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Abstract—We describe an experimental study to estimate
energy expenditure during treadmill walking using a single
hip-mounted inertial sensor ( triaxial accelerometer and triax-
ial gyroscope). Typical physical activity characterization using
commercial monitors use proprietary counts that do not have
a physically interpretable meaning. This paper emphasizes the
role of probabilistic techniques in conjunction with inertial
data modeling to accurately predict energy expenditure for
steady-state treadmill walking. We represent the cyclic nature
of walking with a Fourier transform and show how to map this
representation to energy expenditure (VVO2, mL/min) using three
regression techniques. A comparative analysis of the accuracy
of sensor streams in predicting energy expenditure reveals that
using triaxial information leads to more accurate energy expen-
diture prediction compared to only using one axis. Combining
accelerometer and gyroscopic information leads to improved
accuracy compared to using either sensor alone. Nonlinear
regression methods showed better prediction accuracy compared
to linear methods but required an order of higher magnitude of
run time.

Index Terms—Accelerometer, Energy expenditure, Gyroscope,
Treadmill walking

I. INTRODUCTION

Physical inactivity is the fourth leading risk factor for
global mortality (6% of global deaths) and is estimated to
be the main cause of approximately 21-25% of breast and
colon cancers, 27% of diabetes and approximately 30% of
ischaemic heart disease burden [1]. Regular physical activity
is known to reduce obesity, risks for cardiovascular disease,
type 2 diabetes, and several forms of cancer [2]. In the
quest to promote healthier lifestyles, technological solutions
provide users and clinicians with objective measures of activity
intensity that can be used in feedback and interventions. The
challenge is to provide these tools in real-time and in portable
form.

In recent years, considerable research has been directed
towards the detection and classification of physical activity
patterns from body mounted kinematic sensors [3]. Inertial
sensors capture movement either by measuring body acceler-
ations (accelerometers) or rotational rates (gyroscopes). Due
to their small size, low cost, increasingly high precision, low
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power consumption and portability, inertial sensors are an
attractive option for deriving relevant physiological quantities
from human movement [4].

Energy expenditure prediction in walking: Walking is an
easy and common activity that can be used to maintain an
active lifestyle [5]. An objective measure of the intensity of
walk is the energy expended. An immediate question to ask is
whether body-worn inertial measurements can be exploited to
predict energy expenditure. Can these predictions be improved
with sophisticated analytical techniques? Finally, which kinds
and combonations of sensors are better at predicting energy
expenditure?

The domain: Here, we address the problem of estimating
energy expenditure using body-mounted inertial sensors for a
particular activity: treadmill walking. Treadmill walking was
chosen because it allows the capture of a regular, well-defined
and easily quantifiable movement in a laboratory setting. We
use inertial data from a triaxial accelerometer and triaxial
gyroscope mounted on the right iliac crest as inputs. We treat
the functional mapping of these inputs to energy expenditure
as a regression problem. Our approach to estimating energy
expenditure from walking involves developing a probabilistic
map from movement features to calories burned. A preliminary
version of this paper appeared in [6].

II. RELATED WORK

Much of the research involving using inertial sensors to
calculate energy expenditure for daily activities has focused on
the utility of accelerometers alone [7, 8]. There is a significant
amount of work in using accelerometer-based commercial
activity monitors to predict energy expenditure in a variety of
settings [9]. A major drawback in using commercial activity
monitors is imprecision. Imprecision arises because these
monitors use proprietary methods to convert linear acceler-
ations into epoch-based “counts” that are converted to caloric
expenditure [10, 11, 12, 13]. The usage of counts is not mean-
ingful or physically interpretable [14]. Some accelerometry-
based techniques fit regression equations that map counts to
energy expenditure [15, 16]. Standard linear regression does
not explicitly address the significance of differing amounts
of data available to derive model parameters. Single variable
linear regression models are limited in that regression mapping
to energy can be made richer by considering multi-dimensional
features simultaneously [9]. An alternative approach to char-
acterizing human motion involves pattern recognition tech-
niques that extract meaningful properties or features from raw
movement data and map these properties to calories expended
[17]. These include neural networks [18], probabilistic linear
regression [6] and piecewise regression [19]. Using such
techniques, it is possible to “learn” a personalized model for
each user from data collected. Access to raw data allows the



researcher to explore the physical intuition behind movement
and use features that explicitly mirror the quantity in question.

