
Macro Quoting Functions, Other Special Character Masking Tools, and How To
Use Them

Arthur L. Carpenter
California Occidental Consultants

ABSTRACT
Quoting functions allow the user to pass macro
arguments while selectively removing the special
meaning from characters such as &, %, ;, ‘, and
“. Most of these functions are not commonly
used and are even less commonly understood.
Although they are powerful and can even be
necessary, usually programming solutions are
available that do not require the use of the
quoting functions.

When are quoting functions needed? When
needed how are they used? Which one should
be selected? This paper will discuss when to use
and when to avoid quoting functions. In
addition the discussion will include solutions that
avoid the use of quoting functions. Fortunately
there are several ways to mask special characters
within the macro language. These include
quoting functions, %DO blocks, restructuring of
statements, and the character mask (%).

KEY WORDS
macro, quoting functions, masking, special
characters

INTRODUCTION
Certain characters or combinations of characters
will often cause the macro language to behave in
ways that are neither desirable or anticipated.
The programmer writing the SAS® macro must
anticipate these problems or code so that
problems will not occur. Macro coding
techniques, character masks, and macro quoting
functions all play a part in creating robust macro
code. Many of the examples and some of the
text in this paper are based on sections in
Carpenter’s Complete Guide to the SAS® Macro
Language.

CODING TO AVOID QUOTING
The most commonly used macro quoting
function is %STR. Often it is used along with
the %LET statement to mask semicolons that
would otherwise terminate the %LET.

In the following example we want to create a
macro variable &P that contains two SAS
statements;

%LET P=PROC PRINT DATA=DSN; RUN;;

Because the semicolon following DSN
terminates the %LET statement, the macro
variable &P contains:

PROC PRINT DATA=DSN

which results in a syntax error for the missing
semicolon.

The %STR function masks the semicolon by
quoting it.

%LET P=%STR(PROC PRINT DATA=DSN;
 RUN;);

This results in the macro variable &P being
correctly assigned the two statements.

PROC PRINT DATA=DSN; RUN;

In the following macro the %STR function is
used because multiple statements (with
semicolons) are needed in the DATA _NULL_
step.

%macro exist(dsn);
%global exist;
%if &dsn ne %then %str(
 data _null_;
 if 0 then set &dsn;
 stop;
 run;
);

%if &syserr=0 %then %let
exist=yes;
%else %do;
 %let exist=no;
 %put PREVIOUS ERROR USED TO
CHECK FOR PRESENCE ;
 %put OF DATASET & IS NOT A
PROBLEM;
%end;
%mend exist;

In the above macro a %DO could have been
used instead of the %STR function. This results
in code that I believe is easier to understand.

%if &dsn ne %then %do;
 data _null_;
 * No observations are actually
read;
 if 0 then set &dsn;
 stop;
 run;
%end;

As a general rule I would rather explore
alternate coding methodologies like this one
before resorting to quoting functions. Another
alternate to quoting functions in some
circumstances is the use of the % masking
character.

MASKING SPECIAL CHARACTERS
A number of symbols are usually expected in
pairs. These include the ‘, “, (, and). Errors
will usually be created if only one half of the pair
is specified in a string. This can especially be a
problem if you want to include one of these
mismatched symbols in a macro variable.

Some of the quoting functions expect these
symbols to be in pairs e.g. %STR, others allow
them to be unpaired e.g. %BQUOTE. When
you need to use a mismatched symbol where it
will otherwise cause a problem, you can precede
the mismatched symbol with a % to mask its
meaning.

In the following example we want to assign the
value (abcd to the macro variable &B. The
LOG shows that the %STR is incorrectly
constructed in line 40. The second open
parenthesis causes the %STR to be closed by the

) on line 41.

40 %let b = %str((abcd);
41 * Unclosed);
42
43 %put &b ;
(abcd); * Unclosed

This is corrected by using the % to mask the
meaning of the second (.

44 %let b = %str(%(abcd);
45 * Unclosed);
46
47 %put &b ;
(abcd

A table showing several examples of the use of
the % to mask characters can be found in Table
7.2 on p. 81 in SAS® Macro Language:
Reference, First Edition and in Carpenter(1998,
p. 94).

