
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A FAST ALGORITHM FOR SPARSE RECONSTRUCTION BASED
ON SHRINKAGE, SUBSPACE OPTIMIZATION, AND

CONTINUATION∗

ZAIWEN WEN† , WOTAO YIN‡ , DONALD GOLDFARB† , AND YIN ZHANG‡

Abstract. We propose a fast algorithm for solving the �1-regularized minimization problem
minx∈Rn μ‖x‖1 + ‖Ax − b‖22 for recovering sparse solutions to an undetermined system of linear
equations Ax = b. The algorithm is divided into two stages that are performed repeatedly. In the
first stage a first-order iterative “shrinkage” method yields an estimate of the subset of components
of x likely to be nonzero in an optimal solution. Restricting the decision variables x to this subset
and fixing their signs at their current values reduces the �1-norm ‖x‖1 to a linear function of x.
The resulting subspace problem, which involves the minimization of a smaller and smooth quadratic
function, is solved in the second phase. Our code FPC AS embeds this basic two-stage algorithm
in a continuation (homotopy) approach by assigning a decreasing sequence of values to μ. This
code exhibits state-of-the-art performance in terms of both its speed and its ability to recover sparse
signals.
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1. Introduction. Frequently, the dominant information in an image or signal
is much “sparser” than the image or signal itself under a proper representation. The
fundamental principal of the emerging technology of compressive sensing (CS) is that a
K-sparse signal x̄ ∈ R

n can be recovered from relatively few incomplete measurements
b = Ax̄ for a carefully chosen A ∈ R

m×n by solving the �0-minimization problem

(1.1) min
x∈Rn

‖x‖0 subject to (s.t.) Ax = b,

where ‖x‖0 := |{i, xi �= 0}| and K ≤ m ≤ n (often K � m� n). Moreover, Candes,
Romberg, and Tao (see [11, 12, 13]), Donoho [21], and their colleagues have shown
that, under some reasonable conditions on x̄ and A, the solution x̄ of problem (1.1)
can be found by solving the basis pursuit (BP) problem

(1.2) min
x∈Rn

‖x‖1 s.t. Ax = b.

For more information on compressive sensing, see, for example, [21, 54, 60, 61, 51, 41,
55, 37, 39, 38, 64].
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Various types of algorithms have been proposed to recover the solution of prob-
lem (1.1). Greedy algorithms work when the data satisfy certain conditions, such as
the restricted isometry property [13]. These algorithms include Orthogonal Match-
ing Pursuit (OMP) [42, 53], Stagewise OMP (StOMP) [23], CoSaMP [45], Subspace
Pursuit (SP) [17], and many other variants. These algorithms, by and large, involve
solving a sequence of subspace optimization problems of the form

(1.3) min
x
‖Ax− b‖22 s.t. xi = 0 ∀i �∈ T,

where T is a subset of the indices {1, 2, . . . , n}. Starting from T = ∅ and x = 0, OMP
iteratively adds to T the index of the largest component of the current gradient g(x)
of 1

2‖Ax − b‖22 and solves (1.3) to obtain a new point x. StOMP adds one or more
indices at each iteration. Rather than being a monotonically growing index set as in
OMP and StOMP, at each iteration of CoSaMP and SP the index set T is the union
of the indices of the K most significant components of the current point x and the K
most significant components of the gradient g(x).

Optimization algorithms find a solution of (1.1) by solving (1.2) or the closely
related �1-regularized least squares problem

(1.4) min
x∈Rn

ψμ(x) := μ‖x‖1 + 1

2
‖Ax− b‖22,

where μ > 0. The theory for penalty functions implies that the solution (1.4) goes to
the solution of (1.2) as μ goes to zero. It has been shown in [65] that (1.2) is equivalent
to (1.4) for a suitable choice of b (which is different from the b in (1.4)). Furthermore,
if the measurements are contaminated with noise, problem (1.4) is preferred. Other
related problems include the lasso and BP denoising problems, i.e.,

(1.5) min
x∈Rn

‖Ax− b‖22 s.t. ‖x‖1 ≤ t and min
x∈Rn

‖x‖1 s.t. ‖Ax− b‖2 ≤ σ,

respectively, which are equivalent to (1.4) for an appropriate choice of the parameters
t and σ.

One can transform problem (1.2) into a linear program (LP), problem (1.4) and
the first problem in (1.5) into quadratic programs (QPs), and the second problem
in (1.5) into a second-order cone program (SOCP). Hence, small instances of (1.2),
(1.4), and (1.5) can be solved by standard LP, QP, and SOCP methods. However,
computational challenges arise from the following facts. First, real-world applications
are invariably large-scale. For example, there are more than a million variables in a
problem to reconstruct a 1024 × 1024 image. Second, A is generally dense. Third,
real-time or near real-time processing is required in some applications. Consequently,
algorithms requiring matrix decompositions or factorizations are not practical. On the
other hand, the measurement matrices A that arise in applications often correspond
to partial transform matrices (e.g., discrete Fourier and cosine transforms), for which
fast matrix-vector multiplications (e.g., FFT and direct cosine transform (DCT)) are
available. Moreover, the sparsity of the solutions presents a unique opportunity for
achieving relatively fast convergence with a first-order method. These features make
the development of efficient optimization algorithms for CS applications an interesting
research area. Examples of such algorithms include shrinkage-based algorithms [28,
48, 19, 4, 24, 25, 14, 33, 63, 56, 49], the interior-point algorithm �1 �s [36], SPGL1 [58]
for the LASSO problem, NESTA [3] for the BP denoising problem, a smoothed penalty
algorithm (SPA) [1] that solves problem (1.4) with the quadratic penalty replaced by
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an “exact” �2-penalty, the spectral gradient projection method GPSR [29], the fixed-
point continuation method FPC [33] for the �1-regularized problem (1.4), and the
gradient method in [46] for minimizing the more general function J(x)+H(x), where
J is nonsmooth, H is smooth, and both are convex.

In this paper, we propose an alternating-stage algorithm that combines the good
features of both greedy algorithms and convex optimization approaches. It takes
advantage of solution sparsity without requiring knowledge of the solution sparsity
levelK. One of the two stages uses a first-order method to obtain a working index set.
The other stage uses a second-order method to solve a smooth subproblem defined by
the working index set. When the working index set is accurate enough, the second
stage yields an accurate solution to (1.4); otherwise, the second stage generates a good
new starting point for the first stage (which then computes an improved working
index set). The two stages are called alternately and integrated with continuation
(homotopy) on μ. Rules are introduced to govern when to switch from one stage
to the other or to continuation. The resulting algorithm exhibits state-of-the-art
performance in terms of both its speed and its ability to recover sparse signals.

Our alternating two-stage algorithm behaves like an active-set method. Compared
with interior-point methods, active-set methods are more robust and better able to
take advantage of warm starts [47, 50]. For example, gradient projection and conjugate
gradient steps have been combined to solve problems with bound constraints or linear
constraints in [44, 6, 43, 7, 32], and LP and QP subproblems have been used to solve
general nonlinear programs in [8, 9]. The difference between our algorithm and the
active-set algorithm [40] lies in the way in which the working index set is chosen.
Thanks to the solution sparsity, our approach is more aggressive and effective.

Our algorithm is different from any existing method in the literature of sparse
optimization. GPSR [29] and FPC [33] employ debiasing to compute an accurate
final solution, which is similar to our second stage. However, debiasing by GPSR
and FPC is performed only just before termination rather than being integrated into
the main iterations as in our algorithm. This integration is critical to the significant
performance improvement. Our algorithm is also different from CoSaMP and SP
in terms of both the working sets that are selected and the subproblems that are
formulated.

The rest of this paper is organized as follows. In section 2, we introduce an
abstract framework for our algorithm. In subsection 3.1, we discuss the shrinkage
phase, a nonmonotone line search method, and an exact line search method. We
state the formulation of the subspace optimization problem and present criteria for
starting the subspace optimization phase in subsection 3.2 and then discuss methods
for choosing the active set in subsection 3.3. Our continuation strategy is described
in subsection 3.4, and the complete algorithm is presented in subsection 3.5. Finally,
numerical results on an extensive collection of problems arising in CS are presented
in section 4 to demonstrate the robustness and efficiency of our algorithm.

1.1. Preliminaries. For convenience of notation let

f(x) :=
1

2
‖Ax− b‖22 and g(x) := ∇f(x).