Using accelerometry-only techniques suffers from a second
limitation: incompleteness. The assumption behind using ac-
celerometry for physical activity monitoring is that data from
an accelerometer represents body movement [20]. However,
rigid body movement consists of both accelerations and ro-
tations [21]. Rotational data cannot be completely separated
from translational data using a single triaxial accelerometer
[22]. Current count-based accelerometry completely ignores
rotational rates. Combining accelerometry and rotational rate
measurements through gyroscopes would thus be a valuable
tool in completely characterizing movement. Gyroscopes are
not influenced by gravitational acceleration and are more
displacement tolerant than accelerometers. This is because for
a given body segment movement, a gyroscope provides the
same readings irrespective of position as long as the axis of
placement is parallel to the measured axis [3]. The introduction
of low-cost, single-chip triaxial gyroscopic sensors [23] has
introduced the possibility of using gyroscopes as alternatives
to or in combination with accelerometers for activity charac-
terization.

IIT. ANALYSIS OF TREADMILL WALKING INERTIAL DATA
A. Periodicity of Human Walk

Steady state walking is cyclic [24, 21].This inherent peri-
odicity was captured with inertial sensor data from the right
iliac crest. Movement signals corresponded directly to the
accelerations and rotational rates of the hip as measured by
the sensor in its local frame of reference. Fig. la shows
sample inertial data from treadmill walking collected over
10 seconds when a participant is walking at a speed of 2.5
mph. Regular periodic patterns were observed in steady-state.
Similar patterns were observed for other speeds.

B. Variation of Periodicity with Speed

The periodicity of walking signals was examined by com-
puting their Fourier transforms. Figure 1b illustrates Fourier
transforms of two 10 second steady state walking samples
at 2.5 mph and 3.5 mph for the X-axis acceleration streams.
The Fourier transform showed clear peaks indicating distinct
periodic components for the original signals. The peaks oc-
curred at the same frequencies for all other sensor streams.
The location of these peaks was a function of walking speed.
The dominant peak for walking at 3.5 mph occurs at a
higher frequency than the corresponding peak for walking
at 2.5 mph. In prior work, the relationship between energy
expenditure and walking speed has been modeled as one where
walking at higher speeds requires higher energy expenditure
[25, 26, 27]. The fact that each speed exhibits a characteristic
frequency spectrum and that there exists a map between speed
and energy expenditure suggests that one can track calories
expended in treadmill walking using the frequency spectrum
as a representative feature space.

IV. MAPPING WALKING DATA TO ENERGY EXPENDITURE
A. Problem Formulation

Given the representation of treadmill walking using features
described in Sec. III, we focused on the problem of deriving a
mapping from these features to energy consumed as measured
by V Oz consumption (mL/min). We frame this as a regression
problem. Consider a D-dimensional input variable x € RP of
which there are specific data points {z,})_,. The goal of

regression is to predict the value of one or more continuous
target variables t of which there are corresponding observed
values {t,}N_, that are related to the input variables by a
“best-fit” function f(z,). This section examines three can-
didate algorithms to find this map. We provide descriptions
of each algorithm for the case of an arbitrary D-dimensional
input variable and one dimensional target variable and discuss
the relative merits and demerits of each.

B. Least Squares Linear Regression

Least Squares Regression (LSR) [28] models regression as
a linear combination of input variables. Specifically, for an
input data point x,,, we have

th = wo+wigr(Tn) + .. wp—10M—1(Tn) +€
withe ~ N (0,57'T)
= t, = W ¢(z,)+ee~N(03'T) (1)
where € is a noise parameter, ¢ = (¢o,...dar_1)7 is the

derived function space consisting of fixed nonlinear func-
tions of the input variables of dimension M — 1 and w =
(wo, - .., war—1)T are the weights . This model is linear in ¢.
This allows the usage of feature functions {¢,(x,)} derived
from input variables z,,. Equation 1 describes a mapping from
feature space {¢;(x,)} to the output values t,,. Given that e
is a Gaussian, allowing a probabilistic interpretation, we have:

p(tn|xnvwa6) = N(tn;WT¢<xn)7ﬁ_1) (2

We define an optimal fitting function as one that maximizes the
N

likelihood p(t|w’X) = H p(tn|Tn, w, 8). This is equivalent

n=1
to finding the optimal w that would minimize the expected
square-loss Ep {(tn —f (xn,w))2}. The optimal prediction
is given by:

w o= (@7®) &'t
do(z1) Prr—1(71)
po(z2) Prr-1(x2)
and ® = . . 3)
$o(zN) Pr—-1(zN)
The optimal prediction for a new data point z, is given by:
te = wig(z,) S

