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Abstract 

We present a method for detection and classification of a 
spatial pattern in noise contaminated binary images which 
is based on performing subspace decomposition on a non- 
negative definite matrix of higher order moments of the 
image. We introduce a method which uses normalized 
power moments or ascending factorial moments as descrip- 
tors. While the set of p t h  order factorial moments are in 
one-to-one correspondence with the set of p t h  order power 
moments, the computation of factorial moments is much more 
numerically stable than the power moments. Indeed, using 
factorial moments we are able to implement pattern classi- 
fiers with over 30% more moment descriptors. We illustrate 
these techniques for word classification in binary document 
images. 

I.  INTRODUCTION 

The  problem of classification of patterns in noisy binary im- 
ages has been a key component to  many different areas includ- 
ing: automatic document processing, such as word spotting 
[l], character recognition [2], database retrieval; automatic 
target recognition (ATR); and astronomical cartography. We 
present a pattern classification method which is based on 
an underlying spatial Poisson point process model and uses 
higher order factorial moments of the intensity function as 
pattern discriminants. This extends our work on standard 
power moment methods presented at  ICIP-96 [3]. Some jus- 
tifications for moments are: 1) they provide a non-parametric 
pattern description; 2) combinations of moments have been 
identified with important invariances such as rotation, scale, 
and translation [4], [5]; 3) sample moments can usually be 
treated as jointly Gaussian random variables. With our intro- 
duction of non-negative definite moment matrices we provide 
another justification: they can be used to  effectively sepa- 
rate signal pattern from noise background via noise subspace 
processing. 

11. SPATIAL POINT PROCESS REPRESENTATIONS 
Let W = W ( z ,  y) be a binary image indexed over (2, y) E 

A = (1,. . . , n} x {1, . . . , m}.  Define the coordinate locations 
(pixels) {(Xj,x)}gl as those pixels a t  which W is active, 
i.e., W not equal to zero. A general statistical model for 
{(Xi, x)}Ll is a two-dimensional Bernoulli process specified 
by the probabilities p(z, y) E [0,1] that pixel (2, y) is active. 
For a large number of pixels (nm >> N ) ,  the Bernoulli pro- 
cess is well approximated by a Poisson point process over the 
continuous rectangle A = [ l ,  n] x [ l ,  m]. This Poisson point 

'The authors are with the Dept. of Electrical Engineering and Com- 
puter Science, The University of Michigan, Ann Arbor, MI 48109-2122. 
This work was supported in part by NSA contract MDA904-95-C-2157 
and AFOSR contract F49620-960028. 

0-8186-8183-7/97 $10.00 0 1997 IEEE 

process is completely described by the normalized intensity 
function p(z, y) and the rate constant A 

qz, Y) = b ( z ,  Y)> (2, Y) E A 

where A = E [ N ]  is the average number of active pixels in t,he 
image. The statistical expectation of any function g(& ~ y Z )  
is 

E [ g ( X ,  Y,)] = g(x. y)p(.,  Y) dxdy. s, 
111. SPATIAL bfO>lENTS 

The spatial power moment (PM) p x . y ( k .  1) of (integer) 
order t and 1 of positive integer random variables S, Y is 
defined as: 

p x , y ( k ,  1)  = E [ S k Y ' ] .  
Since the bivariate monomials form a basis for the space of 
all two-dimensional square integrable functions. the set of 2p 
power moments { p x , y  ( k ,  l)}il=l completely characterizes the 
image as p -+ CO. 

Fractional factorial moments come in two varieties: ascend- 
ing and descending. In this work we use the spatial ascending 
fractional factorial moment (AFFM) crx , , (k .  1. s )  of (integer) 
order t and 1 and (real) fraction parameter s which is defined 
below 

where we use the Pochammer symbol [z]: to denote the as- 
cending fractional factorial 

[z]5 = z(z + s )  . . . (. + s(k - 1)). 

