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ABSTRACT function of the standard LMS. This results in a modified LM S aie
with a zero attractor for all the taps, naming the Zero-/Attireg LMS
(ZA-LMS). We analytically demonstrate that the ZA-LMS aeves
better steady-state performance than that of the standdi® for

Qsparse models. To further improve the filtering performartbe
Reweighted Zero-Attracting LMS (RZA-LMS) is proposed whic
employs reweighted step sizes of the zero attractor foemdifft taps,
inducing the attractor to selectively promote zero tapkemathan
uniformly promote zeros on all the taps. Experimental itssiH
lustrate that the proposed filters exceed the standard LMbtim

transient and steady-state performance for sparse systemshe

RZA-LMS outperforms the ZA-LMS numerically. Furthermotbe
RZA-LMS shows robustness when the number of non-zero taps in

creases, with little loss in performance with respect tostiaadard

LMS in non-sparse situations.

The paper is organized as follows. Section 2 develops the ZA-
LMS and RZA-LMS algorithms for sparse systems. In section 3,
numerical simulation results are provided. Finally, weatode the
er and discuss possible future directions in section 4.
Notations In the following parts of paper, matrices and vectors
are denoted by boldface upper case letters and boldface tase
Index Terms— LMS, compressive sensing, sparse models letters, respectively; the superscripts’ and(-)~* denote the trans-

We propose a new approach to adaptive system identificatiemw
the system model is sparse. The approach applieé thelaxation,
common in compressive sensing, to improve the performace
LMS-type adaptive methods. This results in two new alganih
the Zero-Attracting LMS (ZA-LMS) and the Reweighted Zero-
Attracting LMS (RZA-LMS). The ZA-LMS is derived via combin-
ing a1 norm penalty on the coefficients into the quadratic LMS
cost function, which generates a zero attractor in the LMSait
tion. The zero attractor promotes sparsity in taps duriedittering
process, and therefore accelerates convergence whernfyigent
sparse systems. We prove that the ZA-LMS can achieve lowanme
square error than the standard LMS. To further improve tterifilg
performance, the RZA-LMS is developed using a reweighted ze
attractor. The performance of the RZA-LMS is superior ta thia
the ZA-LMS numerically. Experiments demonstrate the athges

of the proposed filters in both convergence rate and steiady-s
behaviors under sparsity assumptions on the true coefficemtor. ap
The RZA-LMS is also shown to be robust when the number ofp
non-zero taps increases.

zero-attracting, 11 norm relaxation pose and inverse operators, respectively; the opeffatf)i denotes
the ¢, norm ; tr(-) denotes the trace operator; afg] denotes the
1 INTRODUCTION expectation operator.
The Least Mean Square (LMS) algorithm, introduced by Widrow 2. ALGORITHMS

and Hoff [1], is a popular method for adaptive system idesdifon.
Its applications include echo cancellation, channel égatibn, in-  2.1. Review of the standard LMS
terference cancellation and so forth. In many scenariosilisepre-
sponses of unknown systems can be assumed to be sparsé-cont
ing only a few large coefficients interspersed among maniigiblg

&et y(n) be a sample of an observation of output signal

T

ones. Using such sparse prior information can improve tteifig y(n) =w x(n) +v(n), @
performance. However, standard LMS filters do not explaihsa- wherew = [wo,wi, - ,wy 1]T is the filter coefficient vec-
formation. In the pas_t years, many algo_nthms explonmgrsp:y tor, e.g, a FIR channel impulse responsetn) — [z(n), z(n —
were based on applying a subset selection scheme duringlthe fﬁ) .. a(n— N + 1)]" denotes the vector of input signa(n);

tering process, which was implemented via statistical aigte of
active taps [2, 3, 4] or sequential partial updating [5, 6jheé vari-
ants assign proportional step sizes of different taps daogto their
magnitudes, such as the Proportionate Normalized LMS (PS)L.M known coefficient vector using the input signgl:) and the desired

and its variations [7, 8]. . .
Motivated by LASSO [9] and recent progress in COmpressiveoutputy(n). Let w(n) be the estimated coefficient vector of the

sensing [10, 11, 12], we propose an alternative approadfetuify- aL(zzi))tiZ%gflitﬁggt;;eratlom. In the standard LMS, the cost function
ing sparse systems using LMS filters. The basic idea is todntre 1
a penalty which favors sparsity in the cost function. We fisor- L(n) = =€*(n), )

porate a/; norm penalty on the coefficients into the quadratic cost . . 2
wheree(n) is the instantaneous error:

andwv(n) is the observation noise assumed to be independent with

The goal of LMS-type filters is to sequentially estimate tihe u

*This research was partially supported by AFOSR grant FAGE5Q-
0324. e(n) = y(n) — w’ (n)x(n). (3)