LSR provides a closed-form solution to the regression prob-
lem. However it does not explicitly address the significance of
differing amounts of data available to derive model parameters.
A larger sized dataset with more training examples and stable
noise parameters potentially provides more useful information
for training a more accurate model than a smaller dataset. LSR
is also prone to the presence of outliers because it does not take
into account the consistency of points in a dataset. Another
drawback of LSR is its tendency to over-fit to a given dataset
due to which it often performs poorly on unseen data points.
One solution is to include a regularization term A that controls
the relative importance of data-dependent noise. However
finding the optimal A involves techniques such as K-fold
cross-validation and the need to maintain a separate validation
dataset. These methods can be computationally expensive and
wasteful of valuable data. A more elegant solution involves a
Bayesian treatment of linear regression. Such a technique has
the potential to guard against over-fitting.
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(a) An example of periodic signals obtained from the iliac crest of the right hip
while walking at a constant speed of 2.5 mph. Steady state walk is cyclic in

nature and this periodicity can be captured with inertial sensors.
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(b) Definite peaks in the Fourier transforms of the accelerometer stream
on the X-axis for steady state walking at 2.5 mph and 3.5 mph suggest
energy estimation by monitoring the frequency spectrum.

Figure 1: Representation of periodicity of human walk as captured by inertial sensors

C. Bayesian Linear Regression

Bayesian Linear Regression (BLR) [29] adopts a Bayesian
approach to the linear regression problem by introducing a
prior probability distribution over the model parameters w in
Equation. 1. Specifically we choose a Gaussian prior over w,
p(w) =N (w;0,a7'T) where « is a hyperparameter.

Given Equation 2, the prior distribution over w, and the
properties of Gaussians, we can estimate the posterior distri-
bution of w given the dataset D as:

p(wlt) = N(mp,Sy)
withmy = BSy®Tt
and Syt = al+ 2T

The optimal prediction for a new data point is given by the
predictive distribution by marginalizing over w as:

Pltnew|®s b0, 8) = N(myo(x),0%(z.)  (5)

5+ ) Sy6(z) ©
In a fully Bayesian approach, we adopt hyperpriors over o and
[ also and make predictions by marginalizing over w, v and 3.
However, complete marginalization over all these variables in
analytically intractable. We instead adopt an iterative approach
by finding the best o and [ to maximize the evidence function
given this dataset, find the best parameters w to maximize the
likelihood given a fixed « and /3 and repeat until convergence.

The output prediction of BLR (Equations 5 and 6) involves
computing a mean my and a variance 0% (x). The importance
of a variance estimate is that it allows the user to evaluate
how “confident” the algorithm is of its prediction and provides
the necessary tool to evaluate the goodness of prediction of
an unseen data point. Also, it can be seen from Equation 6
that if an additional point xy4; were added, the resultant
variance o3 1(x) < o7 (x). This tends to the limit o3 (x) =
N —o0

and o3 (z.) =

1 S .
— or the intrinsic noise in the process. Thus BLR reflects

the availability of larger quantities of data through a smaller
variance and hence an increasingly more confident estimate.
The use of a prior « helps guard against over-fitting. o and 3
are derived purely from the dataset without needing a separate
validation dataset.

Parametric models suffer from a shortcoming in that the

form of the basis functions {¢;(x)} are fixed before the
training data set is observed. If the assumption behind the
choice of basis functions or the linearity of the model is vio-
lated, the model will provide poor predictions. An alternative
is to use nonparametric models where the model structure
and complexity are not specified in advance but are instead
determined from data.

D. Gaussian Process Regression

Given a set of training points
{(l‘l,tl), (.1‘27152), RN (l‘n,tn)} such that:
tn = flzn)+ee~N(0,67) (7)

a Gaussian Process Regression model (GPR) [30] esti-
mates a posterior probability distribution over functions
f(z1), f(z2),...f(zn) evaluated at points z1, T2, ...z such
that any finite subset of the functions is a joint multivari-
ate Gaussian distribution. Consequently, for a given set of
points & = (x1,Z2,...7x)7, we have a corresponding vector
Fie = (f(x1), f(z2),... f(xn))T that belongs to a multivari-
ate Gaussian distribution:

Faon ™~ N{luN (x), Kn(x, X/)} ®)
where u(x) is the mean function p(x) =
(u(x1), p(xa), ... p(xn))T and K is the covariance or

kernel function. The key idea in GPR is that the covariance
between two function values, f(x;) and f(x;), depends
on the input values, x; and x; and is specified via the
kernel k(x;,x;). The kernel function returns the covariance
between the corresponding F,, variables f(x;) and f(x;). To
completely specify a GP, it is enough to specify p(x) and
K(x,x’). By definition, each f(x;) is marginally Gaussian,
with mean p(x;) and variance k(x;,X;).

