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Abstract 
The Hoberman Switch-Pitch ball is used as the inspiration for a symmetry analysis of a novel 
type of deployable structure.  The underlying structure of the Switch-Pitch is essentially cubic, 
consisting of eight nodes that are connected via revolute joints to twelve linking bars, each of 
which is connected to two nodes.  A simple mobility count suggests that the structure is over-
constrained, but a symmetry mobility analysis shows that the structure is in fact mobile, and 
retains tetrahedral symmetry as it folds. 
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1. Introduction 
Deployable structures or mechanisms having a single degree of freedom that allows them to 
change their shape are an important component of many civil engineering and aerospace 
systems.  However, finding novel example of such structures is difficult.  Here we take 
inspiration from a toy, and describe an initial symmetry investigation of a new type of 
deployable structure that was invented by Hoberman [1], and is now sold as the ‘Hoberman 
Switch-Pitch’ (http://hoberman.com/fold/Switchpitch/switchpitch.htm).  The Switch-Pitch 
changes between two different configurations, as shown in Figure 1(a-c).  The ball-like 
configurations exist because of additional shell elements added to the outside of the basic 
structure, which is revealed when the shell elements are removed (Figure 1(d-f)).  The basic 
structure consists of eight nodes, which are connected via links that have revolute joints at 
their ends.  All the links at a node are synchronised by gears that ensure that they rotate 
together. 
The mechanism of the Switch-Pitch has recently been investigated by Wei et al. [2], and Ding 
et al. [3].  They show that, for most configurations of the Switch-Pitch, the gearing is not 
necessary, but it is required to avoid singularities in the mechanism path when a node and its 
neighbours become coplanar. We follow the analysis of the simplified version as described in 
these papers, and neglect the role of the gearing. 
One remarkable feature of the Switch-Pitch is its high symmetry, and in this paper we explore 
the use of a symmetry-adapted mobility rule [4] to understand the mobility of the structure.  
We also complete a simple first-order equilibrium/compatibility analysis, and use this with a 
predictor/corrector algorithm to show the deployment path of the structure. 



2. Mobility analysis 

2.1 Simple counting 
From the formulation proposed by Hunt [5], and extended by Guest and Fowler [4], the 
relative mobility of an over-constrained structure can be obtained from the simple counting 
rule: 

𝑚 − 𝑠 = 6𝑛 − ∑ (6 − 𝑓𝑖)
𝑔
𝑖=1 − 6  (1) 

where 𝑚 and 𝑠 are the number of independent mechanisms and states of self-stress, 𝑛 is the 
number of nodes, 𝑔 is the number of bars, and 𝑓𝑖 is the number of relative freedoms permitted 
by link 𝑖. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1 shows a physical model of the Hoberman Switch-Pitch, which consists of eight 
dome-shaped vertices, twelve ⊥-shaped links, and twelve two-colored laminas. Each vertex 
has three intersecting revolute joints, and moves in and out during the transformation of the 
structure. By ignoring the laminas, and substituting the vertices and links as nodes and 
straight bars respectively, the ball structure can be transformed into the twelve-bar foldable 
structure shown in Figure 2-a. The structure consists of eight nodes (𝑛 = 8) and twelve 
elements (𝑔 = 12). Each element shown in Figure 2-b has a local coordinate system where 
the 𝑥-axis runs along the link, and the 𝑧-axis is orthogonal to a radial line from the centre of 
the structure.  Each link allows two freedoms − the rotations about the local 𝑧-axis at each 
end connection, and hence 𝑓𝑖 = 2 for all 𝑖. Therefore, the counting rule for this structure gives 
𝑚 − 𝑠 = 6 × 8 − 6 × 12 + 2 × 12 − 6 = −6      (2) 
Thus, this equation does not reveal any information about possible motion of the structures, 
simply telling us of the existence of at least six states of self-stress. 

2.2 Symmetry-adapted analysis 
In fact, the Hoberman Switch-Pitch ball is highly symmetric, and more information about 
possible mechanisms can be obtained by counting symmetries, as well as components, of the 
polyhedral structure shown in Figure 2-a. Guest and Fowler [4] gave a symmetry-adapted 

 
 (a)                                   (b)                                     (c)            

 
(d)                                      (e)                                    (f)            
Fig. 1: The transformation of a Hoberman Switch-Pitch ball between two 
extreme configurations, (a) and (c). The internal structure is shown in (d), 
(e) and (f). 



version of the counting rule given in Eq. (1), which is expressed in the language of 
representations as 
𝛤(𝑚)− 𝛤(𝑠) = 𝛤(𝑣) × (𝛤𝑇 + 𝛤𝑅) − 𝛤∥(𝑒) × (𝛤𝑇 + 𝛤𝑅) − (𝛤𝑇 + 𝛤𝑅) + 𝛤𝑓  

