defender game used in Dixit and Skeath (2004, section 9.5), are
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slightly more complicated. They involve a first mover with two types and two
possible actions and a second mover with two possible actions no matter what the
first mover does. Our game simplifies signaling even further by eliminating the
second mover’s ability to act if the first mover chooses to fold. This gives us a
4 × 2 strategic-form game matrix, in contrast to the 4 × 4 strategic form of these
other standard signaling examples. Although this eliminates some of the richness
of a full signaling model, it also yields a big pedagogical advantage. We find that
students understand games like Beer/Quiche much better after they have been
introduced to fundamental signaling concepts in Stripped-Down Poker.

Game-theory textbooks introduce students to a taxonomy of three types of sig-
naling equilibria: separating equilibria, pooling equilibria, and semi-separating
equilibria. Students usually do not find these concepts to be terribly intuitive, in
part because the standard signaling games are conceptually difficult and compli-
cated to solve in strategic form. Semi-separating equilibria are particularly subtle
and difficult to follow because they involve only a partial separation of types. We
find that most students do not really even grasp the meaning of “partial separa-
tion of types” without the benefit of a simple example, and Stripped-Down Poker
provides a very good one.

Why does Stripped-Down Poker have a semi-separating equilibrium? Recall
that a pooling equilibrium involves both types taking the same action. In Stripped-
Down Poker, this means that the professor would always bet with both kings and
queens,8 so the student could not distinguish which card the professor holds. In
contrast, a separating equilibrium involves each type taking a separate action. In
Stripped-Down Poker, this means that the professor would bet with kings but fold
with queens,9 so the student could infer from a bet that the card was a king. In our
discussion of how to play, we ruled out both the separating strategy and the pooling
strategy, showing that neither could be part of an equilibrium. The equilibrium is
in fact semi-separating, because observing a bet by the professor does give some
information about the card type, but it does not completely identify the card type.
In particular, observing a bet by the professor allows the student to update the
probability of a king from 1/2 to 3/4, but not all the way to 1. Semi-separating
equilibria typically involve mixed strategies.10

One difference between Stripped-Down Poker and standard signaling models is
that in the latter, one type of first mover typically wants to signal his type truthfully,
whereas one type does not. For example, in the Beer/Quiche game, the strong type
wants the would-be bully to know that he really is strong, but the weak type wants
the bully to think that he is really a strong type. By contrast, in Stripped-Down
Poker, the professor never wants the student to know her card type. If she has a
king, she would like the student to think she has a queen, so that the student will
call and she can win $2 instead of $1. If she has a queen, she would like the student
to think she has a king, so that the student will fold and she can win $1 instead
of losing $2. When discussing signaling models, it may be worth pointing out
this difference.

Real-world versions of poker, such as Texas Hold’em, have some of this flavor.
A player with a weak hand may sometimes wish to bluff to get others to fold, and
a player with a strong hand may sometimes wish to “slow play” to keep others
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in the game and win more money from them. But real-world poker is also much
richer and more complicated, with multiple rounds of betting and multiple rounds
of cards being dealt. Sometimes real poker players do want to signal truthfully.
For instance, a player may think he likely has the current best hand with three of a
kind but worries that if others stay in the betting, one of them may eventually draw
a card that completes a flush and thus beat him. By betting aggressively, the player
can drive out competition and win the hand before such a reversal of fortune. Poker
may also involve screening, such as when an early player deliberately bets to see
how a later player will respond; if the later player raises my bet, for example, I
may conclude that he likely has a very strong hand, and I will therefore fold.

In a small class where many students are quite familiar with more complicated
versions of poker, real-world poker examples might lead to useful discussions.
Instructors who have time and interest may wish to refer to some of the wealth
of anecdotal examples found in popular books on poker.11 To avoid turning off
students not interested in Texas Hold’em, we usually prefer to keep such discussion
to a minimum and instead move on to the applications in the next section.

APPLICATIONS

Stripped-Down Poker is an extremely simple two-player game, yet it can roughly
model intriguing real-life interactions. Stripped-Down Poker is isomorphic to any
signaling-type game where one of the signaler’s actions could be thought of as
ending the game. This terminal action can be thought of as a fold, whereas the
other action(s) would represent a bet. The first two examples below are expanded
in the appendix with numerical exercises suitable for student problem sets; both
have semi-separating equilibria just like those of the classroom game.