Typically, for ease of implementation, the mean of the
dataset is subtracted from each data point so that the mean
function is 0. To reflect that similar feature vectors with small
interpoint Euclidean distance are more likely to correspond to
the same output energy consumption measure, and to capture
the inherent common structure represented by feature vectors
due to an underlying periodicity in walking, we choose the
radial basis function kernel. Further, to capture the fact that we
only have access to noisy observations of the function values,
it is necessary to add the corresponding covariance function
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Figure 2: Illustration of hardware used to capture treadmill walking information. Acceleration information was collected with a
Freescale MMA7260Q triple-axis accelerometer. Rotational rates were collected with 2 Invensense IDG500 500° /s gyroscopes
mounted perpendicular to each other. The sensor hardware was modified to be worn with a custom designed harness on the
right iliac crest. Original image source for (a) and (b): www.sparkfun.com

for noisy observations. The complete kernel function can be
expressed in element by element fashion as:

1
—a;|?

> ol

k(zi,z;) = e +cr,2l5ij )

where UJ% is the signal variance, [ is a length scale that
determines strength of correlation between points, o2 is the
noise variance.

For a new point x, there exists a corresponding target
quantity f(z.). Since f(x.) also belongs to the same GP, it
can be appended to the original training set to obtain a larger
set.

]:zN+1 ~ N{MN(X)aKN-‘rl(X’X/)} (10)
Ky k.
Ena = ( - ) (11)
where k. has elements k(x,,z,) for n = 1,...,N and

k(x;,x;) is defined in Equation 9. Using properties of Gaus-
sians and the definition of GPs, it follows that for a new test
point p(t,|zs, X, t) = N(f(zs);m(zs),02.). Because this
joint distribution is Gaussian by definition, we have:
m(z.) = kIKy't
o*(z.) = k—-kI'Ky'k,

12)
(13)

Thus estimating a target energy from training data amounts to
evaluating K, k and ¢ and using values shown in Equations.
12 and 13.

Equations. 12 and 13 summarize the key advantages of
GPR. Again, the use of a probabilistic model to obtain
a mean and variance for each prediction allows the user
to assess the confidence of each prediction. In contrast to
BLR however, GPR is non-parametric: its model complexity
increases with larger quantities of data as evident from the
increasing size of the kernel matrix. GPR avoids the process
of explicitly constructing a suitable feature function space by
dealing instead with kernel functions. As the kernel implicitly
contains a non-linear transformation, no assumptions about
the functional form of the feature space are necessary. This

allows us to deal with non-linear maps without having to
construct non-linear function spaces. The motivation behind
considering this algorithm was to determine whether using
a nonlinear probabilistic map (GPR) offers benefits over a
linear probabilistic map (BLR) in terms of increased prediction
accuracy.

V. METHODS
A. Hardware Description

Human movement was captured with a modified version
of the Sparkfun 6DoF Inertial Measurement Unit (IMU) v4
[31]. Fig. 2 illustrates the hardware used. The v4 provides
three axes of acceleration data, three axes of gyroscopic
data, and three axes of magnetic data with three sensors: a
Freescale MMA7260Q triple-axis accelerometer, set at 1.5 g
sensitivity and two InvenSense IDG500 500°/s gyroscopes.
At the time of this study, the absence of triaxial gyroscopes
required that two biaxial gyroscopes be mounted perpendicular
to each other and calibrated to function as one gyroscope.
Control was through an LPC2138 ARM?7 processor. Custom
firmware was used on the controller board to stream sensor
data continuously. Data were sampled at 100 Hz. The unit
used Bluetooth to transmit data to either a nearby PC or
mobile phone using the RN41 Bluetooth module set at 115200
bps. Maximum range of the transmitter was approximately
5 m in indoor conditions. The system was powered from a
3.3V rechargeable lithium-polymer battery power supply. The
sensor was encased in a custom-designed harness to be worn
on the right iliac crest (participants were asked to wear the
harness tightly to prevent any slippage). The use of sensors in
all three axes allowed the capture of periodicity in all three
planes — sagittal, frontal and transverse. The treadmill used for
the experiments was the research quality NordicTrack A2550
PRO. Fig. 7a illustrates the recording procedure [6].

B. Farticipant Statistics

Seven healthy adults (three male, four female) participated
in the study. Height and weight of each participant were
recorded using a Healthometer balance beam scale. The par-
ticipants had average age = 29 £ 6 years, average height =



Figure 3: An example recording procedure for a single participant.
The yellow box indicates sensor mounting. The red box indicates
VO3 recording via the mask leading to the metabolic cart.