QUOTING FUNCTIONS
Quoting functions operate by adding what is
essentially invisible characters before and after
the string which is to be quoted. Once added
these characters remain until stripped off by the
macro processor (%UNQUOTE or by passing
the text to the SAS System for processing).

There are two issues that make quoting
functions more difficult to understand. These
have to do with functions that:

C either do or don’t rescan the text for %
and & references

C are executed at statement compilation or
at statement execution

Rescan and NoRescan
Of special interest in the text strings to be
quoted are those that contain the special macro
symbols % and &. Normally these symbols
indicate references to macro calls and macro
variables that must be resolved prior to the
execution of the function. These references are
resolved by rescanning the text as many times as
it takes to resolve the usage of the % and &.
Sometimes you do not want these references

resolved (you want to pass the macro call or
macro variable without resolution). To do this
you need a function designated as a NoRescan
function (NR).

Many of the quoting functions come in pairs (the
name either does or does not start with the
letters NR e.g. %STR and %NRSTR. The two
functions will perform essentially the same
operation except the one with the NR will also
remove the meaning from the % and &. When
you hear the jargon ‘ the meaning is removed’,
this means that the macro processor will not
‘see’ the % and & as the special characters that
it normally does.

Compilation / Execution
Since macro statements are compiled and then
executed you may need to control when the text
string is to be quoted. Some quoting functions
remove the meaning during compilation while
others remove it during macro execution. When
meaning is removed during compilation (%STR
and %NRSTR) the resultant text is passed to the
processor, but not the function call. The other
quoting functions are resolved during the
execution of the macro. For these functions the
entire call to the function and its text is passed to
the macro processor where it is resolved.

This will rarely be an issue for most
programmers. Usually you only will need to
worry if text that is resolved during execution
becomes syntactically incorrect or
misinterpreted. Consider the following short
example:

%let type = or;
%if &type ne xx %then %do;

The macro variable &TYPE is resolved during
the evaluation of the expression which results in:

%if or ne xx %then %do;
The OR is seen as the logical mnemonic operator
and an error message is produced. If &TYPE is
quoted during execution the resolved OR will be
treated as text and there will not be a problem
with the syntax.

%let type = or;
%if %quote(&type) ne xx %then %do;

QUOTING FUNCTION OVERVIEW
The following table gives a fairly brief overview
of the quoting functions and their behavior.

The quoting functions are:

%BQUOTE
removes meaning from unanticipated
special characters (except & and %)
during execution.

%NRBQUOTE
removes meaning from unanticipated
special characters including & and %
during execution.

%QUOTE
removes meaning from a string (except
% and &) during execution.

%NRQUOTE
removes meaning from %, &, special
characters, and mnemonics during
execution.

%STR
removes meaning from special characters
(except % and &) at compilation.

%NRSTR
removes meaning from special characters
including % and & at compilation.

%SUPERQ
prevents any resolution of the value of a
macro variable

%UNQUOTE
undoes quoting.

USING NORESCAN
The %NRSTR function behaves in the same way
as %STR except meaning is also removed from
the % and &. Macro variable references in the
%STR are resolved.

%LET CITY = MIAMI;
%PUT %STR(&CITY) IS ON THE WATER.;

The LOG would show:

MIAMI IS ON THE WATER.

When %NRSTR is used instead of %STR, the
macro variable &CITY is not resolved because
the special meaning has been removed from the
&.

%LET CITY = MIAMI;
%PUT %NRSTR(&CITY) IS ON THE
WATER.;

The LOG would show:

&CITY IS ON THE WATER.

Depending on how the string containing the
unresolved &CITY is used it might cause errors
or warnings.

BLIND QUOTES
Blind quoting functions are used to remove
meaning from unanticipated characters during
macro execution. It is especially useful if the
text string was entered by a user through an
application and you may not have been able to
trap all possible characters that might cause the
macro to fail.

Assume that the macro variable &METHOD has
been assigned the value:

THE DOCTOR’S NEW THERAPY.