Litigation is one very nice example.12 A plaintiff sues for damages in civil court.
The defendant has private information about whether or not he is really guilty, but
the plaintiff only has an assessment of the probability of guilt. For simplicity,
assume that if the case goes to trial, then the court will find out the truth, finding
for the plaintiff if and only if the defendant is guilty. Before going to trial, the
defendant has the option of offering a settlement to the plaintiff. If he offers a
generous settlement, the plaintiff will accept and drop the case. Because the game
would end here, this action may be thought of as a fold by the defendant. On the
other hand, the defendant could bet by offering a stingy settlement, to which the
plaintiff may respond by either accepting the stingy settlement (folding) or rejecting
it (calling). If losing in court is costly to the plaintiff, then straightforward play by
the defendant (making a stingy offer if and only if he is innocent) would induce
the plaintiff to always accept the stingy offer. But the defendant will sometimes
make the stingy offer even when he is guilty (a bluff), and therefore the plaintiff
must sometimes go to court in response to the stingy offer, even though it seems
to signal a strong hand for the defendant (i.e., that he is innocent).

A similar example involves tax evasion and auditing.13 Consider a waitress
reporting income from tips to the Internal Revenue Service (IRS). Both parties
may have the same priors about the probability of earning high versus low tip
income, but only the waitress knows how much was actually realized in tips. The
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waitress may report the truth and pay the appropriate taxes (a fold), or she may
underreport high tip income and pay less in taxes (a bet). When the IRS receives
a high tax payment, it does not suspect any problem and takes no action (i.e., the
game ends). When it receives a low tax payment, the IRS chooses either to audit
the waitress (call) or to accept the waitress’s reporting (fold). If found guilty of
underreporting her tips, the waitress will be responsible for her true tax liability
and perhaps an additional penalty. Both parties incur costs in the case of an audit,
regardless of whether the waitress is found innocent. As both of these examples
show, the game need not be zero-sum for the students to benefit from the insights
of Stripped-Down Poker. Interesting efficiency issues (e.g., “What are the social
costs of equilibrium auditing?”) can also arise in these games.

Other applications relate to politics at all levels, from international to domestic
(household) conflicts. A dictator suspected of harboring weapons of mass destruc-
tion may comply in full with international inspections (a fold) or may obstruct
such inspections to maintain his threat of power at the risk of military intervention
(a bet). A schoolboy required to complete homework before playing with friends
may actually do his homework first (a fold) or may simply tell his parents that it
is done (a bet), possibly gaining more time to play at the risk of being caught.

These applications also present an opportunity for the professor to discuss with
the students the question of choosing an appropriate economic model. Depending
on one’s willingness to simplify each of the above situations, one might model the
actions available to the first mover as binary, multiple yet discrete, or continuous.
The binary case fits the poker model exactly; the agent literally has only two options
available, which are then precisely equivalent to a fold and a bet in Stripped-Down
Poker. However, real-life situations often offer a range of intermediate alternatives,
and sometimes even a continuum of them. The waitress may report an interme-
diate level of tip income. The schoolboy may do part of his homework or do it
sloppily. The dictator may come clean about certain weapons programs but remain
ambiguous about the status of others. You might encourage students to extend this
model to make it more realistic: when the number of actions available to the first
mover is more than two but still discrete and relatively small, Stripped-Down Poker
may be extended to include these possibilities. We consider this possibility in the
next section.

EXTENSIONS AND EXERCISES

One of Stripped-Down Poker’s greatest virtues is its simplicity. However, if
more complex examples are desired, the game lends itself very well to a host of
extensions to challenge your students.

First, and perhaps most interesting, one might ask, “How would we have to
change the composition of the deck to make this a fair game?” We find this to be
a challenging extra-credit problem for our students to consider. The answer turns
out to be a deck comprising 3/8 kings and 5/8 queens, so the “fair” game can be
conveniently played by replacing one of the four kings in the original deck with a
fifth queen. A sketch of the solution to this problem can be found in exercise 1 of
the appendix.
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Second, one might add other types of cards to the deck. For example, a version of
Stripped-Down Poker could be played in which the deck contains kings, queens,
and jacks. The first mover draws a card, privately views it, and either bets or
folds. The second mover may then fold or call as before. The king wins for the
professor, the jack wins for the student, and the queen splits the pot between the two
players. This game has an 8 × 2 strategic-form game matrix with one pure-strategy
equilibrium14 and is tractable enough to be an excellent out-of-class exercise to
test the students’ understanding of converting imperfect-information games from
extensive to strategic form.15