The filter coefficient vector is then updated by

OL(n)
ow(n)

w(n+1) = w(n) - p w(n) + pe(n)x(n), (4)
wherep is the step size controlling convergence and the steadiy-sta
behavior of the LMS algorithm. DenoRR as the covariance matrix
of the input vectorx(n) andAmax as its maximum eigenvalue. The

well-known convergence condition for the LMS is

O<pu<

®)

)\m ax

Under the independence assumption, the steady-stateseM&tsis

2
Pep(c0) = lim E [((w(n) _— x(n)) } - Qﬁnpo, )
whereP, is the power of observation noise
Py = E[v*(n))], @)
and
n=tr(RI-puR)""). (8)

2.2. The Zero-Attracting LMS algorithm (ZA-LMS)

In the ZA-LMS, a new cost functioL1(n) is defined by combin-
ing the instantaneous square error with thenorm penalty of the
coefficient vector

L1 (n)

S¢*(n) +w(n)|s. 9)

2

Using the gradient descent updating, the ZA-LMS filter updat
defined as

iy 0T ()
— w(n) — psgnw(n) + pe(n)x(n),

wherep = py andsgn(-) is a component-wise sign function defined

as
sgn(z) = {m/'w' v#0 (11)

0 rz=0
Comparing the ZA-LMS update (10) to the standard LMS up-
date (4), the ZA-LMS has an additional terrp sgn w(n) which
always attracts the tap coefficients to zero. We call thisz®
attractor, whose strength is controlled hyIntuitively, the zero at-
tractor will speed-up convergence when the majority of ficiehts

Note that the vectopFE [sgnw(n — 1)] is bounded betweer p1
andpl. Therefore £ [w(n)] converges if the maximal eigenvalue of
(I — pR) isless than 1, which is satisfied by (5). Sincéw (n)] =
E[w(n)] + w, E[w(n)] also converges with the limiting vector
shown in (12). O

One can see that the convergence condition of the ZA-LMS and
the standard LMS is the same, which is independent wi{12) im-
plies the ZA-LMS filter returns a biased estimate of the traefi-
cient vector. However, we show that with appropriatee ZA-LMS
is able to yield lower MSE than the standard LMS for truly sear
systems.

Theorem 2. Let N Z denote the index set of non-zero taps, ug.7#
0 fori € NZ. Assuming is sufficiently small so that for every
ieNZ

Elsgn w; (oo

)] = sgnwi, (15)

the excess MSE of the ZA-LMS filter is

Peg(00) = 2in "t f“77);/) (p_ 20%2)7 ()
where
a1 = E [senw (o) (I— pR) 'sgaw ()], (17)
and
az = B[|[w (00) 1] = [wl. (18)

Py andn are defined in (7) and (8), respectively.

The proof of Theorem 2 is similar to the derivation of (6) if [1
and is omitted for the lack of space. Itis easy to seedhas always
positive, and the range of; is

N
0<ar <

_ 19
- 1- M)\Irlax ( )

Note that the first term in the RHS of (16) is the excess MSE ef th
standard LMS filter. Therefore, whern, > 0, we can expect lower
MSE than the standard LM&e., whenp is selected betweehand
202 /i,

Pes(00) < 3 1 p,

To further specifynz, we have the following result.

of w are zeroj.e,, the system is sparse. The convergence conditiohemma 1. LetZ and N Z be the index sets of zero taps and non-zero

of the ZA-LMS is provided in the following theorem.

Theorem 1. The mean coefficient vectdr [w(n)] converges as
n — oo if y satisfies (5), and the converged vector is
(12)

Ew(c0)] = W—;R 'E [sgnw(o0)] .

Proof. Denotew(n) = w(n) — w, (4) is equivalent to

w(n) = (I — ,ux(n)x(n)T) w(n—1)—psgnw(n—1)+pv(n)x(n).
(13)
Taking expectations on both sides of (13), there is
E[W(n)] = (1 uR) E[W(n — 1)] — pE [sgnw(n — 1)] . (14)

taps respectively. v (n) is assumed to be Gaussian distributed, a
first order approximation ofv. is given by

(20)

where®;; (co0) andb; are thei-th element of the diagonal @ (co
andb respectively, defined as

)

and



Proof.