The complement of a given index set T ⊆ {1, 2, . . . , n} is denoted by T . Let AT and
xT denote the collections of columns and entries of A and x, whose indices are in T ,
respectively. For x, y ∈ R

n, let x � y denote the componentwise product of x and y,
i.e., (x � y)i = xiyi. Let X∗ be the set of optimal solutions of (1.4). It is shown in
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[33] that there exists a vector

(1.6) g∗i

⎧⎪⎨⎪⎩
= −μ, max{xi : x ∈ X∗} > 0,

= +μ, min{xi : x ∈ X∗} < 0,

∈ [−μ, μ] otherwise,

such that g(x∗) ≡ g∗ for all x∗ ∈ X∗ and X∗ is included in the orthant

Ω∗ := {x ∈ R
n : −sgn+(g∗i )xi ≥ 0, i ∈ {1, . . . , n}},

where sgn+(t) = 1 if t ≥ 0 and sgn+(t) = −1 otherwise. For a given vector x ∈ R
n,

the active set is denoted by A(x), and the inactive set (or support) is denoted by
I(x); i.e.,

(1.7) A(x) := {i ∈ {1, . . . , n} | |xi| = 0} and I(x) := {i ∈ {1, . . . , n} | |xi| > 0}.

The active set is further subdivided into two sets

(1.8) A±(x) := {i ∈ A(x) | |gi(x)| < μ} and A0(x) := {i ∈ A(x) | |gi(x)| ≥ μ}.

If x∗ is an optimal solution of (1.4) and i ∈ A0(x
∗), then |gi(x∗)| = μ. The problem

(1.4) is said to be degenerate at x∗ if A0(x
∗) �= ∅. The components of x∗ in A0(x) are

called degenerate, while those in A±(x∗) are called nondegenerate.

2. Motivation and overview of the algorithm. The first stage of our al-
gorithm uses an iterative shrinkage procedure to approximately solve (1.4). This
procedure iteratively computes

(2.1) xk+1 := S (xk − λgk, μλ) ,
where gk := g(xk), λ > 0, and for y ∈ R

n and ν ∈ R, the shrinkage operator, defined
as

S(y, ν) := sgn(y)�max {|y| − ν,0} ,(2.2)

yields the unique minimizer of the function ν‖x‖1+ 1
2‖x−y‖22. The iteration (2.1) has

been independently proposed by different groups of researchers in various contexts
[4, 15, 19, 24, 25, 28, 33, 48]. Various modifications and enhancements have been
applied to (2.1), which has also been generalized to certain other nonsmooth functions;
see [26, 5, 29, 63].

Although (2.1) is very easy to compute, it can take more than thousands of
iterations to achieve an acceptable accuracy for difficult problems. It is proved in
[33] that (2.1) yields xk with the same support and signs as those of the solution x∗

of (1.4) for all k greater than a finite k0 under mild conditions. In practice, after
a moderate number of iterations, I(x∗) ⊆ I(xk) holds or almost holds, but it often
takes many more iterations before I(x∗) = I(xk) and xki ≈ x∗i for i ∈ I(x∗). Simply
speaking, shrinkage is very effective in obtaining a support superset, but it is not
efficient in recovering signal values. Therefore, we were motivated to utilize the first
property of shrinkage and overcome the second property.

Let us describe the results in [33] mentioned in the previous paragraph. Suppose
that f(x) is a twice differentiable convex function and the eigenvalues of its Hessian are
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uniformly bounded. Assume that xk is generated by (2.1) with λ = λk ∈ (0, 2/λmax),
where

λmax := maximum eigenvalue of ∇2f(x) <∞.
Then the support and the sign of the optimal solution can be identified after a finite
number of steps, i.e., xki = 0 for i ∈ A±(x∗) and sgn(xki−λkgk) = sgn(x∗i−λkg∗) for i ∈
T := I(x∗)∪A0(x

∗) for k large enough [33]. Let Ω∗
T be the subset of Ω∗ with respect

to the index set T , and let PΩ∗
T
be the orthogonal projection onto Ω∗

T . Consequently,
for k large enough, the scheme (2.1) effectively works only on T and can be shown to
be equivalent to the gradient projection method xk+1

T = PΩ∗
T
(xkT − λk∇φμ(xkT )) for

solving the subspace minimization problem

(2.3) min
x
φμ(x) := −(g∗T )�xT + f(x) s.t. xT ∈ Ω∗

T and xi = 0 ∀i ∈ A±(x∗).

Our subspace optimization approach is partially motivated by our belief that a second-
order type method should be faster than the iterative shrinkage scheme for solving
(2.3). Note that we may solve subproblems of the form of (2.3) before the optimal
support has been identified.

Shrinkage provides a strategy similar to those used by greedy algorithms to select
the set T based on information about x and the gradient g(x) in problem (1.4). This
connection is most obvious if we look at a shrinkage step right after greedy algorithms
perform the subspace optimization step (1.3). Assume that xk+ is generated by
subspace optimization (1.3) with an index set T = T k. For simplicity, these indices
are the leading indices. The optimality conditions for (1.3) are A�

Tk(ATkxk+
Tk − b) =

0, which implies that the gradient gk+ = (0, gk+
T

k )
�. Substituting gk+ and xk+ =

(xk+
Tk ,0)

� into the shrinkage operator, we obtain

(2.4) xk+1 = S (xk+ − λgk+, μλ) = {
sgn(xk+i )max(|xk+i | − μλ, 0) if i ∈ T k,
sgn(λgk+i )max(|λgk+i | − μλ, 0) if i ∈ T k.

Hence, shrinkage selects indices corresponding to components xi in the previous work-
ing set T k whose magnitudes are larger than the threshold μλ and indices correspond-
ing to components of the gradient in the complement of T k whose magnitudes are
larger than μλ.

We now introduce an abstract form of our algorithm. In continuation, μ decreases
over a sequence of outer iterations until reaching a prescribed value. The first stage
of the algorithm is based on (2.1) and is accelerated by the use of a line search.
Once a “good” approximate solution xk of (1.4) corresponding to the current μ is
obtained, the set of indices corresponding to the zero and nearly zero components of
xk are selected as a working set. In the second stage, a smooth subspace optimization
problem, formed by fixing these components to zero, is solved. We present effective
rules for stopping the first stage and determining the frozen components in section 3.2
below.

3. An active-set algorithm.

3.1. The shrinkage phase. We now describe the first stage of our algorithm.
In the fixed-point method in [33], the parameter λ in (2.1) is fixed so that the fixed-
point iteration is a contraction at every iteration. Since a bad value of λ usually slows
down the rate of convergence, we choose λ dynamically to improve the performance of
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Algorithm 1. An abstract active set algorithm.

Initialization: Choose x0, μ.
for k = 0, 1, . . . until convergence do

S1 Shrinkage phase: Select a parameter λk and compute a direction
dk ← S(xk − λkgk, μλk)− xk. Do a line search to obtain a step size αk
and set the new point xk+1 ← xk + αkd

k.
S2 if certain conditions are met then

Subspace optimization: Determine a working set based upon xk+1.
Set xk+1 to the solution of the subspace optimization problem over
the working set.
Reduce μ.

shrinkage. We also incorporate a line search scheme to guarantee global convergence.
The theoretical properties of our algorithm, including global convergence, R-linear
convergence, and the identification of the active set after a finite number of steps, are
studied in a companion paper [62].

Our line search scheme is based on properties of the search direction determined

by shrinkage (2.1)–(2.2). Let dk := d(λ
k)(xk) denote this direction, i.e.,

(3.1) d(λ)(x) := x+ − x, x+ = S(x − λg, μλ),
for x ∈ R

n, μ > 0, and λ > 0. Since shrinkage operator (2.2) yields the solution of
the nonsmooth unconstrained minimization problem minx∈Rn ν‖x‖1+ 1

2‖x− y‖22, and
the latter is equivalent to the smooth constrained problem

min
1

2
‖x− y‖22 + νξ s.t. (x, ξ) ∈ Ω := {(x, ξ) | ‖x‖1 ≤ ξ},

we can obtain from the optimality conditions for the latter problem that

(3.2) (S(x, ν) − x)�(y − S(x, ν)) + ν(ξ − ‖S(x, ν)‖1) ≥ 0

for all x ∈ R
n, (y, ξ) ∈ Ω, and ν > 0 [62]. Substituting x−λg for x, x for y, and ‖x‖1

for ξ and setting ν = μλ in (3.2), we obtain

(S(x − λg, μλ)− (x − λg))�(x− S(x − λg, μλ)) + μλ(‖x‖1 − ‖S(x− λg, μλ)‖1) ≥ 0,

which gives

(3.3) g�d+ μ(‖x+‖1 − ‖x‖1) ≤ − 1

λ
‖d‖22

after rearranging terms. An alternative derivation of (3.3) is given in Lemma 2.1 in
[57].