                       = [𝛤(𝑣) − 𝛤∥(𝑒) − 𝛤0] × (𝛤𝑇 + 𝛤𝑅) + 𝛤𝑓                                  (3) 

where 𝛤(𝑚) and 𝛤(𝑠) are the representations of the mobility, and the states of self-stress, 
respectively. 𝛤(𝑣) is the number of vertices unshifted by the symmetry operation, and 𝛤∥(𝑒) 
is the representation of a set of vectors along the edges. 𝛤𝑇, 𝛤𝑅 and 𝛤𝑓 are the representations 
of total symmetry, rigid-body translations, rigid-body rotations, and joint freedoms, 
respectively, and 𝛤0  is the totally symmetric representation.  

 
In its initial state, the structure shown in Figure 2-a has cubic symmetry (𝑂ℎ), for which the 
character table is shown in Table 1.  We evaluate equation (3) for the structure in tabular form, 
as used in Guest and Fowler [4]: 
 
 𝐸 8𝐶3 6𝐶2 6𝐶4 3𝐶2 𝑖 6S4 8S6 3𝜎ℎ 6𝜎𝑑 
𝛤(𝑣,𝐶) 8 2 0 0 0 0 0 0 0 4 
−𝛤||(𝑒,𝐶)  −12 0 2 0 0 0 0 0 4 −2 
−𝛤0  −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 
=   −5 1 1 −1 −1 −1 −1 −1 3 1 
× (𝛤𝑇 + 𝛤𝑅) 6 0 −2 2 −2 0 0 0 0 0 
=  −30 0 −2 −2 2 0 0 0 0 0 
+𝛤𝑓  24 0 0 0 0 0 0 0 0 4 
= 𝛤(𝑚) − 𝛤(𝑠)  −6 0 −2 −2 2 0 0 0 0 4 
 
The novel row in this table is the evaluation of 𝛤𝑓, where we see that the character is zero 
under every operation except the identity (𝐸), where all freedoms are preserved, and 
reflection in a plane that contains two bars (𝜎𝑑), where the four freedoms of the revolute  

             
(a) 

 
(b) 

Fig. 2: (a) A representation of the underlying structure of the 
Hoberman Switch-Pitch as a cube. (b) a single element of the 
structure.   



 

 
hinges on the bars are preserved.  Every other operation moves all of the revolute joints, 
hence leading to a zero character. 
From the final row of the tabular calculation, 𝛤(𝑚) − 𝛤(𝑠) can be written in terms of 
irreducible representations as 
𝛤(𝑚)− 𝛤(𝑠) = 𝐴2𝑢 − 𝐴1𝑢 − 𝑇1𝑔 − 𝑇1𝑢             (4) 

As both 𝛤(𝑚) and 𝛤(𝑠) must contain positive numbers of irreducible representations, this 
implies that 
𝛤(𝑚) ⊃ 𝐴2𝑢, and 𝛤(𝑠) ⊃ 𝐴1𝑢 + 𝑇1𝑔 + 𝑇1𝑢         (5) 

Thus, symmetry-adapted counting reveals the existence of a single mechanism, of symmetry 
𝐴2𝑢.  Displacing the structure along this 𝐴2𝑢 path will reduce the symmetry from the cubic 
symmetry 𝑂ℎ, shown in Figure 3-a, to the tetrahedral symmetry 𝑇𝑑, shown in Figure 3-b.  
To follow this path in the lower symmetry group, we repeat the evaluation of equation (3) in 
group 𝑇𝑑, for which the character table is given in Table 2. In fact, we can do this by re-using 
the former tabular calculation but using only the columns 𝐸, 8𝐶3,3𝐶2, 6𝑆4, and 6𝜎𝑑.  In the 
group of 𝑇𝑑, 𝛤(𝑚) − 𝛤(𝑠) can now be written as  
𝛤(𝑚)− 𝛤(𝑠) = 𝐴1 − 𝐴2 − 2𝑇1             (6) 
This evaluation reveals that at least one mechanism exists, and that 𝛤(𝑚) ⊃ 𝐴1.  
Using a first-order geometric analysis, we will show later in Section 3 that only one 
mechanism exists. Therefore, we can conclude that 
𝛤(𝑚) = 𝐴1, and 𝛤(𝑠) = 𝐴2 + 2𝑇1                                  (7) 
Thus, the mechanism along the path of full symmetry (𝐴1) must be a finite mechanism, as no 
equisymmetric state of self-stress exists [6]. 

