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Chapter 1

Mathematical proof

1.1 Logical language

There are many useful ways to present mathematics; sometimes a picture or
a physical analogy produces more understanding than a complicated equation.
However, the language of mathematical logic has a unique advantage: it gives
a standard form for presenting mathematical truth. If there is doubt about
whether a mathematical formulation is clear or precise, this doubt can be re-
solved by converting to this format. The value of a mathematical discovery is
considerably enhanced if it is presented in a way that makes it clear that the
result and its proof could be stated in such a rigorous framework.

Here is a somewhat simplified model of the language of mathematical logic.
There may be function symbols. These may be 0-place function symbols, or
constants. These stand for objects in some set. Example: 8. Or they may be
1-place functions symbols. These express functions from some set to itself, that
is, with one input and one output. Example: square. Or they may be 2-place
function symbols. These express functions with two inputs and one output.
Example: +.

Once the function symbols have been specified, then one can form terms. The
language also has a collection of variables x, y, z, x′, y′, z′, . . .. Each variable is a
term. Each constant c is a term. If t is a term, and f is a 1-place function symbol,
then f(t) is a term. If s and t are terms, and g is a 2-place function symbol,
then g(s, t) or (sgt) is a term. Example: In an language with constant terms
1, 2, 3 and 2-place function symbol + the expression (x+ 2) is a term, and the
expression (3+(x+2)) is a term. Note: Sometimes it is a convenient abbreviation
to omit outer parentheses. Thus 3 + (x + 2) would be an abbreviation for
(3 + (x+ 2)).

The second ingredient is predicate symbols. These may be 0-place predicate
symbols, or propositional symbols. They may stand for complete sentences. One
useful symbol of this nature is ⊥, which is interpreted as always false. Or they
may be 1-place predicate symbols. These express properties. Example: even.

1



2 CHAPTER 1. MATHEMATICAL PROOF

Or they may be 2-place predicate symbols. These express relations. Example:
<.

Once the terms have been specified, then the atomic formulas are specified.
A propositional symbol is an atomic formula. If p is a property symbol, and t
is a term, then tp is an atomic formula. If s and t are terms, and r is a relation
symbol, then srt is an atomic formula. Thus (x+ 2) < 3 is an atomic formula.
Note: This could be abbreviated x+ 2 < 3.

Finally there are logical symbols ∧, ∨, ⇒, ∀, ∃, and parentheses.
Once the atomic formulas are specified, then the other formulas are obtained

by logical operations. If A and B are formulas, then so are (A ∧ B), (A ∨ B),
and (A⇒ B). If x is a variable and A(x) is a formula, then so are ∀xA(x) and
∃xA(x). Thus ∃xx+ 2 < 3 is a formula.

We shall often abbreviate (A ⇒ ⊥) by ¬A. Thus facts about negation will
be special cases of facts about implication. In writing a formula, we often omit
the outermost parentheses. However this is just an abbreviation.

Another useful abbreviation is (A⇔ B) for ((A⇒ B) ∧ (B ⇒ A)).
Some of the logical operations deserve special comment. The implication

A⇒ B is also written
if A, then B

A only if B
B if A.
The equivalence A⇔ B is also written
A if and only if B.
The converse of A ⇒ B is B ⇒ A. The contrapositive of A ⇒ B is ¬B ⇒

¬A.
When A is defined by B, the definition is usually written in the form A if

B. It has the logical force of A⇔ B.
The universal quantified formula ∀xA(x) is also written
for all x A(x)
for each x A(x)
for every x A(x).
The existential quantified formula ∃xA(x) is also written
there exists x with A(x)
for some x A(x).
Note: Avoid at all cost expressions of the form “for any x A(x).” The word

“any” does not function as a quantifier in the usual way. For example, if one
says “z is special if and only if for any singular x it is the case that x is tied to
z”, it is not clear which quantifier on x might be intended.

Often a quantifier has a restriction. The restricted universal quantifier is
∀x (C(x) ⇒ A(x)). The restricted existential quantifier is ∃x (C(x) ∧ A(x)).
Here C(x) is a formula that places a restriction on the x for which the assertion
is made.

It is common to have implicit restrictions. For example, say that the context
of a discussion is real numbers x. There may be an implicit restriction x ∈ R.
Since the entire discussion is about real numbers, it may not be necessary to
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make this explicit in each formula. This, instead of ∀x (x ∈ R ⇒ x2 ≥ 0) one
would write just ∀xx2 ≥ 0.

Sometimes restrictions are indicated by use of special letters for the variables.
Thus often i, j, k, l,m, n are used for integers. Instead of saying that m is odd if
and only if ∃y (y ∈ N ∧m = 2y + 1) one would just write that m is odd if and
only if ∃km = 2k + 1.

The letters ε, δ are used for strictly positive real numbers. The corresponding
restrictions are ε > 0 and δ > 0. Thus instead of writing ∀x (x > 0 ⇒ ∃y (y >
0 ∧ y < x)) one would write ∀ε∃δ δ < ε;.

Other common restrictions are to use f, g, h for functions or to indicate sets
by capital letters. Reasoning with restricted variables should work smoothly,
provided that one keeps the restriction in mind at the appropriate stages of the
argument.

1.2 Free and bound variables

In a formula each occurrence of a variable is either free or bound. The occurrence
of a variable x is bound if it is in a subformula of the form ∀xB(x) or ∃xB(x).
(There may also be other operations, such as the set builder operation, that
produce bound variables.) If the occurrence is not bound, then it is said to be
free.

In general, a bound variable may be replaced by a new bound variable with-
out changing the meaning of the formula. Thus, for instance, if y′ is a variable
that does not occur in the formula, one could replace the occurrences of y in the
subformula ∀y B(y) by y′, so the new subformula would now be ∀y′B(y′). Of
course if the variables are restricted, then the change of variable should respect
the restriction.

Example: Let the formula be ∃y x < y. This says that there is a number
greater than x. In this formula x is free and y is bound. The formula ∃y′ x < y′

has the same meaning. In this formula x is free and y′ is bound. On the other
hand, the formula ∃y x′ < y has a different meaning. This formula says that
there is a number greater than x′.

We wish to define careful substitution of a term t for the free occurrences
of a variable x in A(x). The resulting formula will be denoted A(t) There is
no particular problem in defining substitution in the case when the term t has
no variables that already occur in A(x). The care is needed when there is a
subformula in which y is a bound variable and when the term t contains the
variable y. Then mere substitution might produce an unwanted situation in
which the y in the term t becomes a bound variable. So one first makes a
change of bound variable in the subformula. Now the subformula contains a
bound variable y′ that cannot be confused with y. Then one substitutes t for
the free occurrences of x in the modified formula. Then y will be a free variable
after the substitution, as desired.

Example: Let the formula be ∃y x < y. Say that one wished to substitute
y+1 for the free occurrences of x. This should say that there is a number greater
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than y + 1. It would be wrong to make the careless substitution ∃y y + 1 < y.
This statement is not only false, but worse, it does not have the intended mean-
ing. The careful substitution proceeds by first changing the original formula to
∃y′ x < y′. The careful substitution then produces ∃y′ y + 1 < y′. This says
that there is a number greater than y + 1, as desired.

The general rule is that if y is a variable with bound occurrences in the for-
mula, and one wants to substitute a term t containing y for the free occurrences
of x in the formula, then one should change the bound occurrences of y to bound
occurrences of a new variable y′ before the substitution. This gives the kind of
careful substitution that preserves the intended meaning.

1.3 Proofs from analysis

The law of double negation states that ¬¬A ⇔ A. De Morgan’s laws for con-
nectives state that ¬(A∧B)⇔ (¬A∨¬B) and that ¬(A∨B)⇔ (¬A∧¬B). De
Morgan’s laws for quantifiers state that ¬∀xA(x)⇔ ∃x¬A(x) and ¬∃xA(x)⇔
∀x¬A(x). Since ¬(A ⇒ B) ⇔ (A ∧ ¬B) and ¬(A ∧ B) ⇔ (A ⇒ ¬B), De
Morgan’s laws continue to work with restricted quantifiers.

Examples:

1. The function f is continuous if ∀a∀ε∃δ∀x(|x−a| < δ ⇒ |f(x)−f(a)| < ε).
It is assumed that a, x, ε, δ are real numbers with ε > 0, δ > 0.

2. The function f is not continuous if ∃a∃ε∀δ∃x(|x−a| < δ∧¬|f(x)−f(a)| <
ε). This is a mechanical application of De Morgan’s laws.

Similarly, the function f is uniformly continuous if ∀ε∃δ∀a∀x(|x− a| < δ ⇒
|f(x)−f(a)| < ε). Notice that the only difference is the order of the quantifiers.

Examples:

1. Consider the proof that f(x) = x2 is continuous. The heart of the proof
is to prove the existence of δ. The key computation is |x2 − a2| = |x +
a||x − a| = |x − a + 2a||x − a|. If |x − a| < 1 then this is bounded by
(2|a|+ 1)|x− a|.
Here is the proof. Let ε > 0. Suppose |x − a| < min(1, ε/(2|a| + 1)).
From the above computation it is easy to see that |x2 − a2| < ε. Hence
|x− a| < min(1, ε/(2|a|+ 1))⇒ |x2 − a2| < ε. Since in this last statement
x is arbitrary, ∀x (|x − a| < min(1, ε/(2|a| + 1)) ⇒ |x2 − a2| < ε). Hence
∃δ∀x (|x − a| < δ ⇒ |x2 − a2| < ε). Since ε > 0 and a are arbitrary, the
final result is that ∀a∀ε∃δ∀x (|x− a| < δ ⇒ |x2 − a2| < ε).

2. Consider the proof that f(x) = x2 is not uniformly continuous. Now the
idea is to take x−a = δ/2 and use x2−a2 = (x+a)(x−a) = (2a+δ/2)(δ/2).

Here is the proof. With the choice of x−a = δ/2 and with a = 1/δ we have
that |x−a| < δ and |x2−a2| ≥ 1. Hence ∃a∃x (|x−a| < δ∧|x2−a2| ≥ 1).
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Since δ > 0 is arbitrary, it follows that ∀δ∃a∃x (|x−a| < δ∧|x2−a2| ≥ 1).
Finally we conclude that ∃ε∀δ∃a∃x (|x− a| < δ ∧ |x2 − a2| ≥ ε).
It is a general fact that f uniformly continuous implies f continuous.
This is pure logic; the only problem is to interchange the ∃δ quantifier
with the ∀a quantifier. This can be done in one direction. Suppose
that ∃δ∀aA(δ, a). Temporarily suppose that δ′ is a name for the num-
ber that exists, so that ∀aA(δ′, a). In particular, A(δ′, a′). It follows
that ∃δA(δ, a′). This conclusion does not depend on the name, so it fol-
lows from the original supposition. Since a′ is arbitrary, it follows that
∀a∃δ A(δ, a).

What goes wrong with the converse argument? Suppose that ∀a∃δ A(δ, a).
Then ∃δ A(δ, a′). Temporarily suppose A(δ′, a′). The trouble is that a′ is
not arbitrary, because something special has been supposed about it. So
the generalization is not permitted.

Problems

1. A sequence of functions fn converges pointwise (on some set of real num-
bers) to f as n tends to infinity if ∀x∀ε∃N∀n(n ≥ N ⇒ |fn(x)−f(x)| < ε).
Here the restrictions are that x is in the set and ε > 0. Show that for
fn(x) = xn and for suitable f(x) there is pointwise convergence on the
closed interval [0, 1].

2. A sequence of functions fn converges uniformly (on some set of real num-
bers) to f as n tends to infinity if ∀ε∃N∀x∀n(n ≥ N ⇒ |fn(x)−f(x)| < ε).
Show that for fn(x) = xn and the same f(x) the convergence is not uni-
form on [0, 1].

3. Show that uniform convergence implies pointwise convergence.

4. Show that if fn converges uniformly to f and if each fn is continuous,
then f is continuous.

Hint: The first hypothesis is ∀ε∃N∀x∀n (n ≥ N ⇒ |fn(x) − f(x)| < ε).
Deduce that ∃N∀x∀n (n ≥ N ⇒ |fn(x) − f(x)| < ε′/3). Temporarily
suppose ∀x∀n (n ≥ N ′ ⇒ |fn(x)− f(x)| < ε′/3).

The second hypothesis is ∀n∀a∀ε∃δ∀x (|x− a| < δ ⇒ |fn(x)− fn(a)| < ε).
Deduce that ∃δ∀x (|x − a| < δ ⇒ |fN ′(x) − fN ′(a)| < ε′/3). Temporarily
suppose that ∀x (|x− a| < δ′ ⇒ |fN ′(x)− fN ′(a)| < ε′/3).

Suppose |x−a| < δ′. Use the temporary suppositions above to deduce that
|f(x)− f(a)| < ε′. Thus |x− a| < δ′ ⇒ |f(x)− f(a)| < ε′. This is well on
the way to the desired conclusion. However be cautious: At this point x is
arbitrary, but a is not arbitrary. (Why?) Explain in detail the additional
arguments to reach the goal ∀a∀ε∃δ∀x(|x− a| < δ ⇒ |f(x)− f(a)| < ε).
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1.4 Natural deduction

The way of formalizing the rules of logic that corresponds most closely to the
practice of mathematical proof is natural deduction. Natural deduction proofs
are constructed so that they may be read from the top down. (On the other
hand, to construct a natural deduction proof, it is often helpful to work from
the top down and the bottom up and try to meet in the middle.)

In natural deduction each Suppose introduces a new hypothesis to the set
of hypotheses. Each matching Thus removes the hypothesis. Each line is a
claim that the formula on this line follows logically from the hypotheses above
that have been introduced by a Suppose and not yet eliminated by a matching
Thus .

Here is an example of a natural deduction proof. Say that one wants to
show that if one knows the algebraic fact ∀x (x > 0⇒ (x+ 1) > 0), then one is
forced by pure logic to accept that ∀y (y > 0⇒ ((y + 1) + 1) > 0). Here is the
argument, showing every logical step. The comments on the right are not part
of the proof.

Suppose ∀x(x > 0⇒ (x+ 1) > 0)
Suppose z > 0
z > 0⇒ (z + 1) > 0 (specialize the hypothesis)
(z + 1) > 0 (from the implication)
(z + 1) > 0⇒ ((z + 1) + 1) > 0 (specialize the hypothesis again)
((z + 1) + 1) > 0 (from the implication)

Thus z > 0⇒ ((z + 1) + 1) > 0 (introducing the implication)
∀y (y > 0⇒ ((y + 1) + 1) > 0 (generalizing)

Notice that the indentation makes the hypotheses in force at each stage quite
clear. On the other hand, the proof could also be written in narrative form. It
could go like this.

Suppose that for all x, if x > 0 then (x + 1) > 0. Suppose z > 0. By
specializing the hypothesis, obtain that if z > 0, then (z + 1) > 0. It follows
that (z+1) > 0. By specializing the hypothesis again, obtain that if (z+1) > 0,
then ((z + 1) + 1) > 0. It follows that ((z + 1) + 1) > 0. Thus if z > 0, then
((z + 1) + 1) > 0. Since z is arbitrary, conclude that for all y, if (y > 0, then
((y + 1) + 1) > 0).

Mathematicians usually write in narrative form, but it is useful to practice
proofs in outline form, with proper indentation to show the subarguments.

The following pages give the rules for natural deduction. In each rule there
is a connective or quantifier that is the center of attention. It may be in the
hypothesis or in the conclusion. The rule shows how to reduce an argument
involving this logical operation to one without the logical operation. (To ac-
complish this, the rule needs to be used just once, except in two cases involving
the substitution of terms. If it were not for these two exceptions, mathematics
would be simple indeed.)
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Conjunction rules:

A ∧B
A and in hypothesis
B and in hypothesis

A

B
A ∧B and in conclusion

Universal rules:

∀xA(x)
A(t) all in hypothesis

Note: This rule may be used repeatedly with various terms.

If z is a variable that does not occur free in a hypothesis in force or in ∀xA,
then

A(z)
∀xA(x) all in conclusion

Note: The restriction on the variable is usually signalled by an expression
such as “since z is arbitrary, conclude ∀xA(x).”
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Implication rules:

A⇒ B

A
B implies in hypothesis

Note: This rule by itself is an incomplete guide to practice, since it may not
be clear how to prove A. A template that always works is provided below.

Suppose A

B
Thus A⇒ B implies in conclusion

Negation rules:

¬A

A
⊥ not in hypothesis

Note: This rule by itself is an incomplete guide to practice, since it may not
be clear how to prove A. A template that always works is provided below.

Suppose A

⊥
Thus ¬A not in conclusion
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Disjunction rules:

A ∨B
Suppose A

C
Instead suppose B

C
Thus C or in hypothesis

A
A ∨B or in conclusion

together with
B
A ∨B or in conclusion

Note: This rule by itself is an incomplete guide to practice, since it may not
be clear how to prove A or how to prove B. A template that always works is
provided below.
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Existential rules:

If z is a variable that does not occur free in a hypothesis in force, in ∃xA,
or in C, then

∃xA(x)
Suppose A(z)

C
Thus C exists in hypothesis

Note: The restriction on the variable could be signalled by an expression such
as “since z is arbitrary, conclude C on the basis of the existential hypothesis
∃xA(x).”

A(t)
∃xA(x) exists in conclusion

Note: This rule by itself is an incomplete guide to practice, since it may not
be clear how to prove A(t). A template that always works is provided below.
This template shows in particular how the rule may be used repeatedly with
various terms.

Mathematicians tend not to use the exists in hypothesis rule explicitly. They
simply suppose that some convenient variable may be used as a name for the
thing that exists. They reason with this name up to a point at which they get
a conclusion that no longer mentions it. At this point they just forget about
their temporary supposition. One could try to formalize this procedure with a
rule something like the following.

Abbreviated existential rule:

If z is a variable that does not occur free in a hypothesis in force, in ∃xA,
or in C, then

∃xA(x)
Temporarily suppose A(z)

C
From this point on treat C as a consequence of the existential hypothesis

without the temporary supposition or its temporary consequences. In case of
doubt, it is safer to use the original rule!
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The rules up to this point are those of intuitionistic logic. This is a more
flexible form of logic with a very interesting interpretation. Mathematicians find
proofs of this type to be natural and direct. However in order to get the full
force of classical logic one needs one more rule, the rule of contradiction. The
section on natural deduction strategies will demonstrate how this rule may be
used in a controlled way.

Contradiction rule:

Suppose ¬C

⊥
Thus C by contradiction

Note: The double negation law says that ¬¬A is logically equivalent to A.
The rule for negation in conclusion and the double negation law immediately
give the contradiction rule.
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A natural deduction proof is read from top down. However it is often discov-
ered by working simultaneously from the top and the bottom, until a meeting in
the middle. The discoverer then obscures the origin of the proof by presenting
it from the top down. This is convincing but often not illuminating.

Example: Here is a natural deduction proof of the fact that ∃x (x happy ∧
x rich) logically implies that ∃xx happy ∧ ∃xx rich.

Suppose ∃x (x happy ∧ x rich)
Suppose z happy ∧ z rich
z happy
z rich
∃xx happy
∃xx rich
∃xx happy ∧ ∃xx rich

Thus ∃xx happy ∧ ∃xx rich
Here is the same proof in narrative form.
Suppose ∃x (x happy∧x rich). Suppose z happy∧z rich. Then z happy

and hence ∃xx happy. Similarly, z rich and hence ∃xx rich. It follows that
∃xx happy ∧ ∃xx rich. Thus (since z is an arbitrary name) it follows that
∃xx happy ∧ ∃xx rich on the basis of the original supposition of existence.

Example: Here is a natural deduction proof of the fact that ∃x (x happy ∧
x rich) logically implies that ∃xx happy∧ ∃xx rich using the abbreviated exis-
tential rule.

Suppose ∃x (x happy ∧ x rich)
Temporarily suppose z happy ∧ z rich
z happy
z rich
∃xx happy
∃xx rich
∃xx happy ∧ ∃xx rich

Here is the same abbreviated proof in narrative form.
Suppose ∃x (x happy∧x rich). Temporarily suppose z happy∧z rich.

Then z happy and hence ∃xx happy. Similarly, z rich and hence ∃xx rich. It
follows that ∃xx happy∧∃xx rich. Since z is an arbitrary name, this conclusion
holds on the basis of the original supposition of existence.

Example: Here is a natural deduction proof that ∃y∀xx ≤ y gives ∀x∃y x ≤
y.

Suppose ∃y∀xx ≤ y
Suppose ∀xx ≤ y′
x′ ≤ y′
∃y x′ ≤ y

Thus ∃y x′ ≤ y
∀x∃y x ≤ y

Here is the same proof in abbreviated narrative form.
Suppose ∃y∀xx ≤ y. Temporarily suppose ∀xx ≤ y′. In particular,

x′ ≤ y′. Therefore ∃y x′ ≤ y. In fact, since y′ is arbitrary, this follows on
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the basis of the original existential supposition. Finally, since x′ is arbitrary,
conclude that ∀x∃y x ≤ y.

The following problems are to be done using natural deduction. Indent.
Justify every logical step. Each step involves precisely one logical operation.
The logical operation must correspond to the logical type of the formula.

Problems

1. Prove that

∀x (x rich⇒ x happy)⇒ (∀xx rich⇒ ∀xx happy). (1.1)

2. Suppose

∀z z2 ≥ 0, ∀x∀y ((x− y)2 ≥ 0⇒ (2 ∗ (x ∗ y)) ≤ (x2 + y2)). (1.2)

Show that it follows logically that

∀x∀y (2 ∗ (x ∗ y)) ≤ (x2 + y2). (1.3)

3. Show that the hypotheses n odd ⇒ n2 odd, n odd ∨ n even, ¬(n2 odd ∧
n2 even) give the conclusion n2 even⇒ n even.

4. Show that
∀xx happy⇒ ¬∃x¬x happy. (1.4)

5. Show that
∀x∃y (x likes y ⇒ x adores y) (1.5)

leads logically to

∃x∀y x likes y ⇒ ∃x∃y x adores y. (1.6)

1.5 Natural deduction strategies

A useful strategy for natural deduction is to begin with writing the hypotheses
at the top and the conclusion at the bottom. Then work toward the middle.
The most important point is to try to use the forall in conclusion rule and
the exists in hypothesis rule early in this process of proof construction. This
introduces new “arbitrary” variables. Then one uses the forall in hypothesis rule
and the exists in conclusion rule with terms formed from these variables. So it
is reasonable to use these latter rules later in the proof construction process.
They may need to be used repeatedly.

The natural deduction rules as stated above do not have the property that
they are reversible. The rules that are problematic are implies in hypothesis,
not in hypothesis, or in conclusion, and exists in conclusion. So it is advisable
to avoid or postpone the use of these rules.

However there are templates that may be used to overcome this difficulty.
These have the advantage that they work in all circumstances.
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A⇒ B
Suppose ¬C

A
B implies in hypothesis

⊥
Thus C by contradiction

¬A
Suppose ¬C

A
⊥ not in hypothesis

Thus C by contradiction

Note: The role of this rule to make use of a negated hypothesis ¬A. When
the conclusion C has no useful logical structure, but A does, then the rule
effectively switches A for C.
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Suppose ¬(A ∨B)
Suppose A
A ∨B or in conclusion
⊥ not in hypothesis

Thus ¬A not in conclusion
Suppose B
A ∨B or in hypothesis
⊥ not in hypothesis

Thus ¬B not in conclusion

⊥
Thus A ∨B by contradiction

Note: A shortcut is to use the DeMorgan’s law that says that A ∨ B is
logically equivalent to ¬(¬A ∧ ¬B). So if ¬A ∧ ¬B leads to a contradiction,
then conclude A ∨B.

Suppose ¬∃xA(x)
Suppose A(t)
∃xA(x) exists in conclusion
⊥ not in hypothesis

Thus ¬A(t) not in conclusion
(may be repeated with various terms)

⊥
Thus ∃xA(x) by contradiction

Note: A shortcut is to use the quantifier DeMorgan’s law that says that
∃xA(x) is logically equivalent to ¬(∀x¬A(x)). So if (possibly repeated) use of
∀x¬A(x) leads to a contradiction, then conclude ∃xA(x).
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Problems

1. Here is a mathematical argument that shows that there is no largest prime
number. Assume that there were a largest prime number. Call it a. Then
a is prime, and for every number j with a < j, j is not prime. However,
for every number m, there is a number k that divides m and is prime.
Hence there is a number k that divides a! + 1 and is prime. Call it b. Now
every number k > 1 that divides n! + 1 must satisfy n < k. (Otherwise
it would have a remainder of 1.) Hence a < b. But then b is not prime.
This is a contradiction.

Use natural deduction to prove that

∀m∃k (k prime ∧ k divides m) (1.7)

∀n∀k (k divides n! + 1⇒ n < k) (1.8)

logically imply

¬∃n (n prime ∧ ∀j (n < j ⇒ ¬ j prime)). (1.9)

2. It is a well-known mathematical fact that
√

2 is irrational. In fact, if it
were rational, so that

√
2 = m/n, then we would have 2n2 = m2. Thus

m2 would have an even number of factors of 2, while 2n2 would have an
odd number of factors of two. This would be a contradiction.

Use natural deduction to show that

∀i i2 even-twos (1.10)

and
∀j (j even-twos⇒ ¬(2 ∗ j) even-twos) (1.11)

give
¬∃m∃n (2 ∗ n2) = m2. (1.12)

1.6 Equality

Often equality is thought of as a fundamental logical relation. Manipulations
with this concept are very familiar, so there is no need to dwell on it here in
detail. However it is worth noting that one could formulate equality rules for
natural deduction.

Equality rules:

For a formula A(z) with free variable z substitution of equals is permitted:
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s = t

A(s)
A(t) equality in hypothesis

Everything is equal to itself:

t = t equality in conclusion

Problems

1. If X is a set, then P (X) is the set of all subsets of X. If X is finite with
n elements, then P (X) is finite with 2n elements. A famous theorem of
Cantor states that there is no function f from X to P (X) that is onto
P (X). Thus in some sense there are more elements in P (X) than in X.
This is obvious when X is finite, but the interesting case is when X is
infinite.

Here is an outline of a proof. Consider an arbitrary function f from X
to P (X). We want to show that there exists a set V such that for each
x in X we have f(x) 6= V . Consider the condition that x /∈ f(x). This
condition defines a set. That is, there exists a set U such that for all x,
x ∈ U is equivalent to x /∈ f(x). Call this set S. Let p be arbitrary.
Suppose f(p) = S. Suppose p ∈ S. Then p /∈ f(p), that is, p /∈ S. This
is a contradiction. Thus p /∈ S. Then p ∈ f(p), that is, p ∈ S. This is a
contradiction. Thus f(p) 6= S. Since this is true for arbitrary p, it follows
that for each x in X we have f(x) 6= S. Thus there is a set that is not in
the range of f .

Prove using natural deduction that from

∃U ∀x ((x ∈ U ⇒ ¬x ∈ f(x)) ∧ (¬x ∈ f(x)⇒ x ∈ U)) (1.13)

one can conclude that
∃V ∀x¬f(x) = V. (1.14)

2. Here is an argument that if f and g are continuous functions, then the
composite function g ◦ f defined by (g ◦ f)(x) = g(f(x)) is a continuous
function.

Assume that f and g are continuous. Consider an arbitrary point a′

and an arbitrary ε′ > 0. Since g is continuous at f(a′), there exists
a δ > 0 such that for all y the condition |y − f(a′)| < δ implies that
|g(y)− g(f(a′))| < ε′. Call it δ1. Since f is continuous at a′, there exists a
δ > 0 such that for all x the condition |x−a′| < δ implies |f(x)− f(a′)| <
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δ1. Call it δ2. Consider an arbitrary x′. Suppose |x′ − a′| < δ2. Then
|f(x′)− f(a′)| < δ1. Hence |g(f(x′))− g(f(a′))| < ε′. Thus |x′ − a′| < δ2
implies |g(f(x′))− g(f(a′))| < ε′. Since x′ is arbitrary, this shows that for
all x we have the implication |x−a′| < δ2 implies |g(f(x))−g(f(a′))| < ε′.
It follows that there exists δ > 0 such that all x we have the implication
|x − a′| < δ implies |g(f(x)) − g(f(a′))| < ε′. Since ε′ is arbitrary, the
composite function g ◦ f is continuous at a′. Since a′ is arbitrary, the
composite function g ◦ f is continuous.

In the following proof the restrictions that ε > 0 and δ > 0 are implicit.
They are understood because this is a convention associated with the use
of the variables ε and δ.

Prove using natural deduction that from

∀a∀ε∃δ∀x (|x− a| < δ ⇒ |f(x)− f(a)| < ε) (1.15)

and
∀b∀ε∃δ∀y (|y − b| < δ ⇒ |g(y)− g(b)| < ε) (1.16)

one can conclude that

∀a∀ε∃δ∀x (|x− a| < δ ⇒ |g(f(x))− g(f(a))| < ε). (1.17)

1.7 Lemmas and theorems

In statements of mathematical theorems it is common to have implicit universal
quantifiers. For example say that we are dealing with real numbers. Instead of
stating the theorem that

∀x∀y 2xy ≤ x2 + y2 (1.18)

one simply claims that
2uv ≤ u2 + v2. (1.19)

Clearly the second statement is a specialization of the first statement. But it
seems to talk about u and v, and it is not clear why this might apply for someone
who wants to conclude something about p and q, such as 2pq ≤ p2 + w2. Why
is this permissible?

The answer is that the two displayed statements are logically equivalent,
provided that there is no hypothesis in force that mentions the variables u or
v. Then given the second statement and the fact that the variables in it are
arbitrary , the first statement is a valid generalization.

Notice that there is no similar principle for existential quantifiers. The state-
ment

∃xx2 = x (1.20)

is a theorem about real numbers, while the statement

u2 = u (1.21)
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is a condition that is true for u = 0 or u = 1 and false for all other real numbers.
It is certainly not a theorem about real numbers. It might occur in a context
where there is a hypothesis that u = 0 or u = 1 in force, but then it would be
incorrect to generalize.

One cannot be careless about inner quantifiers, even if they are universal.
Thus there is a theorem

∃xx < y. (1.22)

This could be interpreted as saying that for each arbitrary y there is a number
that is smaller than y. Contrast this with the statement

∃x∀y x < y (1.23)

with an inner universal quantifier. This is clearly false for the real number
system.

The proof rules provided here suffice for every proof in mathematics. This
is the famous Gödel completeness theorem. This fact is less useful than one
might think, because there is no upper limit to the number of terms that may
be used to instantiate a universal hypothesis. Most instantiations are useless,
and in complicated circumstances it may be difficult to know the correct one,
or even to know that it exists.

In practice, the rules are useful only for the construction of small proofs and
for verification of a proof after the fact. The way to make progress in mathe-
matics is find concepts that have meaningful interpretations. In order to prove
a major theorem, one prepares by proving smaller theorems or lemmas. Each
of these may have a rather elementary proof. But the choice of the statements
of the lemmas is crucial in making progress. So while the micro structure of
mathematical argument is based on the rules of proof, the global structure is a
network of lemmas, theorems, and theories based on astute selection of mathe-
matical concepts.

1.8 More proofs from analysis

One of the most important concepts of analysis is the concept of open set.
This makes sense in the context of the real line, or in the more general case of
Euclidean space, or in the even more general setting of a metric space. Here we
use notation appropriate to the real line, but little change is required to deal
with the other cases.

For all subsets V , we say that V is open if ∀a (a ∈ V ⇒ ∃ε∀x (|x− a| < ε⇒
x ∈ V )).

Recall the definition of union of a collection Γ of subsets. This says that for
all y we have y ∈ ⋃Γ if and only if ∃W (W ∈ Γ ∧ y ∈W ).

Here is a proof of the theorem that for all collections of subsets Γ the hy-
pothesis ∀U (U ∈ Γ ⇒ U open) implies the conclusion

⋃
Γ open. The style of

the proof is a relaxed form of natural deduction in which some trivial steps are
skipped.
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Suppose ∀U (U ∈ Γ ⇒ U open). Suppose a ∈ ⋃Γ. By definition
∃W (W ∈ Γ∧a ∈W ). Temporarily suppose W ′ ∈ Γ∧a ∈W ′. Since W ′ ∈ Γ
and W ′ ∈ Γ⇒W ′ open, it follows that W ′ open. Since a ∈W ′ it follows from
the definition that ∃ε∀x (|x−a| < ε⇒ x ∈W ′). Temporarily suppose ∀x (|x−
a| < ε′ ⇒ x ∈ W ′). Suppose |x− a| < ε′. Then x ∈ W ′. Since W ′ ∈ Γ ∧ x ∈
W ′, it follows that ∃W (W ∈ Γ ∧ x ∈ W ′). Then from the definition x ∈ ⋃Γ.
Thus |x− a| < ε′ ⇒ x ∈ ⋃Γ. Since x is arbitrary, ∀x (|x− a| < ε′ ⇒ x ∈ ⋃Γ).
So ∃ε∀x (|x − a| < ε ⇒ x ∈ ⋃Γ). Thus a ∈ ⋃Γ ⇒ ∃ε∀x (|x − a| < ε ⇒ x ∈⋃

Γ). Since a is arbitrary, ∀a (a ∈ ⋃Γ⇒ ∃ε∀x (|x− a| < ε⇒ x ∈ ⋃Γ)). So by
definition

⋃
Γ open. Thus ∀U (U ∈ Γ⇒ U open)⇒ ⋃

Γ open.

Problems

1. Take the above proof that the union of open sets is open and put it in
outline form, with one formula per line. Indent at every Suppose line.
Remove the indentation at every Thus line. (However, do not indent at
a Temporarily suppose line.)

2. Draw a picture to illustrate the proof in the preceding problem.

3. Prove that for all subsets U, V that (U open ∧ V open) ⇒ U ∩ V open.
Recall that U ∩ V =

⋂{U, V } is defined by requiring that for all y that
y ∈ U ∩ V ⇔ (y ∈ U ∧ y ∈ V ). It may be helpful to use the general
fact that for all t, ε1 > 0, ε2 > 0 there is an implication t < min(ε1, ε2)⇒
(t < ε1 ∧ t < ε2). Use a similar relaxed natural deduction format. Put in
outline form, with one formula per line.

4. Draw a picture to illustrate the proof in the preceding problem.

5. Recall that for all functions f , sets W , and elements t we have t ∈
f−1[W ]⇔ f(t) ∈ W . Prove that f continuous (with the usual ε-δ defini-
tion) implies ∀U (U open ⇒ f−1[U ] open). Use a similar relaxed natural
deduction format.

6. It is not hard to prove a lemma that says that {y | |y− b| < ε} open. Use
this lemma and the appropriate definitions to prove that ∀U (U open ⇒
f−1[U ] open) implies f continuous. Again present this in relaxed natural
deduction format.



Chapter 2

Sets

2.1 Zermelo axioms

Mathematical objects include sets, functions, and numbers. It is natural to
begin with sets. If A is a set, the expression

t ∈ A (2.1)

can be read simply “t in A”. Alternatives are “t is a member of A, or “t is an
element of A”, or “t belongs to A”, or “t is in A”. The expression ¬t ∈ A is
often abbreviated t /∈ A and read “t not in A”.

If A and B are sets, the expression

A ⊂ B (2.2)

is defined in terms of membership by

∀t (t ∈ A⇒ t ∈ B). (2.3)

This can be read simply “A subset B.” Alternatives are “A is included in B”
or “A is a subset of B”. (Some people write A ⊆ B to emphasize that A = B
is allowed, but this is a less common convention.) It may be safer to avoid such
phrases as “t is contained in A” or “A is contained in B”, since here practice is
ambiguous. Perhaps the latter is more common.

The following axioms are the starting point for Zermelo set theory. They
will be supplemented later with the axiom of infinity and the axiom of choice.
These axioms are taken by some to be the foundations of mathematics; however
they also serve as a review of important constructions.

Extensionality A set is defined by its members. For all sets A,B

(A ⊂ B ∧B ⊂ A)⇒ A = B. (2.4)

21
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Empty set Nothing belongs to the empty set.

∀y y /∈ ∅. (2.5)

Unordered pair For all objects a, b the unordered pair set {a, b} satisfies

∀y (y ∈ {a, b} ⇔ (y = a ∨ y = b)). (2.6)

Union If Γ is a set of sets, then its union
⋃

Γ satisfies

∀x (x ∈
⋃

Γ⇔ ∃A (A ∈ Γ ∧ x ∈ A)) (2.7)

Power set If X is a set, the power set P (X) is the set of all subsets of X, so

∀A (A ∈ P (X)⇔ A ⊂ X). (2.8)

Selection Consider an arbitrary condition p(x) expressed in the language of
set theory. If B is a set, then the subset of B consisting of elements that
satisfy that condition is a set {x ∈ B | p(x)} satisfying

∀y (y ∈ {x ∈ B | p(x)} ⇔ (y ∈ B ∧ p(y))). (2.9)

2.2 Comments on the axioms

Usually in a logical language there is the logical relation symbol = and a number
of additional relation symbols and function symbols. The Zermelo axioms could
be stated in an austere language in which the only non-logical relation symbol
is ∈, and there are no function symbols. The only terms are variables. While
this is not at all convenient, it helps to give a more precise formulation of the
selection axiom. The following list repeats the axioms in this limited language.
However, in practice the other more convenient expressions for forming terms
are used.