We can also reformulate (1.4) as

(3.4) min f(x) + μξ s.t. (x, ξ) ∈ Ω,

whose first-order optimality conditions for a stationary point x∗ are

(3.5) ∇f(x∗)(x− x∗) + μ(ξ − ‖x∗‖1) ≥ 0 ∀(x, ξ) ∈ Ω,
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since ξ∗ = ‖x∗‖1. Hence, dk is similar to a gradient projection direction for solving
(3.4) and should have many properties of the latter. In particular, it has been shown
in [57, 62] that, for any x∗ ∈ R

n and 0 < λ <∞,

(3.6) d(λ)(x∗) = 0

if and only if x∗ is a stationary point for (1.4).
Since in our method λ is not chosen to ensure contraction, a backtracking line

search is necessary to guarantee global convergence. Consequently, at each iteration,
we compute the next point as xk+1 = xk + αkd

k, where αk = ρh, 0 < ρ < 1, and h is
the smallest integer that satisfies the Armijo-like condition

(3.7) ψμ(x
k + ρhdk) ≤ Ck + ρhσΔk.

Here Ck is a reference value with respect to the previous values {ψ0
μ, . . . , ψ

k
μ}, σ ∈

(0, 1), and

(3.8) Δk := (gk)�dk + μ‖xk+‖1 − μ‖xk‖1 ≤ 0.

From (3.3) and the convexity of the �1-norm, it is easy to show that there exists
a (backtracking) step size that satisfies (3.7) with Ck = ψμ(x

k). Such a line search
method is monotone since ψμ(x

k+1) < ψμ(x
k). Instead of using it, we use a nonmono-

tone line search method based on a strategy proposed in [66] (See algorithm NMLS
(Algorithm 2)). In this method, the reference value Ck in the Armijo-like condition
(3.7) is taken as a convex combination of the previous reference value Ck−1 and the
function value ψμ(x

k), and as the iterations proceed, the weight on Ck is increased.
For further information on nonmonotone line search methods, see [18, 31, 52].

Algorithm 2. Nonmonotone line search algorithm (NMLS).

Initialization: Choose a starting guess x0 and parameters 0 < η < 1, 0 < ρ < 1,
and 0 < λm < λM <∞. Set C0 = ψμ(x

0), Q0 = 1, and k = 0.
while “not converge” do

Compute a search direction: Choose a λm ≤ λk ≤ λM . Set
dk = S(xk − λkgk, μλk)− xk.
Select a step size: Set xk+1 = xk + αkd

k, where αk = ρhk and hk is the
smallest integer such that αk satisfies the nonmonotone Armijo-like
condition (3.7).
Update: Set Qk+1 = ηQk + 1, Ck+1 = (ηQkCk + ψμ(x

k+1))/Qk+1. Set
k ← k + 1.

In [62], we show that there exists a step size satisfying the Armijo-like condition
(3.7) for Ck generated in Algorithm NMLS. Therefore, every iteration of Algorithm
NMLS is well defined. From that algorithm, we have

(3.9) ψμ(x
k+1) ≤ Ck ≤ Ck−1 ≤ · · · ≤ C0 = ψμ(x

0).

We also prove that Algorithm NMLS converges. Specifically, let L be the level set
L := {x ∈ R

n : ψμ(x) ≤ ψμ(x
0)}, and let L̃ be the set of points of x ∈ R

n whose
distance to L is at most supk ‖dk‖ <∞. Assuming that f(x) is bounded from below

on L̃ and ∇f is Lipschitz continuous on L̃, we prove that the sequence {xk} is globally
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convergent in the sense that limk→∞‖dk‖ = 0. It is also proved that the sequence
{xk} is at least R-linearly convergent under some mild assumptions.

We now specify a strategy, which is based on the Barzilai–Borwein (BB) method [2],
for choosing the parameter λk. The shrinkage iteration (2.1) first takes a gradient de-
scent step with step size λk along the negative gradient direction gk of the smooth
function f(x) and then applies the shrink operator S(·, ·) to accommodate the non-
smooth term ‖x‖1. Hence, it is natural to choose λk based on the function f(x) alone.
Let

sk−1 = xk − xk−1, yk−1 = gk − gk−1.

The BB step is defined so that it corresponds to premultiplying the negative gradient
by a multiple of identity that has a quasi-Newton property; specifically,

(3.10) λk,BB1 =
(sk−1)�sk−1

(sk−1)�yk−1
or λk,BB2 =

(sk−1)�yk−1

(yk−1)�yk−1
.

To avoid the parameter λ being either too small or too large, we take

(3.11) λk = max{λm,min{λk,BB1, λM}} or λk = max{λm,min{λk,BB2, λM}},
where 0 < λm ≤ λM <∞ are fixed parameters. We should point out that the idea of
using BB steps in CS has also appeared in [29, 34, 63]. However, Algorithm NMLS
requires only that λk be bounded, and other strategies could easily be adopted.

3.1.1. An exact line search. An exact line search is possible if ψμ(·) is a
piecewise quadratic function [16, 30]. We want to solve

min
α∈[0,1]

ψμ(x+ αd) := μ‖x+ αd‖1 + 1

2
‖A(x+ αd)− b‖22(3.12)

= μ‖x+ αd‖1 + 1

2
c1α

2 + c2α+ c3,

where c1 = ‖Ad‖22, c2 = (Ad)�(Ax− b), and c3 = 0.5 ‖Ax− b‖22. The break points of
ψμ(x+ αd) are {αi = −xi/di, di �= 0, i = 1, . . . , n}. Since α ∈ [0, 1], we select those
αi ∈ [0, 1] and sort these points together with 0 and 1 as

(3.13) α(0) = 0 < α(1) < · · · < α(κ−1) < 1 = α(κ).

For each interval [α(l), α(l+1)] for l = 0, . . . , κ the function ψμ(x + αd) is a smooth
quadratic function of α. Let the minimizer of the function determined by the inter-
val [α(l), α(l+1)] be denoted by ᾱ(l). Then ᾱ(l) is the optimal solution of (3.12) if
ᾱ(l) ∈ [α(l), α(l+1)]. Hence, we only have to search each interval to obtain the optimal
solution of (3.12). This algorithm is outlined in Algorithm 3.

In our algorithm, we perform an exact line search if the Armijo-like condition
(3.7) is not satisfied with a unit step size, but we still update the parameters Qk+1

and Ck+1 for the next iteration. Such a hybrid method works well in practice.

3.2. The subspace optimization phase. We now describe the second stage
of our algorithm. When A(xk) produced by shrinkage is a good estimate of the true
active set A(x∗), we define subspace optimization as follows. Since |xi| = sgn(xi)xi,
μsgn(x∗i ) = −g∗i , and sgn(x∗i ) = −sgn(g∗i ) for i ∈ I(x∗), we approximate sgn(x∗i ) by
sgn(xki ) and replace φμ(x) in (2.3) by the smooth function

(3.14) ϕμ(x) := μ sgn(xkIk)
�xIk + f(x).
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Algorithm 3. An exact line search algorithm for solving (3.12).

Initialization: Compute c1 = ‖Ad‖22, c2 = (Ad)�(Ax − b). Compute
αi = −xi/di for di �= 0 and sort the αi such that (3.13) is satisfied.
for i = κ, . . . , 1 do

Compute xl = x+ α(i−1)d and xu = x+ α(i)d.

Set Il = {i : xli ≤ 0 and xui ≤ 0} and Iu = {i : xli ≥ 0 and xui ≥ 0}.
Compute ρ = μ(

∑
i∈Iu di −

∑
i∈Il di) and α = −(c2 + ρ)/c1.

if α(i−1) ≤ α ≤ α(i) then return α and exit the loop.

Return α = αi such that i = argmini=1,...,κ ψμ(x+ αid).

We require that each xi either has the same sign as xki or is zero; i.e., x is required to
be in the set

(3.15) Ω(xk) :=
{
x ∈ R

n : sgn(xki )xi ≥ 0, i ∈ I(xk) and xi = 0, i ∈ A(xk)} .
Therefore, our subspace optimization problem is

(3.16) minϕμ(x) s.t. x ∈ Ω(xk),

which can be solved by a limited-memory quasi-Newton method for problems with
simple bound constraints (L-BFGS-B) [67]. In our implementations, we also consider
subspace optimization without the bound constraints, i.e.,

(3.17) min
x∈Rn

ϕμ(x) s.t. xi = 0 ∀i ∈ A(xk).