Table 2: The 𝑇𝑑 character table 

𝑇𝑑 𝐸 8𝐶3 3𝐶2 6S4 6𝜎𝑑 Rotations, 
displacements 

𝐴1 1 1 1 1 1  
𝐴2 1 1 1 −1 −1  
𝐸 2 −1 2 0 0  
𝑇1 3 0 −1 1 −1 (𝑅𝑥 ,𝑅𝑦,𝑅𝑧) 
𝑇2 3 0 −1 −1 1 (𝑥,𝑦, 𝑧)  

 

Table 1: The 𝑂ℎ character table, which gives the character of irreducible 
representations for each of the symmetry operations of the group. 

𝑂ℎ 𝐸 8𝐶3 6𝐶2 6𝐶4 3𝐶2 𝑖 6S4 8S6 3𝜎ℎ 6𝜎𝑑 Rotations, 
displacements 

𝐴1𝑔 1 1 1 1 1 1 1 1 1 1  
𝐴2𝑔 1 1 −1 −1 1 1 −1 1 1 −1  
𝐸𝑔 2 −1 0 0 2 2 0 −1 2 0  
𝑇1𝑔 3 0 −1 1 −1 3 1 0 −1 −1 (𝑅𝑥,𝑅𝑦,𝑅𝑧) 
𝑇2𝑔 3 0 1 −1 −1 3 −1 0 −1 1  
𝐴1𝑢 1 1 1 1 1 −1 −1 −1 −1 −1  
𝐴2𝑢 1 1 −1 −1 1 −1 1 −1 −1 1  
𝐸𝑢 2 −1 0 0 2 −2 0 1 −2 0  
𝑇1𝑢 3 0 −1 1 −1 −3 −1 0 1 1 (𝑥, 𝑦, 𝑧) 
𝑇2𝑢 3 0 1 −1 −1 −3 1 0 1 −1  
 



 
 
 
 
 
 
 
 
 
 
 

 

3. First-order analysis 
To confirm that there is only one deformation path, an equilibrium matrix is generated.  This 
matrix relates the equilibrium between external forces and moments applied at the nodes, and 
internal forces and moments in the structural elements.  Consider an element 𝑘, as shown in 
Figure 2-b, which is connected by two revolute joints (𝑖 and 𝑗). It can carry axial forces 𝑓𝑥𝑥, 
shear forces 𝑓𝑧𝑥 along direction 𝑧, torsion moments 𝑀𝑥𝑥 along direction 𝑥, and bending 
moments 𝑀𝑦𝑥 along direction 𝑦 as shown in Figure 4; other loads cannot be carried because 
of the revolute joints connecting the element to the nodes.   
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Thus we write  

𝑓𝑥 = [𝑓𝑥𝑥,𝑓𝑦𝑥,𝑀𝑥𝑥,𝑀𝑦𝑥]𝑇               (8) 

Now consider the external loads acting at node 𝑖 or 𝑗 that are in equilibrium with 𝑓𝑥.  Define 
these loads in the local coordinate system (Figure 4) as being 

𝑃𝐼𝑥 = �𝑝𝑥𝐼𝑥,𝑝𝑦𝐼𝑥,𝑝𝑧𝐼𝑥,𝑚𝑥𝐼𝑥,𝑚𝑦𝐼𝑥,𝑚𝑧𝐼𝑥�
𝑇

  𝐼 = 𝑖, 𝑗                                              (9) 

Then the equilibrium of the element 𝑘 in its local coordinate system can be expressed in a 
matrix form as: 

 
Fig. 4: An element 𝑘 connected by revolute joints 𝑖, 𝑗  

 
      (a)                                                             (b) 
Fig. 3: The foldable structure: initial configuration (a) and a deformed 
configuration (b).  
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       𝐼 = 𝑖, 𝑗      (11) 

and 𝜖𝐼 is defined as −1 for joint 𝑖, and is +1 for joint 𝑗; and 𝐿 is the distance between the 
joints 𝑖 and 𝑗. 
There is a different local coordinate system for each element.  Before considering the overall 
equilibrium matrix, we need to transform our equilibrium equation, so that all external forces 
and moments are stated in terms of the global coordinate system 𝑋𝑋𝑋 of the structure, which 
is also a right-handed system and shown in Figure 4.  Transformation of axes from a local 
coordinate system to the global one can be summarized in matrix form as: 

�
𝑋
𝑋
𝑋
� = 𝑅0 �

𝑥
𝑦
𝑧
� = �

cos (𝑋, 𝑥) cos (𝑋, 𝑦) cos (𝑋, 𝑧)
cos (𝑋, 𝑥) cos (𝑋,𝑦) cos (𝑋, 𝑧)
cos (𝑋, 𝑥) cos (𝑋,𝑦) cos (𝑋, 𝑧)

� ∙ �
𝑥
𝑦
𝑧
�          (12) 

where 𝑅0 is the 3 × 3 direction cosine matrix. For example, 𝑐𝑐𝑠 (𝑋, 𝑦) from the matrix 𝑅0 is 
the direction cosine of axis 𝑋 with respect to local axis y. As there is no interference between 
forces and moments on transformation, the required transformation matrix 𝑅 for the external 
loads and moments is: 