Extensionality
∀A∀B (∀t (t ∈ A⇔ t ∈ B)⇒ A = B). (2.10)

The axiom of extensionality says that a set is defined by its members.
Thus, if A is the set consisting of the digits that occur at least once in
my car’s license plate 5373, and if B is the set consisting of the odd one
digit prime numbers, then A = B is the same three element set. All that
matters are that its members are the numbers 7,3,5.

Empty set
∃N∀y ¬y ∈ N. (2.11)

By the axiom of extensionality there is only one empty set, and in practice
it is denoted by the conventional name ∅.
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Unordered pair
∀a∀b∃E∀y (y ∈ E ⇔ (y = a ∨ y = b)). (2.12)

By the axiom of extensionality, for each a, b there is only one unordered
pair {a, b}. The unordered pair construction has this name because the
order does not matter: {a, b} = {b, a}. Notice that this set can have either
one or two elements, depending on whether a = b or a 6= b. In the case
when it has only one element, it is written {a} and is called a singleton
set.

If a, b, c are objects, then there is a set {a, b, c} defined by the condition
that for all y

y ∈ {a, b, c} ⇔ (y = a ∨ y = b ∨ y = c). (2.13)

This is the corresponding unordered triple construction. The existence of
this object is easily seen by noting that both {a, b} and {b, c} exist by the
unordered pair construction. Again by the unordered pair construction
the set {{a, b}, {b, c}} exists. But then by the union construction the set⋃{{a, b}, {b, c}} exists. A similar construction works for any finite number
of objects.

Union
∀Γ∃U∀x (x ∈ U ⇔ ∃A (A ∈ Γ ∧ x ∈ A)) (2.14)

The standard name for the union is
⋃

Γ. Notice that
⋃ ∅ = ∅ and⋃

P (X) = X. A special case of the union construction is A ∪ B =⋃{A,B}. This satisfies the property that for all x

x ∈ A ∪B ⇔ (x ∈ A ∨ x ∈ B). (2.15)

If Γ 6= ∅ is a set of sets, then the intersection
⋂

Γ is defined by requiring
that for all x

x ∈
⋂

Γ⇔ ∀A (A ∈ Γ⇒ x ∈ A) (2.16)

The existence of this intersection follows from the union axiom and the
selection axiom:

⋂
Γ = {x ∈ ⋃Γ | ∀A (A ∈ Γ⇒ x ∈ A)}.

There is a peculiarity in the definition of
⋂

Γ when Γ = ∅. If there is a
context where X is a set and Γ ⊂ P (X), then we can define

⋂
Γ = {x ∈ X | ∀A (A ∈ Γ⇒ x ∈ A)}. (2.17)

If Γ 6= ∅, then this definition is independent of X and is equivalent to
the previous definition. On the other hand, by this definition

⋂ ∅ = X.
This might seem strange, since the left hand side does not depend on X.
However in most contexts there is a natural choice of X, and this is the
definition that is appropriate to such contexts. There is a nice symmetry
with the case of union, since for the intersection

⋂ ∅ = X and
⋂
P (X) = ∅.
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A special case of the intersection construction is A ∩B =
⋂{A,B}. This

satisfies the property that for all x

x ∈ A ∩B ⇔ (x ∈ A ∧A ∈ B). (2.18)

If A ⊂ X, the complement X \A is characterized by saying that for all x

x ∈ X \A⇔ (x ∈ X ∧ x /∈ A). (2.19)

The existence again follows from the selection axiom: X \ A = {x ∈ X |
x /∈ A}. Sometimes the complement of A is denoted Ac when the set X
is understood.

The constructions A∩B, A∪B,
⋂

Γ,
⋃

Γ, and X \A are means of produc-
ing objects that have a special relationship to the corresponding logical
operations ∧,∨,∀,∃,¬. A look at the definitions makes this apparent.

Two sets A,B are disjoint if A ∩ B = ∅. (In that case it is customary to
write the union of A and B as AtB.) More generally, a set Γ ⊂ P (X) of
sets is disjoint if for each A in Γ and B ∈ Γ with A 6= B we have A∩B = ∅.
A partition of X is a set Γ ⊂ P (X) such that Γ is disjoint and ∅ /∈ Γ and⋃

Γ = X.

Power set
∀X∃P∀A (A ∈ P ⇔ ∀t (t ∈ A⇒ t ∈ X)). (2.20)

The power set is the set of all subsets of X, and it is denoted P (X).
Since a large set has a huge number of subsets, this axiom has strong
consequences for the size of the mathematical universe.

Selection The selection axiom is really an infinite family of axioms, one for
each formula p(x) expressed in the language of set theory.

∀B∃S∀y (y ∈ S ⇔ (y ∈ B ∧ p(y))). (2.21)

The selection axiom says that if there is a set B, then one may select a
subset {x ∈ B | p(x)} defined by a condition expressed in the language
of set theory. The language of set theory is the language where the only
non-logical relation symbol is ∈. This is why it is important to realize that
in principle the other axioms may be expressed in this limited language.
The nice feature is that one can characterize the language as the one with
just one non-logical relation symbol. However the fact that the separation
axiom is stated in this linguistic way is troubling for one who believes that
we are talking about a Platonic universe of sets.

Of course in practice one uses other ways of producing terms in the lan-
guage, and this causes no particular difficulty. Often when the set B is
understood the set is denoted more simply as {x | p(x)}. In the defining
condition the quantified variable is implicitly restricted to range over B, so
that the defining condition is that for all y we have y ∈ {x | p(x)} ⇔ p(y).
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The variables in the set builder construction are bound variables, so, for
instance, {u | p(u)} is the same set as {t | p(t)}.
The famous paradox of Bertrand Russell consisted of the discovery that
there is no sensible way to define sets by conditions in a completely unre-
stricted way. Thus if there were a set a = {x | x /∈ x}, then a ∈ a would
be equivalent to a /∈ a, which is a contradiction.

Say that it is known that for every x in A there is another corresponding
object φ(x) in B. Then another useful notation is

{φ(x) ∈ B | x ∈ A ∧ p(x)}. (2.22)

This can be defined to be the set

{y ∈ B | ∃x (x ∈ A ∧ p(x) ∧ y = φ(x)}. (2.23)

So it is a special case. Again, this is often abbreviated as {φ(x) | p(x)}
when the restrictions on x and φ(x) are clear. In this abbreviated notion
one could also write the definition as {y | ∃x (p(x) ∧ y = φ(x))}.

Problems

1. Say X has n elements. How many elements are there in P (X)?

2. Say X has n elements. Denote the number of subsets of X with exactly
k elements by

(
n
k

)
. Show that

(
n
0

)
= 1 and

(
n
n

)
= 1 and that

(
n

k

)
=
(
n− 1
k − 1

)
+
(
n− 1
k

)
. (2.24)

Use this to make a table of
(
n
k

)
up to n = 7.

3. Say that X has n elements. Denote the number of partitions of X into
exactly k non-empty disjoint subsets by S(n, k). This is a Stirling number
of the second kind. Show that S(n, 1) = 1 and S(n, n) = 1 and

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k). (2.25)

Use this to make a table of S(n, k) up to n = 5.

2.3 Ordered pairs and Cartesian product

There is also a very important ordered pair construction. If a, b are objects,
then there is an object (a, b). This ordered pair has the following fundamental
property: For all a, b, p, q we have

(a, b) = (p, q)⇔ (a = p ∧ b = q). (2.26)

If y = (a, b) is an ordered pair, then the first coordinates of y is a and the second
coordinate of y is b.
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Some mathematicians like to think of the ordered pair (a, b) as the set (a, b) =
{{a}, {a, b}}. The purpose of this rather artificial construction is to make it a
mathematical object that is a set, so that one only needs axioms for sets, and
not for other kinds of mathematical objects. However this definition does not
play much of a role in mathematical practice.

There are also ordered triples and so on. The ordered triple (a, b, c) is equal
to the ordered triple (p, q, r) precisely when a = p and b = q and c = r. If
z = (a, b, c) is an ordered triple, then the coordinates of z are a, b and c. One
can construct the ordered triple from ordered pairs by (a, b, c) = ((a, b), c). The
ordered n-tuple construction has similar properties.

There are degenerate cases. There is an ordered 1-tuple (a). If x = (a), then
its only coordinate is a. Furthermore, there is an ordered 0-tuple ( ) = 0 = ∅.

Corresponding to these constructions there is a set construction called Carte-
sian product. If A,B are sets, then A × B is the set of all ordered pairs (a, b)
with a ∈ A and b ∈ B. This is a set for the following reason. Let U = A ∪ B.
Then each of {a} and {a, b} belongs to P (U). Therefore the ordered pair (a, b)
belongs to P (P (U)). This is a set, by the power set axiom. So by the selection
axiom A×B = {(a, b) ∈ P (P (U)) | a ∈ A ∧ b ∈ B} is a set.

One can also construct Cartesian products with more factors. Thus A×B×C
consists of all ordered triples (a, b, c) with a ∈ A and b ∈ B and c ∈ C.

The Cartesian product with only one factor is the set whose elements are
the (a) with a ∈ A. There is a natural correspondence between this somewhat
trivial product and the set A itself. The correspondence is that which associates
to each (a) the corresponding coordinate a. The Cartesian product with zero
factors is a set 1 = {0} with precisely one element 0 = ∅.

There is a notion of sum of sets that is dual to the notion of product of
sets. This is the disjoint union of two sets. The idea is to attach labels to the
elements of A and B. Thus, for example, for each element a of A consider the
ordered pair (0, a), while for each element b of B consider the ordered pair (1, b).
Then even if there are elements common to A and B, their tagged versions will
be distinct. Thus the sets {0}×A and {1}×B are disjoint. The disjoint union
of A and B is the set A+B such that for all y

y ∈ A+B ⇔ (y ∈ {0} ×A ∨ y ∈ {1} ×B). (2.27)

One can also construct disjoint unions with more summands in the obvious way.

2.4 Relations and functions

A relation R between sets A and B is a subset of A×B. A function (or mapping
F from A to B is a relation with the following two properties:

∀x∃y (x, y) ∈ F. (2.28)

∀y∀y′ (∃x ((x, y) ∈ F ∧ (x, y′) ∈ F )⇒ y = y′). (2.29)
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In these statements the variable x is restricted to A and the variables y, y′ are
restricted to B. A function F from A to B is a surjection if

∀y∃x (x, y) ∈ F. (2.30)

A function F from A to B is an injection if

∀x∀x′ (∃y ((x, y) ∈ F ∧ (x′, y) ∈ F )⇒ x = x′). (2.31)

Notice the same pattern in these definitions as in the two conditions that define
a function. As usual, if F is a function, and (x, y) ∈ F , then we write F (x) = y.

In this view a function is regarded as being identical with its graph as a
subset of the Cartesian product. On the other hand, there is something to be
said for a point of view that makes the notion of a function just as fundamental
as the notion of set. In that perspective, each function from A to B would have
a graph that would be a subset of A× B. But the function would be regarded
as an operation with an input and output, and the graph would be a set that
is merely one means to describe the function.

There is a useful function builder notation that corresponds to the set builder
notation. Say that it is known that for every x in A there is another correspond-
ing object φ(x) in B. Then another useful notation is

[x 7→ φ(x) : A→ B] = {(x, φ(x)) ∈ A×B | x ∈ A}. (2.32)

This is an explicit definition of a function from A to B. This could be ab-
breviated as [x 7→ φ(x)] when the restrictions on x and φ(x) are clear. The
variables in such an expression are of course bound variables, so, for instance,
the squaring function u 7→ u2 is the same as the squaring function t 7→ t2.

Problems

1. How many functions are there from an n element set to a k element set?

2. How many injective functions are there from an n element set to a k
element set?

3. How many surjective functions are there from an n element set to a k
element set?

4. Show that mn =
∑m
k=0

(
m
k

)
k!S(n, k).

5. Let Bn =
∑n
k=0 S(n, k) be the number of partitions of an n element

set. Show that Bn is equal to the expected number of functions from an
n element set to an m element set, where m has a Poisson probability
distribution with mean one. That is, show that

Bn =
∞∑
m=0

mn 1
m!
e−1. (2.33)
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2.5 Number systems

The axiom of infinity states that there is an infinite set. In fact, it is handy to
have a specific infinite set, the set of all natural numbers N = {0, 1, 2, 3, . . .}.
The mathematician von Neumann gave a construction of the natural numbers
that is perhaps too clever to be taken entirely seriously. He defined 0 = ∅,
1 = {0}, 2 = {0, 1}, 3 = {0, 1, 2}, and so on. Each natural number is the set
of all its predecessors. Furthermore, the operation s of adding one has a simple
definition:

s(n) = n ∪ {n}. (2.34)

Thus 4 = 3 ∪ {3} = {0, 1, 2} ∪ {3} = {0, 1, 2, 3}. Notice that each of these sets
representing a natural number is a finite set. There is as yet no requirement
that the natural numbers may be combined into a single set.

This construction gives one way of formulating the axiom of infinity. Say
that a set I is inductive if 0 ∈ I and ∀n (n ∈ I ⇒ s(n) ∈ I). The axiom
of infinity says that there exists an inductive set. Then the set N of natural
numbers may be defined as the intersection of the inductive subsets of this set.

According to this definition the natural number system N{0, 1, 2, 3, . . .} has
0 as an element. It is reasonable to consider 0 as a natural number, since it is a
possible result of a counting process. However it is sometimes useful to consider
the set of natural numbers with zero removed. In this following we denote this
set by by N+ = {1, 2, 3, . . .}.

According to the von Neuman construction, the natural number n is defined
by n = {0, 1, 2, . . . , n−1}. This is a convenient way produce an n element index
set, but in other contexts it can also be convenient to use {1, 2, 3, . . . , n}.

This von Neumann construction is only one way of thinking of the set of
natural numbers N. However, once we have this infinite set, it is not difficult
to construct a set Z consisting of all integers {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.
Furthermore, there is a set Q of rational numbers, consisting of all quotients of
integers, where the denominator is not allowed to be zero. The next step after
this is to construct the set R of real numbers. This is done by a process of
completion, to be described later. The transition from Q to R is the transition
from algebra to analysis. The result is that it is possible to solve equations by
approximation rather than by algebraic means.

After that, next important number system is C, the set of complex numbers.
Each complex number is of the form a + bi, where a, b are real numbers, and
i2 = −1. Finally, there is H, the set of quaternions. Each quaternion is of
the form t + ai + bj + ck, where t, a, b, c are real numbers. Here i2 = −1, j2 =
−1, k2 = −1, ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j. A pure
quaternion is one of the form ai+ bj+ ck. The product of two pure quaternions
is (ai+ bj+ ck)(a′i+ b′j+ c′k) = −(aa′+ bb′+ cc′) + (bc′− cb′)i+ (ca′− ac′)j+
(ab′− ba′)k. Thus quaternion multiplication includes both the dot product and
the cross product in a single operation.

In summary, the number systems of mathematics are N,Z,Q,R,C,H. The
systems N,Z,Q,R each have a natural linear order, and there are natural order
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preserving injective functions from N to Z, from Z to Q, and from Q to R. The
natural algebraic operations in N are addition and multiplication. In Z they
are addition, subtraction, and multiplication. In Q,R,C,H they are addition,
subtraction, multiplication, and division by non-zero numbers. In H the multi-
plication and division are non-commutative. The number systems R,C,H have
the completeness property, and so they are particularly useful for analysis.

Problems

1. A totally ordered set is densely ordered if between every two distinct points
there is another point. Thus Q is densely ordered, and also R is densely
ordered. Show that between every two distinct points of Q there is a point
of R that is irrational.

2. Is it true that between every two distinct points of R there is a point of
Q? Discuss.

3. Define a map from R to P (Q) by j(x) = {r ∈ Q | r ≤ x}. Prove that j is
injective.
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Chapter 3

Relations, Functions,
Dynamical Systems

3.1 Identity, composition, inverse, intersection

A relation R between sets A and B is a subset of A × B. In this context one
often writes xRy instead of (x, y) ∈ R, and says that x is related to y by the
relation. Often a relation between A and A is called a relation on the set A.

There is an important relation IA on A, namely the identity relation con-
sisting of all ordered pairs (x, x) with x ∈ A. That is, for x and y in A, the
relation xIAy is equivalent to x = y.

Given an relation R between A and B and a relation S between B and C,
there is a relation S ◦R between A and C called the composition. It is defined
in such a way that x(S ◦R)z is equivalent to the existence of some y in B such
that xRy and ySz. Thus if R relates A to B, and S relates B to C, then S ◦R
relates A to C. In symbols,

S ◦R = {(x, z) | ∃y (xRy ∧ ySz)}. (3.1)

Notice the order in which the factors occur, which accords with the usual con-
vention for functions. For functions it is usual to use such a notation to indicate
that R acts first, and then S. This is perhaps not the most natural convention
for relations, so in some circumstances it might be convenient to define another
kind of composition in which the factors are written in the opposite order.

There are two more useful operations on relations. If R is a relation between
A and B, then there is an inverse relation R−1 between B and A. It consists
of all the (y, x) such that (x, y) is in R. That is, yR−1x is equivalent to xRy.

Finally, if R and S are relations between A and B, then there is a relation
R ∩ S. This is also a useful operation. Notice that R ⊂ S is equivalent to
R ∩ S = R.

Sometimes if X ⊂ A one writes R[X] for the image of X under R, that is,

R[X] = {y | ∃x (x ∈ X ∧ xRy)}. (3.2)

31
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Also, if a is in A, it is common to write R[a] instead of R[{a}]. Thus y is in
R[a] if aRy.

3.2 Picturing relations

There are two common ways of picturing a relation R between A and B. One
way is to draw the product space A×B and sketch the set of points (x, y) in R.
This is the graph of the relation. The other way is to draw the disjoint union
A+B and for each (x, y) in R sketch an arrow from x to y. This is the cograph
of the relation.

3.3 Equivalence relations

Consider a relation R on A. The relation R is reflexive if IA ⊂ R. The relation
R is symmetric if R = R−1. The relation R is transitive if R ◦ R ⊂ R. A rela-
tion that is reflexive, symmetric, and transitive (RST) is called an equivalence
relation.

Theorem 3.1 Consider a set A. Let Γ be a partition of A. Then there is a
corresponding equivalence relation E, such that (x, y) ∈ E if and only if for
some subset U in Γ both x in U and y in U . Conversely, for every equivalence
relation E on A there is a unique partition Γ of A that gives rise to the relation
in this way.

The sets in the partition defined by the equivalence relation are called the
equivalence classes of the relation.

Problems

1. Show that a relation is reflexive if and only if ∀xxRx.

2. Show that a relation is symmetric if and only if ∀x∀y (xRy ⇒ yRx).

3. Here are two possible definitions of a transitive relation. This first is
∀x∀y∀z ((xRy ∧ yRz) ⇒ xRz). The second is ∀x∀z (∃y(xRy ∧ yRz) ⇒
xRz). Which is correct? Discuss.

3.4 Generating relations

Theorem 3.2 For every relation R on A, there is a smallest transitive relation
RT such that R ⊂ RT . This is the transitive relation generated by R.

Theorem 3.3 For every relation R on A, there is a smallest symmetric and
transitive relation RST such that R ⊂ RST . This is the symmetric and transitive
relation generated by R.
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Theorem 3.4 For every relation R on A, there is a smallest equivalence rela-
tion E = RRST such that R ⊂ E. This is the equivalence relation generated by
R.

Proof: The proofs of these theorems all follow the same pattern. Here is
the proof of the last one. Let R be a relation on A, that is, let R be a subset of
A×A. Let ∆ be the set of all equivalence relations S with R ⊂ S. Then since
A×A ∈ ∆, it follows that ∆ is non-empty. Let E =

⋂
∆. Now note three facts.

The intersection of a set of transitive relations is transitive. The intersection of
a set of symmetric relations is symmetric. The intersection of a set of reflexive
relations is reflexive. It follows that E is transitive, reflexive, and symmetric.
This is the required equivalence relation. 2

This theorem shows that by specifying a relation R one also specifies a cor-
responding equivalence relation E. This can be a convenient way of describing
an equivalence relation.

3.5 Ordered sets

A relation R on A is antisymmetric if R ∩ R−1 ⊂ IA. This just says that
∀x∀y ((x ≤ y ∧ y ≤ x)⇒ x = y). A ordering of A is a relation that is reflexive,
antisymmetric, and transitive (RAT). Ordered sets will merit further study.
Here is one theorem about how to describe them.

Theorem 3.5 Consider a relation R such that there exists an order relation S
with R ⊂ S. Then there exists a smallest order relation P = RRT with R ⊂ P .

Proof: Let R be a relation on A that is a subset of some order relation.
Let ∆ be the set of all such order relations S with R ⊂ S. . By assumption
∆ 6= ∅. Let P =

⋂
∆. Argue as in the case of an equivalence relation. A subset

of an antisymmetric relation is antisymmetric. (Note that for an non-empty set
of sets the intersection is a subset of the union.) The relation P is the required
order relation. 2

The above theorem gives a convenient way of specifying an order relation P .
For example, if A is finite, then P is generated by the successor relation R.

A linearly ordered (or totally ordered) set is an ordered set such that the order
relation satisfies R∪R−1 = A×A. Thus just says that ∀x∀y (x ≤ y∨y ≤ x). A
well-ordered set is a linearly ordered set with the property that each non-empty
subset has a least element.

A rooted tree is an ordered set with a least element, the root, such that for
each point in the set, the elements below the point form a well-ordered set.

3.6 Functions

A relation F from A to B is a total relation if IA ⊂ F−1 ◦ F . It is a partial
function if F ◦ F−1 ⊂ IB . It is a function if it is both a total relation and a
partial function (that is, it is a total function).
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A function F is an injective function if it is a function and F−1 is a partial
function. A function F is a surjective function if it is a function and also F−1

is a total relation. It is a bijective function if it is both an injective function
and a surjective function. For a bijective function F the inverse relation F−1 is
a function from B to A, in fact a bijective function.

Problems

1. Let F be a function. Describe FT [a] (the forward orbit of a under F ).

2. Let F be a function. Describe FRT [a] (the orbit of a under F ).

3. Let F be a function. Is it possible that FT [a] = FRT [a]? Discuss in detail.

3.7 Relations inverse to functions

Lemma 3.6 Let F be a relation that is a function from A to B, and let F−1

be the inverse relation. Then the sets F−1[b] for b in the range of F form a
partition of A, and F−1[b] = ∅ for b not in the range of F . If V is a subset of
B, then F−1[V ] is the union of the disjoint sets F−1[b] for b in V .

This lemma immediately gives the following remarkable and important the-
orem.

Theorem 3.7 Let F be a relation that is a function from A to B, and let
F−1 be the inverse relation. Then F−1 respects the set operations of union,
intersection, and complement. Thus:

1. If Γ is a set of subsets of B, then F−1[
⋃

Γ] =
⋃{F−1[V ] | V ∈ Γ}.

2. If Γ is a set of subsets of B, then F−1[
⋂

Γ] =
⋂{F−1[V ] | V ∈ Γ}.

3. If V is a subset of B, then F−1[B \ V ] = A \ F−1[V ].

3.8 Dynamical systems

Consider a function F from A to A. Such a function is often called a dynamical
system. Thus if a is the present state of the system, at the next stage the state
is f(a), and at the following stage after that the state is f(f(a)), and so on.

The orbit of a point a in A is FRT [a], the image of a under the relation FRT .
This is the entire future history of the system (including the present), when it
is started in the state a. Each orbit S is invariant under F , that is, F [S] ⊂ S.
If b is in the orbit of a, then we say that a leads to b.

The simplest way to characterize the orbit of a is as the set {a, f(a), f(f(a)), f(f(f(a))), . . .},
that is, the set of f (n)(a) for n ∈ N, where f (n) is the nth iterate of f . (The
nth iterate of f is the composition of f with itself n times.)
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Theorem 3.8 Let F : A→ A be a function. Each orbit of a under F is either
finite and consists of a sequence of points that eventually enters a periodic cycle,
or it is an infinite sequence of distinct points.

In the finite case the orbit may be described as having the form of a lasso.
Special cases of the lasso are a cycle and a single point.

3.9 Picturing dynamical systems

Since a dynamical system is a function F : A → A, there is a peculiarity that
the domain and the target are the same space. However this gives a nice way
of picturing orbits.

One method is to plot the graph of F as a subset of A × A, and use this
to describe the dynamical system as acting on the diagonal. For each x in the
orbit, start with the point (x, x) on the diagonal. Draw the vertical line from
(x, x) to (x, f(x)) on the graph, and then draw the horizontal line from (x, f(x))
to (f(x), f(x)) back on the diagonal. This process gives a broken line curve that
gives a picture of the dynamical system acting on the diagonal.

A method that is more compatible with the cograph point of view is to look
at the set A and draw an arrow from x to f(x) for each x in the orbit.

3.10 Structure of dynamical systems

Let F : A→ A be a function. Then A is a disjoint union of equivalence classes
under the equivalence relation FRST generated by F . The following theorem
gives a more concrete way of thinking about this equivalence relation.

Theorem 3.9 Let F : A → A be a function. Say that aEb if and only if the
orbit of a under F has a non-empty intersection with the orbit of b under F .
Then E is an equivalence relation, and it is the equivalence relation generated
by F .

Proof: To show that E is an equivalence relation, it is enough to show that
it is reflexive, symmetric, and transitive. The first two properties are obvious.
To prove that it is transitive, consider points a, b, c with aEb and bEc. Then
there are m,n with f (m)(a) = f (n)(b) and there are r, s with f (r)(b) = f (s)(c).
Suppose that n ≤ r. Then f (m+r−n)(a) = f (r)(b) = f (s)(c). Thus in that case
aEc. Instead suppose that r ≤ n. A similar argument shows that aEc. Thus it
follows that aEc.

It is clear that E is an equivalence relation with F ⊂ E. Let E′ be an
arbitrary equivalence relation with F ⊂ E′. Say that aEb. Then there is a
c with aFRT c and bFRT c. Then aE′c and bE′c. Since E′ is an equivalence
relation, it follows that cE′b and hence aE′b. So E ⊂ E′. This shows that E is
the smallest equivalence relation E′ with F ⊂ E′. That is, E is the equivalence
relation generated by F . 2
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Each equivalence class of a dynamical system F is invariant under F . Thus
to study a dynamical system one needs only to look at what happens on each
equivalence class.

One can think of a dynamical system as reversible if the function is bijective,
as conservative if the function is injective, and as dissipative in the general case.
The following theorem describes the general case. There are two possibilities.
Either there is eventually stabilization at a periodic cycle. Or the dissipation
goes on forever.

Theorem 3.10 Let F : A → A be a function. Then on each equivalence class
F acts in one of two possible ways. Case 1. Each point in the class has a finite
orbit. In this case there is a unique cycle with some period n ≥ 1 included in the
class. Furthermore, the class itself is partitioned into n trees, each rooted at a
point of the cycle, such that the points in each tree lead to the root point without
passing through other points of the cycle. Case 2. Each point in the class has
an infinite orbit. Then the points that lead to a given point in the class form a
tree rooted at the point.

Proof: If a and b are equivalent, then they each lead to some point c. If a
leads to a cycle, then c leads to a cycle. Thus b leads to a cycle. So if one point
in the equivalence class leads to a cycle, then all points lead to a cycle. There
can be only one cycle in an equivalence class.

In this case, consider a point r on the cycle. Say that a point leads directly
to r if it leads to r without passing through other points on the cycle. The point
r together with the points that lead directly to r form a set T (r) with r as the
root. A point q in T (r) is said to be below a point p in T (r) when p leads to
q. There cannot be distinct points p, q on T (r) with q below p and p below q,
since then there would be another cycle. Therefore T (r) is an ordered set. If
p is in T (r), the part of T (r) below p is a finite linearly ordered set, so T (r) is
a tree. Each point a in the equivalence class leads directly to a unique point r
on the cycle. It follows that the trees T (r) for r in the cycle form a partition of
the equivalence class.

The other case is when each point in the class has an infinite orbit. There
can be no cycle in the equivalence class. Consider a point r in the class. The
same kind of argument as in the previous case shows that the set T (r) of points
that lead to r is a tree. 2

The special case of conservative dynamical systems given by an injective
function is worth special mention. In that case there can be a cycle, but no tree
can lead to the cycle. In the case of infinite orbits, the tree that leads to a point
has only one branch (infinite or finite).

Corollary 3.11 Let F : A→ A be an injective function. Then on each equiva-
lence class F acts either like a shift on Zn for some n ≥ 1 (a periodic cycle) or
a shift on Z or a right shift on N.

The above theorem shows exactly how an injection F can fail to be a bijec-
tion. A point p is not in the range of F if and only if it is an initial point for
one of the right shifts.
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Finally, the even more special case of a reversible dynamical systems given
by a bijective function is worth recording. In that case there can be a cycle, but
no tree can lead to the cycle. In the case of infinite orbits, the tree that leads
to a point has only one branch, and it must be infinite.

Corollary 3.12 Let F : A → A be a bijective function. Then on each equiva-
lence class F acts either like a shift on Zn for some n ≥ 1 (a periodic cycle) or
a shift on Z.

A final corollary of this last result is that every permutation of a finite set
is a product of disjoint cycles.

The following problems use the concept of cardinal number. A countable
infinite set has cardinal number ω0. A set that may be placed in one-to-one
correspondence with an interval of real numbers has cardinal number c.

Problems

1. My social security number is 539681742. This defines a function defined
on 123456789. It is a bijection from a nine point set to itself. What are
the cycles? How many are they? How many points in each cycle?

2. Let f : R → R be defined by f(x) = x + 1. What are the equivalence
classes? How many are they (cardinal number)? How many points in each
equivalence class (cardinal number)?

3. Let f : R→ R be defined by f(x) = 2 arctan(x). (Recall that the deriva-
tive of f(x) is f ′(x) = 2/(1 + x2) > 0, so f is strictly increasing.) What
is the range of f? How many points are there in the range of f (car-
dinal number)? What are the equivalence classes? How many are there
(cardinal number)? How many points in each equivalence class (cardinal
number)? Hint: It may help to use a calculator or draw graphs.

4. Let f : A → A be an injection with range R ⊂ A. Let R′ be a set with
R ⊂ R′ ⊂ A. Show that there is an injection j : A → A with range R′.
Hint: Use the structure theorem for injective functions.

5. Bernstein’s theorem. Let g : A → B be an injection, and let h : B → A
be an injection. Prove that there is a bijection k : A→ B. Hint: Use the
result of the previous problem.
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Chapter 4

Functions, Cardinal
Number

4.1 Functions

A function (or mapping) f : A→ B with domain A and target (or codomain) B
assigns to each element x of A a unique element f(x) of B.

The set of values f(x) for x in A is called the range of f or the image of A
under f . In general for S ⊂ A the set f [S] of values f(x) in B for x in A is
called the image of S under f . On the other hand, for T ⊂ B the set f−1[T ]
consisting of all x in A with f(x) in T is the inverse image of T under f . In this
context the notation f−1 does not imply that f has an inverse function; instead
it refers to the inverse relation.

The function is injective (or one-to-one) if f(x) uniquely determines x, and
it is surjective (or onto) if each element of B is an f(x) for some x, that is, the
range is equal to the target. The function is bijective if it is both injective and
surjective. In that case it has an inverse function f−1 : B → A.

If f : A→ B and g : B → C are functions, then the composition g◦f : A→ C
is defined by (g ◦ f)(x) = g(f(x)) for all x in A.

Say that r : A → B and s : B → A are functions and that r ◦ s = IB , the
identity function on B. That is, say that r(s(b)) = b for all b in B. In this
situation when r is a left inverse of s and s is a right inverse of r, the function
r is called a retraction and the function s is called a section.

Theorem 4.1 If r has a right inverse, then r is a surjection.

Theorem 4.2 If s has a left inverse, then s is an injection.

Theorem 4.3 Suppose s : B → A is an injection. Assume that B 6= ∅. Then
there exists a function r : A→ B that is a left inverse to s.

Suppose r : A → B is a surjection. The axiom of choice says that there is
a function s that is a right inverse to r. Thus for every b in b there is a set of

39



40 CHAPTER 4. FUNCTIONS, CARDINAL NUMBER

x with r(x) = b, and since s is a surjection, each such set is non-empty. The
function s makes a choice s(b) of an element in each set.

4.2 Picturing functions

Each function f : A→ B has a graph which is a subset of A×B and a cograph
illustrated by the disjoint union A+B and an arrow from each element of A to
the corresponding element of B.

Sometimes there is a function f : I → B, where I is an index set or pa-
rameter set that is not particularly of interest. Then the function is called a
parameterized family of elements of B. In that case it is common to draw the
image of I under f as a subset of B.

Another situation is when there is a function f : A→ J , where J is an index
set. In that case it might be natural to call A a classified set. The function
induces a partition of A. In many cases these partitions may be called contour
sets. Again it is common to picture a function through its contour sets.

4.3 Indexed sums and products

Let A be a set-valued function defined on an index set I. Then the union of A
is the union of the range of A and is written

⋃
t∈I At. Similarly, when I 6= ∅ the

intersection of A is the intersection of the range of A and is written
⋂
t∈I At.

Let A be a set-valued function defined on an index set I. Let S =
⋃
t∈I At.

The disjoint union or sum of A is
∑

t∈I
At = {(t, a) ∈ I × S | a ∈ At}. (4.1)

For each j ∈ I there is a natural mapping [a 7→ (j, a) : Aj →
∑
tAt]. This is the

injection of the jth summand into the disjoint union. Notice that the disjoint
union may be pictured as something like the union, but with the elements
labelled to show where they come from.

Similarly, there is a natural Cartesian product of A given by
∏

t∈I
At = {f ∈ SI | ∀t f(t) ∈ At}. (4.2)

For each j in I there is a natural mapping [f 7→ f(j) :
∏
tAt → Aj ]. This is the

projection of the product onto the jth factor. The Cartesian product should be
thought of as a kind of rectangular box in a high dimensional space, where the
dimension is the number of points in the index set I. The jth side of the box is
the set Aj .

Theorem 4.4 The product of an indexed family of non-empty sets is non-
empty.
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This theorem is another version of the axiom of choice. Suppose that each
At 6= ∅. The result says that there is a function f such that for each t it makes
an arbitrary choice of an element f(t) ∈ At.

Proof: Define a function r :
∑
t∈I At → I by r((t, a)) = t. Thus r takes

each point in the disjoint union and maps it to its label. The condition that
each At 6= ∅ guarantees that r is a surjection. By the axiom of choice r has
a right inverse s with r(s(t)) = t for all t. Thus s takes each label into some
point of the disjoint union corresponding to that label. Let f(t) be the second
component of the ordered pair s(t). Then f(t) ∈ At. Thus f takes each label
to some point in the set corresponding to that label. 2

Say that f is a function such that f(t) ∈ At for each t ∈ I. Then the function
may be pictured as a single point in the product space

∏
t∈I At. This geometric

picture of a function as a single point in a space of high dimension is a powerful
conceptual tool.

4.4 Cartesian powers

The set of all functions from A to B is denoted BA. In the case when A = I is
an index set, the set BI is called a Cartesian power. This is the special case of
Cartesian product when the indexed family of sets always has the same value B.
This is a common construction in mathematics. For instance, Rn is a Cartesian
power.

Write 2 = {0, 1}. Each element of 2A is the indicator function of a subset of
A. There is a natural bijective correspondence between the 2A and P (A). If χ
is an element of 2A, then χ−1[1] is a subset of A. On the other hand, if X is a
subset of A, then the indicator function 1X that is 1 on X and 0 on A \X is an
element of 2A.

4.5 Cardinality

Say that a set A is countable if A is empty or if there is a surjection f : N→ A.

Theorem 4.5 If A is countable, then there is an injection from A→ N.

Proof: This can be proved without the axiom of choice. For each a ∈ A,
define g(a) to be the least element of N such that f(g(a)) = a. Then g is the
required injection. 2

There are sets that are not countable. For instance, P (N) is such a set. This
follows from the following theorem.

Theorem 4.6 (Cantor) Let X be a set. There is no surjection from X to
P (X).

The proof that follows is a diagonal argument. Suppose that f : X → P (X).
Form an array of ordered pairs (a, b) with a, b in X. One can ask whether
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b ∈ f(a) or b /∈ f(a). The trick is to look at the diagonal a = b and construct
the set of all a where a /∈ f(a).

