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ABSTRACT

We propose a new approach to adaptive system identification when
the system model is sparse. The approach applies theℓ1 relaxation,
common in compressive sensing, to improve the performance of
LMS-type adaptive methods. This results in two new algorithms,
the Zero-Attracting LMS (ZA-LMS) and the Reweighted Zero-
Attracting LMS (RZA-LMS). The ZA-LMS is derived via combin-
ing a ℓ1 norm penalty on the coefficients into the quadratic LMS
cost function, which generates a zero attractor in the LMS itera-
tion. The zero attractor promotes sparsity in taps during the filtering
process, and therefore accelerates convergence when identifying
sparse systems. We prove that the ZA-LMS can achieve lower mean
square error than the standard LMS. To further improve the filtering
performance, the RZA-LMS is developed using a reweighted zero
attractor. The performance of the RZA-LMS is superior to that of
the ZA-LMS numerically. Experiments demonstrate the advantages
of the proposed filters in both convergence rate and steady-state
behaviors under sparsity assumptions on the true coefficient vector.
The RZA-LMS is also shown to be robust when the number of
non-zero taps increases.

Index Terms— LMS, compressive sensing, sparse models,
zero-attracting, l1 norm relaxation

1. INTRODUCTION

The Least Mean Square (LMS) algorithm, introduced by Widrow
and Hoff [1], is a popular method for adaptive system identification.
Its applications include echo cancellation, channel equalization, in-
terference cancellation and so forth. In many scenarios impulse re-
sponses of unknown systems can be assumed to be sparse, contain-
ing only a few large coefficients interspersed among many negligible
ones. Using such sparse prior information can improve the filtering
performance. However, standard LMS filters do not exploit such in-
formation. In the past years, many algorithms exploiting sparsity
were based on applying a subset selection scheme during the fil-
tering process, which was implemented via statistical detection of
active taps [2, 3, 4] or sequential partial updating [5, 6]. Other vari-
ants assign proportional step sizes of different taps according to their
magnitudes, such as the Proportionate Normalized LMS (PNLMS)
and its variations [7, 8].

Motivated by LASSO [9] and recent progress in compressive
sensing [10, 11, 12], we propose an alternative approach to identify-
ing sparse systems using LMS filters. The basic idea is to introduce
a penalty which favors sparsity in the cost function. We firstincor-
porate aℓ1 norm penalty on the coefficients into the quadratic cost
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function of the standard LMS. This results in a modified LMS update
with a zero attractor for all the taps, naming the Zero-Attracting LMS
(ZA-LMS). We analytically demonstrate that the ZA-LMS achieves
better steady-state performance than that of the standard LMS for
sparse models. To further improve the filtering performance, the
Reweighted Zero-Attracting LMS (RZA-LMS) is proposed which
employs reweighted step sizes of the zero attractor for different taps,
inducing the attractor to selectively promote zero taps rather than
uniformly promote zeros on all the taps. Experimental results il-
lustrate that the proposed filters exceed the standard LMS inboth
transient and steady-state performance for sparse systems; and the
RZA-LMS outperforms the ZA-LMS numerically. Furthermore,the
RZA-LMS shows robustness when the number of non-zero taps in-
creases, with little loss in performance with respect to thestandard
LMS in non-sparse situations.

The paper is organized as follows. Section 2 develops the ZA-
LMS and RZA-LMS algorithms for sparse systems. In section 3,
numerical simulation results are provided. Finally, we conclude the
paper and discuss possible future directions in section 4.

Notations: In the following parts of paper, matrices and vectors
are denoted by boldface upper case letters and boldface lower case
letters, respectively; the superscripts(·)T and(·)−1 denote the trans-
pose and inverse operators, respectively; the operator‖ · ‖1 denotes
the ℓ1 norm ; tr(·) denotes the trace operator; andE[·] denotes the
expectation operator.

2. ALGORITHMS

2.1. Review of the standard LMS

Let y(n) be a sample of an observation of output signal

y(n) = w
T
x(n) + v(n), (1)

where w = [w0, w1, · · · , wN−1]
T is the filter coefficient vec-

tor, e.g., a FIR channel impulse response;x(n) = [x(n), x(n −
1), · · · , x(n − N + 1)]T denotes the vector of input signalx(n);
andv(n) is the observation noise assumed to be independent with
x(n).