az =Y Ellwi(0)]]+ > (Eflwi(co)]] = lwil).  (21) \ \ TS e
€z eNz L \ ) RZA-LMS ]
We then use the following fact: Assuming a random variablie | “‘@X
Gaussian distributed with mearand variance?, °‘:‘,‘,’ \
2 vl \ d
Ellz]] =4/ =E[2?]+o| — when |v]| < o, (22)
™ ag 1
and ¢ — \
Ellz]] = |v| +o (ﬁ) when || > 0. (23) "l vemTe—
4 . . .
Sincew; (c0) is a Gaussian random variable, with (12), (22) and (23) 10 0 500 jerations 1000 1500
the first order approximation afs is
2 . . ~ . _ -
Qg ~ Z 2B [wi(c0)2] — Z |E [w;(00)] — w Fig. 1. Tracking and steady-state behaviors of 16-order adafikive
e B Nz ters, driven by white input signal.
(24)
— 2. _Pr .
— Z,/W%(oo) p _Z |bi].
i€z iENZ

3. EXPERIMENTAL RESULTS
a

In this section, the performance of the ZA-LMS (10) and the®ARZ
There are two competitive terms on the RHS of (20). The first-MS (27) are compared with that of the standard LMS filter. énr
one varies about zero for the taps associated with zero cieefs ~ €XPeriments are designed to demonstrate their trackingsteadly-
of w. The second term is a bias which is due to the shrinkage oftaté performances.

the taps associated with non-zero coefficientsvofWhen the zero

taps take the majority, the first term dominates the secoedaoi

In the first experiment, there are 16 coefficients in the tiamyv
positiveas can be therefore obtained.

ing system. Initially, we set theth tap with value 1 and others to
zero, making the system have a sparsity of 1/16. After 50@-te
tions, all the odd taps are set to 1 while all the even tapsirana
. . be zero,i.e., a sparsity of 8/16. After 1000 iterations all the even
2.3. The Reweighted Zero-Attracting LMS (RZA-LMS) taps are set Withpvalug -1 while all the odd taps are maintiode
Largea: is crucial for the ZA-LMS since it results in a greater per- 1, leaving a completely non-sparse system. The input simahthe
formance gain and larger margin for choosjngHowever, the bias observed noise are white Gaussian random sequences wihaeer
term in (20) reduces; and then limits the MSE performance. This of 1 and10~?, respectively. The three filters (LMS, ZA-LMS and
behavior comes from the fact that the shrinkage in the ZA-ldd8s
not distinguish between zero taps and non-zero taps. Slhteea
taps are forced to zero uniformly, its performance wouleédetate
for less sparse systems. Motivated by reweighting in cosgive
sampling [11], we propose a heuristic approach to refine éne z
attractor called the Reweighted Zero-Attracting LMS (REMS).
The RZA-LMS is derived via the new cost function

RZA-LMS) are run 200 times. The parameters are set as0.05,

p = 5x 107" ande = 10. Note that we use the sameand

p for the three filters. The average estimate of mean squarie dev

ation (MSD) is shown in Fig. 1. As we can see from the MSD

results, when the system is very sparse (before théhG@ation),

both the ZA-LMS and the RZA-LMS yield faster convergencerat

and better steady-state performances than the standard AnS

) N the RZA-LMS achieves lower MSD than the ZA-LMS. After the
— 22 / Ny 50h iteration, as the number of non-zero taps increases to,eight

La(n) 2¢ () +7 ;log(l * lwil/€). (29 the performance of the ZA-LMS deteriorates while the RZA-&M

maintains the best performance among the three filters.r A@G@0

The log-sum penalty_;" , log(1 + |w;|/e’) has been introduced as jterations, the RZA-LMS still performs comparably with thean-

it behaves more similarly to th& norm than||w||:. The coefficient  dard LMS even though the system is now completely non-sparse

vector is then updated by

sgn w; (n) The system in the second experiment is the same as the first one
wi(n +1) = wi(n) — P14 efws(n)] + pe(n)zi(n),  (26)  except the switching times are set to the 7#B0@eration and the
or equivalently, in vector form

14000h iteration, respectively. The input signa{n) is now a cor-
related signal generated hyn) = 0.8z(n — 1) + u(n) and then

sgn {w(n)} normalized to variance 1, whetgn) is a white Gaussian noise. The
w(n+1)=w(n) - T ewn)] pe(n)x(n),  (27)  variance of the observed noise is setto . The filter parameters
wherep = uvy’ /e’ ande = 1/¢’.

are set ag: = 0.015, p = 3 x 10~° ande = 10. Fig. 2 shows
the MSD of the three filters, and similar performance tremdsod-
The RZA-LMS selectively shrinks taps with large magnitudesserved as in experiment 1. Observe that at the beginningafeta-
and the ones with small magnitudes. The reweighted zeracattr tions (.g, from iteration 7000 to 8500), all the three filters converge
tor takes effect only on those taps whose magnitudes arearamp at a nearly the same rate. After the 880ideration, the convergence
ble to1/¢; and there is little shrinkage exerted on the taps whosef the RZA-LMS accelerates due to its selective shrinkage.

|wi(n)| > 1/e. In this way, the bias of the RZA-LMS can be re-
duced.