1.67 £ 0.10 m, average weight = 66 4+ 17 kg and average
BMI = 24 + 8. Informed written consent was obtained from
participants and the study was approved by the Institutional
Review Board at the University of Southern California. Par-
ticipants walked at 11 predetermined speeds between 2.5 mph
and 3.5 mph in intervals of 0.1 mph. Speeds were chosen
based on the Compendium of Physical Activities [32]. Rate
of oxygen consumption (V Oz, mL/min) was used as the
representation of energy expenditure. This was measured using
the MedGraphics Cardio II metabolic system with BreezeSuite
v6.1B (Medical Graphics Corporation). The metabolic system
outputs data at the frequency of every breath. Before each
test, the flow meter was calibrated against a 3.0 L syringe
and the system was calibrated against O, and CO5 gases of
known concentration. The duration of walking data collected
for each speed was 7 minutes with two minutes of changeover
time to allow for settling of V Oy consumption. For each
participant, data were recorded in two sessions with the first
session consisting of speeds 2.5 mph, 2.8 mph, 3 mph, 3.3
mph and 3.5 mph and the second session at the remaining
speeds.

C. Data Collection and Pre-processing

Each sensor stream from the IMU was passed through
a lowpass filter with 3dB cutoff at 20 Hz. This frequency
was chosen keeping in mind that everyday activities fall in
the frequency range of 0.1-10 Hz [33]. Each stream was
divided into 10 second epochs. Within each epoch, the 1024
point normalized FFT was extracted to obtain frequency in-
formation. The V' O5 values from the MedGraphics metabolic
system that fell within each epoch were averaged and matched
appropriately. The 10 second interval was chosen based on
previous successful implementations [6] on this time scale.
Each 10 second F'F'T'— VO pair consists of one data point.
Thus for each participant’s complete recording session, the
dataset consists of approximately 77 minutes of data (or 460
data points). Thus data for each user consisted of a sequence
of epochs, each containing features from the IMU and the
average rate of oxygen consumption (V' Os) for that epoch.

D. Training and Testing Procedure

In each participant’s data, we assume that each F'F’ T—VO,
pair is independent and identically distributed (i.i.d). Thus one
can treat each point as independent from any other in the
dataset given the model. This need not necessarily hold for
general walking but follows from our steady-state assumption
in treadmill walking. A fraction of the data were uniformly
sampled and partitioned into training data, the remaining
fraction constituting test data. Different models were trained
with the same training data but with different feature vectors
and candidate algorithms. RMS error was calculated as a
measure of accuracy. This was repeated over 10 trials for
different randomly sampled data and results averaged. This
was repeated for training data percentages from 10% to 90%
and constituted a per-subject measure of performance. The
results were then averaged over all subjects. To understand
the context behind the relative magnitude of the errors, it must
be noted that the VO, values were in the range of 400-1000
mL/min.

VI. RESULTS AND DISCUSSION

This section provides a comparative analysis of prediction
accuracy based on different models. We varied the models
along three dimensions. First, we considered the effect of
different sensor streams. Our study used two kinds of inertial
sensors: triaxial accelerometers and triaxial gyroscopes. Within
data from each inertial sensor, we compared the effect of
using triaxial information versus uniaxial information. Using
the best feature space from each of these comparisons, we
compared the utility of accelerometers, gyroscopes and a
combined solution using both sensors in terms of prediction
accuracy. Second, using the best feature space from the first
study, we compared the relative performance of algorithms
measured by prediction accuracy. Finally, we performed an
empirical comparison of algorithm run time to provide further
insight into algorithm choice based on the trade-off between
prediction accuracy and computational capability. The moti-
vation behind comparing these models was to understand the
issues related to optimal representation of treadmill walking
to predict energy consumption given a set of inertial sensors.
Unless otherwise stated, results were significant (p < 0.05 on
a per-subject basis).

A. Comparison across Feature Spaces

1) Single sensor feature space comparison: Fig. 4 groups
results accordingly. Each panel consists of testing errors when
single axes features are used with a fourth series consisting of
triaxial features. Results are grouped columnwise by sensor
type (accelerometer or gyroscope) and row-wise by algorithm
type (LSR, BLR and GPR).

LSR was sensitive to the quantity of training data available
regardless of the sensor. Error using single axis streams peaked
when 30% of the training data were used. This was not
true when triaxial features were used. At lower percentages
of training data, the presence of noisy data points biases
predictions. As more data are available, the biasing effect of
noisy data points is reduced. The use of triaxial features avoids
this with a higher dimensional feature space. However as more
training data are available, the model based on triaxial features
begins to over-fit to the dataset. BLR and GPR are less prone to
over-fitting at all percentages. With BLR and GPR, increasing
the percentage of training data reduced prediction errors for
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Figure 4: Illustration of variation of prediction accuracy (measured by Average RMS prediction error across all participants)
with different combinations of feature vectors. Results are grouped row-wise by algorithm and column wise by sensor stream.
LSR results depended heavily on the number of points used due to over-fitting and presence of outliers. BLR and GPR showed
consistently reduced errors with increase in training data size. In the case of BLR and GPR, use of all 3 axes as features
improved prediction accuracy as opposed to using just one sensor axis. Among accelerometer features using X-axis acceleration
alone showed the next lowest prediction error. This is most likely because the X-axis was aligned with the direction of forward
movement. All three gyroscopic axes showed comparable errors. Gyroscope features in Y and Z axes showed lower errors
than corresponding acceleration Y and Z axes. This was most likely due to gyroscopes only capturing dynamic movement
free from gravitational bias. Gyroscopes were capable of providing equivalent if not better results for energy prediction from
treadmill walking.
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(b) In the case of GPR, combining accelerometer and gyroscopic information
shows lower prediction errors. The decrease in error is higher than in the
case of BLR because GPR predicts information based on covariances between
data points and hence incorporates relationships between similar data points