By convention we define [z]," = 1. When s = 1 and X is 
a positive integer 1.15 = is the standard ascending 
factorial moment [6] .  

In [7] we prove that  the set of 2p PM's { p ~ , y ( k , / ) } i ~ = ~  
and the set of 2p AFFM's { a ~ , y ( k ,  I ,  E+)};,=, are theoretically 
equivalent: any of the sets can be expressed mathematically 
in terms of the other set. However, as will be seen, with 
finite precision arithmetic, the factorial moment computation 
is more numerically stable. 

A .  Power Moment  Matrix 
We will find it useful to center and scale the variates X, Y 

to improve numerical stability of the moment matrix com- 
putations. Recall that  in the present imaging application 
X E (1,. . ., m} and Y E (1, .  . ., n}. To improve the stabil- 
ity of the PM we replace X and Y by ,f = 2 - ( ~ ~ 1 f ' z  and 
? = where U, = (max(m,n) - 1)/2. Define the 
(Zp + 1) x ( 2 p  + 1) power moment matrix: 
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B. Facloraal Moment  Malrax 

Since ascending factorials moments are not defined for 
negative variates, construction of an appropriately normal- 
ized factorial moment matrix requires more care than for 
the power moment matrix. First of all we must scale the 
positive integer variates ,Y and Y differently. Define the 

1/(2P) 
[[(maxcm, n )  - 1)/2]?] . Next, for any real number 
T = T+ - T - ,  we define T+ as the positive part and T-  
as the absolute value of the negative part of T .  Define the 
( 2 p  + 1) x ( 2 p  + 1) factorial moment matrix A’P: 

variates 2 = =-(m+1 ~, 1 2  and = where UJ = 

A ~ P  = ( (aa+,p+(i  + j ,  l / g f )  (3) 

IV. DENOISING VIA EIGENDECOMPOSITION 
Here we show that  any binary noise with moments that 

are known or can be accurately estimated can be removed 
from an image via eigendecomposition of the observed mc- 
ment matrices. The following important properties of the 
power moment matrix (2) and the factorial moment matrix 
(3) are proven in [7]. Both are block Hankel matrices which 
are symmetric non-negative definite. Both matrices have all 
entries in the interval [-1,1] and are sparse for any intensity 
which is symmetric about the center point (9, y )  of the 
image (Fig. 1). Finally, by construction the ( 1 , l )  entry of 
these two matrices is equal to 1. 

Let a signal-independent binary noise having intensity 
X,(z,y) = A,p,(x,y) be added (modulo 2 )  to  the im- 
age. Denote the noiseless image (signal pattern) intensity 
by X,(z, y) = A,p, (z ,  y). Then the overall image intensity 
X(z, y) = Ap(z, y) will be the sum 

4 x 9  Y) = Y) + Xn(z, Y) 
= A [ P P S  ( X >  Y) + (1 - P)Pn (.I Y)l 

where P = &/(Ad + A,,) E [0,1] is a monotone function of 
signal-to-noise ratio A,/A,,. The above representation implies 
that for any function g(X, Y )  of the coordinate process (X, Y )  
we have the decomposition: 

E[g(X,  Y)] = PE[g(X, Y)lsignal alone] 
+(I-  P)E[g(X, Y)(noise alone] 

Let M, M,, and M, denote the signal plus noise, signal 
alone, and noise alone moment matrices (M denotes either 
power moment or factorial moment matrix). We have the 
important result: 

M=PM,+( l -P )Mn 

Now let K be the known Cholesky factor of M,, i.e. M, = 
KKT, and define M = K-’MK-T. Then we have: 

M = ,8M, + (1 - p)I (4) 

where I is the ( 2 p  + 1) x ( 2 p  + 1) identity matrix, and M, = 
is the whitened moment matrix of the signal 

pattern. 

K - I M K - T .  