This is essentially an unconstrained minimization problem which can be solved by a
linear conjugate gradient method or a limited-memory quasi-Newton method.

We switch to the subspace optimization phase if for some fixed constants δ > 0
and εf , εg ∈ (0, 1) either of the two conditions

λk−1‖gkI(xk)‖2
‖d(λk−1)‖2 > δ and ‖(|g(xk)| − μ)I(xk)∪A0(xk)‖∞ ≤ εgmax(‖xk‖2, 1),(3.18)

|ψk−1
μ − ψkμ| ≤ εf max(|ψkμ|, |ψk−1

μ |, 1)(3.19)

is satisfied during the shrinkage phase. The justification for tests (3.18) and (3.19)
is based on the convergence properties of Algorithm NMLS. On the one hand, we
want to start subspace optimization as soon as possible; on the other hand, we want
the active set that defines the subspace optimization problem to be as accurate as
possible. If there is at least one nonzero component in x∗, then ‖g∗I∗‖2 ≥ μ since
|g∗i | = μ for i ∈ I∗ from the optimality conditions. Suppose that the sequence
{xk} generated by the first stage converges to an optimal solution x∗ of (1.4); then

g(xk) converges to g(x∗), and ‖d(λk)(xk)‖2 converges to zero from (3.6). Hence,

the quantity λk−1‖gkI(xk)(x
k)‖2/‖d(λk−1)(xk−1)‖2 tends to infinity, and the first part

of condition (3.18) will be satisfied after a finite number of iterations. However, the

quantity λk−1‖gkI(xk)(x
k)‖2/‖d(λk−1)(xk−1)‖2 cannot tell us whether the current point

xk is nearly optimal or not. Hence, we also check the second condition in (3.18) in
which ‖(|g(xk)| − μ)I(xk)∪A0(xk)‖∞ is a measure of optimality (see subsection 3.3).
If it happens that the shrinkage phase converges slowly and cannot make sufficient
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progress after a large number of iterations, the relative change of the objective function
value between two consecutive iterations usually will be small. Hence, satisfaction of
condition (3.19) indicates that Algorithm NMLS is stagnating.

Suppose that subspace optimization starts from the point xk. Clearly, ϕμ(x
k) =

ψμ(x
k) from the definition of ϕμ(x). We denote the (approximate) solution of the

subspace optimization problem (3.16) by xk+1. Since subspace optimization will not
cause a zero component in A(xk) to become nonzero and I(xk+1) ⊂ I(xk), it follows
that

ϕμ(x
k+1) := μsgn(xkIk)

�xk+1
Ik +f(xk+1) ≡ μsgn(xk+1

Ik+1)
�xk+1

Ik +f(xk+1) =: ψμ(x
k+1).

Hence, if we use a descent method to solve (3.16), xk+1 will satisfy ϕμ(x
k+1) ≤

ϕμ(x
k), and we can guarantee that there exists at least a subsequence generated by

the abstract Algorithm 1 that converges. We terminate subspace optimization if the
norm of the projected gradient PΩk (∇ϕ(xk+1)) is small or the relative change of the
objective function value between two consecutive iterations is small.

If the active sets provided to two subspace optimizations are identical, we refer
to this as a cycle. It is hard to detect a cycle in practice unless we store all of the
support sets that have been supplied to subspace optimization. However, it is easy
to check whether there is a cycle between two consecutive subspace optimizations.
In such a case, we do not start a second subspace optimization and continue doing
iterative shrinkage.

3.3. Identification of the active set and measures of optimality. The
efficiency of our active-set algorithm depends on how fast and how well the active set
is identified. Assume that the sequence {xk} converges to x∗. Then there exists a
finite number k̄ > 0 so that, for all k > k̄, sgn(xki ) = sgn(x∗i ) for all i ∈ I(x∗) and
|xki | < ε for all i ∈ A(x∗) if 0 < ε < min{|x∗i | for all i ∈ I(x∗)}. The true nonzero
components that are not too small in magnitude can easily be identified. However,
the true zero components may be nonzero after many iterations in practice. Hence,
the size of the subspace optimization problem which equals the size of the support
I(xk) can be quite large. One approach is to replace the active set A(xk) and the
support I(xk) by the sets
(3.20)
A(xk, ξk) := {i ∈ {1, . . . , n} | |xki | ≤ ξk}, I(xk, ξk) := {i ∈ {1, . . . , n} | |xki | > ξk},

where ξk > 0.
The threshold ξk in (3.20) can simply be set to a number ξ̄m that is approximately

equal to the machine accuracy. We now present some criteria for checking optimality
which can also be used to choose the value of ξk. Let A(xk, ξk) be divided into two
sets
(3.21)
A±(xk, μ, ξk) := {i ∈ A(x, ξk) | |gki | < μ}, A0(x

k, μ, ξk) := {i ∈ A(xk, ξk) | |gki | ≥ μ}.

Then the value

(3.22) χ(xk, μ, ξk) := ‖(|gk| − μ)I(xk,ξk)∪A0(xk,μ,ξk)‖∞
is a measure of the violation of the first-order optimality conditions (1.6), since
χ(x∗, μ, 0) = 0 follows from the fact that |g∗i | = μ for i ∈ A0(x

∗, μ, 0). Suppose
that x∗ satisfies (1.6). Then the complementary conditions x∗i (|g∗i | − μ) = 0 for all
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i ∈ {1, . . . , n} also have to be satisfied. Hence,

(3.23) ζk = ‖xk � (|gk| − μ)‖2
provides a measure of the violation of the complementary conditions at the point xk.

To calculate ξk, we use an identification function

(3.24) ρ(xk, ξk) :=
√
χ(xk, μ, ξk) + ζk

proposed in [27] for nonlinear programming that is based on the amount that the
current iterate xk violates the optimality conditions for (1.4). Specifically, we set the
threshold ξk initially to ξ0 = ξ̄m and then update it as

(3.25) ξk+1 := min
(
max

(
η2ρ(x

k, ξk), ξ̄m
)
, ‖xk+1‖1/n

)
,

where 0 < η2 < 1. Note that inequality ξk+1 ≥ ‖xk+1‖1/n ensures that I(xk+1, ξk+1)
�= ∅.

Since the cardinality of the estimate of the support |I(xk, ξk)| can be greater than
m, we check if |I(xk, ξk)| ≤ m before doing subspace optimization. If |I(xk, ξk)| > m,
we set ξk to be |x(Π)| and recalculate the set I(xk, ξk), where x(Π) is the component

of xk with the Πth largest magnitude and the parameter Π satisfies 1 ≤ Π ≤ m.

3.4. The continuation (homotopy) strategy. Instead of solving problem
(1.4) directly from scratch, we use a continuation (homotopy) procedure to solve
a sequence of problems {x∗μk

:= argminx∈Rn ψμk
(x)}, where μ0 > μ1 > · · · > μ, using

the solution (or approximate solution) x∗μk−1
as the initial estimate of the solution to

the next problem. It has been shown empirically in [33] that using the basic shrinkage
scheme (2.1) to obtain each x∗μk

in a continuation strategy is far superior to applying
the basic shrinkage scheme to (1.4) directly. Experiments in [58, 63] have further con-
firmed the effectiveness of continuation. Therefore, we embed our two-stage algorithm
in a continuation procedure.

We now describe in detail our method for updating μk. First, we check whether
or not the zero vector 0 satisfies the first-order optimality conditions (1.6). If the
inequality ‖g(0)‖∞ ≤ μ holds, the zero vector is a stationary point. Otherwise,
the initial μ0 is chosen to be max(γ1‖g(0)‖∞, μ/γ1), where 0 < γ1 < 1. For each
intermediate value of μ, our algorithm needs only to compute x(μ) approximately
before decreasing μ. Specifically, at the end of iteration k, the next parameter μk+1

is set to a value smaller than μk if for εx ∈ (0, 1) the point xk satisfies the scaled
condition

(3.26) χ(xk, μk, ξk) ≤ εxmax(‖xk‖2, 1)
which implies that xk is a good estimate of the solution of the problemminx∈Rn ψμk

(x).
If xk is a solution to the subspace optimization problem, we update μk+1 even if con-
dition (3.26) does not hold. A heuristic strategy for this update is to set

μk+1 = γ1‖gA(xk,μk,ξk)‖∞,
since by (1.6) the norm ‖gA(xk)‖∞ converges to a number less than or equal to μ

as xk converges to a stationary point x∗. A fixed fractional reduction of μk is also
enforced to make sure that continuation will be terminated after a finite number of
steps. Since the parameter should not be less than μ, we use in our algorithm the
updating formula

(3.27) μk+1 = max(γ1 min(‖gA(xk,μk,ξk)‖∞, μk), μ).
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Table 1

Summary of parameters and their default values for FPC AS.

