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bstract

The active surface technique using gradient vector flow allows semi-automated segmentation of ventricular borders. The accuracy of the algorithm
epends on the optimal selection of several key parameters. We investigated the use of conservation of myocardial volume for quantitative assessment

f each of these parameters using synthetic and in vivo data. We predicted that for a given set of model parameters, strong conservation of volume
ould correlate with accurate segmentation. The metric was most useful when applied to the gradient vector field weighting and temporal step-size
arameters, but less effective in guiding an optimal choice of the active surface tension and rigidity parameters.

2008 Elsevier Ltd. All rights reserved.
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. Introduction

In human and small animal echocardiography studies, the
ajority of analyses are performed using two-dimensional B-
ode scans. However, in many situations, it is preferable

o calculate left ventricular end diastolic volume (LVEDV)
nd left ventricular end systolic volume (LVESV) since
he ejection fraction (EF) is determined by these two
alues (EF = (LVEDV − LVESV)/LVEDV). EF is a widely
sed metric to assess the health and effectiveness of the
eart as a blood-pumping organ. True volume measurements
equire true volumetric imaging—as opposed to the frequently
mployed technique of extrapolating from discrete 2D image
rames.

Modern human cardiovascular research makes extensive use

f the mouse species as an animal model of human cardiovas-
ular disease. The mouse is preferred due to its low cost, level
f characterization and short gestation period. Accurate animal
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odels are important for assessing the efficacy of novel treat-
ent regimens, e.g., those for myocardial infarction and heart

ailure. By exploring the anatomy, physiology and progression
f disease in genetic mutants (i.e., transgenics and knock-outs),
e can expand our understanding of the role of genetic fac-

ors in cardiovascular disease. Consequently, this paper focuses
n the challenges of quantifying LV chamber volume in mice.
he technique described here may be extended to use in human
chocardiography and studies involving volume quantification
asks using other animals.

Recently, 2D arrays acquiring 3D volume data sets have
ecome widely available for human echocardiography [1,2].
ue to technical and economic reasons it is unlikely that a 2D

rray system will become available for mouse imaging in the
oreseeable future. The most straightforward approach to small
nimal 3D ultrasound imaging involves the acquisition of a series
f equally spaced parallel 2D B-mode images [3,4], synchro-
ized using ECG gating. The 2D images are then assembled,
aking account of the inter-slice spacing, to produce a series of
D image data sets. The endocardial border (i.e. the inner border
f the LV chamber) is identified and segmented in each dataset

o generate 3D models which are used to compute the LVEDV
nd LVESV. The segmentation is frequently performed manu-
lly, by selecting points along the border of the endocardium,
sing a graphic user interface (GUI) in each 2D cross-section of
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he data, but this approach is time-consuming and susceptible to
nter/intra-operator bias and variation.

The 3D active surface provides a method for auto-
atic segmentation of myocardial boundaries, originally

escribed by Terzopoulos et al. [5]. The 3D active sur-
ace is defined as x(m,n) = [x(m,n), y(m,n), z(m,n)]T

m,n) ∈ [0,1]2, which is iteratively deformed and translated
hrough the spatial domain of a 3D image data set to satisfy
he force balance equation:

(α�m,nx − βΔ2
m,nx + Fext) = 0 (1)

here m and n are spatial indices for the surface,
m,n = (∂2/∂m2) + (∂2/∂m2) is the surface Laplacian operator,

nd α and β are weighting parameters of the internal force
orresponding with the surface’s tension and rigidity, respec-
ively. τ is the temporal step-size constant which determines
he amount of deformation applied for each iteration of the
lgorithm, thereby controlling the “viscosity” of the model.
he external force Fext is based on the underlying image data
uch that it attracts the surface to the features of interest,
nd can be computed using a variety of algorithms [6–8]. In
ur study, we selected the gradient vector flow (GVF) field
pproach. This external force was demonstrated by Xu and
rince [9] to yield a robust surface tracking algorithm which
onverges well to concavities in the image data given a wide
ange of potential initialization surfaces, making it well-suited
o echocardiography applications [10–13]. A GVF field is the
ector field v(x, y, z) = [u(x, y, z), v(x, y, z), w(x, y, z)] that
inimizes the energy functional:

GVF =
∫ ∫ ∫

[μ(|∇u|2 + |∇v|2) + |∇f |2|v

− ∇f |2]dxdydz (2)

n which f is an edge map derived from the image data and
is a parameter governing the smoothness of the gradient

ector field. The GVF field was filtered to remove light-to-
ark gradients (caused by noise and speckle rather than image
eatures). The remaining dark-to-light gradient vectors were
rojected onto vectors which were normal to the endocardial
urface—processes which ensured that the GVF field accurately
epresented image boundaries and eliminated some error result-
ng from speckle and image dropout.