It is very likely that when &METHOD is
resolved the SAS System would produce an
error because of the unmatched single quote (’).
This is demonstrated in the following %LET.
When it is executed the mismatched quote will
mask the semicolon and will almost certainly
create syntax problems.

%let method2 = &method;

When resolved this statement becomes:

%let method2 = THE DOCTOR’S NEW
THERAPY;

To get around this problem, %BQUOTE could
be used as follows:

%let method2=%BQUOTE(&method);

The special meaning will be removed from the
single quote when resolved and it will therefore
not cause syntax problems.

The %NRBQUOTE function is similar to
%BQUOTE except the meaning is also removed
from % and & after resolution.

UNQUOTING
Once a quoting function has been applied its
effects remain associated with the text (even in
subsequent usages). If you need to remove or
change the effects of any of the other quoting
functions, the %UNQUOTE is used.

Three macro variables are defined below, but the
second, &OTH, is defined using the %NRSTR
function. This means that &CITY can not be
resolved when &OTH is resolved. When the
%UNQUOTE function is applied to &OTH its
value (&CITY) is seen as a macro variable
which is also resolved.

%let city = miami;
%let oth = %nrstr(&city);
%let unq = %unquote(&oth);

%put &city &oth &unq;

The LOG shows:

miami &city miami

Although &OTH looks like any other macro
variable in the %PUT statement, it will not be
treated as such because it is quoted. This can
cause programming problems if the programmer
does not know that a macro reference or special
character has been quoted.

OTHER MACRO FUNCTIONS THAT
QUOTE
Macro functions are very analogous to DATA
step functions and perform similar text
operations. In addition several macro functions
have counterparts that return quoted results.
Like the LEFT and SUBSTR data step
functions, the %QLEFT(and %LEFT) and
%QSUBSTR (and %SUBSTR) macro functions
perform similar text manipulations.

The macro %CMPRES which removes multiple
blanks as well as leading and trailing blanks is
supplied with the SAS System and is shown sans
comments below.

%macro cmpres(text);
%local i;
%let i=%index(&text,%str());
%do %while(&i^=0);
 %let text=
 %qsubstr(&text,1,&i)%qleft(
 %qsubstr(&text,&i+1));
 %let i=%index(&text,%str());
%end;
%left(%qtrim(&text))
%mend;

The macro is written to protect the user from
text results that could cause problems. The
macro uses %QLEFT, %QSUBSTR, and
%QTRIM to quote the results of the various
operations within the macro.

SUMMARY
It is not necessary to have a complete
understanding of each of these functions but
rather a general understanding of what they do.
Some of these functions will be used much more
often than others. It has been this author’s
experience that the %STR function is the most
widely used quoting function.

ABOUT THE AUTHOR
Art Carpenter’s publications list
includes two chapters in Reporting from
the Field, the two books Quick Results
with SAS/GRAPH® Software, and

Carpenter’s Complete Guide to the SAS® Macro
Language, and over two dozen papers and
posters presented at SUGI, PharmaSUG, and
WUSS. Art has been using SAS since 1976 and
has served as a steering committee chairperson
of both the Southern California SAS User’s
Group, SoCalSUG, and the San Diego SAS
Users Group, SANDS; a conference cochair of
the Western Users of SAS Software regional
conference, WUSS; and Section Chair at the
SAS User’s Group International conference,
SUGI.

Art is a SAS Quality PartnerTM and through
California Occidental Consultants he teaches
SAS courses and provides contract SAS
programming support nationwide.

Art Carpenter
California Occidental Consultants
P.O. Box 6199
Oceanside, CA 92058-6199

(760) 945-0613
art@caloxy.com
www.caloxy.com

REFERENCES
Carpenter, Arthur L., Carpenter’s Complete
Guide to the SAS® Macro Language, Cary,
NC:SAS Institute Inc., 1998, 242 pp.

SAS® Macro Language: Reference, First
Edition, Cary, NC:SAS Institute Inc., 1997, 304
pp.

TRADEMARK INFORMATION
SAS and SAS Quality Partner are registered
trademarks of SAS Institute, Inc. in the USA
and other countries.
® indicates USA registration.