λm, λM , η, σ parameters for the nonmonotone line search, η = 0.85, σ = 10−3,
λm = 10−4, and λM = 103

ξ̄m,Π ξ̄m is a fixed threshold and Π is a fixed index for the hard truncation,
ξ̄m = 10−10 and Π = �m/2�

εg, δ, γ2 parameters for the subspace optimization activation rule (3.18), εg = 10−6,
δ = 10, and γ2 = 10

γ1 the factor to reduce the weight μk in continuation, γ1 = 0.1.

ε, εx tolerances for the termination rules, ε = 10−6 and εx = 10−12

εf tolerance for the relative change of the objective function value corresponding
to the final μ, εf = 10−20

3.5. The complete algorithm and default parameter values. The com-
plete pseudocode for our algorithm FPC AS (fixed-point continuation active set) is
presented in Algorithm 4 below. FPC AS uses about a dozen parameters, whose pur-
poses and default values are described in Table 1. Only a few of these parameters
are critical to the convergence and performance of FPC AS. The default values of the
threshold ξ̄m and the index Π for the hard truncation are generally fine for most CS
problems. However, in order to improve the performance of FPC AS on relatively easy
CS problems, one can let ξ̄m be as large as one thousandth of the smallest magnitude
of the nonzero entries of the solution and let Π be slightly more than the number of
nonzeros in the solution if the estimates of the quantities are known. The values of
the parameters related to the activation of subspace optimization are also critical to
the performance of FPC AS.

4. Numerical results. In order to demonstrate the effectiveness of the active-
set algorithm FPC AS (version 1.1), we tested it on four different sets of problems
and compared it with the state-of-the-art codes including FPC (version 2.0) [33],
spg bp and its variant spg bp sub with subspace minimization in the software package
SPGL1 (version 1.7) [58], NESTA (version 1.0) [3], SolveOMP in SparseLab [22], and
cplex pp [35] (the primal simplex method in CPLEX). For our comparisons, we used
two different versions of FPC AS: FPC AS CG, the default version that uses the linear
conjugate gradient (CG) method to solve the unconstrained subspace optimization
problem (3.17), and FPC AS BD, which uses the limited-memory BFGS method [67]
to solve the bound constrained subspace optimization problem (3.16). The main parts
of FPC AS, FPC, NESTA, and spg bp were written in MATLAB, and all tests described
in this section were performed on a Dell Precision 670 workstation with an Intel Xeon
3.4GHZ CPU and 6GB of RAM running Linux (2.6.9) and MATLAB 7.3.0.

In Table 2, we summarize a list of symbols used in the subsequent tables and
figures. Since solvers often return solutions with tiny but nonzero entries that can
be regarded as zero we use “nnzx” to denote the number of nonzeros in x which we
estimate (as in [58]) by the minimum cardinality of a subset of the components of x
that account for 99.9% of ‖x‖1; i.e.,

(4.1) nnzx := min

{
|Ω| :

∑
i∈Ω

|xi| > 0.999‖x‖1
}

= min

{
k :

k∑
i=0

|x(i)| ≥ 0.999‖x‖1
}
.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1844 Z. WEN, W. YIN, D. GOLDFARB, AND Y. ZHANG

Algorithm 4. FPC AS algorithm.

Choose μ > 0 and x0. Set parameters σ, η, γ1 ∈ (0, 1), ξ̄m > 0, ε, εx, εf , εg > 0,
δ, γ2 > 1, 1 ≤ Π ≤ m, μ0 = max(γ1‖g(0)‖∞, μ/γ1), C0 = ψμ(x

0), Q0 = 1, and
ξ0 = ξ̄m.
for k = 0, 1, . . . do

S1 Compute λk by (3.11) and dk = xk+1 − xk, where
xk+1 = S(xk − λkgk, μkλk).
Set αk = 1. if ψμk

(xk+) > Ck + σαkΔ
k then

Set αk as the minimizer of (3.12) or select αk satisfying the Armijo
conditions (3.7).

Set xk+1 = xk + αkd
k, Qk+1 = ηQk + 1, and

Ck+1 = (ηQkCk + ψμ(x
k+1))/Qk+1.

Calculate I(xk+1, ξk) and A(xk+1, ξk) by (3.20). Update the threshold
ξk+1 by (3.25).
if χ(xk+1, μ, ξk) ≤ max(ε, εxmax(‖xk+1‖, 1)) then return the solution.
Check rules for doing subspace optimization: set do sub = 0.
if I(xk, ξk−1) is not equal to I(xk+1, ξk) then

if
λk‖gk+1

I(xk+1,ξk)
‖

‖dλk‖2
> δ and χ(xk+1, μk, ξk) ≤ εgmax(‖xk+1‖, 1) then

set do sub = 1. Set δ = γ2δ.

else if
|ψk+1

μk
−ψk

μk
|

max(|ψk
μk

|,|ψk+1
μk

|,1) ≤ εf then set do sub = 1.

S2 Do subspace optimization: if do sub = 1 then

if |I(xk+1, ξk)| > m then set ξk = |xk+1
(Π) | and recalculate I(xk+1, ξk).

Solve the subspace optimization problem (3.17) or (3.16) to obtain a
solution xk+1.
if χ(xk+1, μ, ξk) ≤ max(ε, εxmax(‖xk+1‖, 1)) then return the solution.

S3 if (χ(xk+1, μk, ξk) ≤ εxmax(‖xk+1‖, 1) or do sub = 1) and μk > μ then
Compute μk+1 = max(γ1 min(‖gA(xk+1,ξk)‖∞, μk), μ).
Set δ = δ0, Ck+1 = ψμ(x

k+1), and Qk+1 = 1.

else set μk+1 = μk.

In order to compare the supports of x and x̄, we first remove tiny entries of x by
setting all of its entries with a magnitude smaller than 0.1|x̄m| to zero, where x̄m is
the smallest entry of x̄ in magnitude, and then compute the quantities “sgn,” “miss,”
and “over.” If x matches x̄ in terms of support and sign, the values of “sgn,” “miss,”
and “over” should all be zero.

4.1. Recoverability for some “pathological” problems. We tested FPC AS
on a set of small-scale, pathological problems described in Table 3. Only the perfor-
mance of FPC AS CG is reported because FPC AS BD performed similarly. The first
test set includes four problems, CaltechTest1, . . . , CaltechTest4 [10], which are patho-
logical because the magnitudes of the nonzero entries of the exact solutions x̄ lie in
a large range. Such pathological problems are exaggerations of a large number of
realistic problems in which the signals have both large and small entries. The sec-
ond test set includes one problem, Ameth6Xmeth2K150, which is difficult because
the number of nonzero elements in its solution is close to the limit of where the
l0-minimization problem (1.1) is equivalent to the BP problem (1.2). The coefficient
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Table 2

Summary of symbols used in all subsequent tables and figures.

m,n number of rows and columns of A

cpu cpu time

‖r‖2 �2-norm of the recovered residual, where r = Ax− b

‖x‖1 �1-norm of the recovered solution

nnzx number of the nonzeros in the recovered solution; see (4.1)

nMat total number of matrix-vector products involving A and A�

rel.err the relative error between the recovered solution x and the exact sparsest solution x̄,

i.e., rel.err =
‖x−x̄‖
‖x̄‖

sgn |{i | xix̄i < 0}|, the number of corresponding entries of x and x̄ that are both nonzero
but have opposite signs

miss |{i | xi = 0, x̄i �= 0}|, the number of zero entries in x with a corresponding
nonzero entry in x̄

over |{i | xi �= 0, x̄i = 0}|, the number of nonzero entries in x with a corresponding
zero entry in x̄

Table 3

Problem information: the last column gives the distinct orders of magnitude Oi of the nonzero
entries in x̄, as well as the number of elements Ni of x̄ that are of order of magnitude Oi in the
form of (Oi, Ni) pairs. For example, for the problem CaltechTest 3, “ (10−1, 31), (10−6, 1)” means
that there are 31 entries in x̄ with a magnitude of order 10−1 and one entry with a magnitude of
order 10−6.

