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Abstract 
 

This paper discusses common approaches to presenting the topic of skewness in the classroom, 

and explains why students need to know how to measure it. Two skewness statistics are 

examined: the Fisher-Pearson standardized third moment coefficient, and the Pearson 2 

coefficient that compares the mean and median. The former is reported in statistical software 

packages, while the latter is all but forgotten in textbooks. Given its intuitive appeal, why did 

Pearson 2 disappear? Is it ever useful? Using Monte Carlo simulation, tables of percentiles are 

created for Pearson 2. It is shown that while Pearson 2 has lower power, it matches classroom 

explanations of skewness and can be calculated when summarized data are available. This paper 

suggests reviving the Pearson 2 skewness statistic for the introductory statistics course because it 

compares the mean to the median in a precise way that students can understand. The paper 

reiterates warnings about what any skewness statistic can actually tell us.  

 

1.  Introduction 
 

In an introductory level statistics course, instructors spend the first part of the course teaching 

students three important characteristics used when summarizing a data set: center, variability, 

and shape. The instructor typically begins by introducing visual tools to get a “picture” of the 

data. The concept of center (also location or central tendency) is familiar to most students and 

they can easily see the “middle” or “typical” data values on a graph such as a histogram. The 
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concept of variability (also dispersion or spread) is less familiar, but when shown histograms or 

dot plots of different data sets on the same scale, students can usually identify which data sets 

have more variability and which have less. The concept of shape is even less familiar than 

variability, but visual tools are again useful for comparing symmetric and asymmetric 

distributions.  Instructors can use examples familiar to students, such as ordering time at 

Starbuck’s or professional athletes’ salaries, as data sets that clearly exhibit asymmetrical 

distributions. 

 

Studies have shown (delMas, Garfield, Ooms, and Chance 2007) that students’ abilities to 

describe and interpret a variable’s distribution from a histogram, in the context of the data, is 

quite high even before taking a first course in statistics. While qualitative descriptions of a 

distribution are helpful for summarizing a data set, students eventually will be asked to use 

statistics to numerically describe a distribution in terms of center, variability, and shape. Without 

difficulty, they can see how the mean, median, and mode can indicate the center, and how 

standard deviation and range can describe variability. But the terms skewness and kurtosis are 

non-intuitive. Worse, skewness and kurtosis statistics and formulas are opaque to the average 

student, and lack concrete reference points.  

 

Cobb and Moore (1997, p. 803) note that “In data analysis, context provides meaning.” Realizing 

this, over the past several decades, more and more instructors are using sample data arising from 

real (or realistic) scenarios. One result is that students are learning that perfectly symmetrical 

graphical displays are hard to find. Even with the ability to verbally describe a distribution from 

a visual display, researchers have found (delMas et al. 2007) that students cannot translate their 

understanding of shape when asked to compare numerical statistics such as the mean and 

median. Hence, measures of skewness are becoming more important (although many instructors 

may reasonably conclude that kurtosis does not deserve extended discussion in a basic statistics 

class). To answer this need, our paper suggests reviving an intuitive skewness statistic that 

compares the mean to the median in a precise way that students can understand. 

 

2.  Visual Displays 
 

A textbook discussion would typically begin by showing the relative positions of the mean, 

median, and mode in smooth population probability density functions, as illustrated in Figure 1. 

The explanation will mainly refer to the positions of the mean and median. There may be 

comments about tail length and the role of extreme values in pulling the mean up or down. The 

mode usually gets scant mention, except as the “high point” in the distribution. 
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Skewed Left 

Long tail points left 

Symmetric Normal 

Tails are balanced 

Skewed Right 

Long tail points right 

 

   
Figure 1.  Sketches showing general position of mean, median, and mode in a population. 

 

 

Next, a textbook might present stylized sample histograms, as in Figure 2. Figures like these 

allow the instructor to point out that (a) “symmetric” need not imply a “bell-shaped” distribution; 

(b) extreme data values in one tail are not unusual in real data; and (c) real samples may not 

resemble any simple histogram prototype. The instructor can discuss causes of asymmetry (e.g., 

why waiting times are exponential, why earthquake magnitudes follow a power law, why home 

prices are skewed to the right) or the effects of outliers and extreme data values (e.g., how a 

customer with a complicated order affects the queue at Starbuck’s, how one heart transplant 

affects the health insurance premiums for a pool of employees). 