Proof: Assume that f : X → P (X). Let S = {x ∈ X | x /∈ f(x)}.
Suppose that S were in the range of f . Then there would be a point a in X
with f(a) = S. Suppose that a ∈ S. Then a /∈ f(a). But this means that a /∈ S.
This is a contradiction. Thus a /∈ S. This means a /∈ f(a). Hence a ∈ S. This
is a contradiction. Thus S is not in the range of f . 2

One idea of Cantor was to associate to each set A, finite or infinite, a cardinal
number #A. The important thing is that if there is a bijection between two
sets, then they have the same cardinal number. If there is no bijection, then the
cardinal numbers are different. That is, the statement that #A = #B means
simply that there is a bijection from A to B.

The two most important infinite cardinal numbers are ω0 = #N and c =
#P (N). The Cantor theorem shows that these are different cardinal numbers.

If there is an injection f : A→ B, then it is natural to say that #A ≤ #B.
Thus, for example, it is easy to see that ω0 ≤ c. In fact, by Cantor’s theorem
ω0 < c. The following theorem was proved in an earlier chapter as an exercise.

Theorem 4.7 (Bernstein) If there is an injection f : A→ B and there is an
injection g : B → A, then there is a bijection h : A→ B.

It follows from Bernstein’s theorem that #A ≤ #B and #B ≤ #A together
imply that #A = #B. This result gives a way of calculating the cardinalities
of familiar sets.

Theorem 4.8 The set N2 = N×N has cardinality ω0.

Proof: It is sufficient to construct a bijection f : N2 → N. Let

f(m,n) =
r(r + 1)

2
+m, r = m+ n. (4.3)

The inverse function g(s) is given by finding the largest value of r ≥ 0 with
r(r + 1)/2 ≤ s. Then m = s − r(r + 1)/2 and n = r − m. Clearly 0 ≤ m.
Since s < (r + 1)(r + 2)/2, it follows that m < r + 1, that is, m ≤ r. Thus also
0 ≤ n. There is a lovely picture that makes this all obvious and that justifies
the expression “diagonal argument”. 2

Corollary 4.9 A countable union of countable sets is countable.

Proof: Let Γ be a countable collection of countable sets. Then there exists
a surjection u : N→ Γ. For each S ∈ Γ there is a non-empty set of surjections
from N to S. By the axiom of choice, there is a function that assigns to each S
in Γ a surjection vS : N → S. Let w(m,n) = vu(m)(n). Then v is a surjection
from N2 to

⋃
Γ. It is a surjection because each element q of

⋃
Γ is an element

of some S in Γ. There is an m such that u(m) = S. Furthermore, there is an
n such that vS(n) = q. It follows that w(m,n) = q. However once we have the
surjection w : N2 → ⋃

Γ we also have a surjection N→ N2 → ⋃
Γ. 2



4.5. CARDINALITY 43

Theorem 4.10 The set Z of integers has cardinality ω0.

Proof: There is an obvious injection from N to Z. On the other hand, there
is also a surjection (m,n) 7→ m− n from N2 to Z. There is a bijection from N
to N2 and hence a surjection from N to Z. Therefore there is an injection from
Z to N. This proves that #Z = ω0. 2

Theorem 4.11 The set Q of rational numbers has cardinality ω0.

Proof: There is an obvious injection from Z to Q. On the other hand,
there is also a surjection from Z2 to Q given by (m,n) 7→ m/n when n 6= 0
and (m, 0) 7→ 0. There is a bijection from Z to Z2. (Why?) Therefore there
is a surjection from Z to Q. It follows that there is an injection from Q to Z.
(Why?) This proves that #Q = ω0. 2

Theorem 4.12 The set R of real numbers has cardinality c.

Proof: First we give an injection f : R→ P (Q). In fact, we let f(x) = {q ∈
Q | q ≤ x}. This maps each real number x to a set of rational numbers. If x < y
are distinct real numbers, then there is a rational number r with x < r < y.
This is enough to establish that f is an injection. From this it follows that there
is an injection from R to P (N).

Recall that there is a natural bijection between P (N) (all sets of natural
numbers) and 2N (all sequences of zeros and ones). For the other direction, we
give an injection g : 2N → R. Let

g(s) =
∞∑
n=0

2sn
3n+1

. (4.4)

This maps 2N as an injection with range equal to the Cantor middle third set.
This completes the proof that #R = c. 2

Theorem 4.13 The set RN of infinite sequences of real numbers has cardinality
c.

Proof: Map RN to (2N)N to 2N×N to 2N. 2

Problems

1. What is the cardinality of the set NN of all infinite sequences of natural
numbers? Prove that your answer is correct.

2. What is the cardinality of the set of all finite sequences of natural numbers?
Prove that your answer is correct.

3. Define the function g : 2N → R by

g(s) =
∞∑
n=0

2sn
3n+1

. (4.5)

Prove that it is an injection.
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4. Define the function g : 2N → R by

g(s) =
∞∑
n=0

sn
2n+1

. (4.6)

What is its range? Is it an injection?

5. Let A be a set and let f : A→ A be a function. Then f is a relation on A
that generates an equivalence relation. Can there be uncountably many
equivalence classes? Explain. Can an equivalence class be uncountable?
Explain. What is the situation if the function is an injection? How about
if it is a surjection?



Chapter 5

Ordered sets and
completeness

5.1 Ordered sets

The main topic of this chapter is ordered sets and order completeness. The
motivating example is the example of the set P of rational numbers r such
that 0 ≤ r ≤ 1. Consider the subset S of rational numbers r that also satisfy
r2 < 1/2. The upper bounds of S consist of rational numbers s that also satisfy
s2 > 1/2. (There is no rational number whose square is 1/2.) There is no least
upper bound of S.

Contrast this with the example of the set L of real numbers x such that
0 ≤ x ≤ 1. Consider the subset T of real numbers x that also satisfy x2 < 1/2.
The upper bounds of T consists of real numbers y that also satisfy y2 ≥ 1/2.
The number

√
2 is the least upper bound of T . So know whether you have an

upper bound of T is equivalent to knowing whether you have an upper bound of√
2. As far as upper bounds are concerned, the set T is represented by a single

number.
Completeness is equivalent to the existence of least upper bounds. This

is the property that says that there are no missing points in the ordered set.
The theory applies to many other ordered sets other than the rational and real
number systems. So it is worth developing in some generality.

An ordered set is a set P and a binary relation ≤ that is a subset of P × P
. The order relation ≤ must satisfy the following properties:

1. ∀p p ≤ p (reflexivity)

2. ∀p∀q∀r((p ≤ q ∧ q ≤ r)⇒ p ≤ r) (transitivity)

3. ∀p∀q ((p ≤ q ∧ q ≤ p)⇒ p = q). (antisymmetry)

An ordered set is often called a partially ordered set or a poset. In an ordered
set we write p < q if p ≤ q and p 6= q. Once we have one ordered set, we have
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many related order sets, since each subset of an ordered set is an ordered set in
a natural way.

In an ordered set we say that p, q are comparable if p ≤ q or q ≤ p. An ordered
set is totally ordered (or linearly ordered) if each two points are comparable.
(Sometime a totally ordered set is also called a chain.)

Examples:

1. The number systems N, Z, Q, and R are totally ordered sets.

2. Let I be a set and let P be an ordered set. Then P I with the pointwise
ordering is an ordered set.

3. In particular, RI , the set of all real functions on I, is an ordered set.

4. In particular, Rn is an ordered set.

5. If X is a set, the power set P (X) with the subset relation is an ordered
set.

6. Since 2 = {0, 1} is an ordered set, the set 2X with pointwise ordering is
an ordered set. (This is the previous example in a different form.)

Let S be a subset of P . We write p ≤ S to mean ∀q (q ∈ S ⇒ p ≤ q).
In this case we say that p is a lower bound for S. Similarly, S ≤ q means
∀p (p ∈ S ⇒ p ≤ q). Then q is an upper bound for S.

We write ↑ S for the set of all upper bounds for S. Similarly, we write ↓ S
for the set of all lower bounds for S. If S = {r} consists of just one point we
write the set of upper bounds for r as ↑ r and the set of lower bounds for r as
↓ r.

An element p of S is the least element of S if p ∈ S and p ≤ S. Equivalently,
p ∈ S and S ⊂↑ p. An element q of S is the greatest element of S if q ∈ S and
S ≤ q. Equivalently, q ∈ S and S ⊂↓ q.

An element p of S is a minimal element of S if ↓ p∩ S = {p}. An element q
of S is a maximal element of S if ↑ p ∩ S = {p}.

Theorem 5.1 If p is the least element of S, then p is a minimal element of S.
If q is the greatest element of S, then a is a maximal element of S.

In a totally ordered set a minimal element is a least element and a maximal
element is a greatest element.

5.2 Order completeness

A point p is the infimum or greatest lower bound of S if ↓ S =↓ p. The infimum
of S is denoted inf S or

∧
S. A point q is the supremum or least upper bound of

S if ↑ S =↑ q. The supremum of S is denoted supS or
∨
S. The reader should

check that p = inf S if and only if p is the greatest element of ↓ S. Thus p ∈↓ S
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and ↓ S ≤ p. Similarly, q = supS if and only if q is the least element of ↑ S.
Thus q ∈↑ S and q ≤↑ S.

An ordered set L is a lattice if every pair of points p, q has an infimum p∧ q
and a supremum p ∨ q. An ordered set L is a complete lattice if every subset S
of L has an infimum

∧
S and a supremum

∨
S. The most important example

of a totally ordered complete lattice is the closed interval [−∞,+∞] consisting
of all extended real numbers. An example that is not totally ordered is the set
P (X) of all subsets of a set X. In this case the infimum is the intersection and
the supremum is the union.

Examples:

1. If [a, b] ⊂ [−∞,+∞] is a closed interval, then [a, b] is a complete lattice.

2. Let I be a set and let P be a complete lattice. Then P I with the pointwise
ordering is a complete lattice.

3. In particular, [a, b]I , the set of all extended real functions on I with values
in the closed interval [a, b] is an complete lattice.

4. In particular, [a, b]n is a complete lattice.

5. If X is a set, the power set P (X) with the subset relation is a complete
lattice.

6. Since 2 = {0, 1} is a complete lattice, the set 2X with pointwise ordering
is a complete lattice. (This is the previous example in a different form.)

Problems

1. Show that S 6= ∅ implies inf S ≤ supS.

2. Show that supS ≤ inf T implies S ≤ T (every element of S is ≤ every
element of T ).

3. Show that S ≤ T implies supS ≤ inf T .

5.3 Sequences in a complete lattice

Let r : N → L be a sequence of points in a complete lattice L. Let sn =
supk≥n rk. Then the decreasing sequence sn itself has an infimum. Thus there
is an element

lim sup
k→∞

rk = inf
n

sup
k≥n

rk. (5.1)

Similarly, the increasing sequence sn = infk≥n rk has a supremum, and there is
always an element

lim inf
k→∞

rk = sup
n

inf
k≥n

rk. (5.2)

It is not hard to see that lim infk→∞ rk ≤ lim supk→∞ rk.
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The application of this construction to the extended real number system
is discussed in a later section. However here is another situation where it is
important. This situation is quite common in probability. Let Ω be a set, and
let P (Ω) be the set of all subsets. Now sup and inf are union and intersec-
tion. Let A : N → P (Ω) be a sequence of subsets. Then lim infk→∞Ak and
lim supk→∞Ak are subsets of Ω, with the first a subset of the second. The
interpretation of the first one is that a point ω ∈ lim infk→∞Ak if and only if
ω is eventually in the sets Ak as k goes to infinity. The interpretation of the
second one is ω is in lim supk→∞Ak if and only if ω is in Ak infinitely often as
k goes to infinity.

5.4 Order completion

For each subset S define its downward closure as ↓↑ S. These are the points
that are below every upper bound for S. Thus S ⊂↓↑ S, that is, S is a subset
of its downward closure. A subset A is a lower Dedekind cut if it is its own
downward closure: A =↓↑ A. This characterizes a lower Dedekind cut A by the
property that if a point is below every upper bound for A, then it is in A.

Lemma 5.2 For each subset S the subset ↓ S is a lower Dedekind cut. In fact
↓↑↓ S =↓ S.

Proof: Since for all sets T we have T ⊂↓↑ T , it follows by taking T =↓ S
that ↓ S ⊂↓↑↓ S. Since for all sets S ⊂ T we have ↓ T ⊂↓ S, we can take
T =↑↓ S and get ↓↑↓ S ⊂↓ S. 2

Theorem 5.3 If L is an ordered set in which each subset has a supremum, then
L is a complete lattice.

Proof: Let S be a subset of L. Then ↓ S is another subset of L. Let r be
the supremum of ↓ S. This says that ↑↓ S =↑ r. It follows that ↓↑↓ S =↓↑ r.
This is equivalent to ↓ S =↓ r. Thus r is the infimum of S. 2

Theorem 5.4 A lattice L is complete if and only if for each lower Dedekind
cut A there exists a point p with A =↓ p.

Proof: Suppose L is complete. Let A be a lower Dedekind cut and p be the
infimum of ↑ A. Then ↓↑ A =↓ p. Thus A =↓ p.

On the other hand, suppose that for every lower Dedekind cut A there exists
a point p with A =↓ p. Let S be a subset. Then ↓ S is a lower Dedekind cut.
It follows that ↓ S =↓ p. Therefore p is the infimum of S. 2

The above theorem might justify the following terminology. Call a lower
Dedekind cut a virtual point. Then the theorem says that a lattice is complete
if and only if every virtual point is given by a point. This is the sense in which
order completeness says that there are no missing points.
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Theorem 5.5 Let P be an ordered set. Let L be the ordered set of all subsets
of P that are lower Dedekind cuts. The ordering is set inclusion. Then L is a
complete lattice. Furthermore, the map p 7→↓ p is an injection from P to L that
preserves the order relation.

Proof: To show that L is a complete lattice, it is sufficient to show that
every subset Γ of L has a supremum. This is not so hard: the supremum is
the downward closure of

⋃
Γ. To see this, we must show that for every lower

Dedekind cut B we have ↓↑ ⋃Γ ⊂ B if and only if for every A in Γ we have
A ⊂ B. The only if part is obvious from the fact that each A ⊂ ⋃Γ ⊂↓↑ ⋃Γ.
For the if part, suppose that A ⊂ B for all A in Γ. Then

⋃
A ⊂ B. It follows

that ↓↑ ⋃A ⊂↓↑ B = B. The properties of the injection are easy to verify. 2

Examples:

1. Here is a simple example of an ordered set that is not a lattice. Let P
be the ordered set four points. There are elements b, c each below each
of x, y. Then P is not complete. The reason is that if S = {b, c}, then
↓ S = ∅ and ↑ S = {x, y}.

2. Here is an example of a completion of an ordered set. Take the previous
example. The Dedekind lower cuts are A = ∅, B = {b}, C = {c}, M =
{b, c}, X = {b, c, x}, Y = {b, c, y}, Z = {b, c, x, y}. So the completion L
consists of seven points A,B,C,M,X, Y, Z. This lattice is complete. For
example, the set {B,C} has infimum A and supremum M .

5.5 The Knaster-Tarski fixed point theorem

Theorem 5.6 (Knaster-Tarski) Let L be a complete lattice and f : L → L
be an increasing function. Then f has a fixed point a with f(a) = a.

Proof: Let S = {x | f(x) ≤ x}. Let a = inf S. Since a is a lower bound
for S, it follows that a ≤ x for all x in S. Since f is increasing, it follows that
f(a) ≤ f(x) ≤ x for all x in S. It follows that f(a) is a lower bound for S.
However a is the greatest lower bound for S. Therefore f(a) ≤ a.

Next, since f is increasing, f(f(a)) ≤ f(a). This says that f(a) is in S.
Since a is a lower bound for S, it follows that a ≤ f(a). 2

5.6 The extended real number system

The extended real number system [−∞,+∞] is a complete lattice. In fact, one
way to construct the extended real number system is to define it as the order
completion of the ordered set Q of rational numbers. That is, the definition
of the extended real number system is as the set of all lower Dedekind cuts of
rational numbers. (Note that in many treatments Dedekind cuts are defined
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in a slightly different way, so that they never have a greatest element. The
definition used here seems most natural in the case of general lattices.)

The extended real number system is a totally ordered set. It follows that the
supremum of a set S ⊂ [−∞,+∞] is the number p such that S ≤ p and for all
a < p there is an element q of S with a < q. There is a similar characterization
of infimum.

Let s : N → [−∞,+∞] be a sequence of extended real numbers. Then s is
said to be increasing if m ≤ n implies sm ≤ sn. For an increasing sequence the
limit exists and is equal to the supremum. Similarly, for a decreasing sequence
the limit exists and is equal to the infimum.

Now consider an arbitrary sequence r : N→ [−∞,∞]. Then lim supk→∞ rk
and lim infk→∞ rk are defined.

Theorem 5.7 If lim infk→∞ rk = lim supk→∞ rk = a, then limk→∞ rk = a.

Theorem 5.8 If r : N → R is a Cauchy sequence, then lim infk→∞ rk =
lim supk→∞ rk = a, where a is in R. Hence in this case limk→∞ rk = a. Every
Cauchy sequence of real numbers converges to a real number.

This result shows that the order completeness of [−∞,+∞] implies the met-
ric completeness of R.

Problems

1. Let L be a totally ordered complete lattice. Show that p is the supremum
of S if and only if p is an upper bound for S and for all r < p there is an
element q of S with r < q.

2. Let L be a complete lattice. Suppose that p is the supremum of S. Does
it follow that for all r < p there is an element q of S with r < q? Give a
proof or a counterexample.

3. Let Sn be the set of symmetric real n by n matrices. Each A in Sn defines a
real quadratic form x 7→ xTAx : Rn → R. Here xT is the row vector that
is the transpose of the column vector x. Since the matrix A is symmetric,
it is its own transpose: AT = A. The order on Sn is the pointwise order
defined by the real quadratic forms. Show that S2 is not a lattice. Hint:
Let P be the matrix with 1 in the upper left corner and 0 elsewhere. Let
Q be the matrix with 1 in the lower right corner and 0 elsewhere. Let
I = P +Q. Show that P ≤ I and Q ≤ I. Show that if P ∨Q exists, then
P ∨ Q = I. Let W be the symmetric matrix that is 4/3 on the diagonal
and 2/3 off the diagonal. Show that P ≤ W and Q ≤ W , but I ≤ W is
false.

4. Let L = [0, 1] and let f : L → L be an increasing function. Can a fixed
point be found by iteration? Discuss.



Chapter 6

Metric spaces

6.1 Metric space notions

A metric space is a set M together with a function d : M ×M → [0,+∞) with
the following three properties:

1. For all x, y we have d(x, y) = 0 if and only if x = y

2. For all x, y, z we have d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

3. For all x, y we have d(x, y) = d(y, x).

Proposition 6.1 For all x, y, z we have |d(x, z)− d(y, z)| ≤ d(x, y).

Proof: From the triangle inequality d(x, z) ≤ d(x, y) + d(y, z) we obtain
d(x, z) − d(y, z) ≤ d(x, y). On the other hand, from the triangle inequality we
also have d(y, z) ≤ d(y, x) + d(x, z) which implies d(y, z) − d(x, z) ≤ d(y, x) =
d(x, y). 2

In a metric space M the open ball centered at x of radius ε > 0 is defined
to be B(x, ε) = {y | d(x, y) < ε}. The closed ball centered at x of radius ε > 0
is defined to be B(x, ε) = {y | d(x, y) ≤ ε}. The sphere centered at x of radius
ε > 0 is defined to be S(x, ε) = {y | d(x, y) = ε}.

6.2 Normed vector spaces

One common way to get a metric is to have a norm on a vector space. A norm
on a real vector space V is a function from V to [0,+∞) with the following
three properties:

1. For all x we have ‖x‖ = 0 if and only if x = 0.

2. For all x, y we have ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality).

3. For all x and real t we have ‖tx‖ = |t|‖x‖.

51
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The corresponding metric is then d(x, y) = ‖x− y‖.
The classic example, of course, is Euclidean space Rn with the usual square

root of sum of squares norm. In the following we shall see that this `2n norm is
just one possibility among many.

6.3 Spaces of finite sequences

Here are some possible metrics on Rn. The most geometrical metric is the `2n
metric given by the `2n norm. This is d2(x, y) = ‖x− y‖2 =

√∑n
k=1(xk − yk)2.

It is the metric with the nicest geometric properties. A sphere in this metric is
a nice round sphere.

Sometimes in subjects like probability one wants to look at the sum of abso-
lute values instead of the sum of squares. The `1n metric is d1(x, y) = ‖x−y‖1 =∑n
k=1 |xk − yk|. A sphere in this metric is actually a box with corners on the

coordinate axes.
In other areas of mathematics it is common to look at the biggest or worst

case. The `∞n metric is d∞(x, y) = ‖x − y‖∞ = max1≤k≤n |xk − yk|. A sphere
in this metric is a box with the flat sides on the coordinate axes.

Comparisons between these metrics are provided by

d∞(x, y) ≤ d2(x, y) ≤ d1(x, y) ≤ nd∞(x, y). (6.1)

The only one of these comparisons that is not immediate is d2(x, y) ≤ d1(x, y).
But this follows from d2(x, y) ≤

√
d1(x, y)d∞(x, y) ≤ d1(x, y).

6.4 Spaces of infinite sequences

The `2 metric is defined on the set of all infinite sequences such that ‖x‖22 =∑∞
k=1 |xk|2 <∞. The metric is d2(x, y) = ‖x− y‖2 =

√∑∞
k=1(xk − yk)2. This

is again a case with wonderful geometric properties. It is a vector space with
a norm called real Hilbert space. The fact that the norm satisfies the triangle
inequality is the subject of the following digression.

Lemma 6.2 (Schwarz inequality) Suppose the inner product of two real se-
quences is to be defined by

〈x, y〉 =
∞∑

k=1

xkyk. (6.2)

If the two sequences x, y are in `2, then this inner product is absolutely conver-
gent and hence well-defined, and it satisfies

|〈x, y〉| ≤ ‖x‖2‖y‖2. (6.3)
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This well-known lemma says that if we define the cosine of the angle between
two non-zero vectors by 〈x, y〉 = ‖x‖2‖y‖2 cos(θ), then −1 ≤ cos(θ) ≤ 1, and so
the cosine has a reasonable geometrical interpretation. If we require the angle
to satisfy 0 ≤ θ ≤ π, then the angle is also well-defined and makes geometrical
sense.

The Schwarz inequality is just what is needed to prove the triangle inequality.
The calculation is

‖x+y‖22 = 〈x+y, x+y〉 = 〈x, x〉+2〈x, y〉+〈y, y〉 ≤ ‖x‖22+2‖x‖2‖y‖2+‖y‖22 = (‖x‖2+‖y‖2)2.
(6.4)

The `1 metric is defined on the set of all infinite sequences x with ‖x‖1 =∑∞
k=1 |xk| < ∞. The metric is d1(x, y) =

∑∞
k=1 |xk − yk|. This is the natural

distance for absolutely convergence sequences. It is again a vector space with a
norm. In this case it is not hard to prove the triangle inequality for the norm
using elementary inequalities.

The `∞ metric is defined on the set of all bounded sequences. The metric
is d∞(x, y) = sup1≤k<∞ |xk − yk|. That is, d∞(x, y) is the least upper bound
(supremum) of the |xk − yk| for 1 ≤ k < ∞. This is yet one more vector
space with a norm. The fact that this is a norm requires a little thought. The
point is that for each k we have |xk + yk| ≤ |xk|+ |yk| ≤ ‖x‖∞ + ‖y‖∞, so that
‖x‖∞+‖y‖∞ is an upper bound for the set of numbers |xk+yk|. Since ‖x+y‖∞
is the least upper bound for these numbers, we have ‖x+ y‖∞ ≤ ‖x‖∞+ ‖y‖∞.

Comparisons between two of these these metrics are provided by

d∞(x, y) ≤ d2(x, y) ≤ d1(x, y). (6.5)

As sets `1 ⊂ `2 ⊂ `∞. This is consistent with the fact that every absolutely
convergent sequence is bounded. The proof of these inequalities is almost the
same as for the finite-dimensional case. However the `∞ metric is defined by
a supremum rather than by a maximum. So to bound it, one finds an upper
bound for the set of all |xk− yk and then argues that ‖x− y‖∞ is the least such
upper bound.

Yet another possibility is to try to define a metric on the product space RN

of all sequences of real numbers. We shall often refer to this space as R∞. This is
the biggest possible metric space of sequences. In order to do this, it is helpful to
first define a somewhat unusual metric on R by db(s, t) = |s−t|/(1+ |s−t|). We
shall see below that the space R with this new metric is uniformly equivalent to
the space R with its usual metric d(s, t) = |s−t|. However db has the advantage
that it is a metric that is bounded by one.

The metric on R∞ is dp(x, y) =
∑∞
k=1

1
2k
db(xk, yk). This is called the prod-

uct metric. The comparison between these metrics is given by the inequality

dp(x, y) ≤ d∞(x, y). (6.6)

The dp metric is an example of a metric on a vector space that is not given by
a norm.
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In all these examples the sequences have been indexed by N+ = N \ {0}.
There are variations in which the index set is N or even Z. All that really
matters is that it is a countable infinite set.

6.5 Spaces of bounded continuous functions

Here is another example. Let X be a set. Let B(X) be the set of all bounded
functions on X. If f and g are two such functions, then |f − g| is bounded, and
so we can define the uniform metric

dsup(f, g) = ‖f − g‖sup = sup
s
|f(s)− g(s)|. (6.7)

This again is a normed vector space.
Suppose that X is a metric space. let C(X) be the set of real continuous

functions on X. Let BC(X) be the set of bounded continuous real functions on
X. This is the appropriate metric space for formulating the concept of uniform
convergence of a sequence of continuous functions to a continuous function.
Thus, the uniform convergence of fn to g as n→∞ is equivalent to the condition
limn→∞ dsup(fn, g) = 0.

It should be remarked that all these examples have complex versions, where
the only difference is that sequences of real numbers are replaced by sequences
of complex numbers. So there is a complex Hilbert space, a space of bounded
continuous complex functions, and so on.

6.6 Open and closed sets

A subset U of a metric space M is open if ∀x (x ∈ U ⇒ ∃εB(x, ε) ⊂ U). The
following results are well-known facts about open sets.

Theorem 6.3 Let Γ be a set of open sets. Then
⋃

Γ is open.

Proof: Let x be a point in
⋃

Γ. Then there exists some S in Γ such that
x ∈ S. Since S is open there exists ε > 0 with B(x, ε) ⊂ S. However S ⊂ ⋃Γ.
So B(x, ε) ⊂ ⋃Γ. Hence

⋃
Γ is open. 2

Notice that
⋃ ∅ = ∅, so the empty set is open.

Theorem 6.4 Let Γ be a finite set of open sets. Then
⋂

Γ is open.

Proof: Let x be a point in
⋂

Γ. Then x is in each of the sets Sk in Γ. Since
each set Sk is open, for each Sk there is an εk > 0 such that B(x, εk) ⊂ Sk. Let
ε be the minimum of the εk. Since Γ is finite, this number ε > 0. Furthermore,
B(x, ε) ⊂ Sk for each k. It follows that B(x, ε) ⊂ ⋂Γ. Hence

⋂
Γ is open. 2

Notice that under our conventions
⋂ ∅ = M , so the entire space M is open.

A subset F of a metric space is closed if ∀x (∀εB(x, ε) ∩ F 6= ∅ ⇒ x ∈ F ). Here
are some basic facts about closed sets.
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Theorem 6.5 The closed subsets are precisely the complements of the open
subsets.

Proof: Let U be a set and F = M \ U be its complement. Then x ∈ U ⇒
∃εB(x, ε) ⊂ U is logically equivalent to ∀ε¬B(x, ε) ⊂ U ⇒ x /∈ U . But this says
∀εB(x, ε) ∩ F 6= ∅ ⇒ x ∈ F . From this it is evident that F is closed precisely
when U is open. 2

Theorem 6.6 A set F in a metric space is an closed subset if and only if every
convergent sequence s : N→M with values sn ∈ F has limit s∞ ∈ F .

Proof: Suppose that F is closed. Let s be a convergent sequence with
sn ∈ F for each n. Let ε > 0. Then for n sufficiently large d(sn, s∞) < ε, that
is, sn ∈ B(s∞, ε). This shows that B(s∞, ε) ∩ F 6= ∅. Since ε > 0 is arbitrary,
it follows that s∞ ∈ F .

For the other direction, suppose that F is not closed. Then there is a point
x /∈ F such that ∀εB(x, ε)∩F 6= ∅. Then for each n we have B(x, 1/n)∩F 6= ∅.
By the axiom of choice, we can choose sn ∈ B(x, 1/n)∩F . Clearly sn converges
to s∞ = x as n→∞. Yet s∞ is not in F . 2

Given an arbitrary subset A of M , the interior Ao of A is the largest open
subset of A. Similarly, the closure Ā of A is the smallest closed superset of A.
The set A is dense in M if Ā = M .

6.7 Continuity

Let f be a function from a metric space A to another metric space B. Then f
is said to be continuous at a if for every ε > 0 there exists δ > 0 such that for
all x we have that d(x, a) < δ implies d(f(x), f(a)) < ε.

Let f be a function from a metric space A to another metric space B. Then
there are various notions of how the function can respect the metric.

1. f is a contraction if for all x, y we have d(f(x), f(y)) ≤ d(x, y).

2. f is Lipschitz (bounded slope) if there exists M <∞ such that for all x, y
we have d(f(x), f(y)) ≤Md(x, y).

3. f is uniformly continuous if for every ε > 0 there exists δ > 0 such that
for all x, y we have that d(x, y) < δ implies d(f(x), f(y)) < ε.

4. f is continuous if for every y and every ε > 0 there exists δ > 0 such that
for all x we have that d(x, y) < δ implies d(f(x), f(y)) < ε.

Clearly contraction implies Lipschitz implies uniformly continous implies con-
tinuous. The converse implications are false.

Let A and B be metric spaces. Suppose that there is a function f : A→ B
with inverse function f−1 : B → A. There are various notions of equivalence of
metric spaces.
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1. The metric spaces are isometric if f and f−1 are both contractions.

2. The metric spaces are Lipschitz equivalent if f and f−1 are both Lipschitz.

3. The metric spaces are uniformly equivalent if f and f−1 are both uniformly
continuous.

4. The metric spaces are topologically equivalent (or homeomorphic) if f and
f−1 are both continuous.

Again there is a chain of implications for the various kinds of equivalence: iso-
metric implies Lipschitz implies uniform implies topological.

The following theorem shows that the notion of continuity depends only on
the collection of open subsets of the metric space, and makes no other use of
the metric. It follows that the property of topological equivalence also depends
only on a specification of the collection of open subsets for each metric space.

Theorem 6.7 Let A and B be metric spaces. Then f : A → B is continuous
if and only if for each open set V ⊂ B, the set f−1[V ] = {x ∈ A | f(x) ∈ V } is
open.

Proof: Suppose f continuous. Consider an open set V . Let x be in f−1[V ].
Since V is open, there is a ball B(f(x), ε) ⊂ V . Since f is continuous, there is
a ball B(x, δ) such that B(x, δ) ⊂ f−1[B(f(x), ε)] ⊂ f−1[V ]. Since for each x
there is such a δ, it follows that f−1[V ] is open.

Suppose that the relation f−1 maps open sets to open sets. Consider an x
and let ε > 0. The set B(f(x), ε) is open, so the set f−1[B(f(x), ε) is open.
Therefore there is a δ > 0 such that B(x, δ) ⊂ f−1[B(f(x), ε)]. This shows that
f is continuous at x.

2

Problems

1. Show that if s : N → R∞ is a sequence of infinite sequences, then the
product space distance dp(sn, x)→ 0 as n→∞ if and only if for each k,
snk → xk as n → ∞ with respect to the usual metric on R. This shows
that the product metric is the metric for pointwise convergence.

2. Regard `2 as a subset of R∞. Find a sequence of points in the unit sphere
of `2 that converges in the R∞ sense to zero.

3. Let X be a metric space. Give a careful proof using precise definitions
that BC(X) is a closed subset of B(X).

4. Give four examples of bijective functions from R to R: an isometric equiv-
alence, a Lipschitz but not isometric equivalence, a uniform but not Lip-
schitz equivalence, and a topological but not uniform equivalence.

5. Show that for F a linear transformation of a normed vector space to itself,
F continuous at zero implies F Lipschitz (bounded slope).
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6.8 Uniformly equivalent metrics

Consider two metrics on the same set A. Then the identity function from
A with the first metric to A with the second metric may be a contraction,
Lipschitz, uniformly continuous, or continuous. There are corresponding notions
of equivalence of metrics: the metrics may be the same, they may be Lipschitz
equivalent, they may be uniformly equivalent, or they may be topologically
equivalent.

For metric spaces the notion of uniform equivalence is particularly important.
The following result shows that given a metric, there is a bounded metric that
is uniformly equivalent to it. In fact, such a metric is

db(x, y) =
d(x, y)

1 + d(x, y)
. (6.8)

The following theorem puts this in a wider context.

Theorem 6.8 Let φ : [0,+∞)→ [0,+∞) be a continuous function that satisfies
the following three properties:

1. φ is increasing: s ≤ t implies φ(s) ≤ φ(t)

2. φ is subadditive: φ(s+ t) ≤ φ(s) + φ(t)

3. φ(t) = 0 if and only if t = 0.

Then if d is a metric, the metric d′ defined by d′(x, y) = φ(d(x, y)) is also a
metric. The identity map from the set with metric d to the set with metric d′ is
uniformly continuous with uniformly continuous inverse.

Proof: The subadditivity is what is needed to prove the triangle inequality.
The main thing to check is that the identity map is uniformly continuous in
each direction.

Consider ε > 0. Since φ is continuous at 0, it follows that there is a δ > 0
such that t < δ implies φ(t) < ε. Hence if d(x, y) < δ it follows that d′(x, y) < ε.
This proves the uniform continuity in one direction.

The other part is also simple. Let ε > 0. Let δ = φ(ε) > 0. Since φ is
increasing, t ≥ ε⇒ φ(t) ≥ δ, so φ(t) < δ ⇒ t < ε. It follows that if d′(x, y) < δ,
then d(x, y) < ε. This proves the uniform continuity in the other direction. 2

In order to verify the subadditivity, it is sufficient to check that φ′(t) is
decreasing. For in this case φ′(s+ u) ≤ φ′(s) for each u ≥ 0, so

φ(s+ t)− φ(s) =
∫ t

0

φ′(s+ u) du ≤
∫ t

0

φ′(u) du = φ(t). (6.9)

This works for the example φ(t) = t/(1+ t). The derivative is φ′(t) = 1/(1+ t)2,
which is positive and decreasing.
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6.9 Sequences

A sequence is often taken to be a function defined on N = {0, 1, 2, 3, . . .}, but it is
sometimes also convenient to regard a sequence as defined on N+ = {1, 2, 3, . . .}.
Consider a sequence s : N+ → B, where B is a metric space. Then the limit of
sn as n→∞ is s∞ provided that ∀ε > 0∃N∀n (n ≥ N ⇒ d(sn, s∞) < ε).

Theorem 6.9 If A and B are metric spaces, then f : A → B is continuous if
and only if whenever s is a sequence in A converging to s∞, it follows that f(s)
is a sequence in B converging to f(s∞).

Proof: Suppose that f : A→ B is continuous. Suppose that s is a sequence
in A converging to s∞. Consider arbitrary ε > 0. Then there is a δ > 0 such
that d(x, s∞) < δ implies d(f(x), f(s∞)) < ε. Then there is an N such that
n ≥ N implies d(sn, s∞) < δ. It follows that d(f(sn), f(s∞)) < ε. This is
enough to show that f(s) converges to f(s∞).

The converse is not quite so automatic. Suppose that for every sequence
s converging to some s∞ the corresponding sequence f(s) converges to f(s∞).
Suppose that f is not continuous at some point a. Then there exists ε > 0 such
that for every δ > 0 there is an x with d(x, a) < δ and d(f(x), f(a)) ≥ ε. In
particular, the set of x with d(x, a) < 1/n and d(f(x), f(a)) ≥ ε is non-empty.
By the axiom of choice, for each n there is an sn in this set. Let s∞ = a. Then
d(sn, s∞) < 1/n and d(f(sn), f(s∞)) ≥ ε. This contradicts the hypothesis that
f maps convergent sequences to convergent sequences. Thus f is continuous at
every point. 2

One way to make this definition look like the earlier definitions is to define
a metric on N+. Set

d∗(m,n) =
∣∣∣∣

1
m
− 1
n

∣∣∣∣ . (6.10)

We may extend this to a metric on N+ ∪ {∞} if we set 1/∞ = 0.