The third experiment simulates 256-tap system with 28 remo-z
coefficients. The impulse response is shown in Fig. 3. Therdyi
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Fig. 2. Tracking and steady-state behaviors of 16-order adafikive
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Fig. 3. The impulse response of the system in experiment 3.

signal and observed noise are the same as the first experiment
set to be5s x 1072 in the three filters and is set to 10. This time
we select different values gf for the ZA-LMS and the RZA-LMS

to yield the best MSE, whereis 2.5 x 10~ for the ZA-LMS and
10~° for the RZA-LMS. The simulations are performed 200 times

MSE
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Fig. 4. Tracking and steady-state behaviors of 256-order adaptiv
filters, driven by white input signal.

5. REFERENCES

[1] B.Widrow and S.D. Stearn#ydaptive Signal Processinglew

Jersey: Prentice Hall, 1985.

[2] S. Kawamura and M. Hatori, “A tap selection algorithm for

adaptive filters,” inProceedings of ICASSR986, vol. 11, pp.
2979-2982.

Mareels, R.R. Bitmead, B. Wahlberg, and
A. Gustafsson, “LMS estimation via structural detection,”
IEEE Trans. on Signal Processingpl. 46, pp. 2651-2663, Oc-
tober 1998.

and the averaged excess MSE is shown in Fig. 4. One sees thd#] Y.Li, Y. Gu, and K. Tang, “Parallel NLMS filters with stoels-

for this long sparse system the zero-attracting algorithorginue
to outperform the standard LMS as measured by faster coeneeg

rate and lower steady-state MSE.

4. CONCLUSION

In this paper, two novel adaptive filters are proposed forsgpays-
tem identification. The ZA-LMS incorporatesfa norm penalty of

the coefficients into its cost function, which resulted inhairsk-

age in the update formula. This shrinkage accelerates tineeco
gence rate when the majority of coefficients are zero. A #m@or

5]

(6]

was given showing that reduced MSE can be obtained by the ZA-[8]

LMS. The RZA-LMS was proposed to further improve the filterin
performance, where a reweighted zero attractor is devisqzbt-
form selective coefficient shrinkage. With the same paramsethe
RZA-LMS is superior to the ZA-LMS in both convergence rated a

steady-state behaviors. Experiments demonstrate tha@i/AHeMS

and the RZA-LMS improve on the standard LMS in both transient
and steady-state performance when the system is sparstheiur
more, the RZA-LMS performs robustly under non-sparse syste
Our future work will include how to choose the parameters of
zero-attracting algorithms in a more systematic way. The z¢-

tractor can also be implemented in the NLMS filter for ideyitify

sparse systems. Furthermore, the method; afiorm penalization
can be further extended to other types of adaptive filters) as the

RLS filter and the adaptive Kalman filter.

9]
[10]

(11]

tic active taps and step-sizes for sparse system idenitficat
in Proceedings of ICASSR006, vol. 3, pp. 109-112.

D.M. Etter, “Identification of sparse impulse responses-s
tems using an adaptive delay filter,”roceedings of ICASSP
1985, pp. 1169-1172.

M. Godavarti and A. O. Hero, “Partial update LMS algo-
rithms,” IEEE Trans. on Signal Processingpl. 53, pp. 2382—
2399, 2005.

[7] S.L. Gay, “An efficient, fast converging adaptive filterfet-

work echocancellation,”
vol. 1, pp. 394-398.

D.L. Duttweiler,  “Proportionate normalized least-nmea
squares adaptation in echo canceletEEE Trans. on Speech
and Audio Processingol. 8, pp. 508-518, 2000.

R. Tibshirani, “Regression shrinkage and selection thie
lasso,”J. Royal. Statist. Soc Bvol. 58, pp. 267-288, 1996.

E. Candeés, “Compressive samplingrit. Congress of Mathe-
matics vol. 3, pp. 1433-1452, 2006.

E. J. Candés, M. Wakin, and S. Boyd, “Enhancing sparsit
by reweighted 11 minimization,To appear in J. Fourier Anal.
Appl.

irProceedings of Asilomarl998,

[12] R. Baraniuk, “Compressive sensindEEE Signal Processing

Magazine vol. 25, pp. 21-30, March 2007.