as well.

Figure 5: Tllustrating the effect of combining triaxial accelerometer and gyroscopic information (measured by average RMS
prediction error across all participants) in the case of BLR and GPR. Accelerometer and gyroscope provide similar results

when used separately.

that space. For these reasons, in the remainder of this paper,
we focus on results obtained from BLR and GPR.

With accelerometer information alone, the errors in increas-
ing order were: triaxial accelerations, X-axis accelerations, Z-
axis accelerations and Y-axis accelerations. Using all three
axes had the effect of introducing redundancy, resulting in
better prediction accuracies. The second best error can be
understood by the fact that the dominant acceleration when
wearing the sensor in the right hip is in the up-down direction
of movement. Movement in this plane represents the best
single-axis indicator for predicting energy expenditure. Tri-
axial information improved prediction. The reduction in error
when only Y-axis features were used was comparatively less.
Y axis features represent movement in the forward-backward
direction. Thus, this could be because of the natural tendency
of participants to speed up or down slightly (this constitutes
an acceleration or deceleration) while walking to maintain
constant position on the treadmill. This would result in a noisy
feature vector in this direction.

With gyroscopic information alone, all individual axes
showed similar errors. Triaxial information yielded higher
accuracy. Gyroscopes track rotational rates of the human
body rather than accelerations. Hence they are less prone to
acceleration in a particular direction. Gyroscopes are also more
tolerant to minor changes in position of mounting. Also, gyro-
scopes capture only dynamic movement free from gravitational
bias. All these factors contributed to consistent prediction
across all three axes when gyroscopes were used. Finally, the
range of errors obtained when only gyroscopes are used was
comparable and in some cases even better than that when
only accelerometers were used. This suggests the feasibility
in using gyroscopes to track dynamic activities either as a
separate sensor or in combination with accelerometers.

2) Comparison between accelerometer and gyroscopic
data: Fig. 5 outlines the results when BLR and GPR-based
models are used. In both cases, using only gyroscope data
provided comparable average RMS errors to using only ac-
celerometer data. Additionally, combining accelerometer and
gyroscope information reduces prediction errors. The error
reduction obtained from combining sensor information was
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Figure 6: Illustration of relative algorithmic performance when
triaxial information from all sensors is used (measured by
average RMS prediction error across all participants). With
increasing number of data points GPR begins to perform

comparably with BLR.

more pronounced in the case of GPR than LSR. This can be
understood from the fact that GPR based models are based
on covariances or similarities between data points rather than
an explicit dependence on features (Section IV-D). Additional
information by way of gyroscopes provides further evidence
that a certain data point belongs to a particular class. This
enhanced the modeling capability of GPR. By contrast, BLR
is based on obtaining weights for features from training. For
the same “kind” of walking the periodicities exhibited would
remain the same for both accelerometers and gyroscopes.
Thus addition of gyroscopic features simply amounts to a
redistribution of the original weights from single sensor data
to both sensor streams.

B. Comparison across Algorithms

1) Algorithm accuracy: Fig. 6 illustrates the results ob-
tained from comparing a nonlinear approach (GPR) with a
linear approach (BLR). Both GPR and BLR performed better
when more training data are used. With increasing training



data, GPR performance improved gradually until it was com-
parable with BLR. Nonlinear approaches require more data to
be able to capture nonlinear subtleties and prevent over-fitting
to noise. When data from each subject were considered, GPR
showed a lower average RMS prediction error when compared
with BLR and LSR when a larger relative percentage of
training data was used. This indicates that GPR shows superior
performance when a large quantity of data are available. With
smaller quantities of data it would be advisable to use BLR
to prevent over-fitting.

Fig. 7a illustrates an example output for energy prediction
for a single participant using the feature space and algorithm
combination that provides the lowest prediction error. The
model uses triaxial features from both accelerometer and
gyroscope axes and GPR with 80% of the data used for
training. The predicted values (shown in blue) closely match
the ground truth (shown in red). Fig. 7b shows the same data
as a scatter plot with ground truth displayed on the X-axis
and GPR predicted values on the Y-axis. The two times series
showed an average correlation of 0.92 across users.