The accuracy and robustness of the GVF active surface
GVFAS) algorithm is highly dependent upon the values selected
or each parameter in the algorithm—specifically, α, β, τ, and
. Poor selection of these parameters results in an active surface
hich either collapses or converges to a shape that bears little

esemblance to the target myocardial surface. Thus, the need
rises for a metric that enables the rapid evaluation of a par-
icular set of values for these parameters. One approach to the
ptimization of active contour tension and rigidity parameters
n 2D is presented by Larsen et al. [14]. Extending the model

nto 3D becomes impractical, however, as it requires the user to
dentify and quantify the precise amount of signal dropout in the
-mode images. In Garson et al. [15], we proposed the use of
easures of the conservation of myocardial volume through the

2

a
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omplete cardiac cycle as a quality metric applied to segmen-
ation. This paper expands upon this recent presentation. The

yocardial volume may be defined using the difference between
he volumes contained within the epicardial (outer) and endo-
ardial (inner) left ventricular surfaces. Since the myocardium is
single mass of largely incompressible blood-perfused muscle

issue, we expect that its volume is conserved—except for the
nticipated small variation due to slight differences in blood per-
usion of the cardiac tissue through the cycle. Studies performed
n dogs [16,17] and humans [18–20] indicate that variation in
his volume (i.e., the muscle volume associated with the left
entricle) is approximately 5% or less—significantly less than
he potentially gross errors resulting from poorly selected model
arameters. Thus, we anticipate that GVFAS parameters can be
valuated on the basis of conservation of myocardial volume:
elatively small variation in myocardial volume over the car-
iac cycle will correspond with an active surface with optimal
arameters which accurately tracks the shape and movement of
he myocardium in the image data. While our work focuses on
-mode ultrasound image segmentation, similar work has been

eported recently applying conservation of myocardial volume
o the segmentation of cardiac MR images [21,22].

. Methods

.1. Synthetic data validation study

We initially demonstrate the correlation between conserva-
ion of volume and accuracy of the tracking algorithm using

synthetic dataset created in MATLAB that resembles real
yocardial data. Specifically, target data was created consist-

ng of two nested ellipsoids, corresponding to the epicardial
nd endocardial borders of the myocardium. The volume of
he epicardial ellipsoid first contracted to 70% of its initial vol-
me, then expanded to its original size over the course of 100
rames, simulating one complete heart cycle. The volume of the
ndocardial ellipsoid was adjusted so that the volume of the
myocardium” – that is, the volume of the region between the
wo ellipsoids—remained constant over the cycle. The myocar-
ial region was masked to represent regions of signal dropout
ound in in vivo echocardiography images. These target data
ere applied to a 3D array of random scatterers (83 scatterers
ere generated per resolution cell—significantly greater than the
inimum of five scatterers needed for fully developed speckle

23]) and the product was convolved with a point spread function
alculated using appropriate transducer parameters (specifically,
design chosen to closely match those of the Vevo (VisualSon-

cs 770 Small Animal Ultrasound Scanner, Toronto, Ontario,
anada) scanner used in our laboratory, i.e. a 6.0 mm diam-
ter axisymmetric transducer focused at 12.7 mm operated at
0 MHz center frequency). 2D orthogonal cross-section images
f the synthetic dataset are illustrated in Fig. 1.
.2. In vivo study