𝑅 = �𝑅0 0
0 𝑅0

�               (13) 

Hence, 
𝐻𝑥𝐼 = 𝑅 ⋅ ℎ𝑥𝐼       𝐼 = 𝑖, 𝑗                (14) 
where 𝐻𝑥𝐼 is the equilibrium matrix of element k expressed in the global coordinate system. 
For a complete polyhedral structure with 𝑛 nodes and 𝑏 elements, the full equilibrium matrix 
𝐻 can be generated from the global equilibrium matrices of all elements by conventional 
assembly techniques. The equilibrium equation for a polyhedral structure is:  
𝐻6𝑛×4𝑏 ∙ 𝑓4𝑏×1 = 𝑃6𝑛×1                              (15) 
where the vector 𝑓 contains the internal forces in every element, and the vector 𝑃 contains the 
external forces at every node.  We can use standard linear algebra techniques [7] to find states 
of self-stress and mechanisms for the structure. 
The nullspace of 𝐻 corresponds to solutions of 𝐻 ∙ 𝑓 = 0, i.e., states of self-stress, and has 
dimension 
𝑠 = 4𝑏 − 𝑟                     (16) 
where 𝑠 is the number of independent states of self-stress, 𝑟 is the rank of the equilibrium 
matrix 𝐻. The compatibility equation could also be assembled in a similar way, and given as 
𝐶4𝑏×6𝑛 ∙ 𝑑6𝑛×1 = 𝑒4𝑏×1                                  (17) 
where the compatibility matrix, 𝐶, is the transpose (𝐶 = 𝐻𝑇) of the equilibrium matrix 𝐻, 
according to the principle of virtual work. The nullspace of 𝐶 corresponds to solutions of 
𝐶 ∙ 𝑑 = 0, and has dimension 
𝑚 + 6 = 6𝑛 − 𝑟          (18) 



 
Fig. 5: Predictor-corrector method 

where 𝑚 is the number of internal infinitesimal mechanisms, to which we have added the six 
rigid-body modes that must exist as the structure is unconstrained.  
In this work, the specific structure derived from the Hoberman Switch-Pitch ball has eight 
nodes and twelve elements, and the rank of the equilibrium matrix turns out to be 𝑟 = 41. 
Therefore, 
𝑚 = 6 × 8 − 41 − 6 = 1, and 𝑠 = 4 × 12 − 41 = 7       (19) 
which is in accord with the symmetry results.  

4. Trajectory for the Switch-Pitch 
We used the results from the first order analysis to follow the complete folding path for the 
Switch-Pitch structure, confirming the result that the structure should have a finite 
mechanism.  To follow the path, a predictor-corrector algorithm was used, for which a 
schematic is show in Figure 5.   

At each step, the structure is 
displaced along the tangent 
to the folding path that is 
given by the non-rigid-body 
displacement in the 
nullspace of the 
compatibility matrix.  As the 
path is non-linear, in the 
displaced configuration the 
length 𝑙𝑥 of any member 𝑘 is 
not identical to the original 
length 𝑙𝑥0, defining a strain 
that must be corrected. For 
example, the incompatible 
axial displacement 𝑒𝑥 of 
member 𝑘 is  
𝑒𝑥  = 𝑙𝑥 −  𝑙𝑥0 ≠ 0        (20) 
In fact, these are the only 
non-zero strains that need to 
be corrected, as none of the 

nodes of the structure rotate along the folding path.  Therefore, we can define the 
incompatible displacement matrix 𝑒 of the structure as 
𝑒 = [𝑒1, 0,0,0, … , 𝑒𝑥, 0,0,0, … 𝑒12, 0,0,0]𝑇                          (21) 
and a solution for the displacement required to correct the non-zero strain can be computed 
from Eq. (17) as 
𝛿𝑑 = −𝐶+𝑒                                              (22) 
where 𝐶+ is the generalized inverse matrix of the compatibility matrix. 
The complete folding path of the Switch-Pitch mechanism is shown in Figure 6.  Note that 
here we allow members to pass through one another; in practice, clashing would prevent the 
complete cycle being followed.  In fact, as noted by Wei et al. [2], there are singular 
configurations where a vertex becomes co-planar with its neighbouring vertices, but we do 
not look carefully at those configurations here, and simply continue along the symmetric path. 

5. Conclusion 
We have shown that an understanding of symmetry has provided useful insight into the 
behaviour of the Switch-Pitch.  However, more importantly, it has also suggested to us that 



similar mechanisms based on other polyhedra will also be mobile, and we are currently 
working to develop more general mechanisms of this type. 
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