C. Algorithm Run Time

Parametric approaches like linear regression depend on the
dimension of the input data space, d and learning is of order
O(d?). Nonparametric approaches depend on the number of
data points. In particular, for N data points, GPR requires
the inversion of an N x N matrix which is an O(N3)
operation. Knowing the run time for training is important to
understand the tradeoffs between prediction accuracy and time
of training. This is particularly important if these algorithms
are to be implemented in resource-constrained platforms such
as mobile phones or portable PCs. In our study, there were
three classes of data types: Single sensor (either accelerometer
or gyroscope) with only one axis in use, single sensor with
all three axes in use and both sensors all three axes in use.
Each of these cases multiplies the feature space used by 3.
In addition, three algorithms: LSR, BLR and GPR were used.
Fig. 8 illustrates our results for one participant. Similar trends
exist for all participants.

For this study, the time taken to train a dataset with different
percentages of training data for one participant was recorded
in the case of one feature space and one algorithm. Prediction
accuracies were also measured. A scatter plot was created
with prediction accuracies on the X-axis and algorithm run
time on the Y-axis (Log-scale, base 10) with all training
percentages represented as one class. This was repeated for
different combinations of feature vectors and algorithms. In all
plots, feature spaces are coded by color (Blue: single sensor,
single axis; Red: single sensor, all axes; Green: both sensors,
all axes) and algorithms are coded by symbol (LSR: empty
square; BLR: filled circle; GPR: empty star). For clarity, plots
are shown in two views.

Fig. 8a shows a comparative analysis of run time versus
accuracy for BLR and LSR. In the case of LSR, addition
of extra features showed no benefits in terms of accuracy
but increases run time. Addition of features improved BLR
prediction accuracy at the expense of higher run time. However
in our study, the absolute run time for training was still on
the order of a few seconds and less than 30 seconds in all
cases for all participants. The consistency of results and lower
error rates along with reasonable training run times justifies the
selection of BLR over LSR with any combination of feature
vectors. Using both sensors offers limited advantage in terms

of prediction accuracy but requires larger run times. Therefore,
it would be advisable in resource-constrained systems to
choose a model that only uses one of either sensor for training
if accuracy is not an issue.

Fig. 8b shows a comparative analysis of run time versus ac-
curacy for BLR and GPR. Both BLR and GPR are probabilistic
approaches and hence show consistently better results with
increasing dataset size. Nonlinear modeling with GPR showed
lower or comparable errors as BLR, particularly when more
training data were used. However, the run time was at least
two orders of magnitude higher. To provide intuition behind
such run time, we observe that a VO, estimation error of 35
mL/min (best accuracy possible in our study with BLR for this
participant) corresponds roughly to a percentage error of 5%
or lower. To go from 35 mL/min to 30 mL/min (best accuracy
possible with GPR for this participants) corresponds to obtain-
ing a percentage error of 4% or lower. Given a dataset, to be
able to obtain a higher accuracy requires increasingly larger
computing power to accommodate more sophisticated models.
In resource-constrained systems, this incremental increase in
accuracy might not be justified. Therefore if computing power
is an issue, it would be advisable to use linear models over
nonlinear models.

D. Accounting for Reciprocal Limb Movement

A limitation of our approach is that we neglect the energy
cost for reciprocal limb movement. Robertson and Winter [34]
showed that the energy transfer among limb segments can be
both complex and significant. Neglecting this energy transfer
can lead to a source of inaccuracy in energy estimation.
Cavagna et al. [35] used a simple pendulum model to account
for the differences in energy transfer during walking. Their
study reported that the model is valid for a narrow range of
speeds (= 4 km/hr). At these speeds the work done to lift
the center of mass of the body (W,) is equal to the total
mechanical energy (W;) expended. This model deviates from
the ideal simple pendulum case (at lower speeds W; < W, and
at higher speeds W; > W,).While our current suite of sensors
does not allow the tracking of joint energy transfer, the above
studies indicate that the speed of walking can be used to track
the variations. While in more practical implementations such
as portable energy estimation of walking, measuring speed
directly might not be possible, in future laboratory work we
plan to measure the the effect of neglecting speed for both
treadmill and overground walking. Another technique is to
maintain a complete user state in the form of a Bayesian
network, with each node corresponding to a particular limb
state. Monitoring limb states indirectly can also potentially
lead to improved models. This however requires the placement
of additional sensors on limbs. We plan to pursue this as part
of a long term effort to both quantify how much error is caused
by neglecting such parameters and to improve prediction
accuracy.