To test the efficacy of conservation of volume as a metric for
ccuracy of the segmentation algorithm in vivo, we studied three
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two myocardial surfaces was segmented according to the tem-
porally propagated GVFAS algorithm described in Ref. [26]
(summarized in Fig. 2):
ig. 1. Orthogonal cross-sections of the 3D synthetic dataset. (A) Illustrates a “s

ealthy, C57BL6 mice (Jackson Laboratories, Bar Harbor, ME).
ach mouse was anesthetized using an isoflurane/atmospheric
ir mix and placed on a translation stage for precise image slice
ocation. The mouse core temperature was monitored and main-
ained at 37.0 ± 0.2 ◦C using a heater built into the translation
tage. Carefully maintaining the level of anesthesia and temper-
ture ensures that the physiological condition of the mouse (i.e.
rincipally heart rate) is maintained within a narrow range for the
uration of the scanning. The study was performed in accordance
ith a protocol approved by the University of Virginia Animal
are and Use Committee. Each mouse was scanned using a high-

requency (30 MHz, 50% fractional BW) VisualSonics Vevo
70 scanner. The single-element, mechanically swept trans-
ucer possessed 6.0 mm diameter and 12.7 mm focal depth. The
ransducer was used to acquire a high-resolution (50 �m axial,
00 �m lateral) short-axis B-mode image sequence at the base
f the heart. Using the scanner’s “ECG-based Kilo-Hertz Visual-
zation” (EKV) function, we acquired approximately 110 frames
er heart cycle [24]. The mouse was translated in 1.0 mm incre-
ents and a new image sequence was acquired at each position,

roducing eight equally spaced, parallel image sequences from
ase to apex of the left ventricle. Speckle-reducing anisotropic
iffusion (SRAD) was applied to each image sequence offline
n order to reduce speckle-induced errors in the segmentation
lgorithm [25]. SRAD uses the partial differential equation
ramework governing conventional anisotropic diffusion in con-
unction with a specialized diffusion coefficient that promotes
iffusion in homogenous regions and inhibits diffusion at edges,
hereby preserving and enhancing edge regions in the image
ata. Corresponding frames were taken from each time step,
ssembled in a 3D matrix, and interpolated to form a full 3D
ata set.

.3. Automatic segmentation

For both the synthetic data and in vivo studies, the epi-
ardium was segmented using the same set of active surface
arameters—specifically, 0.08, 0.2, 1.0, and 0.2 were used for
he tension (α), rigidity (β), temporal step-size (τ), and GVF

eighting parameter (μ), respectively. The epicardial surface is

pproximately a uniform curved surface, with relatively little
ignal dropout in the image data set; thus, the 3D GVF active
urface converged accurately and quickly (within few iterations)
xis” slice through the data and (B) illustrates a cross-section of the “long axis”.

iven this “typical” set of surface parameters. Meanwhile, accu-
ate segmentation of the endocardial border requires careful
uning of the active surface parameters because of signal dropout
nd complex geometry (i.e. the papillary muscles extend inwards
s a pair of well-defined bulges). Thus, we applied the principle
f conservation of myocardial volume to adjust the parameters of
he endocardial GVF active surface. An initial survey study was
erformed on representative simulated and in vivo data sets to
etermine the minimum and maximum possible values for each
f the four parameters under consideration—the tension (α) and
igidity (β) of the active surface, the temporal step-size (τ), and
he GVF field weighting parameter, μ. Beyond these limits, the
ctive surface was found to either “collapse” (i.e. shrink until
he surface disappeared entirely), “explode” (i.e. expand beyond
ll reasonable limits), or converge to a shape bearing no resem-
lance to the underlying source data. To investigate the behavior
f the active surface over a the complete range of possible values
or each parameter, the remaining three parameters were fixed
t the midpoint of their respective ranges, and the parameter in
uestion was adjusted, logarithmically, over 10 values between
hat parameter’s minimum and maximum.

For each set of active surface parameters in question, the
Fig. 2. Schematic of the temporally propagated GVFAS algorithm.
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became infeasible, or would deform too rapidly and overshoot
edge regions in the gradient vector field. The midpoint value
used for τ was 0.6. The weighting parameter of the gradient
vector field, μ, varied from 0.03 to 1.4. Outside of these lim-
24 C.D. Garson et al. / Computerized Medic

1) For the initial time step (representing end diastole), the user
initializes the active contour model with a series of eight
parallel circles, corresponding approximately with the shape
and location of the epicardium in each of eight short-axis
2D cross-sections of the data set between base and apex.
During the in vivo study, these cross-sections were the actual
B-mode images obtained using the transducer.

2) Using this initial model, the GVFAS algorithm was iter-
ated until convergence (i.e. approximately 20 iterations) to
segment the epicardial surface at the first time step.