Theorem 6.10 With the metric d∗ on N+ ∪ {∞} defined above, the limit of
sn as n→∞ is s∞ if and only if the function s is continuous from the metric
space N+ ∪ {∞} to B.

Proof: The result is obvious if we note that n > N is equivalent to
d∗(n,∞) = 1/n < δ, where δ = 1/N . 2

Another important notion is that of Cauchy sequence. A sequence s : N+ →
B is a Cauchy sequence if ∀ε∃N∀m∀n ((m ≥ N ∧ n ≥ N)⇒ d(sm, sn) < ε).

Theorem 6.11 If we use the d∗ metric on N+ defined above, then for every
sequence s : N+ → B, s is a Cauchy sequence if and only if s is uniformly
continuous.

Proof: Suppose that s is uniformly continuous. Then ∀ε > 0∃δ > 0(|1/m−
1/n| < δ ⇒ d(sm, sn) < ε). Temporarily suppose that δ′ is such that |1/m −
1/n| < δ ⇒ d(sm, sn) < ε). Take N with 2/δ′ < N . Suppose m ≥ N and
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n ≥ N . Then |1/m − 1/n| ≤ 2/N < δ′. Hence d(sm, sn) < ε. Thus (m ≥
N ∧ n ≥ N) ⇒ d(sm, sn) < ε. From this it is easy to conclude that s is a
Cauchy sequence.

Suppose on the other hand that s is a Cauchy sequence. This means that
∀ε > 0∃N∀m∀n ((m ≥ N ∧ n ≥ N) ⇒ d(sm, sn) < ε). Temporarily suppose
that N ′ is such that ∀m∀n ((m ≥ N ′ ∧ n ≥ N ′) ⇒ d(sm, sn) < ε). Take
δ = 1/(N ′(N ′ + 1)). Suppose that |1/m − 1/n| < δ. Either m < n or n < m
or m = n. In the first case, 1/(m(m + 1)) = 1/m− 1/(m + 1) < 1/m− 1/n <
1/(N ′(N ′ + 1)), so m > N ′, and hence also n > N ′. So d(sm, sn) < ε Similarly,
in the second case both m > N ′ and n > N ′, and again d(sm, sn) < ε. Finally,
in the third case m = n we have d(sm, sn) = 0 < ε. So we have shown that
|1/m− 1/n| < δ ⇒ d(sm, sn) < ε. 2

Problems

1. Let K be an infinite matrix with ‖K‖1,∞ = supn
∑
m |Kmn| < ∞. Show

that F (x)m =
∑
nKmnxn defines a Lipschitz function from `1 to itself.

2. Let K be an infinite matrix with ‖K‖∞,1 = supm
∑
n |Kmn| < ∞. Show

that F (x)m =
∑
nKmnxn defines a Lipschitz function from `∞ to itself.

3. Let K be an infinite matrix with ‖K‖22,2 =
∑
m

∑
n |Kmn|2 < ∞. Show

that F (x)m =
∑
nKmnxn defines a Lipschitz function from `2 to itself.

4. Let K be an infinite matrix with ‖K‖1,∞ < ∞ and ‖K‖∞,1 < ∞. Show
that F (x)m =

∑
nKmnxn defines a Lipschitz function from `2 to itself.
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Chapter 7

Metric spaces and
completeness

7.1 Completeness

Let A be a metric space. Then A is complete means that every Cauchy sequence
with values in A converges. In this section we give an alternative perspective
on completeness that makes this concept seem particularly natural.

If z is a point in a metric space A, then z defines a function fz : A→ [0,+∞)
by

fz(x) = d(z, x). (7.1)

This function has the following three properties:

1. fz(y) ≤ fz(x) + d(x, y)

2. d(x, y) ≤ fz(x) + fz(y)

3. inf fz = 0.

Say that a function f : A → [0,+∞) is a virtual point if it has the three
properties:

1. f(y) ≤ f(x) + d(x, y)

2. d(x, y) ≤ f(x) + f(y)

3. inf f = 0.

We shall see that a metric space is complete if and only if every virtual point is
a point. That is, it is complete iff whenever f is a virtual point, there is a point
z in the space such that f = fz.

It will be helpful later on to notice that the first two conditions are equiv-
alent to |f(y) − d(x, y)| ≤ f(x). Also, it follows from the first condition and
symmetry that |f(x) − f(y)| ≤ d(x, y). Thus virtual points are contractions,
and in particular they are continuous.
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Theorem 7.1 A metric space is complete if and only if every virtual point is
given by a point.

Proof: Suppose that every virtual point is a point. Let s be a Cauchy
sequence of points in A. Then for each x in A, d(sn, x) is a Cauchy sequence
in R. This is because |d(sm, x)− d(sn, x)| ≤ d(sm, sn). However every Cauchy
sequence in R converges. Define f(x) = limn→∞ d(sn, x). It is easy to verify
that f is a virtual point. By assumption it is given by a point z, so f(x) =
fz(x) = d(z, x). But d(sn, z) converges to f(z) = d(z, z) = 0, so this shows that
sn → z as n→∞.

Suppose on the other hand that every Cauchy sequence converges. Let f
be a virtual point. Let sn be a sequence of points such that f(sn) → 0 as
n→∞. Then d(sm, sn) ≤ f(sm) + f(sn)→ 0 as m,n→∞, so sn is a Cauchy
sequence. Thus it must converges to a limit z. Since f is continuous, f(z) = 0.
Furthermore, |f(y)− d(z, y)| ≤ f(z) = 0, so f = fz. 2

Theorem 7.2 Let A be a dense subset of the metric space Ā. Let M be a
complete metric space. Let f : A → M be uniformly continuous. Then there
exists a unique uniformly continuous function f̄ : Ā→M that extends f .

Proof: Regard the function f as a subset of Ā ×M . Define the relation f̄
to be the closure of f . If x is in Ā, let sn ∈ A be such that sn → x as n→∞.
Then sn is a Cauchy sequence in A. Since f is uniformly continuous, it follows
that f(sn) is a Cauchy sequence in M . Therefore f(sn) converges to some y in
M . This shows that (x, y) is the relation f̄ . So the domain of f̄ is Ā.

Let ε > 0. By uniform continuity there is a δ > 0 such that for all x, u′ in A
we have that d(x′, u′) < δ implies d(f(x′), f(u′)) < ε/3.

Now let (x, y) ∈ f̄ and (u, v) ∈ f̄ with d(x, u) < δ/3. There exists x′ in
A such that f(x′) = y′ and d(x′, x) < δ/3 and d(y′, y) < ε/3. Similarly, there
exists u′ in A such that f(u′) = v′ and d(u′, u) < δ/3 and d(v′, v) < ε/3.
It follows that d(x′, u′) ≤ d(x′, x) + d(x, u) + d(u, u′) < δ. Hence d(y, v) ≤
d(y, y′) + d(y′, v′) + d(v′, v) < ε. Thus d(x, u) < δ/3 implies d(y, v) < ε. This is
enough to show that f̄ is a function and is uniformly continuous. 2

A Banach space is a vector space with a norm that is a complete metric
space. Here are examples of complete metric spaces. All of them except for
R∞ are Banach spaces. Notice that `∞ is the special case of B(X) when X is
countable. For BC(X) we take X to be a metric space, so that the notion of
continuity is defined.

Examples:

1. Rn with either the `1n, `2n, or `∞n metric.

2. `1.

3. `2.

4. `∞.
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5. R∞ with the product metric.

6. B(X) with the uniform metric.

7. BC(X) with the uniform metric.

In these examples the points of the spaces are real functions. There are obvi-
ous modifications where one instead uses complex functions. Often the same
notation is used for the two cases, so one must be alert to the distinction.

7.2 Uniform equivalence of metric spaces

Theorem 7.3 Let A be a metric space, and let M be a complete metric space.
Suppose that there is a uniformly continuous bijection f : A→M such that f−1

is continuous. Then A is complete.

Proof: Suppose that n 7→ sn is a Cauchy sequence with values in A. Since
f is uniformly continuous, the composition n 7→ f(sn) is a Cauchy sequence in
M . Since M is complete, there is a y in M such that f(sn)→ y as n→∞. Let
x = f−1(y). Since f−1 is continuous, it follows that sn → x as n→∞. 2

Corollary 7.4 The completeness property is preserved under uniform equiva-
lence.

It is important to understand that completeness is not a topological in-
variant. For instance, take the function g : R → (−1, 1) defined by g(x) =
(2/π) arctan(x). This is a topological equivalence. Yet R is complete, while
(−1, 1) is not complete.

7.3 Completion

Theorem 7.5 Every metric space is densely embedded in a complete metric
space.

This theorem says that if A is a metric space, then there is a complete metric
space F and an isometry from A to F with dense range.

Proof: Let F consist of all the virtual points of A. These are continuous
functions on A. The distance d̄ between two such functions is the usual sup
norm d̄(f, g) = supx∈A d(f(x), g(x)). It is not hard to check that the virtual
points form a complete metric space of continuous functions. The embedding
sends each point z in a into the corresponding fz. Again it is easy to verify
that this embedding preserves the metric, that is, that d̄(fz, fw) = d(z, w).
Furthermore, the range of this embedding is dense. The reason for this is that
for each virtual point f and each ε > 0 there is an x such that f(x) < ε. Then
|f(y)− fx(y)| = |f(y)− d(x, y)| ≤ f(x) < ε. This shows that d̄(f, fx) ≤ ε. 2

The classic example is the completion of the rational number system Q. A
virtual point of Q is a function whose graph is in the general shape of a letter V.
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When the bottom tip of the V is at a rational number, then the virtual point is
already a point. However most of these V functions have tips that point to a gap
in the rational number system. Each such gap in the rational number system
corresponds to the position of an irrational real number in the completion.

7.4 The Banach fixed point theorem

If f is a Lipschitz function from a metric space to another metric space, then
there is a constant C < +∞ such that for all x and y we have d(f(x), f(y)) ≤
Cd(x, y). The set of all C is a set of upper bounds for the quotients, and so
there is a least such upper bound. This is called the least Lipschitz constant of
the function.

A Lipschitz function is a contraction if its least Lipschitz constant is less
than or equal to one. It is a strict contraction if its least Lipschitz constant is
less than one.

Theorem 7.6 (Banach) Let A be a complete metric space. Let f : A→ A be
a strict contraction. Then f has a unique fixed point. For each point in A, its
orbit converges to the fixed point.

Proof: Let a be a point in A, and let sk = f (k)(a). Then by induction
d(sk, sk+1) ≤Mkd(s0, s1). Then again by induction d(sm, sm+p)) ≤

∑p−1
k=mM

kd(s0, s1) ≤
Km/(1−K)d(s0, s1). This is enough to show that s is a Cauchy sequence. By
completeness it converges to some s∞. Since f is continuous, this is a fixed
point. 2

Recall that a Banach space is a complete normed vector space. The Banach
fixed point theorem applies in particular to a linear transformations of a Banach
space to itself that is a strict contraction.

For instance, consider one of the Banach spaces of sequences. Let f(x) =
Kx + u, where K is a matrix, and where u belongs to the Banach space. The
function f is Lipschitz if and only if multiplication by K is Lipschitz. If the
Lipschitz constant is strictly less than one, then the Banach theorem gives the
solution of the linear system x−Kx = u.

To apply this, first look at the Banach space `∞. Define ‖K‖∞→∞ to be the
least Lipschitz constant. Define

‖K‖∞,1 = sup
m

∞∑
n=1

|Kmn|. (7.2)

Then it is not difficult to see that ‖K‖∞→∞ = ‖K‖∞,1.
For another example, consider the Banach space `1. Define ‖K‖1→1 to be

the least Lipschitz constant. Define

‖K‖1,∞ = sup
n

∞∑
m=1

|Kmn|. (7.3)
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Then it is not difficult to see that ‖K‖1→1 = ‖K‖1,∞.
The interesting case is the Hilbert space `2. Define ‖K‖2→2 to be the least

Lipschitz constant. Define

‖K‖2,2 =

√√√√
∞∑
m=1

∞∑
n=1

K2
mn. (7.4)

Then an easy application of the Schwarz inequality will show that ‖K‖2→2 ≤
‖K‖2,2. However this is usually not an equality!. A somewhat more clever ap-
plication of the Schwarz inequality will show that ‖K‖2→2 ≤

√‖K‖1,∞‖K‖∞,1.
Again this is not in general an equality. Finding the least Lipschitz constant is
a non-trivial task. However one or the other of these two results will often give
useful information.

Problems

1. Show that a closed subset of a complete metric space is complete.

2. Let c0 be the subset of `∞ consisting of all sequences that converge to
zero. Show that c0 is a complete metric space.

3. Let A be a dense subset of the metric space Ā. Let M be a complete
metric space. Let f : A→M be continuous. It does not follow in general
that there is a continuous function f̄ : Ā → M that extends f . (a) Give
an example of a case when the closure f̄ of the graph is a function on A
but is not defined on Ā. (b) Give an example when the closure f̄ of the
graph is a relation defined on Ā but is not a function.

4. Let C([0, 1]) be the space of continuous real functions on the closed unit
interval. Give it the metric d1(f, g) =

∫ 1

0
|f(x) − g(x)| dx. Let h be a

discontinuous step function equal to 0 on half the interval and to 1 on the
other half. Show that the map f 7→ ∫ 1

0
|f(x)−h(x)| dx is a virtual point of

C([0, 1]) (with the d1 metric) that does not come from a point of C([0, 1]).

5. Let E be a complete metric space. Let f : E → E be a strict contraction
with constant C < 1. Consider z in E and r with r ≥ d(f(z), z)/(1− C).
Then f has a fixed point in the ball consisting of all x with d(x, z) ≤ r.
Hint: First show that this ball is a complete metric space.

7.5 Coerciveness

A continuous function defined on a compact space assumes its minimum (and
its maximum). This result is both simple and useful. However in general the
point where the minimum is assumed is not unique. Furthermore, the condition
that the space is compact is too strong for many applications. A result that
only uses completeness could be helpful, and the following is one of the most
useful results of this type.
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Theorem 7.7 Let M be a complete metric space. Let f be a continuous real
function on M that is bounded below. Let a = inf{f(x) | x ∈M}. Suppose that
there is an increasing function φ from [0,+∞) to itself such that φ(t) = 0 only
for t = 0 with the coercive estimate

a+ φ(d(x, y)) ≤ f(x) + f(y)
2

. (7.5)

Then there is a unique point p where f(p) = a. That is, there exists a unique
point p where F assumes its minimum value.

Proof: Let sn be a sequence of points such that f(sn) → a as n → ∞.
Consider ε > 0. Let δ = φ(ε) > 0. Since φ is increasing, φ(t) < δ implies
t < ε. For large enough m,n we can arrange that φ(d(sm, sn)) < δ. Hence
d(sm, sn) < ε. Thus sn is a Cauchy sequence. Since M is complete, the sequence
converges to some p in M . By continuity, f(p) = a. Suppose also that f(q) = a.
Then from the inequality d(p, q) = 0, so p = q. 2

This theorem looks impossible to use in practice, because it seems to requires
a knowledge of the infimum of the function. However the following result shows
that there is a definite possibility of a useful application.

Corollary 7.8 Let M be a closed convex subset of a Banach space. Let f be
a continuous real function on M . Say that a = infx∈M f(x) is finite and that
there is a c > 0 such that the strict convexity condition

c‖x− y‖2 ≤ f(x) + f(y)
2

− f(
x+ y

2
) (7.6)

is satisfied. Then there is a unique point p in M with f(p) = a.

Proof: Since M is convex, (x+ y)/2 is in M , and so a ≤ f((x+ y)/2). 2



Chapter 8

Metric spaces and
compactness

8.1 Total boundedness

The notion of compactness is meaningful and important in general topological
spaces. However it takes a quantitative form in metric spaces, and so it is
worth making a special study in this particular setting. A metric space is
complete when it has no nearby missing points (that is, when every virtual
point is a point). It is compact when, in addition, it is well-approximated by
finite sets. The precise formulation of this approximation property is in terms
of the following concept.

A metric space M is totally bounded if for every ε > 0 there exists a finite
subset F of M such that the open ε-balls centered at the points of F cover M .

We could also define M to be totally bounded if for every ε > 0 the space
M is the union of finitely many sets each of diameter at most 2ε. For some
purposes this definition is more convenient, since it does not require the sets to
be balls.

The notion of total boundedness is quantitative. If M is a metric space, then
there is a function that assigns to each ε > 0 the smallest number N such that
M is the union of N sets each of diameter at most 2ε. The slower the growth
of this function, the better the space is approximated by finitely many points.

For instance, consider a box of side 2L in a Euclidean space of dimension
k. Then the N is roughly (L/ε)k. This shows that the covering becomes more
difficult as the size L increases, but also as the dimension k increases.

Theorem 8.1 Let f : K → M be a uniformly continuous surjection. If K is
totally bounded, then M is totally bounded.

Corollary 8.2 Total boundedness is invariant under uniform equivalence of
metric spaces.
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8.2 Compactness

For metric spaces we can say that a metric space is compact if it is both complete
and totally bounded.

Lemma 8.3 Let K be a metric space. Let F be a subset of K. If F is complete,
then F is a closed subset of K. Suppose in addition that K is complete. If F is
a closed subset of K, then F is complete.

Proof: Suppose F is complete. Say that s is a sequence of points in F that
converges to a limit a in K. Then s is a Cauchy sequence in F , so it converges
to a limit in F . This limit must be a, so a is in F . This proves that F is a closed
subset of K. Suppose for the converse that K is complete and F is closed in K.
Let s be a Cauchy sequence in F . Then it converges to a limit a in K. Since F
is closed, the point a must be in F . This proves that F is complete. 2

Lemma 8.4 Let K be a totally bounded metric space. Let F be a subset of K.
Then F is totally bounded.

Proof: Let ε > 0. Then K is the union of finitely many sets, each of diameter
bounded by 2ε. Then F is the union of the intersections of these sets with F ,
and each of these intersections has diameter bounded by 2ε. 2

Theorem 8.5 Let K be a compact metric space. Let F be a subset of K. Then
F is compact if and only if it is a closed subset of K.

Proof: Since K is compact, it is complete and totally bounded. Suppose F
is compact. Then it is complete, so it is a closed subset of K. For the converse,
suppose F is a closed subset of K. It follows that F is complete. Furthermore,
from the last lemma F is totally bounded. It follows that F is compact. 2

Examples:

1. The unit sphere (cube) in `∞ is not compact. In fact, the unit basis vectors
δn are spaced by 1.

2. The unit sphere in `2 is not compact. The unit basis vectors δn are spaced
by
√

2.

3. The unit sphere in `1 is not compact. The unit basis vectors δn are spaced
by 2.

Examples:

1. Let ck ≥ 1 be a sequence that increases to infinity. The squashed solid
rectangle of all x with ck|xk| ≤ 1 for all k is compact in `∞.

2. Let ck ≥ 1 be a sequence that increases to infinity. The squashed solid
ellipsoid of all x with

∑∞
k=1 ckx

2
k ≤ 1 is compact in `2.
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3. Let ck ≥ 1 be a sequence that increases to infinity. The squashed region
of all x with

∑∞
k=1 ck|xk| ≤ 1 is compact in `1.

Problems

1. Let ck ≥ 1 be a sequence that increases to infinity. Show that the squashed
solid ellipsoid of all x with

∑∞
k=1 ckx

2
k ≤ 1 is compact in `2.

2. Prove that the squashed solid ellipsoid in `2 is not homeomorphic to the
closed unit ball in `2.

3. Let ck ≥ 1 be a sequence that increases to infinity. Is the squashed ellipsoid
of all x with

∑∞
k=1 ckx

2
k = 1 compact in `2?

4. Is the squashed ellipsoid in `2 homeomorphic to the unit sphere in `2?

8.3 Countable product spaces

Let Mj for j ∈ N+ be a sequence of metric spaces. Let
∏
jMj be the product

space consisting of all functions f such that f(j) ∈ Mj . Let φ(t) = t/(1 + t).
Define the product metric by

d(f, g) =
∞∑

j=1

1
2j
φ(d(f(j), g(j)). (8.1)

The following results are elementary.

Lemma 8.6 If each Mj is complete, then
∏
jMj is complete.

Lemma 8.7 If each Mj is totally bounded, then
∏
jMj is totally bounded.

Theorem 8.8 If each Mj is compact, then
∏
jMj is compact.

Examples:

1. The product space R∞ is complete but not compact.

2. The closed unit ball (solid cube) in `∞ is a compact subset of R∞ with
respect to the R∞ metric. In fact, it is a product of compact spaces.
What makes this work is that the R∞ metric measures the distances for
various coordinates in increasingly less stringent ways.

3. The unit sphere (cube) in `∞ is not compact with respect to the R∞

metric, in fact, it is not even closed. The sequence δn converges to zero.
The zero sequence is in the closed ball (solid cube), but not in the sphere.
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8.4 Compactness and continuous functions

Theorem 8.9 A metric space M is compact if and only if every sequence with
values in M has a subsequence that converges to a point of M .

Proof: Suppose thatM is compact. Thus it is totally bounded and complete.
Let s be a sequence with values in M . Since M is bounded, it is contained in a
ball of radius C.

By induction construct a sequence of balls Bj of radius C/2j and a decreasing
sequence of infinite subsets Nj of the natural numbers such that for each k in
Nj we have sk in Bj . For j = 0 this is no problem. If it has been accomplished
for j, cover Bj by finitely many balls of radius C/2j+1. Since Nj is infinite,
there must be one of these balls such that sk is in it for infinitely many of the
k in Nj . This defines Bj+1 and Nj+1.

Let r be a strictly increasing sequence of numbers such that rj is in Nj .
Then j 7→ srj is a subsequence that is a Cauchy sequence. By completeness it
converges.

The converse proof is easy. The idea is to show that if the space is either not
complete or not totally bounded, then there is a sequence without a convergent
subsequence. In the case when the space is not complete, the idea is to have
the sequence converge to a point in the completion. In the case when the space
is not totally bounded, the idea is to have the terms in the sequence separated
by a fixed distance. 2

The theorem shows that for metric spaces the concept of compactness is in-
variant under topological equivalence. In fact, it will turn out that compactness
is a purely topological property.

Theorem 8.10 Let K be a compact metric space. Let L be another metric
space. Let f : K → L be a continuous function. Then f is uniformly continuous.

Proof: Suppose f were not uniformly continuous. Then there exists ε > 0
such that for each δ > 0 the set of pairs (x, y) with d(x, y) < δ and d(f(x), f(y)) ≥
ε is not empty. Consider the set of pairs (x, y) with d(x, y) < 1/n and d(f(x), f(y)) ≥
ε. Choose sn and tn with d(sn, tn) < 1/n and d(f(sn), f(tn)) ≥ ε. Since K is
compact, there is a subsequence uk = srk that converges to some limit a. Then
also vk = trk converges to a. But then f(uk) → f(a) and f(vk) → f(a) as
k → ∞. In particular, d(f(uk), f(vk)) → d(a, a) = 0 as k → ∞. This contra-
dicts the fact that d(f(uk), f(vk)) ≥ ε. 2

A corollary of this result is that for compact metric spaces the concepts of
uniform equivalence and topological equivalence are the same.

Theorem 8.11 Let K be a compact metric space. Let L be another metric
space. Let f : K → L be continuous. Then f [K] is compact.

Proof: Let t be a sequence with values in f [K]. Choose sk with f(sk) = tk.
Then there is a subsequence uj = srj with uj → a as j → ∞. It follows that
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trj = f(srj ) = f(uj) → f(a) as j → ∞. This shows that t has a convergence
subsequence. 2

The classic application of this theorem is to the case when f : K → R, where
K is a non-empty metric space. Then f [K] is a non-empty compact subset of
R. However, a non-empty compact set of real numbers has a least element and
a greatest element. Therefore there is a p in K where f assumes its minimum
value, and there is a q in K where f assumes its maximum value.

8.5 Semicontinuity

A function from a metric space M to [−∞,+∞) is said to be upper semicon-
tinuous if for every u and every r > f(u) there is a δ > 0 such that all v with
d(u, v) < δ satisfy f(v) < r. An example of an upper semicontinuous function is
one that is continuous except where it jumps up at a single point. It is easy to
fall from this peak. The indicator function of a closed set is upper semicontinu-
ous. The infimum of a non-empty collection of upper semicontinuous functions
is upper semicontinuous. This generalizes the statement that the intersection
of a collection of closed sets is closed.

There is a corresponding notion of lower semicontinuous function. A function
from a metric space M to (−∞,+∞] is said to be lower semicontinuous if for
every u and every r < f(u) there is a δ > 0 such that all v with d(u, v) < δ
satisfy f(v) > r. An example of a lower semicontinuous function is one that is
continuous except where jumps down at a single point. The indicator function
of an open set is lower semicontinuous. The supremum of a non-empty collection
of lower semicontinuous functions is lower semicontinuous. This generalizes the
fact that the union of a collection of open sets is open.

Theorem 8.12 Let K be compact and not empty. Let f : K → (−∞,+∞]
be lower semicontinuous. Then there is a point p in K where f assumes its
minimum value.

Proof: Let a be the infimum of the range of f . Suppose that s is a sequence
of points in K such that f(sn)→ a. By compactness there is a strictly increasing
sequence g of natural numbers such that the subsequence j 7→ sgj converges to
some p in K. Consider r < f(p). The lower semicontinuity implies that for
sufficiently large j the values f(sgj ) > r. Hence a ≥ r. Since r < f(p) is
arbitrary, we conclude that a ≥ f(p). 2

There is a corresponding theorem for the maximum of an upper semicontin-
uous function on a compact space that is not empty.

8.6 Compact sets of continuous functions

Let A be a family of functions on a metric space M to another metric space.
Then A is equicontinuous if for every x and every ε > 0 there is a δ > 0 such
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that for all f in A the condition d(x, y) < δ implies d(f(x), f(y)) < ε. Thus the
δ does not depend on the f in A.

Similarly, A is uniformly equicontinuous if for every ε > 0 there is a δ > 0
such that for all f in A the condition d(x, y) < δ implies d(f(x), f(y)) < ε. Thus
the δ does not depend on the f in A or on the point in the domain.

Finally, A is equiLipschitz if there is a constant C such that for all f in A
the condition d(x, y) < δ implies d(f(x), f(y)) < Cd(x, y) is satisfied.

It is clear that equiLipschitz implies uniformly equicontinuous implies equicon-
tinuous.

Lemma 8.13 Let K be a compact metric space. If A is an equicontinuous set
of functions on K, then A is a uniformly equicontinuous set of functions on K.

Let K,M be metric spaces, and let BC(K → M) be the metric space of
all bounded continuous functions from K to M . The distance between two
functions is given by the supremum over K of the distance of their values in
the M metric. When M is complete, this is a complete metric space. When K
is compact or M is bounded, this is the same as the space C(K → M) of all
continuous functions from K to M . A common case is when M = [−m,m] ⊂ R,
a closed bounded interval of real numbers.

Theorem 8.14 (Arzelà-Ascoli) Let K and M be totally bounded metric spaces.
Let A be a subset of C(K → M). If A is uniformly equicontinuous, then A is
totally bounded.

Proof: Let ε > 0. By uniform equicontinuity there exists a δ > 0 such that
for all f in A and all x, y the condition d(x, y) < δ implies that |f(x)− f(y)| <
ε/4. Furthermore, there is a finite set F ⊂ K such that every point in K is
within δ of a point of F . Finally, there is a finite set G of points in M that are
within ε/4 of every point in M . The set GF is finite.

For each h in GF let Dh be the set of all g in A such that g is within ε/4 of
h on F . Every g is in some Dh. Each x in K is within δ of some a in F . Then
for g in Dh we have

|g(x)− h(a)| ≤ |g(x)− g(a)|+ |g(a)− h(a)| < ε/4 + ε/4 = ε/2. (8.2)

We conclude that each pair of functions in Dh is within ε of each other. Thus
A is covered by finitely many sets of diameter ε. 2

In practice the way to prove that A is uniformly equicontinuous is to prove
that A is equiLipschitz with constant C. Then the theorem shows in a rather
explicit way that A is totally bounded. In fact, the functions are parameterized
to within a tolerance ε by functions from the finite set F of points spaced by
δ = ε/(4C) to the finite set G of points spaced by ε/4.

Corollary 8.15 (Arzelà-Ascoli) Let K,M be a compact metric spaces. Let
A be a subset of C(K → M). If A is equicontinuous, then its closure Ā is
compact.
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Proof: Since K is compact, the condition that A is equicontinuous implies
that A is uniformly equicontinuous. By the theorem, A is totally bounded. It
follows easily that the closure Ā is totally bounded. Since M is compact and
hence complete, C(K → M) is complete. Since Ā is a closed set of a complete
space, it is also complete. The conclusion is that Ā is compact. 2

The theorem has consequences for existence results. Thus every sequence of
functions in A has a subsequence that converges in the metric of C(K →M) to
a function in the space.

Problems

1. Consider a metric space A with metric d. Say that there is another metric
space B with metric d1. Suppose that A ⊂ B, and that d1 ≤ d on A×A.
Finally, assume that there is a sequence fn in A that approaches h in B\A
with respect to the d1 metric. Show that A is not compact with respect
to the d metric. (Example: Let A be the unit sphere in `2 with the `2

metric, and let B be the closed unit ball in `2, but with the R∞ metric.)

2. Is the metric space of continuous functions on [0, 1] to [−1, 1] with the sup
norm compact? Prove or disprove. (Hint: Use the previous problem.)

3. Consider the situation of the Arzelà-Ascoli theorem applied to a set A ⊂
C(K) with bound m and Lipschitz constant C. Suppose that the number
of δ sets needed to cover K grows like (L/δ)k, a finite dimensional behavior
(polynomial in 1/δ). What is the growth of the number of ε sets needed
to cover A ⊂ C(K)? It this a finite dimensional rate?

8.7 Curves of minimum length

The following is an application of the ideas of this section. Let M be a com-
pact metric space. Fix points p and q in M . Consider the metric space of all
continuous functions φ : [0, 1]→M with φ(0) = p and φ(1) = q. An element of
this space is called a curve from p to q.

If τ0, . . . , τn is a strictly increasing sequence of points in [0, 1] with τ0 = 0
and τn = 1, define

Fτ (φ) =
n∑

i=1

d(φ(τi−1), φ(τi)). (8.3)

Then Fτ is a continuous real function on the space of all curves from p to q. It
is a function that computes an approximation to the length of the curve φ.

Define a function F on the path space with values in [0,+∞] by F (φ) =
supτ Fτ (φ). Since each Fτ is continuous, it follows that F is lower semicontinu-
ous. This function may be thought of as the length of the curve φ. This length
may be infinite.

The interesting feature of the definition of length is that the length of a curve
need not be a continuous function of the curve. The reason is that one could
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take a smooth curve φ and approximate it very well in the uniform sense by a
very irregular curve ψ. So while ψ is uniformly close to ψ, it can have a length
much greater than the length of φ.

Theorem 8.16 Let M be a compact metric space. Let p and q be points in M .
Suppose there is a curve from p to q of finite length. Then there is a curve from
p to a of minimum length.

Proof: For each curve of finite length L there is a representation of the curve
as a function of arc length along the curve. Such a representation gives the curve
as a function on [0, L] with Lipschitz constant 1. By changing scale one gets
the curve as a function on [0, 1] with Lipschitz constant L. So in searching for
a curve of minimum length we may as well use Lipschitz curves.

Suppose that there is at least one curve of finite length L∗. Consider the
non-empty set of all curves from p to q with length bounded by L∗ and with
Lipschitz constant L∗. The Arzelá-Ascoli theorem shows that this is a compact
metric space. Since the length function F is a lower semicontinuous function on
a non-empty compact space, the conclusion is that there is a curve φ from p to
q of minimum length. 2



Chapter 9

Vector lattices

9.1 Positivity

In the following we shall refer to a real number x ≥ 0 as positive, and a number
x > 0 as strictly positive. A sequence s of real numbers is increasing if m ≤ n
implies sm ≤ sn, while it is strictly increasing if m < n implies sm < sn. Note
that many authors prefer the terminology non-negative or non-decreasing for
what is here called positive or increasing. In the following we shall often write
sn ↑ to indicate that sn is increasing in our sense.

The terminology for real functions is more complicated. A function with
f(x) ≥ 0 for all x is called positive (more specifically, pointwise positive), and
we write f ≥ 0. Correspondingly, a function f with f ≥ 0 that is not the zero
function is called positive non-zero. While it is consistent with the conventions
for ordered sets to write f > 0, this may risk confusion. Sometimes a term like
positive semi-definite is used. In other contexts, one needs another ordering on
functions. Thus the condition that either f is the zero function or f(x) > 0
for all x might be denoted f ≥≥ 0, though this is far from being a standard
notation. The corresponding condition that f(x) > 0 for all x is called pointwise
strictly positive, and a suitable notation might be f >> 0. An alternative is to
say that f > 0 pointwise or f > 0 everywhere. Sometimes a term like positive
definite is used.

The main use of the term positive definite is in connection with quadratic
forms. A quadratic form is always zero on the zero vector, so it is reasonable
to restrict attention to non-zero vectors. Then according to the writer semi-
definite can mean positive or positive non-zero, while positive definite would
ordinarily mean pointwise strictly positive. However some authors use the word
positive definite in the least restrictive sense, that is, to indicate merely that
the quadratic form is positive. A reader must remain alert to the definition in
use on a particular occasion.

A related notion that will be important in the following is the pointwise
ordering of functions. We write f ≤ g to mean that for all x there is an

75
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inequality f(x) ≤ g(x). Similarly, we write fn ↑ to indicate an increasing
sequence of functions, that is, m ≤ n implies fm ≤ fn. Also, fn ↑ f means that
fn ↑ and fn converges to f pointwise.

9.2 Integration of regulated functions

Perhaps the simplest definition of integral is based on the sup norm, that is, on
the notion of uniform convergence. The functions that are integrable by this def-
inition are known as regulated functions. Each continuous function is regulated,
so this notion of integral is good for many calculus application. Furthermore, it
works equally well for integrals with values in a Banach space.

Let [a, b] ⊂ R be a closed interval. Consider a partition a ≤ a0 < a1 < . . . <
an = b of the interval. A general step function is a function f from [a, b] to R
that is constant on each open interval (ai, bi+1) of such a partition. For each
general step function f there is an integral λ(f) that is the sum

λ(f) =
∫ b

a

f(x) dx =
n−1∑

i=0

f(ci)(ai+1 − ai), (9.1)

where ai < ci < ai+1.
Let R([a, b]) be the closure of the space S of general step functions in the

space B([a, b]) of all bounded functions. This called the space of regulated
functions. Since every continuous function is a regulated function, we have
C([a, b]) ⊂ R([a, b]).

The function λ defined on the space S of general step functions is a Lipschitz
function with Lipschitz constant b − a. In particular it is uniformly continu-
ous, and so it extends by continuity to a function on the closure R([a, b]). This
extended function is also denoted by λ and is the regulated integral. In partic-
ular, the regulated integral is defined on C([a, b]) and agrees with the integral
for continuous functions that is used in elementary calculus.

9.3 The Riemann integral

The Riemann integral, by contrast, is based on the idea of order. Let f be a
bounded function on the interval [a, b] of real numbers. Define the lower integral
by

λ(g) = sup{λ(f) | f ∈ S, f ≤ g}. (9.2)

Similarly, define the upper integral by

λ(g) = inf{λ(h) | f ∈ S, g ≤ h}. (9.3)

Then g is Riemann integrable if

λ(g) = λ(g). (9.4)
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In that case the integral is denoted

λ(g) =
∫ b

a

g(t) dt. (9.5)

The Riemann integral is somewhat more general than the regulated integral.
However the Lebesgue integral is much more powerful, and it has made the
Riemann integral obsolete. The reason for the improvement is that the Riemann
integral is defined by a one stage approximation procedure. The function to be
integrated is approximated by step functions. The Lebesgue integral is defined
by a two stage approximation procedure. First the integral is extended to lower
functions and to upper functions. This is the first stage. These lower and upper
functions are much more complicated than step functions. Then the function to
be integrated is approximated by lower and upper functions. This is the second
stage. The remarkable fact is that two stages is sufficient to produce a theory
that is stable under many limiting processes.

9.4 Step functions

A general step function can have arbitrary values at the end points of the inter-
vals. It is sometimes nicer to make a convention that makes the step functions
left continuous (or right continuous). This will eventually make things easier
when dealing with more general integrals where individual points count.

A rectangular function is an indicator function of an interval (a, b] of real
numbers. Here a and b are real numbers, and the interval (a, b] consists of all real
numbers x with a < x ≤ b. The convention that the interval is open on the left
and closed on the right is arbitrary but convenient. The nice thing about these
intervals is that their intersection is an interval of the same type. Furthermore,
the union of two such intervals is a finite union of such intervals. And the
relative complement of two such intervals is a finite union of such intervals.