The goal of LMS-type filters is to sequentially estimate the un-
known coefficient vector using the input signalx(n) and the desired
output y(n). Let w(n) be the estimated coefficient vector of the
adaptive filter at iterationn. In the standard LMS, the cost function
L(n) is defined as

L(n) =
1

2
e2(n), (2)

wheree(n) is the instantaneous error:

e(n) = y(n) − w
T (n)x(n). (3)



The filter coefficient vector is then updated by

w(n + 1) = w(n) − µ
∂L(n)

∂w(n)
= w(n) + µe(n)x(n), (4)

whereµ is the step size controlling convergence and the steady-state
behavior of the LMS algorithm. DenoteR as the covariance matrix
of the input vectorx(n) andλmax as its maximum eigenvalue. The
well-known convergence condition for the LMS is

0 < µ <
1

λmax

. (5)

Under the independence assumption, the steady-state excess MSE is

Pex(∞) = lim
n→∞

E

��
(w(n) −w)T

x(n)
�2
�

=
η

2 − η
P0, (6)

whereP0 is the power of observation noise

P0 = E[v2(n)], (7)

and
η = tr

�
R(I − µR)−1

�
. (8)

2.2. The Zero-Attracting LMS algorithm (ZA-LMS)

In the ZA-LMS, a new cost functionL1(n) is defined by combin-
ing the instantaneous square error with theℓ1 norm penalty of the
coefficient vector

L1(n) =
1

2
e2(n) + γ‖w(n)‖1. (9)

Using the gradient descent updating, the ZA-LMS filter update is
defined as

w(n + 1) = w(n) − µ
∂L1(n)

∂w(n)

= w(n) − ρ sgnw(n) + µe(n)x(n),

(10)

whereρ = µγ andsgn(·) is a component-wise sign function defined
as

sgn(x) =

(
x/|x| x 6= 0

0 x = 0
. (11)

Comparing the ZA-LMS update (10) to the standard LMS up-
date (4), the ZA-LMS has an additional term−ρ sgnw(n) which
always attracts the tap coefficients to zero. We call this thezero
attractor, whose strength is controlled byρ. Intuitively, the zero at-
tractor will speed-up convergence when the majority of coefficients
of w are zero,i.e., the system is sparse. The convergence condition
of the ZA-LMS is provided in the following theorem.

Theorem 1. The mean coefficient vectorE [w(n)] converges as
n → ∞ if µ satisfies (5), and the converged vector is

E [w(∞)] = w −
ρ

µ
R

−1E [sgnw(∞)] . (12)

Proof. Denotew̃(n) = w(n) −w, (4) is equivalent to

w̃(n) =
�
I− µx(n)x(n)T

�
w̃(n−1)−ρsgnw(n−1)+µv(n)x(n).

(13)
Taking expectations on both sides of (13), there is

E [w̃(n)] = (I− µR) E [w̃(n − 1)] − ρE [sgnw(n − 1)] . (14)

Note that the vectorρE [sgnw(n − 1)] is bounded between−ρ1
andρ1. Therefore,E [w̃(n)] converges if the maximal eigenvalue of
(I− µR) is less than 1, which is satisfied by (5). SinceE [w(n)] =
E [w̃(n)] + w, E [w(n)] also converges with the limiting vector
shown in (12).

One can see that the convergence condition of the ZA-LMS and
the standard LMS is the same, which is independent withρ. (12) im-
plies the ZA-LMS filter returns a biased estimate of the true coeffi-
cient vector. However, we show that with appropriateρ the ZA-LMS
is able to yield lower MSE than the standard LMS for truly sparse
systems.

Theorem 2. LetNZ denote the index set of non-zero taps, i.e.,wi 6=
0 for i ∈ NZ. Assumingρ is sufficiently small so that for every
i ∈ NZ

E[sgn wi(∞)] = sgn wi, (15)

the excess MSE of the ZA-LMS filter is

Pex(∞) =
η

2 − η
P0 +

α1

(2 − η)µ
ρ

�
ρ −

2α2

α1

�
, (16)

where

α1 = E
h
sgnw (∞)T (I− µR)−1 sgn w (∞)

i
, (17)

and
α2 = E [‖w (∞) ‖1] − ‖w‖1. (18)

P0 andη are defined in (7) and (8), respectively.