ID Problem n m K (Magnitude, num. of elements on this level)

1 CaltechTest1 512 128 38 (105, 33), (1, 5)

2 CaltechTest2 512 128 37 (105, 32), (1, 5)

3 CaltechTest3 512 128 32 (10−1, 31), (10−6, 1)

4 CaltechTest4 512 102 26 (104, 13), (1, 12), (10−2, 1)

5 Ameth6Xmeth2K150 1024 512 150 (1, 150)

matrix A here is the partial DCT matrix whose m rows were chosen randomly from
the n× n DCT matrix.

We compared the results from FPC AS CG with the results from the solvers FPC,
spg bp, NESTA, and SolveOMP. We note that we were able to solve these problems
using CPLEX because they are “small.” We set the termination criteria sufficiently
small for each solver. Specifically, we set the parameters xtol = 10−10, gtol = 10−8,
andmxitr = 2∗104 for FPC; the parameters bpTol = 10−10, optT ol = 10−10, decTol =
10−10, and iteration = 104 for spg bp; the parameters tolvar = 10−12 and muf =
10−8 for NESTA; the parameter OptTol = 10−12 for SolveOMP; and the parameters
μ = 10−10, ε = 10−12, and εx = 10−16 for FPC AS CG. All other parameters of
each solver were set to their default values. The termination criteria are not directly
comparable due to the different formulations of the problems used by the solvers, but
we believe that on average the chosen criteria for FPC AS CG are tighter than those
of the other four solvers.

A summary of the computational results for all six problems is presented in Ta-
ble 4. From that table, the superiority of FPC AS CG is obvious in this set of prob-
lems. The solutions of the BP problem (1.2) are the same as the sparsest signal x̄ if



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1846 Z. WEN, W. YIN, D. GOLDFARB, AND Y. ZHANG

Table 4

Computational results for the difficult problems. The matrices A are constructed explicitly by
the command “dctmtx” of MATLAB for all of the solvers.

ID Solver CPU (sec.) rel.err ‖x‖1 ‖r‖2 nMat nnzx (sgn, miss, over)
1 FPC AS CG 0.105 5.04e-12 3.300e+06 1.67e-09 441 33 (0, 0, 0)

FPC 12.048 3.09e-06 3.300e+06 1.78e-01 40001 33 (0, 0, 18)
spg bp 11.552 3.34e-06 3.300e+06 3.63e-03 29733 33 (0, 0, 29)
NESTA 1.691 6.90e-06 3.300e+06 3.09e-10 12054 33 (0, 0, 69)

SolveOMP 0.056 1.14e+00 5.090e+06 1.77e-10 256 90 (3, 16, 104)
cplex pp 0.245 5.10e-12 3.300e+06 8.87e-10 33 (0, 0, 0)

2 FPC AS CG 0.102 7.44e-14 3.200e+06 1.75e-09 322 32 (0, 0, 0)
FPC 12.204 8.57e-08 3.200e+06 9.56e-03 40001 32 (0, 0, 0)
spg bp 11.227 8.47e-10 3.200e+06 3.71e-06 29238 32 (0, 0, 0)
NESTA 3.171 8.88e-06 3.200e+06 2.67e-10 22608 32 (0, 1, 66)

SolveOMP 0.065 1.14e+00 4.938e+06 2.14e-10 256 91 (2, 17, 107)
cplex pp 0.258 1.91e-13 3.200e+06 7.05e-10 32 (0, 0, 0)

3 FPC AS CG 0.067 1.51e-09 6.200e+00 1.26e-09 249 31 (0, 0, 0)
FPC 11.471 3.54e-05 6.200e+00 9.18e-06 40001 31 (0, 1, 46)
spg bp 6.685 4.31e-09 6.200e+00 9.99e-11 17346 31 (0, 0, 0)
NESTA 1.018 4.70e-07 6.200e+00 4.42e-16 7375 31 (0, 0, 0)

SolveOMP 0.060 1.21e+00 9.716e+00 3.48e-16 256 92 (1, 13, 108)
cplex pp 0.217 4.56e-09 6.200e+00 1.21e-13 31 (0, 0, 0)

4 FPC AS CG 0.131 5.75e-13 1.300e+05 3.51e-09 498 13 (0, 0, 0)
FPC 11.255 1.60e-07 1.300e+05 1.11e-03 40001 13 (0, 0, 0)
spg bp 8.330 3.77e-12 1.300e+05 3.81e-10 22824 13 (0, 0, 0)
NESTA 1.062 9.03e-07 1.300e+05 1.81e-11 8142 13 (0, 0, 37)

SolveOMP 0.009 1.12e-13 1.300e+05 3.89e-10 52 13 (0, 0, 0)
cplex pp 0.141 1.24e-13 1.300e+05 3.28e-11 13 (0, 0, 0)

5 FPC AS CG 0.362 7.25e-10 1.500e+02 2.26e-09 448 150 (0, 0, 0)
FPC 60.765 4.84e-01 1.414e+02 3.42e-01 40001 424 (0, 1, 170)
spg bp 50.670 4.29e-01 1.500e+02 5.34e-03 29346 452 (0, 0, 167)
NESTA 112.549 2.02e-01 1.501e+02 1.05e-14 86177 427 (0, 0, 51)

SolveOMP 4.077 8.72e-01 1.867e+02 1.04e-14 1024 387 (3, 45, 214)
cplex pp 19.815 1.02e-12 1.500e+02 1.30e-12 150 (0, 0, 0)

we trust the solutions obtained by CPLEX. It is interesting that FPC AS CG is faster
than CPLEX in all problems for achieving comparable accuracy. This is most obvious
in problem Ameth6Xmeth2K150, in which FPC AS CG exhibited an approximately
50-fold improvement in terms of CPU time over CPLEX. FPC AS CG also performs
significantly better than FPC, spg bp, and NESTA in terms of both CPU time and the
total number of matrix-vector products in these problems. FPC, spg bp, and NESTA
failed to identify the sparsest solution of Ameth6Xmeth2K150. The corresponding
recovered solutions are depicted in Figure 1.

Normally, our algorithm should never fail to minimize the �1-regularized prob-
lem regardless of whether or not BP is equivalent to the �0-minimization problem.
However, since our ultimate goal is to recover the sparsest solution, we observed
that our algorithm could often recover sparse signals, even for problems for which
�1-minimization is not equivalent to �0-minimization, if a hard truncation is added
in step S2 of Algorithm 4 to identify the nonzero components. Here we investigate
the recoverability success of FPC AS CG and cplex pp with respect to Gaussian sparse
signals and zero-one sparse signals, by using a partial DCT matrix with n = 256
and m = 128. Figure 2 depicts the empirical frequency of exact reconstruction. The
numerical values on the x-axis denote the sparsity level K, while the numerical values
on the y-axis represent the reconstruction rate, i.e., the fraction of 500 instances that
are recovered with a relative error less than 10−2. From Figure 2, we observe that
for Gaussian signals, FPC AS CG was able to continue recovering sparse signals even



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A FAST ALGORITHM FOR SPARSE RECONSTRUCTION 1847

0 200 400 600 800 1000 1200

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

index

ab
so

lu
te

 v
al

ue
 o

f e
nt

ry
, s

ho
w

n 
lo

g−
sc

ca
le

 

 

Level: 1.0e−03

x on T

x on Tc

x*

(a) FPC AS CG
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Fig. 1. Recovered solutions of “Ameth 6Xmeth 2K150.”
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(a) Gaussian signals: FPC AS CG is able to
recover the sparse solution until K ≥ 41,
while the comparison with cplex pp indi-
cates that the equivalence between the �0
and �1 minimization problems begins to
break down when K ≥ 35.
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(b) Zero-one signals: Both FPC AS CG and
cplex pp start to fail to reconstruct the sig-
nal when K ≥ 29.

Fig. 2. Frequency of exact reconstruction (500 replications): m = 128, n = 256.

after the equivalence between the �0- and �1-minimization problems started to break
down as CPLEX started to find nonsparse solutions.