Except for the presence of the signal-to-noise ratio depen- 
dent scalar P, (4) is the standard additive decomposition of 
a “measurement covariance” matrix M into unknown “signal 
covariance” M, and “white noise covariance” I. While the 
latter is full rank with 2p-t 1 constant eigenvalues { 1,.  . . , l}, 
the eigenvalues of the signal matrix M, are non-negative 
and typically fall off rapidly to  zero. This permits exact 
recovery of M, via application of the eigendecomposition: 
M = z;zT17i&&T where 7i and 5 are eigenvalues (rank 
ordered) and eigenvectors. 

To wit, since the eigenvectors of M and MA are identical, 
from (4) we have 

I 20+1 

i= l  i=q+l  

where { ~ i J } i 9 = ~  are the non-zero eigenvalues of MJ. Thus only 
the q largest eigenvalues -yi = ,3$ + (1 - p) of M are related 
to the signal pattern and the rest are pure noise eigenvalues 
{( 1 - P )  . . . , (1 - P ) } .  In particular, a t  least if we know p a 
priori, then M, can be exactly recovered from the eigende- 
composition of M via 

However, (surprise!) it turns out that prior knowledge of p is 
not required. Indeed, sin’ce the (1 , l )  element of M, is equal 
to  1, and $K&. = gT&. := t i l ,  me can determine P from the 
linear equation P = [yi - (1 - S)] 1 2 :  

V. A WOR.DSPOTTING EXAMPLE 

We generated postscri,pt versions of two words “van” and 
“vax” in various font sizes, pitches, and font types. Varying 
levels of spatially homogeneous salt and pepper noise were 
added modulo-2 to the bitmaps of each word. Note that 
modulo-2 addition p. ,duces noise which is not strictly addi- 
tive or linear. Raw moments of various mixed orders were 
computed empirically and sample power and sample factorial 
moments matrices were constructed using Matlab 4.0. Note 
that the number of pixels, or window size for each word de- 
pends on the number and width of letters in the word. To 
standardize the computa,tion the bitmap coordinates for each 
word were scaled to a isquare of length 1 on a side. The 
Cholesky factor C of the spatially homogeneous noise mo- 
ment matrix was applied to  prewhiten the empirical word 
moment matrix. An eigendecomposition was performed on 
the prewhitened empiriscal moment matrix, with the signal 
subspace dimension determined by a threshold rule, and the 
original noiseless moment matrix was recovered by eliminat- 
ing the noise subspace ;and renormalization, as discussed in 
the previous section of t.his paper. 

A representative exa:mple of the noiseless and noise de- 

in Figs. 2 and 3 for ‘‘van’’ and “vax.” Here SNR is equal 
to OdB (/3 = 0.5 the number of random bit flips equal to 

graded bitmaps and rtiw power moment matrices is shown 

379 

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 7, 2009 at 10:52 from IEEE Xplore.  Restrictions apply.



the number of active pixels for each word) using L = 18 m e  
ments (moment matrices of dimension 37 x 37). Note from 
Fig. 3 that while the noiseless raw moment matrices provide 
a small perceptible discrimination between words, addition of 
noise completely masks the word differences. Contrast this 
with the high discrimination power of the prewhitened mo- 
ment domain evident from the clearly perceptible differences 
between “van” and “vax” encoded in the noiseless and recov- 
ered prewhitened matrices shown in Fig. 4. 

We defined a simple discriminant based on computing the 
mean square distances between noisy moment matrix to  the 
corresponding noiseless moment matrices for “van” or “vax.” 
The discrimination was implemented using a minimum dis- 
tance decision rule. Three classes of discriminants were com- 
pared: (Dl )  mean square distances between the raw empir- 
ical moment matrix M and the noiseless moment matrices 
Ms for the two words; (D2) mean square distances b_etween 
the recovered prewhitened signal moment matrices M, and 
noiseless prewhitened moment matrices C-TM, C-’ for the 
two words; (D3) the mean square distances between the re- 
covered signal moment matrix M, = CTM,C and the noise- 
less moment matrices M, for the two words. In each case a 
mask was used to screen out elements of the moment matrices 
which were not substantially different from “van” to  “ v u . ”  