3) This surface was used to initialize the epicardial surface at
the second time step. The GVFAS algorithm was iterated
until convergence, producing a model of the epicardium at
this time step. This model was used to initialize the third time
step, and so on, until the epicardium had been segmented
over the complete heart cycle.

4) The endocardial border was initialized at the first time point
according to the process described in step 1.

5) Using this initial model, the GVFAS algorithm was iterated
until convergence to segment the endocardial surface over
at the first time step.

6) In some regions, the endocardial model expanded and incor-
rectly converged to the epicardial region of the image data
set. The epicardial border (segmented in steps 2–3) was used
to correct these errors in the endocardial model, “pushing”
these local erroneous regions back towards the center of the
model (the GVFAS algorithm was able to identify the epi-
cardial border with greater accuracy than the endocardial
border as the epicardial border region was less susceptible
to signal drop-out and smoother in shape).

7) The corrected endocardial border was used to initialize the
endocardial surface at the second time step. The GVFAS
algorithm was iterated until convergence, producing a model
of the endocardium at this time step. This model was cor-
rected according the process described in step 6, used to
initialize the third time step, and so on, until the endocardium
had been segmented over the complete heart cycle.

The volumes contained within the epicardial and endocar-
ial surfaces at each time point were computed. The difference
etween these volumes was multiplied by the myocardial density
1.05 g/mL [3]) to obtain the myocardial volume. Conservation
f volume was evaluated by computing the ratio of the standard
eviation of myocardial mass over the complete heart cycle to
he mean myocardial mass. For the simulation data, the degree
f conservation of volume was analyzed and the accuracy of the
egmented model volume compared to the known true volume
f the source data.

For the in vivo study, each 3D dataset was segmented manu-
lly by identifying the border of each endocardial and epicardial
urface in a series of cross-sections through the data. Two met-
ics were used to compare automatically segmented models to
he manual segmentation of the left ventricle of each mouse.

he Hausdorff distance [27] is the maximum distance between
ny point in each automatically segmented model to the closest
espective point in the manually segmented model. The Ham-
ing pseudo-distance [28] is the percentage of points on each

F
g
h
s
t
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utomatically segmented model which are larger than D pixels
here, five) from the manually segmented model. For both met-
ics, lower values indicate greater similarity between a pair of
odels.

. Results

For the initial survey study, the tension of the active surface, α,
as found to vary from approximately 0.01–0.10 for all synthetic

nd in vivo studies. Beyond these limits, the active surface would
ither collapse or explode. Thus, the logarithmic “midpoint”
alue used for α while adjusting the other parameters was 0.03.
he rigidity of the active surface, β, was varied from 0.1 to 0.9.
eyond these limits, the active surface would either get become
arped around image speckle or other noise sources (rather than

onforming to image features) or collapse to a sphere. Therefore,
he midpoint value for β was 0.30 when examining variations in
ther parameters. The temporal step-size parameter, τ, was var-
ed from 0.001 to 10, beyond which the model would either
eform so slowly that iterating the model until convergence
ig. 3. Variation in volume and error of mean volume over the range of investi-
ated values for the GVF parameter, μ, for simulation data. Note that the plots
ave minima for approximately the same value of μ, indicating that strong con-
ervation of volume corresponds with high accuracy of the model volume to the
rue volume of the synthetic data set.
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ts, the model would either converge to a shape bearing little
esemblance to the source data or become warped around image
peckle or other noise sources. The midpoint value used for μ

as 0.2.
Each parameter was adjusted over the range of stable values

hile the other three parameters were fixed at their midpoint
alues. The time-propagated GVFAS algorithm was performed
or each value of each parameter. The variation in volume
that is, the ratio of the standard deviation of volumes for
he region between the endo- and epicardial surfaces over the
omplete cardiac cycle to the mean volume) for each param-
ter tested is presented in Figs. 3–6 (note that a small value
or volume variation corresponds with strong conservation of
olume).