4.2. Quality of compressed sensing reconstruction. In this subsection, we
evaluate the suitability of FPC AS for CS on some randomly generated problems.
Given the dimension of the signal n, the number of observations m, and the number
of nonzeros K, we generated a random matrix A and a random vector x̄ as follows.
First, the type of matrix A was chosen from the following types:
Type 1: Gaussian matrix whose elements are generated independent and identically

distributed from the normal distribution N (0, 1);
Type 2: orthogonalized Gaussian matrix whose rows are orthogonalized using a QR

decomposition;
Type 3: Bernoulli matrix whose elements are±1 independently with equal probability;
Type 4: Hadamard matrix H , which is a matrix of ±1 whose columns are orthogonal;
Type 5: DCT matrix.
We randomly selected m rows from these matrices to construct the matrix A. To
avoid potential numerical issues, we scaled the matrix A constructed from matrices
of types 1, 3, and 4 by the largest eigenvalue of AA�. To generate the signal x̄, we
first generated the support by randomly selecting K indices between 1 and n and
then assigned a value to xi for each i in the support by one of the following eleven
methods:
Type 1: a normally distributed random variable (Gaussian signal);
Type 2: a uniformly distributed random variable in(−1, 1);
Type 3: one (zero-one signal);
Type 4: the sign of a normally distributed random variable;
Types 5, 6, 7, 8: Types 1, 2, 3, 4 scaled by 105, respectively;
Type 9: Type 4, but half of the elements in the support are scaled by 105;
Type 10: a signal x with power-law decaying entries (also known as compressible

sparse signals) whose components satisfy |xi| ≤ cx · i−p, where we take cx =
105 and p = 1.5;

Type 11: a signal x with exponentially decaying entries whose components satisfy
|xi| ≤ cx · e−pi, where we take cx = 1 and p = 0.005.
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Table 5

Robustness results.

nMat (≤ 103) ‖r‖2 (≤ 10−6) rel.err (≤ 10−8)
Solver num. per. num. per. num. per.

FPC AS CG 329 99.70 330 100.00 329 99.70
FPC AS BD 295 89.39 330 100.00 327 99.09

spg bp 171 51.82 320 96.97 264 80.00
spg bp sub 100 30.30 321 97.27 228 69.09

Table 6

Statistics of the variants of FPC AS.

Solver nSubOpt nCont nMat in shrinkage nMat in Sub-Opt
(per.) (per.)

mean std. mean std. mean std. mean std.
FPC AS CG 3.66 2.12 3.37 2.08 0.39 0.06 0.61 0.07
FPC AS BD 4.95 3.71 3.83 2.15 0.36 0.12 0.64 0.13

Finally, the observation b was computed as b = Ax̄. The matrices of Types 1, 2, 3,
and 4 were stored explicitly, and we tested signals with three different sizes n =
210, 211, 212. The matrices of Type 5 were stored implicitly, and we tested signals
with three different sizes n = 210, 212, 215. Given n, we set the number of observations
m = n/2 and the number of nonzeros K = round(ρm) for ρ = 0.2 and 0.3. The above
procedure gave us a total of 330 problems.

Since spg bp has been proved to be robust in many different applications [58],
we continue to compare FPC AS with spg bp and its variant spg bp sub enhanced
with subspace minimization. FPC and CPLEX are not included in this comparison
because they take too long to solve all problems. Although NESTA is fast on most
test problems, its current release requires the measurement matrix to have orthogonal
rows, i.e., AA� = I. Since NESTA can slow down significantly on problems for
which AA� is not the identity, we do not include NESTA in this comparison. We
set the parameters bpTol = 10−8, optT ol = 10−8, and decTol = 10−8 for spg bp
and spg bp sub, and the parameters μ = 10−10, ε = 10−12, and εx = 10−16 for the
two variants of FPC AS. All other parameters of each solver were set to their default
values.

We present several statistics on the robustness of these solvers in Table 5. In the
second column, we present the number (num.) and percentage (per.) of the problems
that were solved within 1000 matrix-vector products by each solver. We present the
number and percentage of problems for which the norms of the computed residual
were less than 10−6 and the relative errors between the solution x and the exact
sparsest solution x̄ were less than 10−8 in the third and fourth column, respectively.
The active-set algorithms required fewer matrix-vector products to achieve a higher
reconstruction rate than spg bp on average. We also report the means and standard
deviations of the number of subspace optimizations (“nSubOpt”) and the number
of continuations (“nCont”) performed by FPC AS in Table 6. The percentages of
the matrix-vector products spent on various tasks in the shrinkage and subspace
optimization stages are also presented.

We present our numerical results by using performance profiles as proposed in
[20]. These profiles provide a way to graphically compare the quantities tp,s, such as
the number of iterations or CPU time required to solve problem p by each solver s.
Define rp,s to be the ratio between the quantity tp,s obtained on problem p by solver
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s over the lowest such quantity obtained by any of the solvers on problem p, i.e.,
rp,s :=

tp,s
min{tp,s:1≤s≤ns} . Whenever solver s fails to solve problem p, the ratio rp,s is

set to infinity or some sufficiently large number. Then, for τ ≥ 0,

πs(τ) :=
number of problems where log2(rp,s) ≤ τ

total number of problems

is the fraction of the test problems that were solved by solver s within a factor 2τ ≥ 1
of the performance obtained by the best solver. The performance plots present πs for
each solver s as a function of τ . A performance plot for the CPU time is presented in
Figure 3(a). Both variants of the active-set algorithm were faster than spg bp on our
test set. A performance plot for the total number of matrix-vector products involving
A or A� is presented in 3(b). The variant FPC AS CG requires overall the fewest
matrix-vector products for the given test set. Figure 3(c) presents a performance plot
for the �1-norm ‖x‖1 achieved by each solver. It shows that the objective function
values obtained by all four solvers are essentially identical. Figure 3(d) compares
the l2-norms of the residual ‖r‖2 obtained by the solvers. Again, the FPC AS solvers
outperformed the SPGL1 solvers. Figure 3(e) presents a comparison of the ratio of the
number of nonzero components recovered over the number of the nonzero components
in the sparsest solution. Here, as in Figure 3(c), there appears to be no discernible
difference between these solvers. The relative error between the recovered solution
and the exact solution is depicted in Figure 3(f). On this measure, FPC AS CG and
FPC AS BD performed better than the SPGL1 solvers.

4.3. Sparco collection. In this subsection, we compare FPC AS and spg bp
on 13 problems from the Sparco collection [59] (also see [58]). The parameters of
spg bp and spg bp sub were set to their default values, and the parameters μ = 10−10,
ε = 10−12, and εx = 10−16 were set for the two variants of FPC AS. A summary of the
computational results is reported in Table 7. From the table, we can see that FPC AS
took less CPU time to achieve results comparable to spg bp on many problems, such
as “blocksig,” “blurrycam,” “blurspike,” “seismic,” and “spiketrn.”

4.4. Realistic examples. In this subsection, we demonstrate the efficiency of
FPC AS CG for solving the l1-regularized problem on six images: a Shepp–Logan
phantom available through the MATLAB Image Processing Toolbox and five medi-
cal images (three magnetic resonance images and two computed tomography scans)
in the public domain. These signals have relatively sparse representations in Haar
wavelets; that is, there exists an x∗ ∈ R

n such that z = Wx∗ for a true signal
z ∈ R

n, where W ∈ R
n×n is the Haar wavelet basis and x∗ is approximately

sparse. The measurements were constructed as b = Āz, where Ā ∈ R
m×n is the

partial discrete cosine transformation and the number of observations m = τn with
τ = m/n = 0.25, 0.50, 0.75. We then obtained approximate wavelet coefficients x of z
by solving the �1-regularized problem (1.4) with A = ĀW and μ = 10−3. Finally, we
completed the recovery by computing ẑ =Wx. We compared FPC AS with FPC and
spg bp. Since x∗ is not really sparse and is corrupted by noise, we used a relatively
large termination criterion. We used the default parameters for FPC and the param-
eters bpTol = 10−3, optT ol = 10−3, and decTol = 10−3 for spg bp. For FPC AS CG,
we set the tolerances ε = 10−3, εx = 10−6 and set the maximal iteration number for
subspace optimization to 10. The reconstruction results are summarized in Table 8.
In this table, the relative error (rel.err) between the true image z and the recovered

image ẑ is defined as = ‖z−ẑ‖
‖ẑ‖ . FPC AS CG is considerably faster than FPC and spg bp
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Fig. 3. Performance profiles.
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Table 7

Basis pursuit comparison on Sparco. In this table, for convenience of notation, “CG” denotes
FPC AS CG, “BD” denotes FPC AS BD, “bp” denotes spg bp, and “sub” denotes spg bp sub.