The proof of Theorem 2 is similar to the derivation of (6) in [1]
and is omitted for the lack of space. It is easy to see thatα1 is always
positive, and the range ofα1 is

0 < α1 ≤
N

1 − µλmax

. (19)

Note that the first term in the RHS of (16) is the excess MSE of the
standard LMS filter. Therefore, whenα2 > 0, we can expect lower
MSE than the standard LMS,i.e., whenρ is selected between0 and
2α2/α1,

Pex(∞) <
η

2 − η
P0.

To further specifyα2, we have the following result.

Lemma 1. LetZ andNZ be the index sets of zero taps and non-zero
taps respectively. Ifw(n) is assumed to be Gaussian distributed, a
first order approximation ofα2 is given by

α2 ≃
X
i∈Z

r
2

π
Φii(∞) −

ρ

µ

X
i∈NZ

|bi|, (20)

whereΦii(∞) andbi are thei-th element of the diagonal ofΦ(∞)
andb respectively, defined as

Φ(∞) = E[(w(∞) − w) (w(∞) − w)T ]

and
b = R

−1E [sgnw(∞)] .



Proof.

α2 =
X
i∈Z

E [|wi(∞)|] +
X

i∈NZ

(E [|wi(∞)|] − |wi|) . (21)

We then use the following fact: Assuming a random variablez is
Gaussian distributed with meanν and varianceσ2,

E[|z|] =

r
2

π
E[z2] + o

�
|ν|

σ

�
when |ν| ≪ σ, (22)

and

E[|z|] = |ν| + o

�
σ

|ν|

�
when |ν| ≫ σ. (23)

Sincewi(∞) is a Gaussian random variable, with (12), (22) and (23)
the first order approximation ofα2 is

α2 ≃
X
i∈Z

r
2

π
E [wi(∞)2] −

X
i∈NZ

|E [wi(∞)] − wi|

=
X
i∈Z

r
2

π
Φii(∞) −

ρ

µ

X
i∈NZ

|bi|.

(24)

There are two competitive terms on the RHS of (20). The first
one varies about zero for the taps associated with zero coefficients
of w. The second term is a bias which is due to the shrinkage of
the taps associated with non-zero coefficients ofw. When the zero
taps take the majority, the first term dominates the second one and
positiveα2 can be therefore obtained.

2.3. The Reweighted Zero-Attracting LMS (RZA-LMS)

Largeα2 is crucial for the ZA-LMS since it results in a greater per-
formance gain and larger margin for choosingρ. However, the bias
term in (20) reducesα2 and then limits the MSE performance. This
behavior comes from the fact that the shrinkage in the ZA-LMSdoes
not distinguish between zero taps and non-zero taps. Since all the
taps are forced to zero uniformly, its performance would deteriorate
for less sparse systems. Motivated by reweighting in compressive
sampling [11], we propose a heuristic approach to refine the zero
attractor called the Reweighted Zero-Attracting LMS (RZA-LMS).

The RZA-LMS is derived via the new cost function

L2(n) =
1

2
e2(n) + γ′

NX
i=1

log(1 + |wi|/ε′). (25)

The log-sum penalty
P

N

i=1
log(1 + |wi|/ε′) has been introduced as

it behaves more similarly to theℓ0 norm than‖w‖1. The coefficient
vector is then updated by

wi(n + 1) = wi(n) − ρ
sgn wi(n)

1 + ε|wi(n)|
+ µe(n)xi(n), (26)

or equivalently, in vector form

w(n + 1) = w(n) − ρ
sgn {w(n)}

1 + ε|w(n)|
+ µe(n)x(n), (27)

whereρ = µγ′/ε′ andε = 1/ε′.
The RZA-LMS selectively shrinks taps with large magnitudes

and the ones with small magnitudes. The reweighted zero attrac-
tor takes effect only on those taps whose magnitudes are compara-
ble to 1/ε; and there is little shrinkage exerted on the taps whose
|wi(n)| ≫ 1/ε. In this way, the bias of the RZA-LMS can be re-
duced.
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Fig. 1. Tracking and steady-state behaviors of 16-order adaptivefil-
ters, driven by white input signal.

3. EXPERIMENTAL RESULTS

In this section, the performance of the ZA-LMS (10) and the RZA-
LMS (27) are compared with that of the standard LMS filter. Three
experiments are designed to demonstrate their tracking andsteady-
state performances.