Both the variation and accuracy of the myocardial volume
or each value of the parameter μ exhibited local minima for
alues of μ between 0.16 and 0.18 for synthetic data. In vivo, the
ariation in myocardial volume was minimal at approximately
= 0.10 for the three data sets. Both Hamming and Hausdorff
istances are smallest at or near this value of μ. A 2D, short-axis
lice of one of the 3D in vivo data sets is presented in Fig. 7A for
= 0.8 (a non-optimal value predicted by the metric), illustrating

elatively poor accuracy of the endocardial model.

i
d
s
n

ig. 4. Variation in volume (i.e. the inverse of conservation of myocardial volume) ov
ata. The Hamming pseudo-distance and Hausdorff distance, computed by comparin
aging and Graphics 32 (2008) 321–330 325

The active model converged quickly (i.e. within few itera-
ions) to the synthetic target data for all investigated values of
he temporal step-size parameter τ, resulting in relatively con-
tant volume variation over the range and rendering optimization
f this parameter unnecessary for the data set. The active model
urfaces exhibited local minima in variation in volume for the in
ivo data set for values of τ between 0.06 and 0.17. Both Ham-
ing and Hausdorff distances were minimal at these values of

. A short-axis slice illustrating poor segmentation, correspond-
ng with a value of τ = 0.001, is presented in Fig. 7B. 2D short
xis slices illustrating surfaces generated by optimal values of
= 0.10 and τ = 0.17 (and the “midpoint” values of α = 0.03

nd β = 0.30) are presented in Fig. 8A–B at end diastole and
nd systole, respectively, illustrating an endocardial surface that
ccurately reflects the shape and features of the underlying B-
ode image data. Full 3D active surface models generated by

ptimal parameters for in vivo and synthetic data are presented
n Fig. 8C–D.

Volume variation remained relatively constant over all values

nvestigated for the parameter α for both in vivo and synthetic
ata—although the exceptionally large values using in vivo data
et 2 were the result of the endocardial active surface collapsing
ear end systole, as illustrated in Fig. 7C. Volume variation over

er the range of values investigated for GVF weighting parameter μ for in vivo
g each model with manually segmented data, are also presented.
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Fig. 5. Variation in volume (i.e. the inverse of conservation of myocardial volume) over the range of values investigated for temporal step-size parameter τ for in
vivo data. The Hamming pseudo-distance and Hausdorff distance, computed by comparing each model with manually segmented data, are also presented.

Fig. 6. Variation in volume over the range of values investigated the active surface tension (α) and rigidity (β) parameters.
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Fig. 7. Midventricular slices through one of the three 3D in vivo image datasets, with superimposed 2D cross-sections of the corresponding 3D active surfaces
for both the epicardium and endocardium. (A–D) Illustrate poorly converged models corresponding with non-optimal values for each of the four parameters under
consideration. (A) Illustrates an endocardial segmentation resulting from a non-optimal μ value of 0.80—the right-hand side of the border becomes “stuck” in the
myocardium. (B) Illustrates segmentation resulting from a non-optimal τ value of 0.001, which yielded a contour which does not move quickly enough to track the
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ontour from ED to ES. (C) Illustrates the effect of extreme values of the � pa
he endocardial surface. (D) Illustrates the effect of extreme values of the para
lgorithm approaches end systole, eventually vanishing completely.

he range of values investigated for the parameter β exhibited
rends that, while not entirely random, did not correspond with
ccuracy of the GVFAS algorithm. For extremely large values
f β, the active surface would collapse to a rigid, small sphere,
s illustrated in Fig. 7D.

. Discussion

It was found that conservation of volume was a useful predic-
or for the accurate selection of the GVF weighting parameter

and the temporal step-size parameter τ. In the synthetic data
tudy, models generated using the GVFAS algorithm exhibited
he least variation in volume when μ was between 0.16 and
.18, indicating that the algorithm was able to most effectively
rack the synthetic data for this range of values of μ. The mod-

ls generated for these values of μ were also the most accurate,
ndicating that a GVFAS with a μ parameter which exhibits the
east variation in volume (greatest conservation of volume) is the

ost accurate segmentation of the image data. This is confirmed

M
r
o
a

ter (specifically, � = 0.1)—the high-tension value pulls the contour away from
β (specifically, β = 1.28)—at these values, the snake collapses as the tracking

hen comparing automatically and manually segmented mod-
ls for the in vivo data. The GVFAS generated by the value of μ

hich exhibited the greatest conservation of volume (μ = 0.10)
ccurately segmented the image data, closely mirroring automat-
cally segmented models of the endocardial border and yielding
mall Hamming and Hausdorff distances. GVF active surfaces
hich exhibited poor conservation of volume were malformed

n certain sections of the model and corresponded less accurately
ith the underlying image data, resulting in larger Hamming and
ausdorff distances.
The active surface model converged quickly (i.e. within few

terations) for the synthetic data sets for all investigated values of
he temporal step-size parameter τ due to the relatively uniform,
ound shape of the synthetic target data. Thus, variation in vol-
me remained consistently low over the entire range of values.