Third, one might change the information dynamics by having each player draw a
card. For a player to win the pot in a showdown, she must hold a card of higher value
than her opponent; if both players hold cards of the same value, they split the pot.
This arrangement eliminates the first player’s information advantage and thereby
creates a fair game. To understand this point about removing the information
advantage, students may find it enlightening to solve for the two pure-strategy
Nash equilibria of this game, each of which has an expected payoff of $0 to each
player. There are a number of possible variations to consider. We recommend
exercise 9.8 of Dixit and Skeath (2004) as one interesting and tractable example.16

It is also possible to think about extending the game to have multiple rounds
of betting, more than two players, and/or more than two card types to address
questions of first-mover or last-mover advantage in poker and other information
games (see, e.g., Karlin and Restrepo 1957). These extensions may, however, be
beyond the reach of all but the best undergraduates.

HISTORICAL TREATMENTS OF POKER IN GAME THEORY

Stripped-Down Poker uses well-established game-theoretic models of poker to
illustrate the importance of asymmetric information. The French mathematician
Émile Borel presented a simplified poker model in 1938 that illustrated the ratio-
nality of bluffing (Borel 1938). John von Neumann formulated two similar poker
models a few years later (von Neumann and Morgenstern 1944). For simplicity,
both Borel’s and von Neumann’s models feature risk-neutral players and a con-
tinuum of possible hands.17,18For a detailed analysis of the poker models of Borel
and von Neumann, see Ferguson and Ferguson (2003).

Borel’s poker model works as follows: After each player antes $1 into the pot,
each draws a hand represented by a draw from a uniform distribution on [0,1].
After the players privately observe their own hands, the first player moves by
either folding or raising. If the first player folds, he forfeits his ante to the second
player and ends the game. If the first player raises, he adds an additional dollar to
the pot. Then the second player moves by either folding or calling. If the second
player folds, she forfeits her ante to the first player and ends the game. If she calls
the first player’s bet, she adds an additional dollar to the pot, and both players
reveal their hands in a “showdown.” At this point, the player with the highest hand
wins the pot, for a net gain of $2 (the ante plus the additional bet).

Von Neumann’s second poker model is similar to Borel’s, the only differ-
ence being that the first player’s option to fold is replaced with the option to
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“check”—that is, to stay in the game without raising the stakes. When the first
player checks, the second player does not have an opportunity to move, and the
holder of the higher card wins the other player’s ante.

Borel’s model yields equilibrium bluffing, in the sense that sometimes a player
bets despite knowing that she may have the weaker hand, and her opponent
sometimes responds by folding when full information would have revealed
that he had the stronger hand.19 Von Neumann’s model results in even stronger
bluffing: the first player bets in equilibrium even with the worst possible hand.
Although interesting for very advanced analytical courses, the models of Borel and
von Neumann would have limited pedagogical value in most undergraduate
courses. First, students find it much more engaging to play a poker game with a
real deck of cards, rather than a continuous distribution of hands. Second, these
models are complicated to analyze: Borel’s model would probably be grasped
only by mathematically mature undergraduates, and von Neumann’s model is
probably best left for graduate courses.

Since the time of von Neumann, researchers have analyzed many other models
of poker and other bluffing games, including the analytical models of Bellman and
Blackwell (1949), Kuhn (1950), Nash and Shapley (1950), Isaacs (1955), Karlin
and Restrepo (1957), Goldman and Stone (1960), and Friedman (1971). The last
paper analyzed an abstract game, framed in terms of actual poker, of which our
game is a special case. Burns (2005) developed a suite of four simplified poker
games to study judgment and decision making in the laboratory, but even these
are too complicated for in-class analytical solution. Of these, Kuhn’s poker model
is the most interesting for pedagogical purposes: it is essentially von Neumann’s
model with exactly three possible hands.

Stripped-Down Poker is an even simpler variation on Borel’s model, in
which only the first player gets a card and there are only two card types in the
deck. We were inspired to develop this classroom game by an example in the
textbook by Gardner (2003), who called his version of the game “Liar’s Poker.”
Thomas (1984) gave a similar presentation in his textbook, calling the game
“Simplified Poker.” The only difference in rules between these two games and our
classroom game is that the other authors require the first mover to bet when the
high card is drawn (instead of giving him the option to bet or fold), an assumption
that yields the same equilibrium behavior. Rapoport et al. (1997) conducted
laboratory experiments with the game. Their game differs from ours only in the
bet size and thus the bluffing and calling mixtures. Our contribution has been to
transform the model from a simple textbook exercise into an engaging classroom
game, vividly and concretely illustrating multiple learning objectives. We believe
this is the simplest possible version of poker and, as discussed previously, also
the simplest possible example of a signaling game.