A step function is a finite linear combination of rectangular functions. In
fact, each step function may be represented as a finite linear combination of
rectangular functions that correspond to disjoint subsets.

Another important rectangular function is the binary function fn;k defined
for 0 ≤ n and 0 ≤ k < 2n. Consider the 2n disjoint intervals of length 1/2n

partitioning the interval (0, 1]. Number them from 0 to 2n − 1. Then fn;k is
the indicator function of the kth interval. Fix n. Then the fn;k for 0 ≤ k < 2n

form a basis for a 2n dimensional vector space Fn.
An important step function is the Bernoulli function bn defined for n ≥ 1.

This is defined by partitioning (0, 1] into 2n disjoint intervals of length 1/2n.
Number the intervals from 0 to 2n−1. The Bernoulli function is the function
that is 0 on the even numbered intervals and 1 on the odd numbered intervals.

There is a perhaps unexpected relation between the Bernoulli functions and
the binary functions fn;k. Write the number k in binary form. Look at the
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corresponding subset S of {1, . . . , n} and its complement Sc in {1, . . . , n}. Then

fn;k =
∏

j∈S
bj
∏

j∈Sc
(1− bj). (9.6)

Notice that if n = 0 this is an empty product, and so it has the value 1.
A step function that is closely related to the Bernoulli function is the Rademacher

function rn = 1−2bn defined for n ≥ 1. Again consider intervals of length 1/2n.
The Rademacher function is the function that is 1 on the even numbered inter-
vals and −1 on the odd numbered intervals.

A Walsh function is a product of Rademacher functions. . Let S ⊂ {1, 2, 3, . . .}
be a finite set of strictly positive natural numbers. Let the Walsh function be
defined by

wS =
∏

j∈S
rj . (9.7)

The Walsh functions wS for S ⊂ {1, . . . , n} form another basis for Fn. Notice
that when S is empty the product is 1.

The Walsh functions may be generated from the Rademacher functions in a
systematic way. At stage zero start with the function 1. At stage one take also
r1. At stage two take r2 times each of the functions from the previous stages.
This gives also r2 and r1r2. At stage three take r3 times each of the functions
from the previous stages. This gives also r3 and r1r3 and r2r3 and r1r2r3. It is
clear how to continue.

A Haar function is a multiple of a product of a binary rectangular function
with a Rademacher function. Then for n ≥ 0 and 0 ≤ k < 2n define the Haar
function to be

hn;k = cnfn;krn+1, (9.8)

and define h−1;0 = 1. For n ≥ 0 the coefficient cn > 0 is determined by
c2n = 1/2n. The function h−1;0 together with the other Haar functions hj;k for
j = 0 to n − 1 and 0 ≤ k < 2j form a basis for Fn. Note that the number of
such functions is 1 +

∑n−1
j=0 2j = 2n.

The Haar functions may be generated in a systematic way. At stage zero
start with the function 1. At stage one take also r1. At stage two take also f1;0r2

and f1;1r2. At stage three take also f2;0r3 and f2;1r3 and f2;2r3 and f2;3r
3.

An important infinite dimensional vector space is

L =
⋃
n

Fn. (9.9)

This is the space of all step functions on (0, 1] that have end points that are mul-
tiples of 1/2n for some n. This space is spanned by the finite linear combinations
of Walsh functions (or of Haar functions) of arbitrary order.

Theorem 9.1 The Walsh functions form an orthonormal family of vectors with
respect to the inner product

〈f, g〉 = λ(fg) =
∫ 1

0

f(x)g(x) dx. (9.10)
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For an arbitrary continuous function f on [0, 1] the Walsh expansion

f(x) =
∑

S

〈wS , f〉wS(x) (9.11)

of f converges uniformly to f on (0, 1].

Theorem 9.2 The Haar functions form an orthonormal family of vectors with
respect to the inner product

〈f, g〉 = λ(fg) =
∫ 1

0

f(x)g(x) dx. (9.12)

For an arbitrary continuous function f on [0, 1] the Haar expansion

f(x) =
∞∑

n=−1

∑

0≤k<2n

〈hn;k, f〉hn;k(x) (9.13)

of f converges uniformly to f on (0, 1].

Proof: The important thing to notice is that these theorems are the same
theorem. The partial sum of the Walsh series that is in Fn is the same as the
partial sum of the Haar series that is in Fn. In fact, this is the same as the
partial sum of the expansion into rectangular functions that is in Fn. Each of
these partial sums can be characterized as the projection of f onto Fn. So the
only problem is to demonstrate that this last partial sum converges uniformly
to the continuous function f .

However the rectangular functions fn;k for fixed n form an orthogonal basis
for Fn. So the error in the expansion is just

f(x)−
∑

k

2n〈f, fn;k〉fn;k(x) =
∑

k

2n
∫

In;k

(f(x)− f(t)) dtfn;k(x), (9.14)

where fn;k is the indicator function of In;k. Let ε > 0. By uniform continuity,
there is an δ so that if |x − t| < δ, then the values |f(x) − f(t)| < ε. Take n
such that 2−n < δ. Then the absolute values of the error is bounded for each x
by ε. 2

9.5 Coin tossing

Consider the set Ω = 2N+ of all sequences of zeros and ones indexed by
N+ = {1, 2, 3, . . .}. This is thought of as a sequences of tails and heads, or
of failures and successes. Each element ω is called an outcome of the coin toss-
ing experiment. For n ≥ 0, let Fn be the set of real functions on Ω that depend
at most on the first n coordinates.

A random variable is a function f from Ω to R (satisfying certain technical
conditions, to be specified later). A random variable is a prescription for deter-
mining an experimental number, since the number f(ω) depends on the actual
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result ω of the experiment. Each function in Fn is a random variable. These
are the random variables that may be determined only knowing the results of
the first n coin tosses.

One important function in Fn is the binary function fn;k defined for 0 ≤ n
and 0 ≤ k < 2n. Write k in binary notation. Then fn;k is equal to one on every
sequence ω that agrees with the binary digits of k in the first n places. Then
the fn;k for 0 ≤ k < 2n form a basis for the 2n dimensional vector space Fn.

Another function is the Bernoulli function bn. This is defined by bn(ω) = ωn.
In other words, it is the nth coordinate function. It just measures failure or
success on the nth toss of the coin.

The relation between the Bernoulli functions and the binary functions fnk
is the following. Write the number k in binary form. Look at the corresponding
subset S of {1, . . . , n} and its complement Sc in {1, . . . , n}. Then

fn;k =
∏

j∈S
bj
∏

j∈Sc
(1− bj). (9.15)

That is, the binary function is one precisely for those coin tosses that have a
particular pattern of successes and failures in the first n trials, without regard
to what happens in later trials.

Another important function is the Rademacher function rn = 1− 2bn. This
is the function that is 1 when the nth trial results in failure and −1 when the
nth trial results in success.

A Walsh function is a product of Rademacher functions. Let S ⊂ {1, 2, 3, . . .}
be a finite set of strictly positive natural numbers. Let the Walsh function be
defined by

wS =
∏

j∈S
rj . (9.16)

The Walsh functions wS for S ⊂ {1, . . . , n} form another basis for Fn. The
probability interpretation is that wS is 1 if there are an even of successes in
the subset of trials specified by the set S; otherwise wS is −1 if there is an
odd number of successes in the trials specified by S. If we think of Ω as a
commutative group, then the Walsh functions are the homomorphisms of this
group to the group {1,−1}.

A Haar function is a product of a binary rectangular function with a Rademacher
function. Let S ⊂ {1, . . . , n}. Then for n ≥ 0 and 0 ≤ k < 2n define the Haar
function to be

hn;k = fn;krn+1, (9.17)

and define h−1 = 1. The function h−1 together with the other Haar functions
hj;k for j = 0 to n − 1 and 0 ≤ k < 2j form a basis for Fn. Note that the
number of such functions is 1 +

∑n−1
j=0 2j = 2n. The probability interpretation

is that the Haar function hj;k is non-zero only for a particular pattern in the
first j trials (the pattern determined by k), and its sign depends on failure or
success in the j + 1st trial.
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An important infinite dimensional vector space is

L =
∞⋃
n=0

Fn. (9.18)

This is the space of all random variables that depend only on some finite number
of trials.

The reader will have noticed the close relation between step functions on the
interval (0, 1] and functions on the space of coin tossing outcomes. The relation
is the following. Let g : Ω→ [0, 1] be defined by

g(ω) =
∞∑
n=1

ωn
2n
. (9.19)

Then g is a function that is a surjection, but not quite an injection. The points
where it fails to be an injection correspond to the end points of the intervals
on which the rectangular functions are defined. Away from these points, there
is a perfect correspondence between the examples of step functions and the
corresponding examples of coin tossing functions.

For instance, a natural example on the coin tossing side is the function
sn = r1 + · · ·+ rn. This is the number of failures minus the number of successes
in n trials. This family of random variables as a function of n is sometimes called
random walk. On the step function side this is a rather complicated function.

9.6 Vector lattices

A set of real functions L is called a vector space of functions if the zero function
is in L, f in L and g ∈ L imply that f + g is in L, and a in R and f in L imply
that af is in L. A set of real functions L is called a lattice of functions if f in L
and g in L imply that the infimum f ∧ g is in L and that the supremum f ∨ g is
in L. The set L is called a vector lattice of functions if it is both a vector space
and a lattice.

Notice that if f is in a vector lattice L, then the absolute value given by the
formula |f | = f ∨ 0− f ∧ 0 is in L.

Examples:

1. The space of real continuous functions defined on an interval [a, b] is a
vector lattice.

2. The space of step functions (piecewise constant real functions) defined on
an interval (a, b] is a vector lattice.

3. The space of step functions defined on (0, 1] and with end points that are
multiples of 1/2n for some n.

4. The space of functions on the coin tossing space that depend only on
finitely many coordinates.

As we have seen, the last two examples are intimately related.
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9.7 Elementary integrals

Let X be a non-empty set. Let L be a vector lattice of real functions on X.
Then µ is an elementary integral on L provided that

1. µ : L→ R is linear;

2. µ : L→ R is order preserving;

3. µ satisfies monotone convergence within L.

To say that µ satisfies monotone convergence within L is to say that if each
fn is in L, and fn ↑ f , and f is in L, then µ(fn) ↑ µ(f).

Proposition 9.3 Suppose that gn in L and gn ↓ 0 imply µ(gn) ↓ 0. Then µ
satisfies monotone convergence within L.

Proof: Suppose that fn is in L and fn ↑ f and f is in L. Since L is a
vector space, it follows that gn = f − fn is in L. Furthermore gn ↓ 0. Therefore
µ(gn) ↓ 0. This says that µ(fn) ↑ µ(f). 2

9.8 Integration on a product of finite spaces

Let Ω = {0, 1}N+ be the set of all infinite sequences of zeros and ones indexed
by N+ = {1, 2, 3, . . .}. For each k = 0, 1, 2, 3, . . . consider the set Fk of functions
f on Ω that depend only on the first k elements of the sequence, that is, such
that f(ω) = g(ω1, . . . , ωk) for some function g on Rk. This is a vector lattice
with dimension 2k. The vector lattice under consideration will be the space L
that is the union of all the Fk for k = 0, 1, 2, 3, . . .. In the following, we suppose
that we have an elementary integral µ on L.

A subset A of Ω is said to be an Fk set when its indicator function 1A is in
Fk. In such a case we write µ(A) for µ(1A) and call µ(A) the measure of A.
Thus measure is a special case of integral.

In the following we shall need a few simple properties of measure. First, note
that µ(∅) = 0. Second, the additivity of the integral implies the corresponding
property µ(A∪B) +µ(A∩B) = µ(A) +µ(B). In particular, if A∩B = ∅, then
µ(A ∪B) = µ(A) + µ(B). This is called the additivity of measure. Finally, the
order preserving property implies that A ⊂ B implies µ(A) ≤ µ(B).

Here is an example. If the function f is in Fk, let

µ(f) =
1∑

ω1=0

· · ·
1∑

ωk=0

f(ω)
1
2k
. (9.20)

This is a consistent definition, since if f is regarded as being in Fj for k < j,
then the definition involves sums over 2j sequences, but the numerical factor
is 1/2j , and the result is the same. This example describes the expectation
for independent of tosses of a fair coin. Suppose A is a subset of Ω whose
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definition depends only on finitely many coordinates. Then A defines an event
that happens or does not happen according to information about finitely many
tosses of the coin. The measure µ(A) = µ(1A) is the probability of this event.

The following results shows that such an example automatically satisfies the
monotone convergence property and thus gives an elementary integral. The
remarkable thing about the proof that follows is that it uses no notions of
topology: it is pure measure theory.

Lemma 9.4 Suppose that L is a vector lattice consisting of bounded functions.
Suppose that 1 is an element of L. Suppose furthermore that for each f in L and
each real α the indicator function of the set where f ≥ α is in L. Suppose that
µ : L → R is linear and order preserving. If µ satisfies monotone convergence
for sets, then µ satisfies monotone convergence for functions.

Proof: Suppose that µ satisfies monotone convergence for sets, that is,
suppose that An ↓ ∅ implies µ(An) ↓ 0. Suppose that fn ↓ 0. Say f1 ≤M . Let
ε > 0. Choose α > 0 so that αµ(1) < ε/2. Let An be the set where fn ≥ α > 0.
Then fn ≤ α +M1An . Hence µ(fn) ≤ αµ(1) +Mµ(An). Since An ↓ ∅, we can
choose n so that Mµ(An) < ε/2. Then µ(fn) < ε. Since ε > 0 is arbitrary, this
shows that µ(fn) ↓ 0. Thus µ satisfies monotone convergence for functions. 2

Theorem 9.5 Let Ω = {0, 1}N+ be the set of all infinite sequences of zeros
and ones. Let L =

⋃∞
k=0 Fk be the vector lattice of all functions f on Ω that

each depend only on the first k elements of the sequence for some k. Suppose
that µ : L → R is linear and order preserving. Then µ satisfies monotone
convergence within L.

Proof: By the lemma, it is enough to show that if An ↓ ∅ is a sequence of
sets, each of which is an Fk set for some k, then µ(An) ↓ 0. The idea is to prove
the contrapositive. Suppose then that there is an ε > 0 such that µ(An) ≥ ε for
all n.

Let ω̄[k] = (ω̄1, . . . , ω̄k) be a finite sequence of k zeros and ones. Let

Bω̄[k] = {ω | ω1 = ω̄1, . . . , ωk = ω̄k} (9.21)

This is the binary set of all sequences in Ω that agree with ω̄[k] in the first k
places. It is an Fk set. (For k = 0 we may regard this as the set of all sequences
in Ω.)

The main step in the proof is to show that there is a consistent family of
sequences ω̄[k] such that for each n

µ(An ∩Bω̄[k]) ≥ ε
1
2k
. (9.22)

The proof is by induction. The statement is true for k = 0. Suppose the
statement is true for k. By additivity

µ(An ∩Bω̄[k]) = µ(An ∩Bω̄[k]0) + µ(An ∩Bω̄[k]1). (9.23)
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Here ω̄[k]0 is the sequence of length k + 1 consisting of ω̄[k] followed by a 0.
Similarly, ω̄[k]1 is the sequence of length k + 1 consisting of ω̄[k] followed by a
0. Suppose that there is an n1 such that the first term on the right is less than
ε/2k+1. Suppose also that there is an n2 such that the second term on the right
is less than ε/2k+1. Then, since the sets are decreasing with n, there exists an
n such that both terms are less than ε/2k+1. But then the measure on the left
would be less than ε/2k for this n. This is a contradiction. Thus one of the two
suppositions must be false. This says that one can choose ω̄[k + 1] with ω̄k+1

equal to 1 or to 0 so that for all n we have µ(An ∩ Bω̄[k+1]) ≥ ε/2k+1. This
completes the inductive proof of the main step.

The consistent family of finite sequences ω[k] defines an infinite sequence
ω̄. This sequence ω̄ is in each An. The reason is that for each n there is a k
such that An is an Fk set. Each Fk set is a disjoint union of a collection of
binary sets, each of which consists of the set of all sequences where the first k
elements have been specified in some way. The set Bω̄[k] is such a binary set.
Hence either An ∩ Bω̄[k] = ∅ or Bω̄[k] ⊂ An. Since µ(An ∩ Bω̄[k]) > 0 the first
possibility is ruled out. We conclude that

ω̄ ∈ Bω̄[k] ⊂ An. (9.24)

The last argument proves that there is a sequence ω̄ that belongs to each
An. Thus it is false that An ↓ ∅. This completes the proof of the contrapositive.
2

Problems

1. It is known that a random walk is an inefficient way to travel. In fact, in n
steps a typical amount of progress is on the order of

√
n. This can be made

precise as follows. Let sn = r1 + · · ·+ rn be the random walk. Express s2
n

as a linear combination of Walsh functions. What is the constant term in
this combination? What is the integral of s2

n?

2. Let Q = {0, 1, 2, . . . , q − 1} and let Ω = QN+ . Let L be the subset of RΩ

consisting of functions that depend only on finitely many coordinates. Let
µ : L → R be linear and order preserving. Show that µ is an elementary
integral.

3. Let K be compact. Let An be a decreasing sequence of non-empty closed
subsets of K. Show that

⋂
nAn is non-empty.

4. Prove Dini’s theorem. Suppose K is compact. If fn is a sequence of
continuous functions on K and fn ↓ 0 pointwise as n → ∞, then fn → 0
uniformly. Hint: Consider ε > 0. Let An = {x ∈ K | fn(x) ≥ ε}.

5. Let K be compact, and let L = C(K). Let µ : L→ R be linear and order
preserving. Show that µ is an elementary integral.



Chapter 10

The integral

10.1 The Daniell construction

This section is an outline of the Daniell construction of the integral. This is a
two stage process.

Let X be a non-empty set. Let L be a vector lattice of real functions on X.
Then µ is an elemantary integral on L provided that

1. µ : L→ R is linear;

2. µ : L→ R is order preserving;

3. µ satisfies monotone convergence within L.

Let L ↑ consist of the functions h : X → (−∞,+∞] such that there exists
a sequence hn in L with hn ↑ h pointwise. These are the upper functions.
Similarly, let L ↓ consist of the functions f : X → [−∞,+∞) such that there
exists a sequence fn in L with fn ↓ f pointwise. These are the lower functions.
The first stage of the construction is to extend the integral to upper functions
and to lower functions.

This terminology of upper functions and lower functions is quite natural, but
it may not be ideal in all respects. If L is vector lattice of continuous functions,
then the upper functions are lower semicontinuous, while the lower functions
are upper semicontinuous.

Lemma 10.1 There is a unique extension of µ from L to the upper functions
L ↑ that satisfies the upward monotone convergence property: if hn is in L ↑
and hn ↑ h, then h is in L ↑ and µ(hn) ↑ µ(h). Similarly, there is a unique
extension of µ from L to the lower functions L ↓ that satisfies the corresponding
downward monotone convergence property.

The second stage of the process is to extend the integral to functions that
are approximated by upper and lower functions in a suitable sense. Let g be a
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real function on X. Define the upper integral

µ∗(g) = inf{µ(h) | h ∈ L ↑, g ≤ h}. (10.1)

Similarly, define the lower integral

µ∗(g) = sup{µ(f) | f ∈ L ↓, f ≤ g}. (10.2)

Lemma 10.2 The upper integral is order preserving and subadditive: µ∗(g1 +
g2) ≤ µ∗(g1) + µ∗(g2). Similarly, the lower integral is order preserving and
superadditive: µ∗(g1 + g2) ≥ µ∗(g1) + µ∗(g2). Furthermore, µ∗(g) ≤ µ∗(g) for
all g.

Define L1(X,µ) to be the set of all g : X → R such that both µ∗(g) and
µ∗(g) are real, and

µ∗(g) = µ∗(g). (10.3)

Let their common value be denoted µ̃(g). This µ̃ is the integral on the space
L1 = L1(X,µ) of µ integrable functions.

We shall see that this extended integral satisfies a remarkable monotone
convergence property. The upward version says that if fn is a sequence in L1

and fn ↑ f pointwise and the µ̃(fn) are bounded above, then f is in L1 and
µ̃(fn) ↑ µ̃(f). There is a similar downward version. The remarkable thing is
that the fact that the limiting function f is in L1 is not a hypothesis but a
conclusion.

Theorem 10.3 (Daniell) Let µ be an elementary integral on a vector lattice L
of functions on X. Then the corresponding space L1 = L1(X,µ) of µ integrable
functions is a vector lattice, and the extension µ̃ is an elementary integral on it.
Furthermore, the integral µ̃ on L1 satisfies the monotone convergence property.

If an indicator function 1A is in L1, then µ̃(1A) is written µ̃(A) and is called
the measure of the set A. In the following we shall often write the integral of f
in L1 as µ(f) and the measure of A with 1A in L1 as µ(A).

In the following corollary we consider a vector lattice L. Let L ↑ consist
of pointwise limits of increasing limits from L, and let L ↓ consist of pointwise
limits of decreasing sequences from L. Similarly, let L ↑↓ consist of pointwise
limits of decreasing sequences from L ↑, and let L ↓↑ consist of pointwise limits
of increasing sequences from L ↓.

Corollary 10.4 Let L be a vector lattice and let µ be an elementary integral.
Consider its extension µ̃ to L1. Then for every g in L1 there is a f in L ↓↑ and
an h in L ↑↓ with f ≤ g ≤ h and µ̃(g − f) = 0 and µ̃(h− g) = 0.

This corollary says that if we identify functions in L̃1 when the integral of
the absolute value of the difference is zero, then all the functions that we ever
will need may be taken, for instance, from L ↑↓. However this class is not closed
under pointwise limits.
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The proof of the theorem has a large number of routine verifications. How-
ever there are a few key steps. These will be outlined in the following sec-
tions. For more detailed accounts there are several excellent references. One is
Lynn H. Loomis, Abstract Harmonic Analysis, van Nostrand, New York, 1953,
Chapter III. Another more recent account with more of a probability flavor is
Daniel W. Stroock, A Concise Introduction to the Theory of Integration, 3rd
edition, Birkhäuser, Boston, 1999.

10.2 Stage one

Begin with a vector lattice L and an elementary integral µ. Let L ↑ be the set of
all pointwise limits of increasing sequences of elements of L. These functions are
allowed to take on the value +∞. Similarly, let L ↓ be the set of all pointwise
limits of decreasing sequences of L. These functions are allowed to take on the
value −∞. Note that the functions in L ↓ are the negatives of the functions in
L ↑.

For h in L ↑, take hn ↑ h with hn in L and define µ(h) = limn µ(hn). The
limit of the integral exists because this is a monotone sequence of numbers.
Similarly, if f in L ↓, take fn ↓ f with fn in L and define µ(f) = limn µ(fn).

Lemma 10.5 The definition of µ(h) for h in L ↑ is independent of the sequence.
There is a similar conclusion for L ↓.

Proof: Say that hm is in L with hm ↑ h and kn is in L with kn ↑ k and
h ≤ k. We will show that µ(h) ≤ µ(k). This general fact is enough to establish
the uniqueness. To prove it, fix m and notice that µ(hm ∧ kn) ≤ µ(kn) ≤ µ(k).
However hm ∧ kn ↑ hm as n → ∞, so µ(hm) ≤ µ(k). Now take n → ∞; it
follows that µ(h) ≤ µ(k). 2

Lemma 10.6 Upward monotone convergence holds for L ↑. Similarly, down-
ward monotone convergence holds for L ↓.

Proof: Here is the argument for upward monotone convergence. Say that
the hn are in L ↑ and hn ↑ h as n → ∞. For each n, let gnm be a sequence of
functions in L such that gnm ↑ hn as m → ∞. Let un = g1n ∨ g2n ∨ · · · ∨ gnn.
Then un is in L and we have the squeeze inequality

gin ≤ un ≤ hn (10.4)

for 1 ≤ i ≤ n. As n → ∞ the gin ↑ hi and the hn ↑ h. Furthermore, as i → ∞
the hi ↑ h. By the squeeze inequality un ↑ h. From the squeeze inequality we
get

µ(gin) ≤ µ(un) ≤ µ(hn) (10.5)

for 1 ≤ i ≤ n. By definition of the integral on L ↑ we can take n → ∞ and
get µ(hi) ≤ µ(h) ≤ limn µ(hn). Then we can take i → ∞ and get limi µ(hi) ≤
µ(h) ≤ limn µ(hn). This shows that the integrals converge to the correct value.
2
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10.3 Stage two

The integral µ(g) is the supremum of all the µ(f) for f in L ↓ with f ≤ g and
is also the infimum of all the µ(h) for h in L ↑ with g ≤ h. Alternatively, a
function g is in L1 if for every ε > 0 there is a function f in L ↓ and a function
h in L ↑ such that f ≤ g ≤ h, µ(f) and µ(h) are finite, and µ(h)− µ(f) < ε.

It is not hard to show that the set L1 of absolutely summable functions is a
vector lattice and that µ is a positive linear functional on it. The crucial point
is that there is also a monotone convergence theorem. This theorem says that
if the gn are absolutely summable functions with µ(gn) ≤M <∞ and if gn ↑ g,
then g is absolutely summable with µ(gn) ↑ µ(g).

Lemma 10.7 The integral on L1 satisfies the monotone convergence property.

Proof: We may suppose that g0 = 0. Since the absolutely summable func-
tions L1 are a vector space, each gn − gn−1 for n ≥ 1 is absolutely summable.
Consider ε > 0. Choose hn in L ↑ for n ≥ 1 such that gn − gn−1 ≤ hn and such
that

µ(hn) ≤ µ(gn − gn−1) +
ε

2n
. (10.6)

Let sn =
∑n
i=1 hi in L ↑. Then gn ≤ sn and

µ(sn) ≤ µ(gn) + ε ≤M + ε. (10.7)

Also sn ↑ s in L ↑ and g ≤ s. and so by monotone convergence for L ↑

µ(s) ≤ lim
n
µ(gn) + ε ≤M + ε. (10.8)

Now pick m so large that gm ≤ g satisfies µ(s) < µ(gm)+ 3
2ε. Then pick r in L ↓

with r ≤ gm so that µ(gm) ≤ µ(r) + 1
2ε. Then r ≤ g ≤ s with µ(s)− µ(r) < 2ε.

Since ε is arbitrary, this proves that g is absolutely summable. Since gn ≤ g, it is
clear that limn µ(gn) ≤ µ(g). On the other hand, the argument has shown that
for each ε > 0 we can find s in L ↑ with g ≤ s and µ(g) ≤ µ(s) ≤ limn µ(gn) + ε.
Since ε is arbitrary, we conclude that µ(g) ≤ limn µ(gn). 2

The proof of the monotone convergence theorem for the functions in L ↑
and for the functions in L ↓ is routine. However the proof of the monotone
convergence theorem for the functions in L1 is deeper. In particular, it uses in
a critical way the fact that the sequence of functions is indexed by a countable
set of n. Thus the errors in the approximations can be estimated by ε/2n, and
these sum to the finite value ε.

10.4 Example: Coin tossing

An example to which this result applies is the space Ω of the coin tossing exam-
ple. Recall that the elementary integral is defined on the space L =

⋃∞
n=0 Fn,

where Fn consists of the functions that depend only on the first n coordinates.
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Thus L consists of functions each of which depends only on finitely many co-
ordinates. A subset S of Ω is said to be an Fn set if its indicator function 1S
belongs to Fn. This just means that the definition of the set depends only on
the first n coordinates. In the same way, S is said to be an L set if 1S is in L.

Consider the elementary integral for fair coin tossing. The elementary inte-
gral µ(f) of a function f in Fn may be calculated by a finite sum involving at
most 2n terms. It is just the sum of the values of the function for all of the 2n

possibilities for the first n coin flips, divided by 2n. Similarly, the elementary
measure µ(S) of an Fn set is the number among the 2n possibilities of the first
n coin flips that are satisfied by S, again weighted by 1/2n.

Thus consider for example the measure of the uncountable set S consisting
of all ω such that ω1 + ω2 + ω3 = 2. If we think of S as an F3 set, its measure
is 3/23 = 3/8. If we think of S as an F4 set, its measure is still 6/24 = 3/8.

The elementary integral on L extends to an integral on L1. The integral of a
function f in L1 is then denoted µ(f). This is interpreted as the expectation of
the random variable f . Consider a subset S of Ω such that its indicator function
1S is in L1. (Every set that one will encounter in practical computations will
have this property.) The measure µ(S) of S is the integral µ(1S) of its indicator
function 1S . This is interpreted as the probability of the event S in the coin
tossing experiment.

Proposition 10.8 Consider the space Ω for infinitely many tosses of a coin,
and the associated integral for tosses of a fair coin. Then each subset with
exactly one point has measure zero.

Proof: Consider such a set {ω̄}. Let Bk be the set of all ω in Ω such that ω
agrees with ω̄ in the first k places. The indicator function of Bk is in L. Since
{ω̄} ⊂ Bk, we have 0 ≤ µ({ω̄}) ≤ µ(Bk) = 1/2k for each k. Hence µ({ω̄}) = 0.
2

Proposition 10.9 Consider the space Ω for infinitely many tosses of a coin,
and the associated integral that gives the expectation for tosses of a fair coin.
Let S ⊂ Ω be a countable subset. Then the measure of S is zero.

Proof: Here is a proof from the definition of the integral. Let j 7→ ω(j) be
an enumeration of S. Let ε > 0. For each j let B(j) be a set with indicator
function in L such that ω(j) ∈ B(j) and µ(B(j)) < ε

2j . For instance, one can
take B(j) to be the set of all ω that agree with ω(j) in the first k places, where
1/2k ≤ ε/2j . Then

0 ≤ 1S ≤ 1⋃
j
B(j) ≤

∑

j

1B(j) . (10.9)

The right hand side of this equation is in L↑ and has integral bounded by ε.
Hence 0 ≤ µ(S) ≤ ε. It follows that µ(S) = 0. 2

Proof: Here is a proof from the monotone convergence theorem. Let j 7→
ω(j) be an enumeration of S. Then

∑

j

1ω(j) = 1S . (10.10)
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By the previous proposition each term in the integral has integral zero. Hence
each partial sum has integral zero. By the monotone convergence theorem the
sum has integral zero. Hence µ(S) = 0. 2

Corollary 10.10 Consider the space Ω for infinitely many tosses of a coin,
and the associated integral that gives the expectation for tosses of a fair coin.
Let S ⊂ Ω be the set of all sequences that are eventually either all zeros or all
ones. Then the measure of S is zero.

Examples:

1. As a first practical example, consider the function bj on Ω defined by
bj(ω) = ωj , for j ≥ 1. This scores one for a success in the jth trial.
It is clear that bj is in Fj and hence in L. It is easy to compute that
µ(bj) = 1/2 for the fair coin µ.

2. A more interesting example is cn = b1 + · · ·+ bn, for n ≥ 0. This random
variable counts the number of successes in the first n trials. It is a function
in Fn and hence in L. The fair coin expectation of cn is n/2. In n coin
tosses the expected number of successes is n/2.

3. Consider the set defined by the condition cn = k for 0 ≤ k ≤ n. This is
an Fn set, and its probability is µ(cn = k) =

(
n
k

)
1/2n. This is the famous

binomial probability formula. These probabilities add to one:

n∑

k=0

(
n

k

)
1
2n

= 1. (10.11)

This formula has a combinatorial interpretation: the total number of sub-
sets of an n element set is 2n. However the number of subsets with k
elements is

(
n
k

)
. The formula for the expectation of cn gives another iden-

tity:
n∑

k=0

k

(
n

k

)
1
2n

=
1
2
n. (10.12)

This also has a combinatorial interpretation: the total number of ordered
pairs consisting of a subset and a point within it is the same as the number
of ordered pairs consisting of a point and a subset of the complement, that
is, n2n−1. However the number of ordered pairs consisting of a k element
set and a point within it is

(
n
k

)
k.

4. Let u1(ω) be the first k such that ωk = 1. This waiting time random
variable is not in L, but for each m with 1 ≤ m < ∞ the event u1 = m
is an Fm set and hence an L set. The probability of u1 = m is 1/2m.
The event u1 = ∞ is not an L set, but it is a one point set, so it has
zero probability. This is consistent with the fact that the sum of the
probabilities is a geometric series with

∑∞
m=1 1/2m = 1.
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5. The random variable u1 =
∑∞
m=1m1u1=m is in L ↑. Its expectation is

µ(u1) =
∑∞
m=1m/2

m = 2. This says that the expected waiting time to
get a success is two tosses.

6. Let tn(ω) for n ≥ 0 be the nth value of k such that ωk = 1. (Thus t0 = 0
and t1 = u1.) Look at the event that tn = k for 1 ≤ k ≤ n, which is
an Fk set. This is the same as the event ck−1 = n − 1, bk = 1 and so
has probability

(
k−1
n−1

)
1/2k−11/2 =

(
k−1
n−1

)
1/2k. These probabilities add to

one, but this is already not such an elementary fact. However the event
tn =∞ is a countable set and thus has probability zero. So in fact

∞∑

k=n

(
k − 1
n− 1

)
1
2k

= 1. (10.13)

This is an infinite series; a combinatorial interpretation is not apparent.

7. For n ≥ 1 let un = tn − tn−1 be the nth waiting time. It is not hard to
show that the event tn−1 = k, un = m has probability µ(tn−1 = k)1/2m,
and hence that the event un = m has probability 1/2m. So un also is a
geometric waiting time random variable, just like u1. In particular, it has
expectation 2.

8. We have tn = u1 + · · · + un. Hence the expectation µ(tn) = 2n. The
expected total time to wait until the nth success is 2n. This gives another
remarkable identity

∞∑

k=n

k

(
k − 1
n− 1

)
1
2k

= 2n. (10.14)

It would not make much sense without the probability intuition.

10.5 Example: Lebesgue measure

Let Ω be the space of all infinite sequences of zeros and ones. Let g : Ω→ [0, 1]
be the function given by

g(s) =
∞∑

k=1

sk
2k
. (10.15)

It is then reasonable to define the Lebesgue integral λ(f) of a function f on
[0, 1] as the fair coin expectation of f ◦ g on Ω, provided that the latter integral
exists. For this integral we write as usual

λ(f) =
∫ 1

0

f(t) dt. (10.16)

Let S be the subset of all ω in Ω such that the sequence ω is eventually all
zeros or all ones. Then g maps S to the binary division points in [0, 1]. It also
gives a bijection of the complement of S in Ω to the complement of the set of
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binary division points in [0, 1]. The values of f on the binary division points will
not matter in determining its integral, since these all are determined by values
of f ◦ g on the set S, which is of measure zero.

Here is another approach to defining the integral. Consider the vector lattice
L of step functions on [0, 1] that have the property that for some k = 1, 2, 3, . . .
the function has the form

f(x) = c01[0,1/2k] +
2k−1∑

j=1

cj1(j/2k,(j+1)/2k](x). (10.17)

These are step functions based on binary intervals. (However the first interval
includes the left end point.) The integral of such a function is determined by
the corresponding coin tossing expectation. Since the points in S do not matter,
the resulting elementary integral is

λ(f) =
2k−1∑

j=0

cj
1
2k
. (10.18)

Since there is a monotone convergence theorem for the coin tossing integral,
there is a corresponding monotone convergence theorem for this elementary
integral. Then one can extend the elementary integral to L1([0, 1], λ) by the
standard construction.

In this context one can show directly from the definition of the integral that
that the Lebesgue measure of a countable set Q is 0. This will involve a two-
stage process. Let qj , j = 1, 2, 3, . . . be an enumeration of the points in Q. Fix
ε > 0. For each j, find a binary interval Bj of length less than ε/2j such that
qj is in the interval. The indicator function 1Bj of each such interval is in L.
Let h =

∑
j 1Bj . Then h is in L ↑ and λ(h) ≤ ε. Furthermore, 0 ≤ 1Q ≤ h.

This is the first stage of the approximation. Now consider a sequence of ε > 0
values that approach zero, and construct in the same way a sequence of hε such
that 0 ≤ 1Q ≤ hε and λ(hε) ≤ ε. This is the second stage of the approximation.
This shows that the integral of 1Q is zero.

Notice that this could not have been done in one stage. There is no way to
cover Q by finitely many binary intervals of small total length. It was necessary
first find infinitely many binary intervals that cover Q and have small total
length, and only then let this length approach zero.