eanwhile, for the in vivo data sets, the active contour algo-

ithm generated models which exhibited greatest conservation
f volume for τ values of 0.06–0.17. These models represented
ccurate segmentation of the image data, yielding small Ham-
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ig. 8. (A) and (B) Illustrate 2D short-axis slices of well-converged models at e
of 0.10 and a temporal time step τ of 0.17. (C) and (D) Illustrate full 3D rec

synthetic) and optimal (in vivo) values of τ, as predicted by the conservation o

ing and Hausdorff distances. Conversely, active surfaces which
xhibited poor conservation of volume would either fail to con-
erge to any shape at all or converge to an amorphous ellipsoid
hich did not resemble the image data, resulting in larger Ham-
ing and Hausdorff distances.
In the evaluation of the two active surface parameters, ten-

ion (α) and rigidity (β), conservation of volume was found
o be a poor predictor of accuracy of the GVFAS algorithm
ue to several complicating factors. Behavior of the algorithm
ver the range of values investigated for α approximated to “all
r nothing”. While the model would “collapse” or “explode”
or extremely small or large values of α (and in unusual mid-
ange values for the second in vivo data set), performance of the
lgorithm remained consistently strong between these extremes,
xhibiting only small, random changes.

For the rigidity parameter β, behavior of the algorithm exhib-

ted trends in which strong conservation of volume did not
ecessarily correspond with accuracy of the model. The model
xhibited strong conservation of volume at extremely low values
f β due to superior ability to accurately segment the well-

s
s
o
a

stole and end systole, respectively, resulting from a GVF weighting parameter
uctions of the in vivo and synthetic data for optimal values of μ and midpoint
me metric.

efined midventricular region of the 3D image data set. However,
erformance of the model was poor at the base and apex regions
f the heart (where the underlying image data was more obscured
y noise and signal drop-out), exhibiting random fluctuations
nd artifacts between time points in the cardiac cycle. Conser-
ation of volume was again strong for higher values of β, which
roduced a model which was extremely smooth and nearly
pherical. This model was also inaccurate, failing to correctly
egment the complex geometry of the myocardium.

. Conclusion

We have demonstrated that conservation of volume is a useful
etric for optimizing parameters when the GVFAS algorithm

s applied to endocardial surface identification in 3D ultrasound
mage data. Specifically, the approach assists with appropriate

election of the GVF weighting parameter μ and the temporal
tep-size parameter τ. The metric was able to assess the efficacy
f a wide range of potential values for these parameters and
ccurately identify the values which yielded the most accurate
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egmentation model in synthetic and in vivo data for μ and in
ivo data for τ, indicating that metric should be effective across
ata sets acquired under diverse conditions. The algorithm is
urrently implemented in MATLAB to enable convenient “tun-
ng” of the algorithm. However, it is currently a time-consuming
rocess to test permutations of initialization parameters. The
omputation of a complete set of time-propagated GVFAS seg-
entations using a particular set of parameters takes 1–2 h,

imiting the quantity of synthetic and in vivo data sets which
ould be processed within a reasonable amount of time. Opti-
ized implementation in C++ running on parallel processors

ould improve performance substantially, enabling efficient and
ore rigorous analysis over a greater quantity of data sets.
ith properly selected parameters, the GVFAS algorithm should

rovide an acceptable alternative to time-consuming manual
egmentation, reducing the amount of time needed for data pro-
essing and reducing or eliminating user bias. While current
ork has focused on murine cardiac imaging, the algorithm

nd techniques described can be applied to human cardiac stud-
es as well, where 3D echocardiography datasets have become
vailable. Additionally, the a priori knowledge regarding conser-
ation of myocardial volume through the cardiac cycle can also
e applied to endocardial segmentation using other algorithms
nd imaging modalities.
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