CONCLUSION

We have presented a simple classroom game based on poker that provides
significant instructional benefits with a minimum of materials and preparation.
Stripped-Down Poker is thoroughly engaging in a classroom setting, and its
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analysis is accessible to students. The game lends itself to a number of interesting
variations and applications which can be explored by students both in class and
in out-of-class exercises. We find it a useful, effective, flexible, and memorable
teaching tool. And it’s fun!

NOTES

1. Mark Walker hands the volunteer $5 and says that he plans to try to win as much of it back as he can.
David Reiley imposes a mandatory lab fee of $30 per student at the beginning of his game-theory
course and uses the cash to pay earnings to students for various games they play over the course
of the semester. When he earns money from students in a game like Stripped-Down Poker, he
adds those earnings to the pool for payoffs in games later in the semester. In nine semesters
of teaching this way, no student has yet complained about the lab fee, and indeed the students
seem to enjoy playing games for real money. A nice side effect of this policy is that it generally
transfers money from those students who do not attend class regularly to those students who do.

2. Gardner (2003) used aces versus kings for his version of our game, and Thomas (1984) used aces
versus twos. (See section on historical treatments for more on these presentations.) The choice
of card types is arbitrary, but we note that using kings versus queens avoids any confusion in the
students’ minds about whether aces are high or low. We also like a third option—using a larger
deck with equal numbers of face cards versus numbered cards, with four jacks, four queens, and
four kings as all equally “high” cards; and four twos, four threes, and four fours as all equally
“low” cards. The advantages are that a larger deck is easier to shuffle and can easily be modified
by adding four fives and four sixes to make the game fair. We show below that in equilibrium, the
players’ expected payoffs are equal when the ratio of low to high cards is 5:3. The disadvantage is
the difficulty of making sure the students understand that different face cards are really equivalent.

3. Mark Walker likes to describe the game on the chalkboard as if it were just another lecture, then
dramatically pull out a deck of cards and his wallet and ask, “Who wants to play?”

4. For those interested in greater class participation, we note that your students can now play the
game online using Charlie Holt’s Vecon Lab site (http://veconlab.econ.virginia.edu/sg/sg.php).
His signaling game now includes a preparameterized Stripped-Down Poker option. On this site,
all the students can play against each other, with random assignment of roles as professor or
student. One can schedule the game to be played during class time in a computer lab or from
students’ home computers outside of class time.

5. The first time David Reiley tried this method to randomize, one of his more observant students
informed him after class that he had looked harder at his watch after drawing a queen than he had
after drawing a king, thus revealing what card he had. Fortunately, not all students noticed this tell,
but the incident points out how difficult it can be to adopt an appropriate poker face for this game.

6. Since the game is zero-sum, each player’s strategy in a Nash equilibrium is a minimax strategy:
each player can unilaterally guarantee herself the equilibrium payoff by playing her minimax
mixture, no matter what nonequilibrium strategy the other player may choose. If the student, for
example, were to call more than 2/3 of the time, thus deviating from the equilibrium, the professor
will still win, on average, $1/3 on each play of the game if she plays her strategy of bluffing 1/3
of the time. Of course, she would do even better by bluffing less often: in the extreme case where
the student always calls, the professor could earn a profit of $0.50 per game (instead of $0.33)
by never bluffing—never betting with a queen. However, the student would likely begin to notice
that the professor bets only with a king and begin folding whenever she bets.

7. By doing so, we are demonstrating that what we have found is a Perfect Bayesian equilibrium. That
is, we are showing that in addition to being a Nash equilibrium in expected payoffs, the strategies
satisfy the refinement that they remain optimal for the players, given that their beliefs are updated
via Bayes’s Rule. If your course includes the topic of Perfect Bayesian equilibrium, you may wish to
point this out as a simple example of the concept, although the refinement has no “bite” in this game.

8. An alternative pooling equilibrium might have the professor fold with both kings and queens, but
we have seen that this is a strictly dominated strategy, so it cannot be part of an equilibrium.