One way to define the Lebesgue integral of f on R is to say that L1(R, λ)
consists of all f such that the restriction of f to each interval (n, n + 1] is
absolutely summable and

λ(|f |) =
∫ ∞
−∞
|f(t)| dt =

∑
n

∫ n+1

n

|f(t)| dt <∞. (10.19)

Then

λ(f) =
∫ ∞
−∞

f(t) dt =
∑
n

∫ n+1

n

f(t) dt. (10.20)
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Problems

1. Let k → rk be an enumeration of the rational points in [0, 1]. Define
g(x) =

∑
k 2k1{rk}(x). Evaluate the Lebesgue integral of g directly from

the definition in terms of integrals of step functions, integrals of lower and
upper functions, and integrals of functions squeezed between lower and
upper functions.

2. The Cantor set C is the subset of [0, 1] that is the image of Ω = {0, 1}N+

under the injection

c(ω) =
∞∑
n=1

2ωn
3n

. (10.21)

The complement of the Cantor set in [0, 1] is an open set obtained by
removing middle thirds. Show that the indicator function of the comple-
ment of the Cantor set is a function in L ↑. Find the Lebesgue measure of
the complement of the Cantor set directly from the definition. Then find
the Lebesgue measure of the Cantor set.

3. Let c be the cardinality of the continuum. Show that the cardinality of
the set of all real functions on [0, 1] is cc. Show that cc = 2c.

4. Show that the cardinality of the set of real functions on [0, 1] with finite
Lebesgue integral is 2c. Hint: Think about the Cantor set.

5. The Lebesgue integral may be defined starting with the regulated ele-
mentary integral λ defined on L = C([0, 1]). Show that L ↑ consists of
lower semicontinuous functions, and L ↓ consists of upper semicontinuous
functions.
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Chapter 11

Measurable functions

11.1 Monotone classes

A set of real functions F is a monotone class if it satisfies the following two
properties. Whenever fn ↑ f is an increasing sequence of functions fn in F with
pointwise limit f , then f is also in F . Whenever fn ↓ f is a decreasing sequence
of functions fn in F with pointwise limit f , then f is also in F .

Theorem 11.1 Let L be a vector lattice of real functions. Let F be the smallest
monotone class of which L is a subset. Then F is a vector lattice.

Proof: The task is to show that F is closed under addition, scalar multipli-
cation, sup, and inf. Begin with addition. Let f be in L. Consider the set M(f)
of functions g such that f + g is in F . This set includes L and is closed under
monotone limits. So F ⊂M(f). Thus f in L and g in F imply f + g ∈ F . Now
let g be in F . Consider the set M̃(g) of functions f such that f + g is in F .
This set includes L and is closed under monotone limits. So F ⊂ M̃(g). Thus
f and g in F implies f + g in F . The proof is similar for the other operations.
2

A set of real functions F is a Stone vector lattice of functions if it is a vector
lattice and satisfies the property: f ∈ F and a > 0 imply f ∧ a ∈ F . The
following theorem may be proved by the same monotone class technique.

Theorem 11.2 Let L be a Stone vector lattice of real functions. Let F be the
smallest monotone class of which L is a subset. Then F is a Stone vector lattice.

A set of real functions F is a vector lattice with constants of functions if it is
a vector lattice and each constant function belongs to F . The following theorem
is trivial, but it may be worth stating the obvious.

Theorem 11.3 Let L be a vector lattice with constants. Let F be the smallest
monotone class of which L is a subset. Then F is a vector lattice with constants.

95
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We shall now see that a monotone class is closed under all pointwise limits.

Theorem 11.4 Let F be a monotone class of functions. Let fn be in F for
each n. Suppose that lim infn fn and lim sup fn are finite. Then they are also
in F .

Proof: Let n < m and let hnm = fn ∧ fn+1 ∧ · · · ∧ fm. Then hnm ↓ hn as
m→∞, where hn is the infimum of the fk for k ≥ n. However hn ↑ lim infn fn.
2

The trick in this proof is to write a general limit as an increasing limit
followed by a decreasing limit. We shall see in the following that this is a very
important idea in integration.

11.2 Generating monotone classes

The following theorem says that if L is a vector lattice that generates F by
monotone limits, then the positive functions L+ generate the positive functions
F+ by monotone limits.

Theorem 11.5 Let L be a vector lattice of real functions. Suppose that F is
the smallest monotone class that includes L. Let L+ be the positive elements of
L, and let F+ be the positive elements of F . Then F+ is the smallest monotone
class that includes L+.

Proof: It is clear that F+ includes L+. Furthermore, F+ is a monotone
class. So all that remains to show is that if G is a monotone class that includes
L+, then F+ is a subset of G. For that it is sufficient to show that for each f
in F the positive part f ∨ 0 is in G.

Consider the set M of f in F such that f ∨ 0 is in G. The set L is a subset
of M , since f in L implies f ∨ 0 in L+. Furthermore, M is a monotone class.
To check this, note that if each fn is in M and fn ↑ f , then fn ∨ 0 is in G and
fn ∨ 0 ↑ f ∨ 0, and so f ∨ 0 is also in G, that is, f is in M . The argument is the
same for downward convergence. Hence F ⊂M . 2

A real function f is said to be L-bounded if there is a function g in L+ with
|f | ≤ g. Say that L consists of bounded functions. Then if f is L-bounded,
then f is also bounded. Say on the other hand that the constant functions are
in L. Then if f is bounded, it follows that f is L-bounded. However there are
also cases when L consists of bounded functions, but the constant functions are
not in L. In such cases, being L-bounded is more restrictive.

A set of real functions H is an L-bounded monotone class if it satisfies the
following two properties. Whenever fn ↑ f is an increasing sequence of L-
bounded functions fn inH with pointwise limit f , then f is also inH. Whenever
fn ↓ f is a decreasing sequence of L-bounded functions fn in H with pointwise
limit f , then f is also in H. Notice that the functions in H do not have to be
L-bounded.

The following theorem says that if L+ generates F+ by monotone limits,
then L+ generates F+ using only monotone limits of L-bounded functions.
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Theorem 11.6 Let L be a vector lattice of bounded real functions that includes
the constant functions. Let F+ be the smallest monotone class of which L+ is
a subset. Let H be the smallest L-bounded monotone class of which L+ is a
subset. Then H = F+.

Proof: It is clear that H ⊂ F+. The task is to prove that F+ ⊂ H.
Consider g ≥ 0 be in L+. Let M(g) be the set of all f in F+ such that f ∧ g

is in H. It is clear that L+ ⊂ M(g). If fn ↑ f and each fn is in M(g), then
fn ∧ g ↑ f ∧ g. Since each fn ∧ g is in H and is L-bounded, it follows that f ∧ g
is in H. Thus M(g) is closed under upward monotone convergence. Similarly,
M(g) is closed under downward monotone convergence. Therefore F+ ⊂M(g).
This establishes that for each f in F+ and g in L+ it follows that f ∧ g is in H.

Now consider the set of all f in F such that there exists h in L ↑ with
f ≤ h. Certainly L belongs to this set. Furthermore, this set is monotone.
This is obvious for downward monotone convergence. For upward monotone
convergence, it follows from the fact that L ↑ is closed under upward monotone
convergence. It follows that every element in F is in this set.

Let f be in F+. Then there exists h in L ↑ such that f ≤ h. There exists
hn in L+ with hn ↑ h. Then f ∧ hn is in H, by the first part of the proof.
Furthermore, f ∧ hn ↑ f . It follows that f is in H. This completes the proof
that F+ ⊂ H. 2

11.3 Sigma-algebras of functions

A σ-algebra of functions F is a vector lattice of functions that is a monotone
class and that includes the constant functions. A function f in F is said to be
measurable. The reason for this terminology will be discussed below in connec-
tion with the generation of σ-algebras.

Let a be a real number and let f be a function. Define the function 1f>a to
have the value 1 at all points where f > a and to have the value 0 at all points
where f ≤ a.

Theorem 11.7 Let F be a σ-algebra of functions. If f is in F and a is real,
then 1f>a is in F .

Proof: The function f − f ∧ a is in F . It is strictly greater than zero at
precisely the points where f > a. The sequence of functions gn = n(f − f ∧ a)
satisfies gn ↑ ∞ for points where f > a and gn = 0 at all other points. Hence
the family of functions gn ∧ 1 increases pointwise to 1f>a. 2

Theorem 11.8 Let F be a σ-algebra of functions. If f is a function, and if for
each real number a > 0 the function 1f>a is in F , then f is in F .

Proof: First note that for 0 < a < b the function 1a<f≤b = 1f>a − 1f>b is
also in F . Next, consider the numbers cnk = k/2n for n ∈ N and k ∈ Z. This
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divides the real axis into intervals of length 1/2n. Then

fn =
∞∑

k=−∞
ank1cnk<f≤cnk+1 (11.1)

is in F . However fn ↑ f as n→∞. 2

Theorem 11.9 If f is in F , then so is f2.

Proof: Since F is a lattice, f in F implies |f | in F . For a ≥ 0 the condition
f2 > a is equivalent to the condition |f | > √a. On the other hand, for a < 0
the conditionf2 > a is always satisfied. 2

Theorem 11.10 Let F be a σ-algebra of functions. If f , g are in F , then so
is the pointwise product fg.

Proof: Since F is a vector space, it follows that f + g and f − g are in F .
However 4fg = (f + g)2 − (f − g)2. 2

This last theorem shows that F is not only closed under addition, but also
under multiplication. Thus F deserves to be called an algebra. It is called a
σ-algebra because of the closure under monotone limits.

Examples:

1. An important example of a σ-algebra of functions is the monotone class
of functions on [0, 1] generated by the step functions. This is the same
as the monotone class generated by the continuous functions. In order to
prove that these are the same, one should prove that each step function
can be obtained by monotone limits of continuous functions and that each
continuous function is a monotone limit of step functions. It is clear that
the constant functions belong to the monotone class. This σ algebra is
known as the Borel σ-algebra B of functions on [0, 1].

2. Another example of a σ-algebra of functions is the monotone class of
functions on R generated by the step functions with compact support.
This is the same as the monotone class of functions on R generated by
the continuous functions with compact support. These provide examples
where the generating classes do not contain the constant functions, but the
corresponding monotone class does contain the constant functions. This
σ algebra is known as the Borel σ-algebra B of functions on R.

Such a Borel σ algebra B of functions is huge; in fact, it is difficult to think
of a real function that does not belong to B. However it is possible to show
that the cardinality of B is c, while the cardinality of the σ algebra of all real
functions is 2c.
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11.4 Generating sigma-algebras

If we are given a set S of functions, then the σ-algebra of functions σ(S) gener-
ated by this set is the smallest σ-algebra of functions that contains the original
set. The Borel σ-algebra B of functions on R is generated by the single func-
tion x. Similarly, the Borel σ-algebra of functions on Rk is generated by the
coordinates x1, . . . , xk. The following theorem shows that measurable functions
are closed under nonlinear operations in a very strong sense.

Theorem 11.11 Let f1, . . . , fk be functions on X. Let B be the σ-algebra of
Borel functions on Rk. Let

G = {φ(f1, . . . , fk) | φ ∈ B}. (11.2)

The conclusion is that σ(f1, . . . , fk) = G. That is, the σ-algebra of functions
generated by f1, . . . , fk consists of the Borel functions of the functions in the
generating set.

Proof: First we show that G ⊂ σ(f1, . . . , fk). Let B′ be the set of functions
φ such that φ(f1, . . . , fk) ∈ σ(f1, . . . , fk). Each coordinate function xj of Rn

is in B′, since this just says that fj is in σ(f1, . . . , fk). Furthermore, B′ is a
σ-algebra. This is a routine verification. For instance, here is how to check
upward monotone convergence. Suppose that φn is in B′ for each n. Then
φn(f1, . . . , fk) ∈ σ(f1, . . . , fk) for each n. Suppose that φn ↑ φ pointwise. Then
φn(f1, . . . , fk) ↑ φ(f1, . . . , fk), so φ(f1, . . . , fk) ∈ σ(f1, . . . , fk). Thus φ is in
B′. Since B′ is a σ-algebra containing the coordinate functions, it follows that
B ⊂ B′. This shows that G ⊂ σ(f1, . . . , fk).

Now we show that σ(f1, . . . , fk) ⊂ G. It is enough to show that G contains
f1, . . . , fk and is a σ-algebra of functions. The first fact is obvious. To show that
G is a σ-algebra of functions, it is necessary to verify that it is a vector lattice
with constants and is closed under monotone convergence. The only hard part
is the monotone convergence. Suppose that φn(fn, . . . , fk) ↑ g pointwise. The
problem is to find a Borel function φ such that g = φ(f1, . . . , fk). There is no
way of knowing whether the Borel functions φn converge on all of Rk. However
let G be the subset of Rk on which φn converges. Then G also consists of the
subset of Rk on which φn is a Cauchy sequence. So

G =
⋂

j

⋃

N

⋂

m≥N

⋂

n≥N
{x | |φm(x)− φn(x)| < 1/j} (11.3)

is a Borel set. Let φ be the limit of the φn on G and φ = 0 on the complement
of G. Then φ is a Borel function. Next note that the range of f1, . . . , fk is a
subset of G. So φn(f1, . . . , fk) ↑ φ(f1, . . . , fk) = g. 2

Corollary 11.12 Let f1, . . . , fn be in a σ-algebra F of measurable functions.
Let φ be a Borel function on Rn. Then φ(f1, . . . , fn) is also in F .
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Proof: From the theorem φ(f1, . . . , fn) ∈ σ(f1, . . . , fn). Since F is a
σ-algebra and f1, . . . , fn are in F , it follows that σ(f1, . . . , fn) ⊂ F . Thus
φ(f1, . . . , fn) ∈ F . 2

This discussion illuminates the use of the term measurable for elements of a
σ-algebra. The idea is that there is a starting set of functions S that are regarded
as those quantities that may be directly measured in some experiment. The σ-
algebra σ(S) consists of all functions that may be computed as the result of
the direct measurement and other mathematical operations. Thus these are all
the functions that are measurable. Notice that the idea of what is possible in
mathematical computation is formalized by the concept of Borel function.

This situation plays a particularly important role in probability theory. For
instance, consider the σ-algebra of functions σ(S) generated by the functions in
S. There is a concept of conditional expectation of a random variable f given S.
This is a numerical prediction about f when the information about the values of
the functions in S is available. This conditional expectation will be a function
in σ(S), since it is computed by the mathematical theory of probability from
the data given by the values of the functions in S.

Problems

1. Let B be the smallest σ-algebra of real functions on R containing the
function x. This is called the σ-algebra of Borel functions. Show by a
direct construction that every continuous function is a Borel function.

2. Show that every monotone function is a Borel function.

3. Can a Borel function be discontinuous at every point?

4. Let σ(x2) be the smallest σ-algebra of functions on R containing the
function x2. Show that σ(x2) is not equal to B = σ(x). Which algebra
of measurable functions is bigger (that is, which one is a subset of the
other)?

5. Consider the σ-algebras of functions generated by cos(x), cos2(x), and
cos4(x). Compare them with the σ-algebras in the previous problem and
with each other. (Thus specify which ones are subsets of other ones.)

11.5 Sigma-rings of functions

This section may be omitted on a first reading.
Occasionally one needs a slightly more general concept of measurable func-

tion. A set of real functions F is a σ-ring of functions if it is a Stone vector
lattice of functions that is also a monotone class.

Every σ-algebra of functions is a σ-ring of functions. A simple example of
a σ-ring of functions that is not a σ-algebra of functions is given by the set
of all real functions on X that are each non-zero on a countable set. If X is
uncountable, then the constant functions do not belong to this σ-ring.
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Theorem 11.13 Let L be a Stone vector lattice of real functions. Let F be the
smallest monotone class of which F is a subset. Then F is a σ-ring of functions.

Let a be a real number and let f be a function. Define the function 1f>a to
have the value 1 at all points where f > a and to have the value 0 at all points
where f ≤ a.

Theorem 11.14 Let F be a σ-ring of functions. If f is in F and a > 0 is real,
then 1f>a is in F .

Proof: The function f − f ∧ a is in F . It is strictly greater than zero at
precisely the points where f > a. The sequence of functions gn = n(f − f ∧ a)
satisfies gn ↑ ∞ for points where f > a and gn = 0 at all other points. Hence
the family of functions gn ∧ 1 increases pointwise to 1f>a. 2

Theorem 11.15 Let F be a σ-ring of functions. If f ≥ 0 is a function, and if
for each real number a > 0 the function 1f>a is in F , then f is in F .

Proof: First note that for 0 < a < b the function 1a<f≤b = 1f>a − 1f>b is
also in F . Next, consider the numbers cnk = k/2n for n ∈ N and k ∈ Z. This
divides the real axis into intervals of length 1/2n. Let ank = exp(cnk). This is
a corresponding division of the strictly positive half line. Then

fn =
∞∑

k=−∞
ank1ank<f≤ank+1 (11.4)

is in F . However fn ↑ f as n→∞. 2

Theorem 11.16 If f ≥ 0 is in F , then so is f2.

Proof: For a > 0 the condition f2 > a is equivalent to the condition f >
√
a.

2

Theorem 11.17 Let F be a σ-ring of functions. If f , g are in F , then so is
the pointwise product fg.

Proof: Since F is a vector space, it follows that f + g and f − g are in
F . Since F is a lattice, it follows that |f + g| and |f − g| are in F . However
4fg = (f + g)2 − (f − g)2 = |f + g|2 − |f − g|2. 2

This last theorem shows that F is not only closed under addition, but also
under multiplication. Thus F deserves to be called a ring. It is called a σ-ring
because of the closure under monotone limits.

Theorem 11.18 Let F0 be a σ-ring of functions that is not a σ-algebra of
functions. Then the set F of all functions f + a, where f is in F0 and a is a
constant function, is the smallest σ-algebra including F0.
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Proof: Suppose F0 is not a σ-algebra. The problem is that the only constant
function in F0 is 0. While f in F0 implies that the indicator function 1f 6=0 is in
F0, it will not be the case that the indicator function 1f=0 is in F0.

In this case define F to consists of all sums f + a of elements f of F0 with
constant functions. If f + a = g + b, then f − g = b− a, and so a = b. Thus f
and a are uniquely determined by f + a.

The next task is to show that F is indeed a σ-algebra of functions. It is
easy to see that it is a vector space. To verify that it is a lattice, it is necessary
to check that (f + a) ∧ (g + b) and (f + a) ∨ (g + b) are in F . The indicator
functions 1f 6=0 and 1g 6=0 are in F0. Let h be the supremum of these two indicator
functions, so h = 1 precisely where f 6= 0 or g 6= 0. The indicator function h is
also in F0. Then (f + a) ∧ (g + b) = [(f + ah) ∧ (g + bh)− (a+ b)h] + (a+ b).
So (f + a) ∧ (g + b) is in F . The argument is the same for (f + a) ∨ (g + b).

The remaining thing to check is that F is closed under monotone conver-
gence. If fn is a countable family of functions in F0, then the set where some
fn 6= 0 cannot be the whole space. It follows that if each fn is in F0 and
fn + an ↑ f + a, then fn ↑ f and an → a. So f is in F0 and f + a is in F . 2

11.6 Rings and algebras of sets

This section is mainly for reference. It may be omitted on a first reading.
This will be a brief description of the ideas under consideration in the lan-

guage of sets. Let X be a set. A ring of sets is a collection of subsets R such
that the empty set is in R and such that R is closed under the operations of
union and relative complement.

A ring of sets A is an algebra of sets if in addition the set X belongs to A.
Thus the empty set belongs to A and it is closed under the operations of union
and complement. To get from a ring of sets to an algebra of sets, it is enough
to put in the complements of the sets in the ring.

An example of a ring of sets is the ring R of subsets of R generated by the
intervals (a, b] with a < b. This consists of the collection of sets that are finite
unions of such intervals. Another example is the ring R0 of sets generated by
the intervals (a, b] such that either a < b < 0 or 0 < a < b. None of the sets in
this ring have the number 0 as a member.

Proposition 11.19 Let R be a ring of sets. Then the set of finite linear com-
binations of indicator functions 1A with A in R is a Stone vector lattice.

Proposition 11.20 Let A be a algebra of sets. Then the set of finite linear
combinations of indicator functions 1A with A in A is a vector lattice including
the constant functions.

A ring of sets is a σ-ring of sets if it is closed under countable unions.
Similarly, an algebra of sets is a σ-algebra of sets if it is closed under countable
unions.
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An example of a σ-ring of sets that is not a σ-algebra of sets is the set of all
countable subsets of an uncountable set X. The smallest σ-algebra including
this σ-ring consists of all subsets that are either countable or have countable
complement.

A standard example of a σ-algebra of sets is the Borel σ-algebra B of subsets
of R generated by the intervals (a,+∞) with a ∈ R. A corresponding standard
example of a σ-ring that is not a σ-algebra is the σ-ring B0 consisting of all
Borel sets A such that 0 /∈ A.

Recall that a σ-ring of functions is a Stone vector lattice of functions that
is also a monotone class. Similarly, a σ-algebra of functions is a vector lattice
of functions including the constant functions that is also a monotone class.
Recall also that a σ-ring of functions or a σ-algebra of functions is automatically
closed not only under the vector space and lattice operations, but also under
pointwise multiplication. In addition, there is closure under pointwise limits
(not necessarily monotone).

Proposition 11.21 Let F0 be a σ-ring of real functions on X. Then the sets
A such that 1A are in F0 form a σ-ring R0 of subsets of X.

Proposition 11.22 Let F be a σ-algebra of real functions on X. Then the sets
A such that 1A are in F form a σ-algebra R of subsets of X.

Let R0 be a σ-ring of subsets of X. Let f : X → R be a function. Then f is
said to be measurable with respect to R0 if for each B in B0 the inverse image
f−1[B] is in R0.

Similarly, let R be a σ-algebra of subsets of X. Let f : X → R be a function.
Then f is said to be measurable with respect to R if for each B in B the inverse
image f−1[B] is in R.

To check that a function is measurable, it is enough to check the inverse
image property with respect to a generating class. For B this could consist of
the intervals (a,+∞) where a is in R. Thus to prove a function f is measurable
with respect to a σ-algebra R, it would be enough to show that for each a > 0
the set where f > a is in R. For B0 a generating class could consist of the
intervals (a,+∞) with a > 0 together with the intervals (−∞, a) with a < 0.

Proposition 11.23 Let R0 be a σ-ring of subsets of X. Then the collection
F0 of real functions on X that are measurable with respect to R0 is a σ-ring of
functions on X.

Proposition 11.24 Let R be a σ-algebra of subsets of X. Then the collection
F0 of real functions on X that are measurable with respect to R is a σ-algebra
of functions on X.

Notice that there are really two concepts: measurability with respect to a
σ-ring of sets and measurability with respect to a σ-algebra of sets. The latter
is by far the most commonly encountered.
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Chapter 12

The integral on measurable
functions

12.1 Integration

For integration it is often convenient to extend the real number system to include
extra points +∞ and −∞. This is natural from the point of view of order, but
not so pleasant in terms of algebra. The biggest problem is with addition. For a
an extended real number with a 6= ∓∞ we can define a+ (±∞) = (±∞) + a =
±∞. There is however a fundamental problem with (+∞) + (−∞) and with
(−∞) + (+∞), which are undefined.

For a > 0 we have a · (±∞) = (±∞) · a = ±∞, and for a < 0 we have
a · (±∞) = (±∞) · a = ∓∞. In particular −(±∞) = ∓∞. Thus the addition
problem translates to a subtraction problem for expressions like (+∞)− (+∞),
which are undefined.

For multiplication there is a special problem with a product such as 0 ·(±∞)
or (±∞) · 0. In some contexts in the theory of measure and integral this is
regarded as the limit of 0 · n as n→ ±∞, so it has value 0. However in general
it is an ambiguous expression, and appropriate care is necessary. Certainly there
is a lack of continuity, since with this convention the limit of (1/n)·(±)∞ = ±∞
as n→∞ is not equal to 0 · (±∞) = 0.

The starting point is a σ-algebra F of real functions on a non-empty set X.
A real function g is said to be measurable with respect to F if g ∈ F . A set A
is said to be measurable with respect to F if 1A is in F .

[It must be said that many treatments refer instead to a σ-algebra of subsets
F . In that treatment a set A is measurable if it belongs to F . A real function g
is measurable with respect to F if the inverse image of each set in the Borel σ-
algebra of sets is in the σ-algebra F of sets. Needless to say, these are equivalent
points of view.]

An integral is a function µ : F+ → [0,+∞] defined on the positive elements
F+ of a σ-algebra F of functions on X. It must satisfy the following properties:

105
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1. µ is additive and respects scalar multiplication by positive scalars.

2. µ satisfies the upward monotone convergence property.

The first property says that µ(0) = 0 and that for f ≥ 0 and g ≥ 0 we
always have µ(f + g) = µ(f) + µ(g). Furthermore, for a > 0 and f ≥ 0 we have
µ(af) = aµ(f).

The equation µ(af) = aµ(f) is also true for a = 0, but this requires a
convention that 0(+∞) = 0 in this context.

The second property says that if each fn ≥ 0 and fn ↑ f as n → ∞, then
µ(fn) ↑ µ(f) as n→∞. This is usually called the upward monotone convergence
theorem.

Measure is a special case of integral. If 1A is in F , then the measure of A is
the number µ(A) with 0 ≤ µ(A) ≤ +∞ defined to be equal to the integral µ(1A).
Because of the intimate connection between measure and integral, some people
refer to an integral as a measure. This is most common in situations when there
is more than one integral involved. For instance, for each elementary integral
on a suitable space of continuous functions there is an associated integral. The
elementary integral is usually called a measure, though it has nothing particular
to do with sets.

[It should also be said that many treatments begin with a measure defined
on a σ-algebra of subsets of X. It is then shown that such a measure defines
an integral on positive measurable functions on X. Thus the notions of mea-
sure on measurable subsets and of integral on measurable functions are entirely
equivalent.]

Theorem 12.1 If 0 ≤ f ≤ g, then 0 ≤ µ(f) ≤ µ(g).

Proof: Clearly (g−f)+f = g. So µ(g−f)+µ(f) = µ(g). But µ(g−f) ≥ 0.
2

If f in F is a measurable function, then its positive part f+ = f ∨ 0 ≥ 0
and its negative part f− = −f ∧ 0 ≥ 0. So they each have integrals. If either
µ(f+) < +∞ or µ(f−) < +∞, then we may define the integral of f = f+ − f−
to be

µ(f) = µ(f+)− µ(f−). (12.1)

The possible values for this integral are real, +∞, or −∞. However, if both
µ(f+) = +∞ and µ(f−) = +∞, then the integral is not defined. The expres-
sion (+∞) − (+∞) = (+∞) + (−∞) is ambiguous! This is the major flaw in
the theory, and it is responsible for most challenges in applying the theory of
integration.

Theorem 12.2 Suppose that µ(f−) < +∞ and µ(g−) < +∞. Then µ(f+g) =
µ(f) + µ(g).

Proof: Let h = f + g. Then h+ ≤ f+ + g+ and h− ≤ f− + g−. So under
the hypothesis of the theorem µ(h−) < +∞. Furthermore, from h+ − h− =
f+ − f− + g+ − g− it follows that h+ + f− + g− = h− + f+ + g+. Since these
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are all positive functions µ(h+) + µ(f−) + µ(g−) = µ(h−) + µ(f+) + µ(g+).
However then µ(h+)−µ(h−) = µ(f+)−µ(f−) +µ(g+)−µ(g−). This is allowed
because the terms that are subtracted are not infinite. The conclusion is that
µ(h) = µ(f) + µ(g). 2

Theorem 12.3 If f is in F and µ(|f |) = µ(f+) + µ(f−) < ∞, then µ(f) =
µ(f+)− µ(f−) is defined, and

|µ(f)| ≤ µ(|f |). (12.2)

If f is in F , then f is said to be absolutely summable with respect to µ if
µ(|f |) = µ(f+) + µ(f−) < ∞. The space L1(X,F , µ) is defined as the space of
functions in F that are absolutely summable with respect to µ. So µ is defined
on all of L1(X,F , µ).

Theorem 12.4 (improved monotone convergence) If µ(f1) > −∞ and fn ↑ f ,
then µ(fn) ↑ µ(f). Similarly, if µ(h1) < +∞ and hn ↓ h, then µ(hn) ↓ µ(h).

Proof: For the first apply monotone convergence to fn− f1. For the second
let fn = −hn. 2

It is very common to denote

µ(f) =
∫
f dµ (12.3)

or even

µ(f) =
∫
f(x) dµ(x). (12.4)

This notation is suggestive in the case when there is more than one integral
in play. Say that ν is an integral, and w ≥ 0 is a measurable function. Then
the integral µ(f) = ν(fw) is defined. We would write this as

∫
f(x) dµ(x) =

∫
f(x)w(x)dν(x). (12.5)

So the relation between the two integrals would be dµ(x) = w(x)dν(x). This
suggests that w(x) plays the role of a derivative of one integral with respect to
the other.

12.2 Uniqueness of integrals

Theorem 12.5 Let L be a vector lattice. Let m be an elementary integral on
L. Let F be the monotone-class generated by L. Suppose that F contains the
constant functions, so that F is a σ-algebra of functions. If there is an integral
µ on F+ such that µ = m on L+, then this extension is unique.
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Proof: Let µ1 and µ2 be two integrals on F+ that each agree with m on
L+. Let H be the smallest L-monotone class such that L+ ⊂ H. Let G be
the set of all functions in F+ on which µ1 and µ2 agree. The main task is
to show that H ⊂ G. It is clear that L ⊂ G. Suppose that hn is in G and
hn ↑ h. If µ1(hn) = µ2(hn) for each n, then µ1(h) = µ2(h). Suppose that fn
is in G and is L-bounded for each n and fn ↓ f . If µ1(fn) = µ2(fn) for all n,
then by improved monotone convergence µ1(f) = µ2(f). This shows that G is
a L-monotone class such that L+ ⊂ G. It follows that H ⊂ G. However the
earlier result on L-monotone classes showed that H = F+. So F+ ⊂ G. 2

12.3 Existence of integrals

Theorem 12.6 Let L be a vector lattice. Let m be an elementary integral on
L. Let F be the monotone-class generated by L. Suppose that F contains the
constant functions, so that F is a σ-algebra of functions. Then there is an
integral µ on F+ that agrees with m on L+.

Proof: Consider the space L1 = L1(X,m) ∩ F . These are the functions
that are integrable as before, and also belong to the σ-algebra. Consider g ≥ 0
in L1. First we show that if h ≥ 0 is in F+ , then h ∧ g is in L1. This follows
from the fact that the class of h in F+

0 such h ∧ g is in L1 includes L+ and is a
monotone class. Therefore this class includes all of F+.

It follows that if f and g are in F and 0 ≤ f ≤ g, and g in in L1, then f is
in L1. This is just because f = f ∧ g.

We conclude that for f ≥ 0 in F+ we can define µ(f) to be as before for f
in L1 and µ(f) = +∞ if f is not in L1. Then we have that 0 ≤ f ≤ g implies
0 ≤ µ(f) ≤ µ(g). The other properties of the integral are easy to check. 2

12.4 Probability and expectation

An integral is a probability integral (or expectation) provided that µ(1) = 1. This
of course implies that µ(c) = c for every real constant c. In this context there
is a special terminology. The set on which the functions are defined is called Ω.
A point ω in Ω is called an outcome.

A measurable function f : Ω → R is called a random variable. The value
f(ω) is regarded as an experimental number, the value of the random variable
when the outcome of the experiment is ω. The integral µ(f) is the expecta-
tion of the random variable, provided that the integral exists. For a bounded
measurable function f the expectation µ(f) always exists.

A subset A ⊂ Ω is called an event. When the outcome ω ∈ A, the event
A is said to happen. The measure µ(A) of an event is called the probability of
the event. The probability µ(A) of an event A is the expectation µ(1A) of the
random variable 1A that is one if the event happens and is zero if the event does
not happen.
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Theorem 12.7 Let Ω = {0, 1}N+ be the set of all infinite sequences of zeros and
ones. Fix p with 0 ≤ p ≤ 1. If the function f on Ω is in the space Fk of functions
that depend only on the first k values of the sequence, let f(ω) = h(ω1, . . . , ωk)
and define

µp(f) =
1∑

ω1=0

· · ·
1∑

ωk=0

h(ω1, . . . , ωk)pω1(1− p)1−ω1 · · · pωk(1− p)1−ωk . (12.6)

This defines an elementary integral µp on the vector lattice L that is the union
of the Fk for k = 0, 1, 2, 3, . . .. Let F be the σ-algebra generated by L. Then
the elementary integral extends to an integral µp on F+, and this integral is
uniquely defined.

This theorem describes the expectation for a sequence of independent coin
tosses where the probability of heads on each toss is p and the probability of
tails on each toss is 1 − p. The special case p = 1/2 describes a fair coin. The
proof of the theorem follows from previous considerations. It is not difficult to
calculate that µ is consistently defined on L. It is linear and order preserving on
the coin tossing vector lattice L, so it is automatically an elementary integral.
Since L contains the constant functions, the integral extends uniquely to the
σ-algebra F .

This family of integrals has a remarkable property. For each p with 0 ≤ p ≤ 1
let Fp ⊂ Ω be defined by

Fp = {ω ∈ Ω | lim
n→∞

ω1 + · · ·+ ωn
n

= p}. (12.7)

It is clear that for p 6= p′ the sets Fp and Fp′ are disjoint. This gives an
uncountable family of disjoint measurable subsets of Ω. The remarkable fact is
that for each p we have that the probability µp(Fp) = 1. (This is the famous
strong law of large numbers.) It follows that for p′ 6= p we have that the
probability µp(Fp′) = 0. Thus there are uncountably many expectations µp.
These are each defined with the same set Ω of outcomes and the same σ-algebra
F of random variables. Yet they are concentrated on uncountably many different
sets.

12.5 Image integrals

There are several ways of getting new integrals from old ones. One is by using
a weight function. For instance, if

λ(f) =
∫ ∞
−∞

f(x) dx (12.8)

is the Lebesgue integral defined for Borel functions f , and if w ≥ 0 is a Borel
function, then

µ(f) =
∫ ∞
−∞

f(x)w(x) dx (12.9)
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is another integral. In applications w can be a mass density, a probability
density, or the like.

A more important method is to map the integral forward. For instance, let
y = φ(x) = x2. Then the integral µ described just above maps to an integral
ν = φ[µ] given by

ν(g) =
∫ ∞
−∞

g(x2)w(x) dx. (12.10)

This is a simple and straightforward operation. Notice that the forward mapped
integral lives on the range of the mapping, that is, in this case, the positive real
axis. The trouble begins only when one wants to write this new integral in terms
of the Lebesgue integral. Thus we may also write

ν(g) =
∫ ∞

0

g(y)
1

2
√
y

[w(
√
y) + w(−√y)] dy. (12.11)

Here is the same idea in a general setting. Let F be a σ-algebra of measurable
functions on X. Let G be a σ-algebra of measurable functions on Y . A function
φ : X → Y is called a measurable map if for every g in G the composite function
g ◦ φ is in F .

Given an integral µ defined on F , and given a measurable map φ : X → Y ,
there is an integral φ[µ] defined on G. It is given by

φ[µ](g) = µ(g ◦ φ). (12.12)

It is called the image of the integral µ under φ.
This construction is important in probability theory. Let Ω be a measure

space equipped with a σ-algebra of functions F and an expectation µ defined on
F+. If φ is a random variable, that is, a measurable function from Ω to R with
the Borel σ-algebra, then it may be regarded as a measurable map. The image
of the expectation µ under X is an integral ν = φ[µ] on the Borel σ-algebra
called the distribution of φ. We have the identity.

µ(h(φ)) = ν(h) =
∫ ∞
−∞

h(x) dν(x). (12.13)

Sometimes the calculations do not work so smoothly. The reason is that
while an integral maps forward, a differential form maps backward. For in-
stance, the differential form g(y) dy maps backward to the differential form
g(φ(x))φ′(x) dx. Thus a differential form calculation like

∫ b

a

g(φ(x))φ′(x) dx =
∫ φ(b)

φ(a)

g(y) dy (12.14)

works very smoothly. On the other hand, the calculation of an integral with a
change of variable with φ′(x) > 0 gives

∫ b

a

g(φ(x)) dx =
∫ φ(b)

φ(a)

g(y)
1

φ′(φ−1(y))
dy (12.15)
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which is unpleasant. The problem is not with the integral, which is perfectly
well defined by the left hand side with no restrictions on the function φ. The
difficulty comes when one tries to express the integral in terms of a Lebesgue
integral with a weight function, and it is only at this stage that the differential
form calculations play a role.

The ultimate source of this difficulty is that integrals (or measures) and
differential forms are different kinds of objects. An integral assigns a number
to a function. Functions map backward, so integrals map forward. Thus g
pulls back to g ◦ φ, so µ pushes forward to φ[µ]. The value of φ[µ] on g is the
value of µ on g ◦ φ. (It makes no difference if we think instead of measures
defined on subsets, since subsets map backwards and measures map forward.)
A differential form assigns a number to an oriented curve. Curves map forward,
so differential forms map backward. Thus a curve from a to b pushes forward
to a curve from φ(a) to φ(b). The differential form g(y) dy pulls back to the
differential form g(φ(x))φ′(x) dx. The value of g(φ(x)φ′(x) dx over the curve
from a to b is the value of g(y) dy over the curve from φ(a) to φ(b).