VII. CONCLUSION AND FUTURE WORK

Walking is one of the easiest and commonly available ac-
tivities to maintain an active lifestyle. Being able to accurately
characterize intensity of walking represents an important step
in public health delivery because it allows development of
appropriate interventions based on objective measures. Exist-
ing accelerometer-based commercial activity monitors rely on
“counts” to represent activity information. This does not have
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Figure 7: An example prediction using the algorithm and feature combination that provided the least error across subjects using
all sensor streams and all axes with Gaussian Process Regression (GPR) as the training algorithm.
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(a) Scatter plot comparing the relationship between run time and prediction
accuracy for BLR (filled circles) and LSR (squares) when different features
are used. Run time is shown in a logarithmic scale. BLR shows lower
errors but has a higher run time. In the case of LSR, addition of extra
features shows no apparent benefits in terms of accuracy but increases run
time. Addition of features improves BLR prediction accuracy measured by
consistency of prediction and error rate at the expense of higher run time.
However absolute run time is still on the order of a few seconds which
justifies the selection of BLR over LSR.
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(b) Scatter plot comparing the relationship between run time and prediction
accuracy for BLR (filled circles) and GPR (stars) when different features
are used. Run time is shown in a logarithmic scale. Nonlinear modeling
with GPR shows lower errors than BLR, particularly when more training
data are used. However, the run time is at least two or three orders
of magnitude higher. This shows that for the same dataset, increasingly
higher accuracy requires much more computing power. This represents an
important trade-off between the level of accuracy desired and the algorithm
to choose.

Figure 8: An illustration of the relationship between accuracy and run time for LSR, BLR and GPR for a single participant.
Scatter points of each class represent different training percentages of the same class and feature space. The best algorithm
has to be as close to the origin as possible (lowest error and lowest run time)

a physically intepretable meaning. Also, current monitors do
not yet incorporate gyroscopic measurements to characterize
movement. Being able to accurately represent human activity
and derive physiological measures such as energy expenditure
requires that one extracts meaningful and complete properties
of human movement from raw data and develop relevant maps
from these properties.

In this paper, we described an experimental study to es-
timate energy expenditure during treadmill walking using a
single hip-mounted inertial sensor comprised of a triaxial
accelerometer and a triaxial gyroscope. Our approach involved
representing the cyclic nature of walking using Fourier trans-
forms of triaxial accelerometer and gyroscopic sensor streams
and establishing a relationship between Fourier domain fea-
tures and energy expended. We described three regression

techniques: Least Squares Regression (LSR), Bayesian Linear
Regression (BLR) and Gaussian Process Regression (GPR)
and showed their applicability to this problem.

We report and compare prediction accuracies using different
sensor streams and algorithms. LSR results depended heavily
on the number of points used for training. This was because
LSR is prone to over-fitting and the presence of outliers. BLR
and GPR showed consistently reduced errors with increasing
training data size. While employing BLR, accelerometer and
gyroscope data simultaneously improved prediction accuracy.
Among accelerometer features, X-axis acceleration showed
the lowest prediction error. This was because the X-axis was
aligned with the direction of forward movement. All three
gyroscopic axes showed comparable errors. Using gyroscope
features in Y and Z axes showed lower errors than correspond-



ing acceleration Y and Z axes. This is most likely due to
gyroscopes only capturing dynamic rotational movement free
from gravitational bias. Gyroscopes were capable of providing
equivalent if not better results for energy prediction from
treadmill walking. Additionally, combining accelerometer and
gyroscope information reduced prediction errors. With in-
creasing training data, GPR performance improved till it was
comparable to BLR highlighting the need for more data for
nonlinear approaches. However, GPR training time was at least
two orders of magnitude higher. Therefore if computing power
is an issue, it would be advisable to use linear models like BLR
over nonlinear models and trading off accuracy.

We plan to expand our work in a number of directions. We
are currently working on developing generalized models that
are applicable across a range of physiological parameters such
as height, weight, BMI, gender and age. This involves under-
taking a larger study and collecting movement information
for treadmill walking. We are developing a generalized linear
model similar to Bayesian Linear Regression with informative
initial conditions based on physiological parameters.

Another important issue is that we restrict ourselves to
steady-state walking on a level plane. While our results are
promising, further work is needed to generalize to over-
ground walking in free-living conditions. For this we plan
to study the performance of our algorithms for overground
walking. If successful, this has the potential to vastly benefit
the field of human calorimetry by providing accurate V Oo
values while offering the convenience and cost-effectiveness
of inertial sensor based activity monitoring. We also plan to
undertake similar analyzes for other kinds of cyclic activities
still operating under the steady-state condition. In doing so,
we plan to explore whether our methods can be applied in the
more general framework of energy expenditure for repetitive
activities.
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