9. An alternative separating equilibrium might have the professor fold with kings and bet with
queens, allowing the student to infer a queen when he sees a bet. This is clearly a bad strategy,
and we have already seen that it is strictly dominated, so it is not part of an equilibrium.

10. In problem 2 in the appendix, there is a pure-strategy equilibrium that could plausibly be called
semi-separating. There are three types of cards (jack, queen, and king) but only two possible
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actions, so even though the equilibrium involves a pure strategy for the first player, the second
player only gets partial separation of types.

11. Herbert O. Yardley’s (1957) classic The Education of a Poker Player is both a poker manual and
a collection of colorful poker stories. Doyle Brunson’s (1978) 600-page book Super System is
something of a bible on poker strategy. Countless books have been written since their publication.
David Sklansky’s (1987) The Theory of Poker is the most technical treatment of real-world poker
strategy, with plenty of references to game theory and a “Fundamental Theorem of Poker.” Most
good poker texts emphasize the importance of a poker player’s ability to read and adapt to other
players, implying that many game-theoretic principles are of more limited use at the table. Mike
Caro (2003) has echoed this sentiment.

12. See exercise 3 in the appendix.
13. See exercise 4 in the appendix.
14. The game also has an infinite number of mixed-strategy equilibria.
15. See exercise 2 in the appendix.
16. This exercise is very similar to von Neumann’s, rather than Borel’s, poker model (see the

Historical Treatments section). In addition, it has the feature that the amount of the bet is twice
the amount of the initial ante. This model proves to be a bit more interesting (with a unique
mixed-strategy equilibrium) than the two-card version of Borel’s model, which has a somewhat
uninteresting pure-strategy equilibrium.

17. A poker game with an infinite number of potential hands may seem far removed from reality. The
number of distinct 5-card poker hands that can be drawn from a standard 52-card deck is larger
than one might naively guess: the number of possible combinations of 52 cards taken 5 at a time
yields 2,598,960 distinct hands.

18. Actually, von Neumann’s first poker model featured a discrete number of possible hands, si ∈{1,
2, . . . , S – 1, S}. In all other respects, it was identical to the second poker model.

19. In equilibrium, the first player folds a better hand with a probability of 1/18, whereas the second
player does so with a probability of 2/27 (see Binmore 1991, 582).
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APPENDIX

SUGGESTED EXERCISES

1. What mix of kings and queens is required to make Stripped-Down Poker a
fair game (i.e., so that the value to both players is zero)? (To solve this problem,
first find the payoffs in the normal-form game in which k is the fraction of
kings in the deck. Note that the game is not fair either when k = 0 or when
k = 1. Also, note that when k > 0 the strategies FB and FF are dominated
for the professor by BB and BF, respectively. Next, find the mixed-strategy
equilibrium of the remaining two-by-two normal-form game. The equilibrium
mixture for each player will be a function of k instead of a fixed value. Now
find the expected value of the game for the professor by multiplying the
expected payoff of each cell of the game table by the probability that that cell is
reached in equilibrium and then summing the four resulting products. Set this
expression equal to zero and solve for k. The answer turns out to be k = 3/8.)

2. In class, we played a simplified version of poker, played by the professor
against a student. We each ante, then I draw a card, then I bet or fold, and if I
bet, you either call or fold. If I fold, you win my $1 ante. If you fold, I win your
$1 ante. If I bet and you call, I win $2 from you ($1 ante plus $1 additional
bet) if I have a king or lose $2 to you if I have a queen. We computed the
equilibrium to that game in class.

Now let’s consider a slightly more complicated version of that game. Suppose
that I now use a deck with three types of cards: 4 kings, 4 queens, and 4 jacks.
All rules remain the same as before, except for what happens when I bet and you
call. When I bet and you call, I win $2 from you if I have a king, we “tie” and
each get back our money if I have a queen, and I lose $2 to you if I have a jack.

a. Draw the game tree for this game. Label the two players as “professor”
and “student.” Be careful to label information sets correctly. Indicate the
payoffs at each terminal node.

b. How many pure strategies does the professor have in this game? Explain
your reasoning.

c. How many pure strategies does the student have in this game? Explain your
reasoning.

d. Represent this game in strategic form. This should be a matrix of expected
payoffs for each player, given a pair of strategies.

e. Find the unique pure-strategy Nash equilibrium to this game. Explain in
English what the strategies are.

f. Would you call this a pooling equilibrium, a separating equilibrium, or a
semi-separating equilibrium?

g. In equilibrium, what is the expected payoff to the professor of playing this
game?