In the first experiment, there are 16 coefficients in the time vary-
ing system. Initially, we set the 5th tap with value 1 and others to
zero, making the system have a sparsity of 1/16. After 500 itera-
tions, all the odd taps are set to 1 while all the even taps remains to
be zero,i.e., a sparsity of 8/16. After 1000 iterations all the even
taps are set with value -1 while all the odd taps are maintained to be
1, leaving a completely non-sparse system. The input signaland the
observed noise are white Gaussian random sequences with variance
of 1 and10−3, respectively. The three filters (LMS, ZA-LMS and
RZA-LMS) are run 200 times. The parameters are set asµ = 0.05,
ρ = 5 × 10−4 and ε = 10. Note that we use the sameµ and
ρ for the three filters. The average estimate of mean square devi-
ation (MSD) is shown in Fig. 1. As we can see from the MSD
results, when the system is very sparse (before the 500th iteration),
both the ZA-LMS and the RZA-LMS yield faster convergence rate
and better steady-state performances than the standard LMS. And
the RZA-LMS achieves lower MSD than the ZA-LMS. After the
500th iteration, as the number of non-zero taps increases to eight,
the performance of the ZA-LMS deteriorates while the RZA-LMS
maintains the best performance among the three filters. After 1000
iterations, the RZA-LMS still performs comparably with thestan-
dard LMS even though the system is now completely non-sparse.

The system in the second experiment is the same as the first one,
except the switching times are set to the 7000th iteration and the
14000th iteration, respectively. The input signalx(n) is now a cor-
related signal generated byx(n) = 0.8x(n − 1) + u(n) and then
normalized to variance 1, whereu(n) is a white Gaussian noise. The
variance of the observed noise is set to10−3. The filter parameters
are set asµ = 0.015, ρ = 3 × 10−5 andε = 10. Fig. 2 shows
the MSD of the three filters, and similar performance trends are ob-
served as in experiment 1. Observe that at the beginning of the itera-
tions (e.g., from iteration 7000 to 8500), all the three filters converge
at a nearly the same rate. After the 8500th iteration, the convergence
of the RZA-LMS accelerates due to its selective shrinkage.

The third experiment simulates 256-tap system with 28 non-zero
coefficients. The impulse response is shown in Fig. 3. The driving
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Fig. 2. Tracking and steady-state behaviors of 16-order adaptivefil-
ters, driven by correlated input signal.
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Fig. 3. The impulse response of the system in experiment 3.

signal and observed noise are the same as the first experiment. µ is
set to be5 × 10−3 in the three filters andε is set to 10. This time
we select different values ofρ for the ZA-LMS and the RZA-LMS
to yield the best MSE, whereρ is 2.5 × 10−6 for the ZA-LMS and
10−5 for the RZA-LMS. The simulations are performed 200 times
and the averaged excess MSE is shown in Fig. 4. One sees that
for this long sparse system the zero-attracting algorithmscontinue
to outperform the standard LMS as measured by faster convergence
rate and lower steady-state MSE.

4. CONCLUSION

In this paper, two novel adaptive filters are proposed for sparse sys-
tem identification. The ZA-LMS incorporates aℓ1 norm penalty of
the coefficients into its cost function, which resulted in a shrink-
age in the update formula. This shrinkage accelerates the conver-
gence rate when the majority of coefficients are zero. A theorem
was given showing that reduced MSE can be obtained by the ZA-
LMS. The RZA-LMS was proposed to further improve the filtering
performance, where a reweighted zero attractor is devised to per-
form selective coefficient shrinkage. With the same parameters, the
RZA-LMS is superior to the ZA-LMS in both convergence rates and
steady-state behaviors. Experiments demonstrate that theZA-LMS
and the RZA-LMS improve on the standard LMS in both transient
and steady-state performance when the system is sparse. Further-
more, the RZA-LMS performs robustly under non-sparse systems.

Our future work will include how to choose the parameters of
zero-attracting algorithms in a more systematic way. The zero at-
tractor can also be implemented in the NLMS filter for identifying
sparse systems. Furthermore, the method ofℓ1 norm penalization
can be further extended to other types of adaptive filters, such as the
RLS filter and the adaptive Kalman filter.
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Fig. 4. Tracking and steady-state behaviors of 256-order adaptive
filters, driven by white input signal.
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