12.6 The Lebesgue integral

The image construction may be used to define Lebesgue measure and other
measures.

Theorem 12.8 Let 0 ≤ p ≤ 1. Define the expectation µp for coin tossing on
the set Ω of all infinite sequences ω : N+ → {0, 1} as in the theorem. Here p is
the probability of heads on each single toss. Let

φ(ω) =
∞∑

k=1

ω(k)
1
2k
. (12.16)

Then the image expectation φ[µ] is an expectation νp defined for Borel functions
on the unit interval [0, 1].

The function φ in this case is a random variable that rewards the nth coin
toss by 1/2n if it results in heads, and by zero if it results in tails. The random
variable is the sum of all these rewards. Thus νp is the distribution of this
random variable.

When p = 1/2 (the product expectation for tossing of a fair coin) the expec-
tation λ = ν 1

2
is the Lebesgue integral for functions on [0, 1]. However note that

there are many other integrals, for the other values of p. We have the following
amazing fact. For each p there is an integral νp defined for functions on the unit
interval. If p 6= p′ are two different parameters, then there is a measurable set
that has measure 1 for the νp measure and measure 0 for the νp′ measurable.
The set comes from the set of coin tosses for which the sample means converge
to the number p. This result shows that these measures each live in a different
world.
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From now on we take this as the definition of the Lebesgue integral for Borel
functions on the unit interval [0, 1] and use standard notation, such as

λ(f) =
∫ 1

0

f(u) du. (12.17)

Consider the map x = ψ(u) = ln(u/(1− u)) from the open interval (0, 1) to
R. This is a bijection. It has derivative dx/du = 1/(u(1−u)). The inverse is u =
1/(1− e−x) with derivative u(1− u) = 1/(2 + 2 cosh(x)). It is a transformation
that is often used in statistics to relate problems on the unit interval (0, 1) and
on the line (−∞,+∞). The image of Lebesgue measure for [0, 1] under this
map is also a probability integral. It is given by

ψ[λ](f) =
∫ 1

0

f(ln
(

u

1− u
)

) du =
∫ ∞
−∞

f(x)
1
2

1
1 + cosh(x)

dx. (12.18)

A variation of this idea may be used to define the Lebesgue integral for Borel
functions defined on the real line R. Let

σ(h) =
∫ 1

0

h(u)
1

u(1− u)
du. (12.19)

This is not a probability integral. The image under ψ is

ψ[σ](f) =
∫ 1

0

f(ln(
u

1− u ))
1

u(1− u)
du =

∫ ∞
−∞

f(x) dx = λ(f). (12.20)

This calculation shows that the dx integral is the image of the 1/(u(1− u)) du
integral under the transformation x = ln(u/(1 − u)). It could be taken as a
perhaps somewhat unusual definition of the Lebesgue integral λ for functions
on the line.

12.7 The Lebesgue-Stieltjes integral

Once we have the Lebesgue integral defined for Borel functions on the line, we
can construct a huge family of other integrals, also defined on Borel functions
on the line. These are called Lebesgue-Stieltjes integrals. Often when several
integrals are being discussed, the integrals are referred to as measures. Of course
an integral defined on functions does indeed define a measure on subsets.

The class of measures under consideration consists of those measures defined
on Borel functions on the line (or on Borel subsets of the line) that give finite
measure to bounded Borel sets. Such a measure will be called a regular Borel
measure.

Examples:



12.7. THE LEBESGUE-STIELTJES INTEGRAL 113

1. The first example is given by taking a function w ≥ 0 such that w in
integrable over each bounded Borel set. The measure is then µ(f) =
λ(fw) =

∫∞
∞ f(x)w(x) dx. Such a measure is called absolutely continuous

with respect to Lebesgue measure. Often the function w is called the
density (of mass or probability).

2. Another kind of example is of the form µ(f) =
∑
p∈S cpf(p), where S

is a countable subset of the line, and each cp > 0. This is called the
measure that assigns point mass cp to each point p in S. We require that∑
a<p≤b cp <∞ for each a, b with −∞ < a < b < +∞. Often the measure

that assigns mass one to a point p is denoted δp, so δp(f) = f(p). With
this notation the measure µ of this example is µ =

∑
p∈S cpδp.

Suppose that µ is a regular Borel measure, so that the measure of each set
(a, b] for a ≤ b real is finite. Define F (x) = µ((0, x]) for x ≥ 0 and F (x) =
−µ((x, 0]) for x ≤ 0. Then F ((a, b]) = F (b)− F (a) for all a ≤ b. The function
F is increasing and right continuous. With this normalization F (0) = 0, but
one can always add a constant to F and still get the property that F ((a, b]) =
F (b)− F (a). This nice thing about this is that the increasing right continuous
function F gives a rather explicit description of the measure µ.

Examples:

1. For the absolutely continuous measure F (b) − F (a) =
∫ b
a
w(x) dx. The

function F is a continuous function. However not every continuous func-
tion is absolutely continuous.

2. For the point mass measure F (b)−F (a) =
∑
p∈(a,b] cp. The function F is

continuous except for jumps at the points p in S.

Theorem 12.9 Let F be an increasing right continuous function on R. Then
there exists a regular measure µF defined on the Borel σ-algebra B such that

µF ((a, b]) = F (b)− F (a). (12.21)

Furthermore, this measure may be obtained as the image of Lebesgue measure
on an interval under a map G.

Proof: Let m = inf F and let M = supF . For m < y < M let

G(y) = sup{x | F (x) < y}. (12.22)

We can compare the least upper bound G(y) with an arbitrary upper bound c.
Thus G(y) ≤ c is equivalent to the condition that for all x, F (x) < y implies
x ≤ c. This in turn is equivalent to the condition that for all x, c < x implies
y ≤ F (x). Since F is increasing and right continuous, it follows that this in
turn is equivalent to the condition that y ≤ F (c).

It follows that a < G(y) ≤ b is equivalent to F (a) < y ≤ F (b). Thus G is a
kind of inverse to F .
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Let λ be Lebesgue measure on the interval (m,M). Let µF = G[λ] be the
image of this Lebesgue measure under G. Then

µF ((a, b]) = λ({y | a < G(y) ≤ b}) = λ({y | F (a) < y ≤ F (b)}) = F (b)− F (a),
(12.23)

so µF is the desired measure. 2

The above proof says that every regular Borel measure with a certain total
mass M−m may be obtained from Lebesgue measure with the same mass. The
forward mapping G just serves to redistribute the mass.

Often the Lebesgue-Stieltges integral is written

µF (h) =
∫ ∞
−∞

h(x) dF (x). (12.24)

This is reasonable, since if F were smooth with smooth inverse G we would have
F (G(y)) = y and F ′(G(y))G′(y) = 1 and so

µF (h) = λ(h◦G) =
∫ M

m

h(G(y)) dy =
∫ M

m

h(G(y))F ′(G(y))G′(y) dy =
∫ ∞
−∞

h(x)F ′(x) dx.

(12.25)
However in general it is not required that F be smooth, or that it have an
inverse function.

These increasing functions F give a relatively concrete description of the
regular Borel measures. There are three qualitatively different situations. If
the function F (x) is the indefinite integral of a function w(x), then F and µF
are said to be absolutely continuous with respect to Lebesgue measure. (In
this case, it is reasonable to write w(x) = F ′(x). However F (x) need not be
differentiable at each point x. The example when w(x) is a rectangle function
provides an example.) If the function F is constant except for jumps at a
countable set of points, F and µF are said to have point masses. The third
situation is intermediate and rather strange: the function F has no jumps, but
it is constant except on a set of measure zero. In this case F and µF are said
to be singular continuous.

Here is an example of the singular continuous case. Let µ 1
2

be the fair
coin measure on the space Ω of all sequences of zeros and ones. Let χ(ω) =∑∞
n=1 2ωn/3n. Then χ maps Ω bijectively onto the Cantor set. Thus χ[µ 1

2
] is

a probability measure on the line that assigns all its weight to the Cantor set.
The function F that goes with this measure is called the Cantor function. It is
a continuous function that increases from zero to one, yet it is constant except
on the Cantor set, which has measure zero.

The Cantor function F is the distribution function of the random variable χ,
that is, F (x) = µ 1

2
(χ ≤ x). It also has a simple non-probabilistic description. To

see this, recall that φ defined by φ(ω) =
∑∞
n=1 ωn/2

n has a uniform distribution
on [0, 1]. This says that µ 1

2
(φ ≤ y) = y for all y in [0, 1]. For x in the Cantor

set there is a unique χ−1(x) in Ω and a corresponding y = φ(χ−1(x)) in [0, 1].
The set where φ ≤ y is the same as the set where χ ≤ x, up to a set of measure
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zero. Therefore F (x) = µ 1
2
(χ ≤ x) = µ 1

2
(φ ≤ y) = y. The conclusion is that F

restricted to the Cantor set is φ ◦ χ−1, and F is constant elsewhere.
The conclusion of this discussion is that there are many regular Borel mea-

sures on Borel subsets of the line. However there is a kind of unity, since each
of these is an image of Lebesgue measure on some interval.

Problems

1. Suppose the order preserving property f ≤ g implies µ(f) ≤ µ(g) is
known for positive measurable functions. Show that it follows for all
measurable functions, provided that the integrals exist. Hint: Decompose
the functions into positive and negative parts.

2. Consider the space Ω = {0, 1}N+ with the measure µ that describes fair
coin tossing. Let S3 be the random variable given by S3(ω) = ω1 +ω2 +ω3

that describes the number of heads in the first three tosses. Draw the
graph of the corresponding function on the unit interval. Find the area
under the graph, and check that this indeed gives the expectation of the
random variable.

3. Let
µ(g) =

∫ ∞
−∞

g(t)w(t) dt (12.26)

be a integral defined by a density w(t) ≥ 0 with respect to Lebesgue
measure dt. Let φ(t) be a suitable smooth function that is increasing or
decreasing on certain intervals, perhaps constant on other intervals. Show
that the image integral

φ[µ](f) =
∫ ∞
−∞

f(s)h(s) ds+
∑
s∗
f(s∗)c(s∗) (12.27)

is given by a density h(s) and perhaps also some point masses c(s∗)δs∗ .
Here

h(s) =
∑

φ(t)=s

w(t)
1

|φ′(t)| (12.28)

and
c(s∗) =

∫

φ(t)=s∗
w(t) dt. (12.29)

4. What is the increasing right continuous function that defines the integral

µ(g) =
∫ ∞
−∞

g(x)
1
π

1
1 + x2

dx (12.30)

involving the Cauchy density?

5. What is the increasing right continuous function that defines the δa inte-
gral given by δa(g) = g(a)?
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12.8 Integrals on a σ-ring

This entire section may be omitted on a first reading.

Theorem 12.10 Let L be a Stone vector lattice. Let m be an elementary inte-
gral on L. Let F0 be the monotone-class generated by L. Then F0 is a σ-ring
of functions. If there is an extension of µ to an integral on F+

0 such that µ = m
on L+, then this extension is unique.

Theorem 12.11 Let L be a Stone vector lattice. Let m be an elementary inte-
gral on L. Let F0 be the monotone-class generated by L. Then F0 is a σ-ring of
functions. If F0 is a σ-algebra of functions, set F = F0. If F is not a σ-algebra
of functions, then set F to be all sums of a function of F0 with a constant func-
tion. Then F is a σ-algebra of functions, and there is an integral µ on F+ that
agrees with m on L+.

Proof: The construction used before gives the desired integral on F0. . The
only problem comes in the (rather unusual) case when F0 is not a σ-algebra. In
this case define F to consists of all sums f+a of elements f in F0 with constant
functions. The integral may now be defined on F+ by defining µ(f + a) = +∞
if a > 0. In some cases there are other possible extensions, but this one always
works. 2

Problems

1. Let X be a set. Let L be the vector lattice of functions that are non-
zero only on finite sets. The elementary integral m is defined by m(f) =∑
x∈S f(x) if f 6= 0 on S. Find the σ-ring of functions F0 generated by

L. When is it a σ-algebra? Extend m to an integral µ on the smallest
σ-algebra generated by L. Is the value of µ on the constant functions
uniquely determined?

2. Consider the previous problem. The largest possible σ-algebra of functions
on X consists of all real functions on X. For f ≥ 0 in this largest σ-algebra
define the integral µ by µ(f) =

∑
x∈S f(x) if f is non-zero on a countable

set S. Otherwise define µ(f) = +∞. Is this an integral?

3. Let X be a set. Let A be a countable subset of S, and let p be a function
on A with p(x) ≥ 0 and

∑
x∈A p(x) = 1. Let L be the vector lattice of

functions that are non-zero only on finite sets. The probability sum is
defined for f in L by µ(f) =

∑
x∈A∩S f(x)p(x) if f 6= 0 on S. Let F0 be

the σ-ring of functions generated by L. Show that if X is uncountable,
then µ has more than one extension to the σ-algebra F consisting of the
sum of functions in F0 with constant functions. Which extension is natural
for probability theory?



Chapter 13

Integrals and measures

13.1 Terminology

Here is a terminology review. A measurable space is a space X with a given σ-
algebra F of real functions or the corresponding σ-algebra of subsets. A function
or subset is called measurable if it belongs to the appropriate σ-algebra. Suppose
X is a metric space. Then the Borel σ-algebra of functions on X is generated
by the continuous real functions, while the Borel σ-algebra of subsets of X is
generated by the open subsets. A function or subset that is measurable with
respect to the appropriate Borel σ-algebra is a Borel function or a Borel subset.

An integral is defined as a function µ : F+ → [0,+∞] from the positive
functions in a sigma-algebra F of functions to positive extended real numbers
that satisfies certain algebraic conditions and upward monotone convergence.
Given an integral, there is an associated function µ : L1(X,F , µ) → R defined
on absolutely integrable functions. A measure is defined as a function from a
sigma-algebra of subsets to [0,+∞] that satisfies countable additivity. There
is a one-to-one natural correspondence between integrals and measures, so the
concepts are interchangeable. Sometimes this general concept of integration is
called the Lebesgue theory.

Probability theory is the special case µ(1) = 1. A function in the σ-algebra
is called a random variable, an integral is an expectation, a subset in the sigma-
algebra is called an event, a measure is a probability measure.

The integral for Borel functions on the line or the measure on Borel subsets
of the line that is translation invariant and has the customary normalization is
called the Lebesgue integral or Lebesgue measure and denoted λ, so

λ(f) =
∫ ∞
−∞

f(x) dx. (13.1)

There is a similar Lebesgue integral and Lebesgue measure for Rn.
An integral µF on Borel functions on the line or the measure on Borel subsets

of the line that is given by an increasing right continuous function F is called a

117
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Lebesgue-Stieltjes integral or measure. Thus

µF (f) =
∫ ∞
−∞

f(x) dF (x). (13.2)

These are the measures on Borel subsets of the line that are finite on compact
sets. Thus Lebesgue measure is the special case corresponding to the function
F (x) = x.

There are also integrals and measures defined on larger classes of functions
or subsets. Often one refers to the completion of Lebesgue measure on Rn.
Sometimes this is called Lebesgue measure on the Lebesgue measurable subsets
of Rn.

The Daniell-Stone construction starts from an elementary integral on a Stone
vector lattice L and constructs an integral associated with a sigma-algebra of
functions F . The Caratheodory construction starts with a countably additive
set function on a ring of subsets and constructs a measure on a sigma-algebra
of subsets.

A Radon measure is an elementary integral defined on the space L of continu-
ous functions with compact support. For the case of functions on Rn the Radon
measures correspond to the measures on Borel subsets that are finite on com-
pact sets. So for functions on the line they coincide with the Lebesgue-Stieltjes
integrals.

13.2 Convergence theorems

The most fundamental convergence theorem is improved monotone convergence.
This was proved in the last chapter, but it is well to record it again here.

Theorem 13.1 (improved monotone convergence) If µ(f1) > −∞ and fn ↑ f ,
then µ(fn) ↑ µ(f). Similarly, if µ(h1) < +∞ and hn ↓ h, then µ(hn) ↓ µ(h).

The next theorem is a consequence of monotone convergence that applies to
a sequence of functions that is not monotone.

Theorem 13.2 (Fatou) Suppose each fn ≥ 0. Let f = lim infn→∞ fn. Then

µ(f) ≤ lim inf
n→∞

µ(fn). (13.3)

Proof: Let rn = infk≥n fk. It follows that 0 ≤ rn ≤ fk for each k ≥ n. So
0 ≤ µ(rn) ≤ µ(fk) for each k ≥ n. This gives the inequality

0 ≤ µ(rn) ≤ inf
k≥n

µ(fk). (13.4)

However 0 ≤ rn ↑ f . By monotone convergence 0 ≤ µ(rn) ↑ µ(f). Therefore
passing to the limit in the inequality gives the result. 2

Fatou’s lemma says that in the limit one can lose positive mass density, but
one cannot gain it.
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Examples:

1. Consider functions fn = n1(0,1/n) on the line. It is clear that λ(fn) = 1
for each n. On the other hand, fn → 0 pointwise, and λ(0) = 0. The
density has formed a spike near the origin, and this does not produce a
limiting density.

2. Consider functions fn = 1(n,n+1). It is clear that λ(fn) = 1 for each n.
On the other hand, fn → 0 pointwise, and λ(0) = 0. The density has
moved off to +∞ and is lost in the limit.

It is natural to ask where the mass has gone. The only way to answer this
is to reinterpret the problem as a problem about measure. Define the measure
νn(φ) = λ(φfn). Take φ bounded and continuous. Then it is possible that
νn(φ) → ν(φ) as n to ∞. If this happens, then ν may be interpreted as a
limiting measure that contains the missing mass. However this measure need
not be given by a density.

Examples:

1. Consider functions nfn = 1(0,1/n) on the line. In this case νn(φ) =
λ(φfn) → φ(0) = δ0(φ). The limiting measure is a point mass at the
origin.

2. Consider functions fn = 1(n,n+1). Suppose that we consider continuous
functions with right and left hand limits at +∞ and −∞. In this case
νn(φ) = λ(φfn) → φ(+∞) = δ+∞(φ). The limiting measure is a point
mass at +∞.

Theorem 13.3 (dominated convergence) Let |fn| ≤ g for each n, where g is in
L1(X,F , µ), that is, µ(g) <∞. Suppose fn → f pointwise as n→∞. Then f
is in L1(X,F , µ) and µ(fn)→ µ(f) as n→∞.

This theorem is amazing because it requires only pointwise convergence. The
only hypothesis is the existence of the dominating function

∀n∀x |fn(x)| ≤ g(x) (13.5)

with ∫
g(x) dµ(x) < +∞. (13.6)

Then pointwise convergence

∀x lim
n→∞

fn(x) = f(x) (13.7)

implies convergence of the integrals

lim
n→∞

∫
fn(x) dµ(x) =

∫
f(x) dµ(x). (13.8)
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Proof: We have |fk| ≤ g, so −g ≤ fk ≤ g. Let rn = infk≥n fk and
sn = supk≥n fk. Then

−g ≤ rn ≤ fn ≤ sn ≤ g. (13.9)

This gives the inequality

−∞ < −µ(g) ≤ µ(rn) ≤ µ(fn) ≤ µ(sn) ≤ µ(g) < +∞. (13.10)

However rn ↑ f and sn ↓ f . It follows from improved monotone convergence that
µ(rn) ↑ µ(f) and µ(sn) ↓ µ(f). It follows from the inequality that µ(fn)→ µ(f).
2

Corollary 13.4 Let |fn| ≤ g for each n, where g is in L1(X,F , µ). It follows
that each fn is in L1(X,F , µ). Suppose fn → f pointwise as n → ∞. Then f
is in L1(X,F , µ) and fn → f in the sense that µ(|fn − f |)→ 0 as n→∞.

Proof: It suffices to apply the dominated convergence theorem to |fn−f | ≤
2g. 2

In applying the dominated convergence theorem, the function g ≥ 0 must
be independent of n and have finite integral. However there is no requirement
that the convergence be uniform or monotone.

Here is a simple example. Consider the sequence of functions fn(x) =
cosn(x)/(1 + x2). The goal is to prove that λ(fn) =

∫∞
−∞ fn(x) dx → 0 as

n → ∞. Note that fn → 0 as n → ∞ pointwise, except for points that are a
multiple of π. At these points one can redefine each fn to be zero, and this will
not change the integrals. Apply the dominated convergence to the redefined fn.
For each n we have |fn(x)| ≤ g(x), where g(x) = 1/(1 + x2) has finite integral.
Hence λ(fn)→ λ(0) = 0 as n→∞.

The following examples show what goes wrong when the condition that the
dominating function has finite integral is not satisfied.

Examples:

1. Consider functions fn = n1(0,1/n) on the line. These are dominated by
g(x) = 1/x on 0 < x ≤ 1, with g(x) = 0 for x ≥ 0. This is independent
of n. However λ(g) =

∫ 1

0
1/x dx = +∞. The dominated convergence does

not apply, and the integral of the limit is not the limit of the integrals.

2. Consider functions fn = 1(n,n+1). Here the obvious dominating function
is g = 1(0,+∞). However again λ(g) = +∞. Thus there is nothing to
prevent mass density being lost in the limit.

13.3 Measure

If E is a subset of X, then 1E is the indicator function of E. Its value is 1
for every point in E and 0 for every point not in E. The set E is said to be
measurable if the function 1E is measurable. The measure of such an E is µ(1E).
This is often denoted µ(E).
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Theorem 13.5 An integral is uniquely determined by the corresponding mea-
sure.

Proof: Let f ≥ 0 be a measurable function. Define

fn =
∞∑

k=0

k

2n
1 k

2n<f≤ k+1
2n
. (13.11)

The integral of fn is determined by the measures of the sets where k
2n < f ≤ k+1

2n .
However fn ↑ f , and so the integral of f is determined by the corresponding
measure. 2

This theorem justifies a certain amount of confusion between the notion of
measure and the notion of integral. In fact, this whole subject is sometimes
called measure theory.

Sometimes we denote a subset of X by a condition that defines the subset.
Thus, for instance, {x | f(x) > a} is denoted f > a, and its measure is µ(f > a).

Theorem 13.6 If the set where f 6= 0 has measure zero, then µ(|f |) = 0.

Proof: For each n the function |f | ∧ n ≤ n1|f |>0 and so has integral µ(|f | ∧
n) ≤ n · 0 = 0. However |f | ∧ n ↑ |f | as n→∞. So from monotone convergence
µ(|f |) = 0. 2

The preceding theorem shows that changing a function on a set of measure
zero does not change its integral. Thus, for instance, if we change g1 to g2 =
g1 + f , then |µ(g2)− µ(g1)| = |µ(f)| ≤ µ(|f |) = 0, so µ(g1) = µ(g2).

There is a terminology that is standard in this situation. If a property of
points is true except on a subset of µ measure zero, then it is said to hold almost
everywhere with respect to µ. Thus the theorem would be stated as saying that
if f = 0 almost everywhere, then its integral is zero. Similarly, if g = h almost
everywhere, then g and h have the same integral.

In probability the terminology is slightly different. Instead of saying that a
property holds almost everywhere, on says that the event happens almost surely
or with probability one.

The convergence theorems hold even when the hypotheses are violated on a
set of measure zero. For instance, the dominated convergence theorem can be
stated: If |g| ≤ g almost everywhere with respect to µ and µ(g) < +∞, then
fn → f almost everywhere with respect to µ implies µ(fn)→ µ(f).

Theorem 13.7 (Chebyshev inequality) Let f be a real measurable function and
a be a real number. Let φ be an increasing real function on [a,+∞) with φ(a) > 0
and φ ≥ 0 on the range of f . Then

µ(f ≥ a) ≤ 1
φ(a)

µ(φ(f)). (13.12)

Proof: This follows from the pointwise inequality

1f≥a ≤ 1φ(f)≥φ(a) ≤
1

φ(a)
φ(f). (13.13)
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At the points where f ≥ a we have φ(f) ≥ φ(a) and so the right hand size is
one or greater. In any case the right hand size is positive. Integration preserves
the inequality. 2

The Chebyshev inequality is used in practice mainly in certain important
special cases. Thus for a > 0 we have

µ(|f | ≥ a) ≤ 1
a
µ(|f |) (13.14)

and
µ(|f | ≥ a) ≤ 1

a2
µ(f2). (13.15)

Another important case is when t > 0 and

µ(f ≥ a) ≤ 1
eta

µ(etf ). (13.16)

Theorem 13.8 If µ(|f |) = 0, then the set where f 6= 0 has measure zero.

Proof: By the Chebyshev inequality, for each n we have µ(1|f |>1/n) ≤
nµ(|f |) = n · 0 = 0. However as n → ∞, the functions 1|f |>1/n ↑ 1|f |>0. So
µ(1|f |>0) = 0. 2

The above theorem also has a statement in terms of an almost everywhere
property. It says that if |f | has integral zero, then f = 0 almost everywhere.

13.4 Extended real valued measurable functions

In connection with Tonelli’s theorem it is natural to look at functions with values
in the set [0,+∞]. This system is well behaved under addition. In the context
of measure theory it is useful to define 0 · (+∞) = (+∞) · 0 = 0. It turns out
that this is the most useful definition of multiplication.

Let X be a non-empty set, and let F be a σ-algebra of real functions on
X. A function f : X → [0,+∞] is said to be measurable with respect to F if
there is a sequence fn of functions in F with fn ↑ f pointwise. A function is
measurable in this sense if and only if there is a measurable set A with f = +∞
on A and f coinciding with a function in F on the complement Ac.

An integral µ : F+ → [0,+∞] is extended to such measurable functions f
by monotone convergence. Notice that if A is the set where f = +∞, then we
can set fn = n on A and f on Ac. Then µ(fn) = nµ(A) + µ(f1Ac). If we take
n → ∞, we get µ(f) = (+∞)µ(A) + µ(f1Ac). For the monotone convergence
theorem to hold we must interpret (+∞) · 0 = 0. Notice that if µ(f) < +∞,
then it follows that µ(A) = 0.

13.5 Fubini’s theorem for sums and integrals

Theorem 13.9 (Tonelli for positive sums) If wk ≥ 0, then

µ(
∞∑

k=1

wk) =
∞∑

k=1

µ(wk). (13.17)
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Proof: This theorem says that for positive functions integrals and sums may
be interchanged. This is the monotone convergence theorem in disguise. That
is, let fn =

∑n
k=1 wk. Then fn ↑ f =

∑∞
k=1 wk. Hence µ(fn) =

∑n
k=1 µ(wk) ↑

µ(f). 2

Theorem 13.10 (Fubini for absolutely convergent sums) Suppose that the con-
dition

∑∞
k=1 µ(|wk|) < +∞ is satisfied. Set g =

∑∞
k=1 |wk|. Then g is in

L1(X,F , µ) and so the set Λ where g < +∞ has µ(Λc) = 0. On this set Λ let

f =
∞∑

k=1

wk (13.18)

and on Λc set f = 0. Then f is in L1(X,F , µ) and

µ(f) =
∞∑

k=1

µ(wk). (13.19)

In other words, ∫

Λ

∞∑

k=1

wk dµ =
∞∑

k=1

∫
wk dµ. (13.20)

Proof: This theorem says that absolute convergence implies that inte-
grals and sums may be interchanged. Here is a first proof. By the hypoth-
esis and Tonelli s theorem µ(g) < +∞. It follows that g < +∞ on a set Λ
whose complement has measure zero. Let fn =

∑n
k=1 1Λwk. Then |fn| ≤ g

for each n. Furthermore, the series defining f is absolutely convergent on
Λ and hence convergent on Λ. Thus fn → f as n → ∞. Furthermore
µ(fn) =

∑n
k=1 µ(1Λwk) =

∑n
k=1 µ(wk). The conclusion follows by the dom-

inated convergence theorem. 2

Proof: Here is a second proof. Decompose each wj = w+
j − w−j into a

positive and negative part. Then by Tonelli’s theorem µ(
∑∞
j=1 w

±
j ) < +∞. Let

Λ be the set where both sums
∑∞
j=1 w

±
j < +∞. Then µ(Λc) = 0. Let f =∑∞

j=1 wj on Λ and f = 0 on Λc. Then f =
∑∞
j=1 1Λw

+
j −

∑∞
j=1 1Λw

−
j . There-

fore µ(f) = µ(
∑∞
j=1 1Λw

+
j ) − µ(

∑∞
j=1 1Λw

−
j ) =

∑∞
j=1 µ(w+

j ) −∑∞j=1 µ(w−j ) =∑∞
j=1(µ(w+

j )− µ(w−j )) =
∑∞
j=1 µ(wj). The hypothesis guarantees that there is

never a problem with (+∞)− (+∞). 2

13.6 Fubini’s theorem for sums

The following two theorems give conditions for when sums may be interchanged.
Usually these results are applied when the sums are both over countable sets.
However the case when one of the sums is uncountable also follows from the
corresponding theorems in the preceding section.
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Theorem 13.11 (Tonelli for positive sums) If wk(x) ≥ 0, then

∑
x

∞∑

k=1

wk(x) =
∞∑

k=1

∑
x

wk(x). (13.21)

Theorem 13.12 (Fubini for absolutely convergent sums) Suppose that the con-
dition

∑∞
k=1

∑
x |wk(x)| < +∞ is satisfied. Then for each x the series

∑∞
k=1 wk(x)

is absolutely convergent, and

∑
x

∞∑

k=1

wk(x) =
∞∑

k=1

∑
x

wk(x). (13.22)

Here is an example that shows why absolute convergence is essential. Let
g : N × N → R be defined by g(m,n) = 1 if m = n and g(m,n) = −1 if
m = n+ 1. Then

∞∑
n=0

∞∑
m=0

g(m,n) = 0 6= 1 =
∞∑
m=0

∞∑
n=0

g(m,n). (13.23)

Problems

1. This problem is to show that one can get convergence theorems when the
family of functions is indexed by real numbers. Prove that if ft → f
pointwise as t→ t0, |ft| ≤ g pointwise, and µ(g) <∞, then µ(ft)→ µ(f)
as t→ t0.

2. Show that if f is a Borel function and
∫∞
−∞ |f(x)| dx < ∞, then F (b) =∫ b

−∞ f(x) dx is continuous.

3. Must the function F in the preceding problem be differentiable at every
point? Discuss.

4. Show that ∫ ∞
0

sin(ex)
1 + nx2

dx→ 0 (13.24)

as n→∞.

5. Show that ∫ 1

0

n cos(x)
1 + n2x

3
2
dx→ 0 (13.25)

as n→∞.

6. Evaluate

lim
n→∞

∫ ∞
a

n

1 + n2x2
dx (13.26)

as a function of a.
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7. Consider the integral ∫ ∞
−∞

1√
1 + nx2

dx. (13.27)

Show that the integrand is monotone decreasing and converges pointwise
as n → ∞, but the integral of the limit is not equal to the limit of the
integrals. How does this relate to the monotone convergence theorem?

8. Let g be a Borel function with
∫ ∞
−∞
|g(x)| dx <∞ (13.28)

and ∫ ∞
−∞

g(x) dx = 1 (13.29)

Let
gε(x) = g(

x

ε
)
1
ε
. (13.30)

Let φ be bounded and continuous. Show that
∫ ∞
−∞

gε(y)φ(y) dy → φ(0) (13.31)

as ε→ 0. This problem gives a very general class of functions gε(x) such
that integration with gε(x) dx converges to the Dirac delta integral δ0
given by δ0(φ) = φ(0).

9. Let f be bounded and continuous. Show that for each x the convolution
∫ ∞
−∞

gε(x− z)f(z) dz → f(x) (13.32)

as ε→ 0.

10. Prove countable subadditivity:

µ(
∞⋃
n=1

An) ≤
∞∑
n=1

µ(An). (13.33)

Show that if the An are disjoint this is an equality (countable additivity).
Hint: 1⋃∞

n=1
An
≤∑∞n=1 1An .
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Chapter 14

Fubini’s theorem

14.1 Introduction

As an introduction, consider the Tonelli and Fubini theorems for Borel functions
of two variables.

Theorem 14.1 (Tonelli) If f(x, y) ≥ 0, then
∫ ∞
−∞

[∫ ∞
−∞

f(x, y) dx
]
dy =

∫ ∞
−∞

[∫ ∞
−∞

f(x, y) dy
]
dx. (14.1)

Theorem 14.2 (Fubini) If
∫ ∞
−∞

[∫ ∞
−∞
|f(x, y)| dx

]
dy < +∞, (14.2)

then ∫ ∞
−∞

[∫ ∞
−∞

f(x, y) dx
]
dy =

∫ ∞
−∞

[∫ ∞
−∞

f(x, y) dy
]
dx. (14.3)

A slightly more careful statement of Fubini’s theorem would acknowledge
that the inner integrals may not be defined. However let

Λ1 = {x |
∫ ∞
−∞
|f(x, y)| dy < +∞} (14.4)

and
Λ2 = {y |

∫ ∞
−∞
|f(x, y)| dx < +∞} (14.5)

Then the inner integrals are well-defined on these sets. Furthermore, by the
hypothesis of Fubini’s theorem and by Tonelli’s theorem, the complements of
these sets have measure zero. So a more precise statement of the conclusion of
Fubini’s theorem is that

∫

Λ2

[∫ ∞
−∞

f(x, y) dx
]
dy =

∫

Λ1

[∫ ∞
−∞

f(x, y) dy
]
dx. (14.6)

127
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This just amounts to replacing the undefined inner integrals by zero on the
troublesome sets that are the complements of Λ1 and Λ2. It is quite fortunate
that these sets are of measure zero.

The Tonelli and Fubini theorems may be formulated in a way that does not
depend on writing the variables of integration explicitly. Consider for example
Tonelli’s theorem, which applies to a positive measurable function f on the
plane. Let f |1 be the function on the line whose value at a real number is
obtained by holding the first variable fixed at this number and looking at f
as a function of the second variable. Thus the value f |1(x) is the function
y 7→ f(x, y). Similarly, let f |2 be the function on the line whose value at a
real number is obtained by holding the second variable fixed at this number
and looking at f as a function of the first variable. The value f |2(y) is the
function x 7→ f(x, y). Then the inner integrals are (λ ◦ f |2)(y) = λ(f |2(y)) =∫∞
−∞ f(x, y) dx and (λ ◦ f |1)(x) = λ(f |1(x)) =

∫∞
−∞ f(x, y) dy. So λ ◦ f |2 and

λ ◦ f |1 are each a positive measurable function on the line. The conclusion of
Tonelli’s theorem may then be stated as the equality λ(λ ◦ f |2) = λ(λ ◦ f |1).

Here is rather interesting example where the hypothesis and conclusion of
Fubini’s theorem are both violated. Let σ2 > 0 be a fixed diffusion constant.
Let

u(x, t) =
1√

2πσ2t
exp(− x2

2σ2t
). (14.7)

This describes the diffusion of a substance that has been created at time zero
at the origin. For instance, it might be a broken bottle of perfume, and the
molecules of perfume each perform a kind of random walk, moving in an irregular
way. The motion is so irregular that the average squared distance that a particle
moves in time t is only x2 = σ2t.

As time increases the density gets more and more spread out. Then u satisfies

∂u

∂t
=
σ2

2
∂2u

∂x2
. (14.8)

Note that
∂u

∂x
= − x

σ2t
u (14.9)

and
∂2u

∂x2
=

1
σ2t

(
x2

σ2t
− 1)u. (14.10)

This says that u is increasing in the space time region x2 > σ2t and decreasing
in the space-time region x2 < σ2t.

Fix s > 0. It is easy to compute that
∫ ∞
s

∫ ∞
−∞

∂u

∂t
dx dt =

σ2

2

∫ ∞
s

∫ ∞
−∞

∂2u

∂x2
dx dt = 0 (14.11)

and ∫ ∞
−∞

∫ ∞
s

∂u

∂t
dt dx = −

∫ ∞
−∞

u(x, s) dx = −1. (14.12)
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One can stop at this point, but it is interesting to look at the mechanism
of the failure of the Fubini theorem. It comes from the fact that the time
integral is extended to infinity, and in this limit the density spreads out more
and more and approaches zero pointwise. So mass is lost in this limit, at least
if one tries to describe it as a density. A description of the mass as a measure
might lead instead to the conclusion that the mass is sitting at x = ±∞ in the
limit t → ∞. Even this does not capture the essence of the situation, since
the diffusing particles do not go to infinity in any systematic sense; they just
wander more and more.

14.2 Sigma-finite integrals

The proof of general Tonelli and Fubini theorems turns out to depend on the
σ-finiteness condition. The role of this condition is give a unique determination
of an integral. Thus we begin with a review of this subject.