FPC AS SPGL1
Solver CPU ‖r‖ ‖x‖1 nnzx nMat Solver CPU ‖r‖ ‖x‖1 nnzx nMat

blocksig
CG 0.02 8.4e-10 4.5e+02 71 9 bp 0.29 1.5e-14 4.5e+02 71 23
BD 0.01 8.4e-10 4.5e+02 71 9 sub 0.21 2.2e-14 4.5e+02 71 39

blurrycam
CG 72.19 1.3e-04 1.0e+04 62757 1653 bp 422.04 1.0e-04 1.0e+04 62755 7889
BD 212.71 8.6e-07 1.0e+04 62757 4125 sub 661.18 9.7e-05 1.0e+04 62754 14715

blurspike
CG 11.76 3.9e-06 3.5e+02 15592 1451 bp 56.76 9.4e-05 3.5e+02 15587 5431
BD 30.95 4.9e-07 3.5e+02 15592 2987 sub 82.68 9.9e-05 3.5e+02 15579 9465

cosspike
CG 0.28 1.1e-09 2.2e+02 115 180 bp 0.21 8.6e-05 2.2e+02 115 112
BD 0.38 1.1e-09 2.2e+02 115 261 sub 0.32 7.9e-05 2.2e+02 115 223

finger
CG 179.91 6.7e-02 6.0e+03 10595 1486 bp 421.36 6.4e-05 5.5e+03 13359 2916
BD 934.91 8.8e-07 5.6e+03 10595 7479 sub 1545.79 9.7e-05 5.5e+03 12822 12426

gcosspike
CG 19.90 2.5e-05 1.8e+02 236 7039 bp 7.14 1.0e-04 1.8e+02 140 2565
BD 20.71 3.3e-06 1.8e+02 249 7071 sub 9.97 7.0e-05 1.8e+02 59 4015

jitter
CG 0.06 3.8e-10 1.7e+00 3 42 bp 0.06 5.3e-05 1.7e+00 3 39
BD 0.06 3.9e-10 1.7e+00 3 47 sub 0.08 3.4e-05 1.7e+00 3 67

seismic
CG 912.91 9.5e-04 4.0e+03 28643 1788 bp 1777.43 8.9e-05 3.9e+03 23141 3047
BD 3881.17 3.0e-07 3.9e+03 28637 7427 sub 8758.55 1.0e-04 3.9e+03 19793 16691

sgnspike
CG 0.36 9.4e-10 2.0e+01 20 70 bp 0.30 7.3e-05 2.0e+01 20 61
BD 0.30 9.3e-10 2.0e+01 20 67 sub 0.58 7.8e-05 2.0e+01 20 130

spiketrn
CG 5.40 2.8e-09 1.3e+01 12 6510 bp 22.73 1.0e-04 1.3e+01 12 28927
BD 6.56 2.5e-04 1.3e+01 12 6973 sub 67.80 5.2e-03 1.3e+01 356 102227

srcsep1
CG 355.44 4.8e-05 1.1e+03 42737 7026 bp 203.05 9.4e-05 1.1e+03 24707 3151
BD 368.96 2.7e-04 1.1e+03 42778 6937 sub 668.38 9.9e-05 1.1e+03 23771 12039

srcsep2
CG 553.37 5.2e-08 1.1e+03 28112 7026 bp 215.04 9.8e-05 1.1e+03 26429 2328
BD 580.87 6.3e-08 1.1e+03 27735 6951 sub 4107.26 1.0e-04 1.1e+03 24619 52686

yinyang
CG 83.78 8.4e-09 2.7e+02 929 7017 bp 18.28 9.4e-05 2.6e+02 1023 1576
BD 87.31 2.1e-06 2.6e+02 922 7205 sub 73.41 3.5e-05 2.6e+02 937 6684
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Table 8

Statistics of recovering medical images.

Problem FPC spg bp FPC AS CG

τ CPU nMat rel.err CPU nMat rel.err CPU nMat rel.err

ct thighs 0.25 45.78 403 5.7e-02 70.49 433 6.4e-02 16.30 130 5.9e-02

ct thighs 0.50 31.34 263 9.8e-03 71.21 394 1.0e-02 15.63 120 1.0e-02

ct thighs 0.75 17.60 147 3.2e-03 39.14 210 3.0e-03 11.28 81 3.9e-03

ct thorax 0.25 50.80 451 7.2e-02 79.86 494 7.5e-02 18.28 142 7.1e-02

ct thorax 0.50 37.06 315 1.9e-02 70.75 391 1.9e-02 16.63 126 2.0e-02

ct thorax 0.75 23.55 195 6.0e-03 60.98 325 6.2e-03 16.08 116 7.3e-03

mri abdomen 0.25 10.36 531 1.9e-01 18.64 606 2.1e-01 2.77 146 1.9e-01

mri abdomen 0.50 8.28 417 9.7e-02 17.93 519 9.7e-02 2.26 124 9.0e-02

mri abdomen 0.75 4.80 233 3.9e-02 11.74 322 4.0e-02 2.07 110 4.5e-02

mri brain 0.25 46.98 417 7.3e-02 98.50 606 7.8e-02 17.46 136 7.1e-02

mri brain 0.50 38.02 325 2.8e-02 72.28 400 3.0e-02 14.87 116 3.0e-02

mri brain 0.75 21.18 175 7.9e-03 65.19 336 8.3e-03 18.81 141 7.8e-03

mri pelvis 0.25 11.88 613 1.5e-01 15.26 501 1.5e-01 2.52 138 1.4e-01

mri pelvis 0.50 7.22 379 7.3e-02 10.94 327 7.4e-02 2.58 134 7.5e-02

mri pelvis 0.75 4.01 205 2.7e-02 9.14 258 3.1e-02 2.33 112 4.8e-02

phantom 0.25 3.47 799 3.6e-01 4.41 586 3.8e-01 1.04 136 3.6e-01

phantom 0.50 2.23 569 1.5e-01 3.72 506 1.6e-01 0.62 126 1.6e-01

phantom 0.75 1.06 259 2.7e-03 1.46 236 2.4e-03 0.58 116 4.1e-03

in terms of CPU time and the number of matrix-vector products needed to achieve
comparable relative errors, except on “phantom” with τ = 0.75 (although it is still
faster). The reconstructed images obtained by FPC AS CG are depicted in Figure 4.
In each row of Figure 4, the first image is the original image with a caption stating
its resolution. The second, third, and fourth are recovered images with respect to
τ = 0.25, 0.5, 0.75, respectively, together with a caption stating the relative errors
between the true image z and the recovered image ẑ.

5. Conclusions. An alternating-stage active-set algorithm with continuation for
the �1-norm regularized optimization is presented and tested. It starts with an easier
problem and strategically applies a decreasing sequence of weights μk to the �1-norm
term in the objective to gradually transform this easier problem to the given, more
difficult problem with the prescribed regularization weight μ. Shrinkage is performed
iteratively until the support of the current point becomes a good estimate of the sup-
port of the solution corresponding to the current weight. This estimate is used to
define a subset of the solution domain over which a smaller subspace optimization
problem is solved to yield a relatively accurate point. Usually, after only a small
number of subproblems, a solution of high accuracy can be obtained. At each iter-
ation of shrinkage in the first stage, a search direction is generated along with an
automatically adjusting step-size parameter λ, and either an exact or an inexact line
search is carried out to guarantee global convergence. In the second stage, the sub-
space optimization problem has a simple objective and may include bound constraints
to restrict the signs of decision variables. The numerical results presented in section
4 demonstrate the effectiveness of the algorithm for solving CS problems of varying
difficulties.
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(a) 512 x 512 (b) 5.9e-02 (c) 1.0e-02 (d) 3.9e-03

(e) 512 x 512 (f) 7.1e-02 (g) 2.0e-02 (h) 7.3e-03

(i) 256 x 256 (j) 1.9e-01 (k) 9.0e-02 (l) 4.5e-02

(m) 512 x 512 (n) 7.1e-02 (o) 3.0e-02 (p) 7.8e-03

(q) 256 x 256 (r) 1.4e-01 (s) 7.5e-02 (t) 4.8e-02

(u) 128 x 128 (v) 3.6e-01 (w) 1.6e-01 (x) 4.1e-03

Fig. 4. Medical image recovery by FPC AS CG. In each row, (a) is the original image with a
caption stating its resolution, and (b), (c), and (d) are the recovered images for τ = 0.25, 0.5, and
0.75, respectively, together with a caption stating the relative errors between the true image z and
the recovered image ẑ.
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