The probability of decision error for each of discrimina- 
tors rules is shown in Figs. 5 and 6 as a function of SNR. 
For unwhitened moment matrix discriminators D1 and D3 
we compare probability of error using only lower order mo- 
ments extracted from the noisy and recovered 37 x 37 moment 
matrices, respectively. The number used range from 3 mo- 
ments ( P X , Y ( ~ , ~ ) , P X , Y ( ~ ,  ~ ) , P x , Y ( ~ ,  l)), denoted by L = 1 
in the figures, to 99 moments ( p x , ~ ( i , j ) ,  i , j  = 0 , .  . . ,9, i , j  
not simultaneously equal to  zero), denoted by L = 9 in the 
figures. The performance of D1 is uniformly worse than that 
of D3 for all L values. Note that the use of more moments 
in the raw moment discriminant D1 actually degrades dis- 
crimination performance. This is consistent with the well 
known variance increase in estimation of higher order statis- 
tics as the order increases [8]. Interestingly, the opposite 
trend is observed in the whitened moment discriminant D3 
where variance reduction has been acheived in the higher or- 
der moments via the subspace eigendecomposition of the raw 
37 x 37 moment matrix. Finally, as expected, note that D2 
attains very low probability of error by using minimum dis- 
tance discrimination directly in the whitened moment matrix 
domain. We suspect that the reason that D3 is incapable 
of matching the excellent performance of D2 is due to  poor 
condition number of the Cholesky factor C. 

It was found that L = 23 could be used in the factorial 
moment matrix without running into run time errors due to  
numerical roundoff. This is to be compared to the upper 
limit of L = 20 encountered for the power moment matrix 
computations. Note that this 15% increase in L translates 
into an over 30% increase in the number of distinct mixed raw 
moments that can be used for discrimination (232 - 1 = 528 
as compared to  202 - 1 = 399). 
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Noise Moment Matrix: L = 18 Cholesky Factor: L = 18 

nz E 523 nz = 199 

Fig. 1 .  The noise alone power and factorial moment matrices and their 
Cholesky factors have sparse structure which can be exploited to 
reduce roundoff error and explore structure of moment invariants. 

P 
1 

20 40 60 80 100 120 140 160 180 
S ’ .  . ’ . . . 

vamh48 vax-h48 - 
I 0 
f 10 
a 
U 
$20 

- 530 
z 

20 40 60 80 100 120 140 160 180 

Fig. 2. Top: words van and vaz in Helvetica 48 font. Bottom: same 
words corrupted by OdB bit flip noise. 
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van-h48 vax-h48 

van-h48 vax-h48 

Fig. 3. Top: Power moment matrices for words van and vaz in Helvetica 
48 font for L = 18. Bottom: same moment matrices computed from 
words corrupted by OdB bit iiip noise. Note absence of strongly 
distinctive features between words even for noiseless case. 

Prob. error for recovered power moment matching 

Fig. 4. Top: Noiseless whitened power moment matrices for words van 
and vaz. Bottom: denoised empirical moment matrices from noise 
corrupted words shown in Fig 2. Note that distinctive features of 
noiseless whitened power moments are recovered after denoising. 
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Fig. 6. Bottom curve: probatiility of error for D2 = minimum distance 
decision rule based on moment matching in denoised prewhitened 
moment matrix domain. Here we are matching the empirical 
whitened moment matrices to noiseless whitened moment matrices 
shown in Fig. 4. Upper curves: same for D3 = minimum distance 
decision rule based on moment matching in recovered moment ma- 
trix domain. 

Fig. 5 .  Probability of error curves for D1 = minimum distance decision 
rule basedon raw moments. Here we are matchingdifferent numbers 
of empirical moments to corresponding noiseless moments obtained 
from in Fig. 3. SNR is the relative number of bit flip errors as 
compared to active pixels in noiseless bitmap. 
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