3. Corporate lawsuits may sometimes be signaling games. Here is one example.
In 2003, AT&T filed suit against eBay, alleging that its Billpoint and PayPal
electronic-payment systems infringe on AT&T’s 1994 patent on “mediation of
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transactions by a communications system.” Let us consider this situation from
the point in time when the suit was filed. In response to this suit, as in most
patent-infringement suits, eBay can offer to settle with AT&T without going
to court. If AT&T accepts eBay’s settlement offer, there will be no trial. If
AT&T rejects eBay’s settlement offer, the outcome will be determined by the
court.
The amount of damages claimed by AT&T is not publicly available. Let’s
assume that AT&T is suing for $300 million. In addition, let’s assume that if
the case goes to trial, the two parties will incur court costs (paying lawyers
and consultants) of $10 million each.

Because eBay is actually in the business of processing electronic payments,
we might think that eBay knows more than AT&T does about its probability
of winning the trial. For simplicity, let’s assume that eBay knows for sure
whether it will be found innocent (i) or guilty (g) of patent infringement. From
AT&T’s point of view, there is a 25 percent chance that eBay is guilty (g) and
a 75 percent chance that eBay is innocent (i).

Let us also suppose that eBay has two possible actions: a generous settlement
offer (G) of $200 million or a stingy settlement offer (S) of $20 million.
If eBay offers a generous settlement, assume that AT&T will accept, thus
avoiding a costly trial. If eBay offers a stingy settlement, then AT&T must
decide whether to accept (A) and avoid a trial, or reject and take the case to
court (C). In the trial, if eBay is guilty, it must pay AT&T $300 million in
addition to paying all the court costs. If eBay is found innocent, it will pay
AT&T nothing, and AT&T will pay all the court costs.

a. Write down the extensive-form game tree for this game. Be careful about
information sets.

b. Which of the two players has an incentive to bluff in this game? What
would bluffing consist of? Explain your reasoning.

c. Write down the strategic-form game matrix for this game. Find all of the
Nash equilibria to this game. What are the expected payoffs to each player
in equilibrium?

4. Wanda works as a waitress and consequently has the opportunity to earn cash
tips that are not reported by her employer to the Internal Revenue Service. Her
tip income is rather variable. In a good year (G), she earns a high income, so that
her tax liability to the IRS is $5,000. In a bad year (B), she earns low income,
and her tax liability to the IRS is $0. The IRS knows that the probability of her
having a good year is 0.6, and the probability of her having a bad year is 0.4,
but it doesn’t know for sure which outcome has resulted for her in this tax year.

In this game, Wanda first decides how much income to report to the IRS. If
she reports high income (H), she pays the IRS $5,000. If she reports low income
(L), she pays the IRS $0. Then the IRS has to decide whether to audit Wanda.
If she reports high income, they do not audit, because they automatically know
they are already receiving the tax payment Wanda owes. If she reports low
income, then the IRS can either audit (A) or not audit (N). When the IRS audits,
it costs the IRS $1,000 in administrative costs, and also costs Wanda $1,000 in
the opportunity cost of the time spent gathering bank records and meeting with
the auditor. If the IRS audits Wanda in a bad year (B), then she owes nothing to
the IRS, although she and the IRS have each incurred the $1,000 auditing cost.
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If the IRS audits Wanda in a good year (G), then she has to pay the $5,000 she
owes to the IRS, in addition to each incurring the cost of auditing.

a. Suppose that Wanda has a good year (G), but she reports low income (L).
Suppose the IRS then audits her (A). What is the total payoff to Wanda,
and what is the total payoff to the IRS?

b. Which of the two players has an incentive to bluff in this game? What
would bluffing consist of?

c. Write down the extensive-form game tree for this game. Be careful about
information sets.

d. How many pure strategies does each player have in this game? Explain
your reasoning.

e. Write down the strategic-form game matrix for this game. Find all of the
Nash equilibria to this game. Identify whether the equilibria you find are
separating, pooling, or semi-separating.

f. Let x equal the probability that Wanda has a good year. In the original
version of this problem, we had x = 0.6. Find a value of x such that Wanda
always reports low income in equilibrium.

g. What is the full range of values of x for which Wanda always reports low
income in equilibrium?
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