Recall that a Stone vector lattice L of real functions on X is a vector lattice
that satisfies the Stone condition: If f is in L, then f ∧ 1 is in L. Furthermore,
recall that a monotone class is a class of real functions closed under upward and
downward pointwise convergence.

Let L be a Stone vector lattice of real functions on X. Let F be the smallest
monotone class including L. Then F is itself a Stone vector lattice. Furthermore,
the smallest monotone class including L+ is F+.

Recall that a function f is L-bounded if there exists a g in L+ such that
|f | ≤ g. Furthermore, an L-monotone class is a class of functions that is closed
under upward and downward pointwise convergence, provided that each function
in the sequence is L-bounded. It was proved that the smallest L-monotone class
including L+ is F+.

If F includes all constant functions, then F is a σ-algebra of real functions.
Furthermore, each elementary integral m : L→ R on L uniquely determines an
integral µ : F+ → [0,+∞]. The reason that it is uniquely determined is that
the improved monotone convergence theorem applies to sequences of positive
L-bounded functions under both upward and downward convergence.

As always, L1(X,F , µ) consists of all f in F with µ(|f |) < +∞. Then µ
also defines an integral µ : L1(X,F , µ)→ R with |µ(f)| ≤ µ(|f |).

Consider a set X and a σ-algebra F of real functions on X. Consider an
integral µ defined on F+, or the corresponding measure µ defined by µ(A) =
µ(1A). The integral is called finite if the integral µ(1) is finite. This is the same
as requiring that the measure µ(X) is finite.

An integral is σ-finite if there is a sequence 0 ≤ un ↑ 1 of measurable
functions with each µ(un) < +∞. If this is the case, define En as the set where
un ≥ 1/2. By Chebyshev’s inequality the measure µ(En) ≤ 2µ(un) < +∞.
Furthermore, En ↑ X as n→∞. Suppose on the other hand that there exists an
increasing sequence En of measurable subsets of X such that each µ(En) < +∞
and X =

⋃
nEn. Then it is not difficult to show that µ is σ-finite. In fact, it

suffices to take un to be the indicator function of En.
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Theorem 14.3 Let F be a σ-algebra of real functions on X. Let µ : F+ →
[0,+∞] be an integral. Then µ is σ-finite if and only if there exists a vector
lattice L such that the restriction of µ to L has only finite values and such that
the smallest monotone class including L is F .

Proof: Suppose that µ is σ-finite. Let L = L1(X,F , µ). Consider the
monotone class generated by L. Since µ is σ-finite, the constant functions
belong to this monotone class. So it is a σ-algebra. In fact, this monotone class
is equal to F . To see this, let En be a family of finite measure sets that increase
to X. Consider a function g in F . For each n the function gn = g1En1|g|≤n is
in L. Then g = limn gn is in the monotone class generated by L.

Suppose on the other hand that there exists such a vector lattice L. Consider
the class of functions f for which there exists h in L ↑ with f ≤ h. This class
includes L and is monotone, so it is includes all of F .

Take f in F+. Then there exists h in L ↑ with f ≤ h. Take hn ∈ L+ with
hn ↑ h. Then un = f ∧hn ↑ f . Thus there is a sequence of L-bounded functions
un in F+ such that un ↑ f . Each of these functions un has finite integral. In
the present case F is a σ-algebra, so we may take take f = 1. This completes
the proof that µ is σ-finite. 2

14.3 Summation

Summation is a special case of integration. Let X be a set. Then there is
an integral

∑
: [0,+∞)X → [0,+∞]. It is defined for f ≥ 0 by

∑
f =

supW
∑
j∈W f(j), where the supremum is over all finite subsets W ⊂ X. Since

each f(j) ≥ 0, the result is a number in [0,+∞]. As usual, the sum is also
defined for functions that are not positive, but only provided that there is no
(+∞)− (+∞) problem.

Suppose f ≥ 0 and
∑
f < +∞. Let Sk be the set of j in X such that

f(j) ≥ 1/k. Then Sk is a finite set. Let S be the set of j in X such that
f(j) > 0. Then S =

⋃
k Sk, so S is countable. This argument proves that the

sum is infinite unless f vanishes off a countable set. So a finite sum is just the
usual sum over a countable index set.

The
∑

integral is σ-finite if and only if X is countable. This is because
whenever f ≥ 0 and

∑
f < +∞, then f vanishes off a countable set S. So if

each fn vanishes off a countable set Sn, and fn ↑ f , then f vanishes off S =
⋃
Sn,

which is also a countable set. This shows that f cannot be a constant function
a > 0 unless X is a countable set.

One could define
∑

on a smaller σ-algebra of functions. The smallest one
that seems natural consists of all functions of the form f = g + a, where the
function g is zero on the complement of some countable subset of X, and a is
constant. If f ≥ 0 and a = 0, then

∑
f =

∑
g is a countable sum. On the

other hand, if f ≥ 0 and a > 0 then
∑
f = +∞.

The Tonelli and Fubini theorems are true for the Lebesgue integral defined
for Borel functions. However they are not true for arbitrary integrals that are not
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required to be σ-finite. Here is an example based on the example of summation
over an uncountable set.

Let λ(g) =
∫ 1

0
g(x) dx be the usual uniform Lebesgue integral on the interval

[0, 1]. Let
∑
h =

∑
y h(y) be summation indexed by the points in the interval

[0, 1]. The measure
∑

is not σ-finite, since there are uncountably many points
in [0, 1]. Finally, let δxy = 1 if x = y, and δxy = 0 for x 6= y. Now for each x,
the sum

∑
y δxy = 1. So the integral over x is also 1. On the other hand, for

each y the integral
∫ 1

0
δxy dx = 0, since the integrand is zero except for a single

point of λ measure zero, where it has the value one. So the sum over y is also
zero. Thus the two orders of integration give different results.

14.4 Product sigma-algebras

This section defines the product σ-algebra. Let X1 and X2 be non-empty sets.
Then their product X1 × X2 is another non-empty set. There are projections
π1 : X1 × X2 → X1 and π2 : X1 × X2 → X2. These are of course define by
π1(x, y) = x and π2(x, y) = y.

Suppose that F1 is a σ-algebra of real functions on X1 and F2 is a σ-algebra
of real functions on X2. Then there is a product σ-algebra F1

⊗F2 of real
functions on X1 ×X2. This is the smallest σ-algebra of functions on F1 × F2

such that the projections π1 and π2 are measurable maps.
The condition that the projections π1 and π2 are measurable maps is the

same as saying that for each g in F1 the function g ◦ π1 is measurable and for
each h in F2 the function h ◦ π2 is measurable. In other words, the functions
(x, y) 7→ g(x) and (x, y) 7→ h(y) are required to be measurable functions. This
condition determines the σ-algebra of measurable functions F1

⊗F2.
If g is a real function on X1 and h is a real function on X2, then there is a

real function g ⊗ h on X defined by

(g ⊗ h)(x, y) = g(x)h(y). (14.13)

This is sometimes called the tensor product of the two functions. Such func-
tions are called decomposable. Another term is separable, as in “separation
of variables.” The function g ⊗ h could be define more abstractly as g ⊗ h =
(g ◦π1)(h◦π2). This identity could also be stated as g⊗h = (g⊗1)(1⊗h). It is
easy to see that F1

⊗F2 may also be characterized as the σ-algebra generated
by the functions g ⊗ h with g in F1 and h in F2.

Examples:

1. If B is the Borel σ-algebra of functions on the line, then B⊗B is the Borel
σ-algebra of functions on the plane.

2. Take the two sigma-algebras to be the Borel σ-algebra of real functions on
[0, 1] and the σ-algebra R[0,1] of all real functions on [0, 1]. These are the
σ-algebras relevant to the counterexample with λ and

∑
. The product σ-

algebra then consists of all functions f on the square such that x 7→ f(x, y)
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is a Borel function for each y. The diagonal function δ is measurable, but∑
is not σ-finite, so Tonelli’s theorem does not apply.

3. Take the two sigma-algebras to be the Borel σ-algebra of real functions on
[0, 1] and the σ-algebra consisting of all real functions y 7→ a+h(y) on [0, 1]
that differ from a constant function a on a countable set. These are the
σ-algebras relevant to the counterexample with λ and

∑
, but in the case

when we restrict
∑

to the smallest σ-algebra for which it makes sense.
The product σ-algebra is generated by functions of the form (x, y) 7→ g(x)
and (x, y) 7→ a+h(y), where h vanishes off a countable set. This is a rather
small σ-algebra; the diagonal function δ used in the counterexample does
not belong to it. Already for this reason Tonelli’s theorem cannot be used.

Lemma 14.4 Let X1 be a set with σ-algebra F1 of functions and σ-finite in-
tegral µ1. Let X2 be another set with a σ-algebra F2 of functions and σ-finite
integral µ2. Let F1

⊗F2 be the product σ-algebra of functions on X1×X2. Let
L consist of finite linear combinations of indicator functions of products of sets
of finite measure. Then L is a vector lattice, and the smallest monotone class
including L is F1

⊗F2.

Proof: Let L ⊂ F1

⊗F2 be the set of all finite linear combinations

f =
∑

i

ci1Ai×Bi =
∑

i

ci1Ai ⊗ 1Bi , (14.14)

where Ai and Bi each have finite measure. The space L is obviously a vector
space. The proof that it is a lattice is found in the last section of the chapter.

Let En be a sequence of sets of finite measure that increase to X1. Let Fn
be a sequence of sets of finite measure that increase to X2. Then the En × Fn
increase to X1 × X2. This is enough to show that the the constant functions
belong to the monotone class generated by L. Since L is a vector lattice and
the monotone class generated by L has all constant functions, it follows that
the monotone class generated by L is a σ-algebra. To show that this σ-algebra
is equal to all of F1

⊗F2, it is sufficient to show that each g ⊗ h is in the σ-
algebra generated by L. Let gn = g1En and hn = h1Fn . It is sufficient to show
that each gn ⊗ hn is in this σ-algebra. However gn may be approximated by
functions of the form

∑
i ai1Ai with Ai of finite measure, and hn may also be

approximated by functions of the form
∑
j bj1Bj with Bj of finite measure. So

gn ⊗ hn is approximated by
∑
i

∑
j aibj1Ai ⊗ 1Bj =

∑
i

∑
j aibj1Ai×Bj . These

are indeed functions in L. 2

14.5 The product integral

This section gives a proof of the uniqueness of the product of two σ-finite inte-
grals.
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Theorem 14.5 Let F1 be a σ-algebra of measurable functions on X1, and let
F2 be a σ-algebra of measurable functions on X2. Let µ1 : F+

1 → [0,+∞] and
µ2 : F+

2 → [0,+∞] be corresponding σ-finite integrals. Consider the product
space X1 × X2 and the product σ-algebra of functions F1

⊗F2. Then there
exists at most one σ-finite integral ν : (F1

⊗F2)+ → [0,+∞] with the property
that if A and B each have finite measure, then ν(A×B) = µ1(A)µ2(B).

Proof: Let L be the vector lattice of the preceding lemma. The integral ν is
uniquely defined on L by the explicit formula. Since the smallest monotone class
including L is F1

⊗F2, it follows that the smallest L-monotone class including
L+ is (F1

⊗F2)+. Say that ν and ν′ were two such integrals. Then they agree
on L, since they are given by an explicit formula. However the set of functions
on which they agree is an L-monotone class. Therefore the integral is uniquely
determined on all of F+. 2

The integral ν described in the above theorem is called the product integral
and denoted µ1×µ2. The corresponding measure is called the product measure.
The existence of the product of σ-finite integrals will be a byproduct of the
Tonelli theorem. This product integral ν has the more general property that if
g ≥ 0 is in F1 and h ≥ 0 is in F2, then

ν(g ⊗ h) = µ1(g)µ2(h). (14.15)

The product of integrals may be of the form 0 · (+∞) or (+∞) · 0. In that
case the multiplication is performed using 0 · (+∞) = (+∞) · 0 = 0. The
characteristic property (µ1 × µ2)(g ⊗ h) = µ1(g)µ2(h) may also be written in
the more explicit form

∫
g(x)h(y) d(µ1 × µ2)(x, y) =

∫
g(x) dµ1(x)

∫
h(y) dµ2(y). (14.16)

The definition of product integral does not immediately give a useful way to
compute the integral of functions that are not written as sums of decomposable
functions. For this we need Tonelli’s theorem and Fubini’s theorem.

14.6 Tonelli’s theorem

Let X1 and X2 be two sets. Let f : X1×X2 → R be a function on the product
space. Then there is a function f |1 from X1 to RX2 defined by saying that the
value f |1(x) is the function y 7→ f(x, y). In other words, f |1 is f with the first
variable temporarily held constant.

Similarly, there is a function f |2 from X2 to RX1 defined by saying that the
value f |2(y) is the function x 7→ f(x, y). In other words, f |2 is f with the second
variable temporarily held constant.

Lemma 14.6 Let f : X1 ×X2 → [0,+∞] be a F1

⊗F2 measurable function.
Then for each x the function f |1(x) is a F2 measurable function on X2. Also,
for each y the function f |2(y) is a F1 measurable function on X1.
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Explicitly, this lemma says that the functions

y 7→ f(x, y) (14.17)

with fixed x and
x 7→ f(x, y) (14.18)

with fixed y are measurable functions.
Proof: Let L be the space of finite linear combinations of indicator functions

of products of sets of finite measure. Consider the class S of functions f for
which the lemma holds. If f is in L, then f =

∑
i ci1Ai×Bi , where each Ai

is an F1 set and each Bi is a F2 set. Then for fixed x consider the function
y 7→ ∑

i ci1Ai(x)1Bi(y). This is clearly in F2. This shows that L ⊂ S. Now
suppose that fn ↑ f and each fn is in S. Then for each x we have that fn(x, y)
is measurable in y and increases to f(x, y) pointwise in y. Therefore f(x, y) is
measurable in y. This proves S is closed under upward monotone convergence.
The argument for downward monotone convergence is the same. Thus S is a
monotone class. Since F1

⊗F2 is the smallest monotone class including L, this
establishes the result. 2

Lemma 14.7 Let µ1 be a σ-finite integral defined on F+
1 . Also let µ2 be a

σ-finite integral defined on F+
2 . Let f : X1 × X2 → [0,+∞] be a F1

⊗F2

measurable function. Then the function µ2 ◦ f |1 is an F1 measurable function
on X1 with values in [0,+∞]. Also the function µ1 ◦ f |2 is an F2 measurable
function on X2 with values in [0,+∞].

Explicitly, this lemma says that the functions

x 7→
∫
f(x, y) dµ2(y) (14.19)

and
y 7→

∫
f(x, y) dµ1(y) (14.20)

are measurable functions.
Proof: The previous lemma shows that the integrals are well defined. Con-

sider the class S of functions f for which the first assertion of the lemma holds.
If f is in L+, then f =

∑
i ci1Ai×Bi , where each Ai is an F1 set and each Bi is

a F2 set. Then for fixed x consider the function y 7→∑
i ci1Ai(x)1Bi(y). Its µ2

integral is
∑
i ci1Ai(x)µ(Bi). This is clearly in F1 as a function of x. This shows

that L ⊂ S. Now suppose that fn is a sequence of L-bounded functions, that
fn ↑ f , and each fn is in S. Then we have that

∫
fn(x, y) dµ2(y) is measurable

in x. Furthermore, for each x it increases to
∫
f(x, y) dµ2(y), by the mono-

tone convergence theorem. Therefore
∫
f(x, y) dµ2(y) is measurable in x. This

proves S is closed under upward monotone convergence of L-bounded functions.
The argument for downward monotone convergence uses the improved mono-
tone convergence theorem; here it is essential that each fn be an L-bounded
function. Thus S is an L-bounded monotone class including L+. It follows that
(F1

⊗F2)+ ⊂ S. 2
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Lemma 14.8 Let f : X1 ×X2 → [0,+∞] be a F1

⊗F2 measurable function .
Then ν12(f) = µ2(µ1 ◦ f |2) defines an integral ν12. Also ν21(f) = µ1(µ2 ◦ f |1)
defines an integral ν21.

Explicitly, this lemma says that the iterated integrals

ν12(f) =
∫ (∫

f(x, y) dµ1(x)
)
dµ2(y) (14.21)

and

ν21(f) =
∫ (∫

f(x, y) dµ2(y)
)
dµ1(x) (14.22)

are defined.
Proof: The previous lemma shows that the integral ν12 is well defined. It

is easy to see that ν12 is linear and order preserving. The remaining task is
to prove upward monotone convergence. Say that fn ↑ f pointwise. Then by
the monotone convergence theorem for µ1 we have that for each y the integral∫
fn(x, y) dµ1(x) ↑ ∫ f(x, y) dµ1(x). Hence by the monotone convergence the-

orem for µ2 we have that
∫ ∫

fn(x, y) dµ1(x) dµ2(y) ↑ ∫ f(x, y) dµ1(x) dµ2(y).
This is the same as saying that ν12(fn) ↑ µ12(f). 2

Theorem 14.9 (Tonelli’s theorem) . Let F1 be a σ-algebra of real functions
on X1, and let F2 be a σ-algebra of real functions on X2. Let F1

⊗F2 be the
product σ-algebra of real functions on X1 × X2. Let µ1 : F+

1 → [0,+∞] and
µ2 : F+

2 → [0,+∞] be σ-finite integrals. Then there is a unique σ-finite integral

µ1 × µ2 : (F1

⊗
F2)+ → [0,+∞] (14.23)

such that (µ1 × µ2)(g ⊗ h) = µ1(g)µ2(h) for each g in F+
1 and h in F+

2 . Fur-
thermore, for f in (F1

⊗F2)+ we have

(µ1 × µ2)(f) = µ2(µ1 ◦ f |2) = µ1(µ2 ◦ f |1). (14.24)

In this statement of the theorem f |2 is regarded as a function on X2 with
values that are functions on X1. Similarly, f |1 is regarded as a function on X1

with values that are functions on X2. Thus the composition µ1◦f |2 is a function
on X2, and the composition µ2 ◦ f |1 is a function on X1.

The theorem may be also be stated in a version with bound variables:
∫
f(x, y) d(µ1×µ2)(x, y) =

∫ [∫
f(x, y) dµ1(x)

]
dµ2(y) =

∫ [∫
f(x, y) dµ2(y)

]
dµ1(x).

(14.25)
Proof: The integrals ν12 and ν21 agree on L+. Consider the set S of

f ∈ (F1

⊗F2)+ such that ν12(f) = ν21(f). The argument of the previous
lemma shows that this is an L-monotone class. Hence S is all of (F1

⊗F2)+.
Define ν(f) to be the common value ν12(f) = ν21(f). Then ν is uniquely defined
by its values on L+. This ν is the desired product measure µ1 × µ2. 2
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The integral ν is called the product integral and is denoted by µ1 × µ2. Let
F 2 : RX1×X2 → (RX1)X2 be given by f 7→ f |2, that is, F2 says to hold the
second second variable constant. Similarly, let F 1 : RX1×X2 → (RX2)X1 be
given by f 7→ f |1, that is, F 1 says to hold the first variable constant. Then the
Tonelli theorem says that the product integral µ1 × µ2 : (F1 ×F2)+ → [0,+∞]
satisfies

µ1 × µ2 = µ2 ◦ µ1 ◦ F 2 = µ1 ◦ µ2 ◦ F 1. (14.26)

14.7 Fubini’s theorem

Recall that for an arbitrary non-empty set X, σ-algebra of functions F , and
integral µ, the space L1(X,F , µ) consists of all real functions f in F such
that µ(|f |) < +∞. For such a function µ(|f |) = µ(f+) + µ(f−), and µ(f) =
µ(f+)− µ(f−) is a well-defined real number.

Let f be in L1(X×Y,F1⊗F2, µ1×µ2). Let Λ1 be the set of all x with f |1(x)
in L1(X2,F2, µ2) and let Λ2 be the set of all y with f |2(y) in L1(X1,F1, µ1).
Then µ1(Λc1) = 0 and µ2(Λc2) = 0. Define the partial integral µ2(f | 1) by
µ2(f | 1)(x) = µ2(f |1(x)) for x ∈ Λ1 and µ2(f | 1)(x) = 0 for x ∈ Λc1. Define
the partial integral µ1(f | 2) by µ1(f | 2)(y) = µ1(f |2(y)) for y ∈ Λ2 and
µ1(f | 2)(y) = 0 for y ∈ Λc2.

Theorem 14.10 Let F1 be a σ-algebra of real functions on X1, and let F2 be
a σ-algebra of real functions on X2. Let F1

⊗F2 be the product σ-algebra of
real functions on X1×X2. Let µ1 and µ2 be σ-finite integrals, and consider the
corresponding functions

µ1 : L1(X,F1, µ1)→ R (14.27)

and
µ2 : L1(X2,F2, µ2)→ R. (14.28)

The product integral µ1 × µ2 defines a function

µ1 × µ2 : L1(X1 ×X2,F1

⊗
F2, µ1 × µ2)→ R. (14.29)

Let f be in L1(X×Y,F1⊗F2, µ1×µ2). Then the partial integral µ2(f | 1) is in
L1(X1,F1, µ1), and the partial integral µ1(f | 2) is in L1(X2,F2, µ2). Finally,

(µ1 × µ2)(f) = µ1((µ2(f | 1)) = µ2(µ1(f | 2)). (14.30)

In this statement of the theorem µ2(f | 1) is the µ2 partial integral with the
first variable fixed, regarded after integration as a function on X1. Similarly,
µ1(f | 2) is the µ1 partial integral with the second variable fixed, regarded after
integration as a function on X2.

Fubini’s theorem may also be stated with bound variables:
∫
f(x, y) d(µ1×µ2)(x, y) =

∫

Λ1

[∫
f(x, y) dµ2(x)

]
dµ1(x) =

∫

Λ2

[∫
f(x, y) dµ1(x)

]
dµ2(y).

(14.31)
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Here as before Λ1 and Λ2 are sets where the inner integral converges absolutely.
The complement of each of these sets has measure zero.

Proof: By Tonelli’s theorem we have that µ2 ◦ |f |1| is in L1(X1,F1, µ1) and
that µ1 ◦ |f |2| is in L2(X2,F2, µ2). This is enough to show that µ2(Λc1) = 0 and
µ1(Λc2) = 0. Similarly, by Tonelli’s theorem we have

(µ1×µ2)(f) = (µ1×µ2)(f+)−(µ1×µ2)(f−) = µ1(µ2◦f |1+ )−µ1(µ2◦f |1− ). (14.32)

Since Λ1 and Λ2 are sets whose complements have measure zero, we can also
write this as

(µ1 × µ2)(f) = µ1(1Λ1(µ2 ◦ f |1+ ))− µ1(1Λ1(µ2 ◦ f |1− )). (14.33)

Now for each fixed x in Λ1 we have

µ2(f |1(x)) = µ2(f |1+ (x))− µ2(f |1− (x)). (14.34)

This says that
µ2(f | 1) = 1Λ1(µ2 ◦ f |1+ )− 1Λ1(µ2 ◦ f |1− ). (14.35)

Each function on the right hand side is a real function in L1(X1,F1, µ1). So

(µ1 × µ2)(f) = µ1(µ2(f | 1)). (14.36)

2

Tonelli’s theorem and Fubini’s theorem are often used together to justify an
interchange of order of integration. Here is a typical pattern. Say that one can
show that the iterated integral with the absolute value converges:

∫ [∫
|h(x, y)| dν(y)

]
dµ(x) <∞. (14.37)

By Tonelli’s theorem the product integral also converges:
∫
|h(x, y)| d(µ× ν)(x, y) <∞. (14.38)

Then from Fubini’s theorem the integrated integrals are equal:
∫ [∫

h(x, y) dν(y)
]
dµ(x) =

∫ [∫
h(x, y) dµ(x)

]
dν(y). (14.39)

The outer integrals are each taken over a set for which the inner integral con-
verges absolutely; the complement of this set has measure zero.

14.8 Semirings and rings of sets

This section supplies the proof that finite linear combinations of indicator func-
tions of rectangles form a vector lattice. It may be omitted on a first reading.
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The first and last results in this section are combinatorial lemmas that are
proved in books on measure theory. See R. M. Dudley, Real Analysis and Prob-
ability, Cambridge University Press, Cambridge, 2002, Chapter 3.

Let X be a set. A ring R of subsets of X is a collection such that ∅ is in R
and such that A and B in R imply A ∩B is in R and such that A and B in R
imply that A \B is in R.

A semiring D of subsets of X is a collection such that ∅ is in D and such
that A and B in D imply A∩B is in D and such that A and B in D imply that
A \B is a finite union of disjoint members of D.

Proposition 14.11 Let D be a semiring of subsets of X. Let R be the ring
generated by D. Then R consists of all finite unions of members of D.

Proposition 14.12 Let D be a semiring of subsets of a set X. Let Γ be a finite
collection of subsets in D. Then there exists a finite collection ∆ of disjoint
subsets in D such that each set in Γ is a finite union of some subcollection of
∆.

Proof: For each non-empty subcollection Γ′ of Γ consider the set AΓ′ that
is the intersection of the sets in Γ′ with the intersection of the complements of
the sets in Γ \Γ′. The sets AΓ′ are in R and are disjoint. Furthermore, each set
C in Γ is the finite disjoint union of the sets AΓ′ such that C ∈ Γ′. The proof
is completed by noting that by the previous proposition each of these sets AΓ′

is itself a finite disjoint union of sets in D. 2

Theorem 14.13 Let D be a semiring of subsets of X. Let L be the set of all
finite linear combinations of indicator functions of sets in D. Then L is a vector
lattice.

Proof: The problem is to prove that L is closed under the lattice operations.
Let f and g be in L. Then f is a finite linear combination of indicator functions
of sets in D. Similarly, g is a finite linear combination of indicator functions of
sets in D. Take the union Γ of these two collections of sets. These sets may
not be disjoint, but there is a collection ∆ of disjoint sets in D such that each
set in the union is a disjoint union of sets in ∆. Then f and g are each linear
combinations of indicator functions of disjoint sets in ∆. It follows that f ∧ g
and f ∨ g also have such a representation. 2

Theorem 14.14 Let X1 and X2 be non-empty sets, and let D1 and D2 be
semirings of subsets. Then the set of all A × B with A ∈ D1 and B ∈ D2 is a
semiring of subsets of X1 ×X2.

In the application to product measures the sets D1 and D2 consist of sets of
finite measure. Thus each of D1 and D2 is a ring of subsets. It follows from the
last theorem that the product sets form a semiring of subsets of the product
space. The previous theorem then shows that the finite linear combinations
form a vector lattice.



Chapter 15

Probability

15.1 Coin-tossing

A basic probability model is that for coin-tossing. The set of outcomes of the
experiment is Ω = 2N+ . Let bj be the jth coordinate function. Let fnk be
the indicator function of the set of outcomes that have the k pattern in the
first n coordinates. Here 0 ≤ k < 2n, and the pattern is given by the binary
representation of k. If S is the subset of {1, . . . , n} where the 1s occur, and Sc

is the subset where the 0s occur, then

fnk =
∏

j∈S
bj
∏

j∈Sc
(1− bj). (15.1)

The expectation µ is determined by

µ(fnk) = pjqn−j , (15.2)

where j is the number of 1s in the binary expansion of k, or the number of
points in S. It follows that if S and T are disjoint subsets of {1, . . . , n}, then

µ(
∏

j∈S
bj
∏

j∈T
(1− bj)) = pjq`, (15.3)

where j is the number of elements in S, and ` is the number of elements in T .
It follows from these formulas that the probability of success on one trial is

µ(bj) = p and the probability of failure on one trial is µ(1−bj) = q. Similarly, for
two trials i < j the probabilities of two successes is µ(bibj) = p2, the probability
of success followed by failure is µ(bi)(1 − bj)) = pq, the probability of failure
followed by success is µ((1 − bi)bj = qp, and the probability of two failures is
µ((1− bi)(1− bj)) = q2.

139
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15.2 Weak law of large numbers

Theorem 15.1 (Weak law of large numbers) Let

sn = b1 + · · ·+ bn (15.4)

be the number of successes in the first n trials. Then

µ(sn) = np (15.5)

and
µ((sn − np)2) = npq. (15.6)

Proof: Expand (sn−np)2 =
∑n
i=1

∑n
j=1(bi−p)(bj−p). The expectation of

each of the cross terms vanishes. The expectation of each of the diagonal terms
is (1− p)2p+ (0− p)2q = q2p+ p2q = pq. 2

Corollary 15.2 (Weak law of large numbers) Let

fn =
b1 + · · ·+ bn

n
(15.7)

be the proportion of successes in the first n trials. Then

µ(fn) = p (15.8)

and
µ((fn − p)2) =

pq

n
≤ 1

4n
. (15.9)

The quantity that is usually used to evaluate the error is the standard de-
viation, which is the square root of this quantity. The version that should be
memorized is thus √

µ((fn − p)2) =
√
pq√
n
≤ 1

2
√
n
. (15.10)

This 1/
√
n factor is what makes probability theory work (in the sense that it is

internally self-consistent).

Corollary 15.3 Let

fn =
b1 + · · ·+ bn

n
(15.11)

be the proportion of successes in the first n trials. Then

µ(|fn − p| ≥ ε) =
pq

nε2
≤ 1

4nε2
. (15.12)

This corollary follows immediately from Chebyshev’s inequality. It gives a
perhaps more intuitive picture of the meaning of the weak law of large numbers.
Consider a tiny ε > 0. Then it says that if n is sufficiently large, then, with
probability very close to one, the experimental proportion fn differs from p by
less than ε.
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15.3 Strong law of large numbers

Theorem 15.4 Let
sn = b1 + · · ·+ bn (15.13)

be the number of successes in the first n trials. Then

µ(sn) = np (15.14)

and
µ((sn − np)4) = n(pq4 + qp4) + 3n(n− 1)(pq)2. (15.15)

This is bounded by (1/4)n2 for n ≥ 4.

Proof: Expand (sn − np)4 =
∑n
i=1

∑n
j=1

∑n
k=1

∑n
l=1(bi − p)(bj − p)(bk −

p)(bl − p). The expectation of each of the terms vanishes unless all four indices
coincide or there are two pairs of coinciding indices. The expectation for the case
when all four indices coincide is (1− p)4p+ (0− p)4q = q4p+ p4q = pq(q3 + p3).
There are n such terms. The expectation when there are two pairs of coinciding
indices works out to be (pq)2. There are 3n(n− 1) such terms.

The inequality then follows from npq(q3 +p3)+3n2(pq)2 ≤ n/4+3/(16)n2 ≤
(1/4)n2 for n ≥ 4. 2

Corollary 15.5 Let

fn =
b1 + · · ·+ bn

n
(15.16)

be the proportion of successes in the first n trials. Then

µ(fn) = p (15.17)

and
µ((fn − p)4) ≤ 1

4n2
(15.18)

for n ≥ 4.

Corollary 15.6 (Strong law of large numbers) Let

fn =
b1 + · · ·+ bn

n
(15.19)

be the proportion of successes in the first n trials. Then

µ(
∞∑

n=k

(fn − p)4) ≤ 1
4(k − 1)

(15.20)

for k ≥ 4.

This corollary has a remarkable consequence. Fix k. The fact that the
expectation is finite implies that the sum converges almost everywhere. In
particular, the terms of the sum approach zero almost everywhere. This means
that fn → p as n → ∞ almost everywhere. This is the traditional formulation
of the strong law of large numbers.
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Corollary 15.7 (Strong law of large numbers) Let

fn =
b1 + · · ·+ bn

n
(15.21)

be the proportion of successes in the first n trials. Then for k ≥ 4

µ(sup
n≥k
|fn − p| ≥ ε) ≤ 1

4(k − 1)ε4
. (15.22)

Proof: This corollary follows from the trivial fact that supn≥k |fn − p|4 ≤∑∞
n=k(fn − p)4 and Chebyshev’s inequality. 2

This corollary give a perhaps more intuitive picture of the meaning of the
strong law of large numbers. Consider a tiny ε > 0. Then it says that if k is
sufficiently large, then, with probability very close to one, for the entire future
history of n ≥ k the experimental proportions fn differ from p by less than ε.

15.4 Random walk

Let wj = 1− 2bj , so that bj = 0 gives wj = 1 and bj = 1 gives wj = −1. Then
the sequence xn = w1 + · · ·wn is called random walk starting at zero. In the
case when p = q = 1/2 this is called symmetric random walk.

Theorem 15.8 Let ρ01 be the probability that the random walk starting at zero
ever reaches 1. Then this is a solution of the equation

qρ2 − ρ+ p = (qρ− p)(ρ− 1) = 0. (15.23)

In particular, if p = q = 1/2, then ρ01 = 1.

Proof: Let ρ = ρ01. The idea of the proof is to break up the computation
of ρ into the case when the first step is positive and the case when the first step
is negative. Then the equation

ρ = p+ qρ2 (15.24)

is intuitive. The probability of succeeding at once is p. Otherwise there must
be a failure followed by getting from −1 to 0 and then from 0 to 1. However
getting from −1 to 0 is of the same difficulty as getting from 0 to 1.

To make this intuition precise, lett τ1 be the first time that the walk reaches
one. Then

ρ = µ(τ1 < +∞) = µ(w1 = 1, τ1 < +∞) + µ(w1 = −1, τ1 < +∞). (15.25)

The value of the first term is p.
The real problem is with the second term. Write it as

µ(w1 = −1, τ1 < +∞) =
∞∑

k=2

µ(w1 = −1, τ0 = k, τ1 < +∞) =
∞∑

k=2

qµ(τ1 = k−1)ρ = qρ2.

(15.26)
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This gives the conclusion. It may be shown that when p < q the correct solution
is ρ = p/q. 2

Notice the dramatic fact that when p = q = 1/2 the probability that the
random walk gets to the next higher point is one. It is not hard to extend this
to show that the probability that the random walk gets to any other point is
also one. So the symmetric random walk must do a lot of wandering.

Theorem 15.9 Let m01 be the expected time until the random walk starting at
zero reaches 1. Then m01 is a solution of

m = 1 + 2qm. (15.27)

In particular, when p = q = 1/2 the solution is m = +∞.

Proof: Let m = m01. The idea of the proof is to break up the computation
of ρ into the case when the first step is positive and the case when the first step
is negative. Then the equation

m = p+ q(1 + 2m). (15.28)

is intuitive. The probability of succeeding at once is p, and this takes time 1.
Otherwise τ1 = 1 + (τ0 − 1) + (τ1 − τ0). However the average of the time τ0 − 1
to get from −1 to 0 is the same as the average of the time τ1 − τ0 to get from 0
to 1.

A more detailed proof is to write

m = µ(τ1) = µ(τ11w1=1) + µ(τ11w1=−1). (15.29)

The value of first term is p.
The second term is

µ(τ11w1=−1) = µ((1+(τ0−1)+(τ1−τ0))1w1=−1) = q+qµ(τ1)+qµ(τ1) = q(1+2m).
(15.30)

It may be shown that when p > q the correct solution is m = 1/(p− q). 2

When p = q = 1/2 the expected time for the random walk to get to the next
higher point is infinite. This is because there is some chance that the symmetric
random walk wanders for a very long time on the negative axis before getting
to the points above zero.

Problems

1. Consider a random sample of size n from a very large population. The
experimental question is to find what proportion p of people in the popu-
lation have a certain opinion. The proportion in the random sample who
have the opinion is fn. How large must n be so that the standard devi-
ation of fn in this type of experiment is guaranteed to be no larger than
one percent?



144 CHAPTER 15. PROBABILITY

2. Recall that fn(x) → f(x) as n → ∞ means ∀ε > 0∃N ∀n ≥ N |fn(x) −
f(x)| < ε. Show that fn → f almost everywhere is equivalent to

µ({x | ∃ε > 0∀N ∃n ≥ N |fn(x)− f(x)| ≥ ε}) = 0. (15.31)

3. Show that fn → f almost everywhere is equivalent to for all ε > 0

µ({x | ∀N ∃n ≥ N |fn(x)− f(x)| ≥ ε}) = 0. (15.32)

4. Suppose that the measure of the space is finite. Show that fn → f almost
everywhere is equivalent to for all ε > 0

lim
N→∞

µ({x | ∃n ≥ N |fn(x)− f(x)| ≥ ε}) = 0. (15.33)

Show that this is not equivalent in the case when the measure of the
space may be infinite. Note: Convergence almost everywhere occurs in
the strong law of large numbers.

5. Say that fn → f in measure if for all ε > 0

lim
N→∞

µ({x | |fN (x)− f(x)| ≥ ε}) = 0. (15.34)

Show that if the measure of the space is finite, then fn → f almost
everywhere implies fn → f in measure. Note: Convergence in measure
occurs in the weak law of large numbers.