 

 

Skewed Left Symmetric Skewed Right 

   
One Mode Bell-Shaped One Mode 

   

   
Two Modes Bimodal Bimodal 

   
Left Tail Extremes Uniform (no mode) Right Tail Extremes 

 

Figure 2.  Illustrative prototype histograms. 
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Examples are essential. For example, Figure 3 shows 1990 data on death rates in 150 nations. 

Depending on the binning, one may gain varying impressions of skewness. The instructor can 

call attention, in a general way, to the fact that a larger sample size (when available) is more 

likely to yield a histogram that reflects the true population shape (and allows for more bins in a 

histogram). 

 

 

 

 
 

Figure 3.  Effect of histogram binning on perceived skewness (n = 150). 

 

 

Other tools of exploratory data analysis (EDA) such as the boxplot or dotplot may be used to 

assess skewness visually. The less familiar beam-and-fulcrum plot (Doane and Tracy 2001) 

reveals skewness by showing the mean in relation to tick marks at various standard deviations 

from the mean, e.g., 1x s , 2x s , and 3x s . But the boxplot and beam-and-fulcrum displays 

do not reveal sample size. For that reason, the dotplot is arguably a more helpful visual tool for 

assessing skewness. In Figure 4, all three displays suggest positive skewness. 
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Figure 4.  EDA plots can reveal skewness. 

 

 

More sophisticated visual tests for symmetry and normality, such as the empirical cumulative 

distribution function (ECDF) and normal probability plot (e.g., D’Agostino and Stephens 1986) 

usually are covered later in the semester (if at all). An instructor who does not want to develop 

the idea of statistical inference at this point can simply say that the current learning objective is 

to understand the concept of skewness, and to recognize its symptoms in a general way. Exam 

questions can then be based mostly on visual displays. That may be the end of the story. 

 

Unfortunately, most students will say that the “data are skewed” if there is even the slightest 

difference between the sample mean and sample median, or if the histogram is even slightly 

asymmetric. They are thinking that the population cannot be symmetric if any differences exist 

in the sample. Can the instructor allow such statements to pass without comment or correction? 

Hoping to avoid a deep dive into statistical inference, the instructor could explain that, even in 

samples from a symmetric population, we do not expect the sample mean generally to be exactly 

equal to the median, or the histogram to be exactly like the population. Simulation can be used to 

illustrate, perhaps by computing the mean and median from samples generated from the Excel 

function =NORMINV(RAND(), μ, σ). The instructor can also remind the students that a histogram’s 
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appearance varies if we alter the bin limits, so any single histogram may not give a definitive 

view of population shape. But students like clear-cut answers. The next question is likely to be: 

 

  “OK, but how big a difference must we see between the mean and median to say that the 

population is skewed? Isn’t there some kind of test for skewness?” 

 

Students who notice the skewness statistic in Excel’s Descriptive Statistics may ask more specific 

questions. For example: 

 

  “My sample skewness statistic from Excel is –0.308. So can I say that my sample of 12 

items came from a left-skewed population?” 

 

  “In my sample of 12 items, the sample mean 56.56 exceeds the sample median 53.83, yet 

my skewness statistic is negative –0.308. How can that be?” 

 

 

3.  Skewness Statistics 
 

Since Karl Pearson (1895), statisticians have studied the properties of various statistics of 

skewness, and have discussed their utility and limitations. This research stream covers more than 

a century. For an overview, see Arnold and Groenveld (1995), Groenveld and Meeden (1984), 

and Rayner, Best and Matthews (1995). Empirical studies have examined bias, mean squared 

error, Type I error, and power for samples of various sizes drawn from various populations. A 

recent study by Tabor (2010) ranked 11 different statistics in terms of their power for detecting 

skewness in samples from populations with varying degrees of skewness. MacGillivray (1986) 

concludes that “…the relative importance of the different orderings and measures depends on 

circumstances, and it is unlikely that any one could be described as most important …”.  He 

notes that describing skewness is really a special case of comparing distributions. This key point 

is perhaps a bit subtle for students. Students (and instructors) merely need to bear in mind that 

we are not testing for symmetry in general. Rather, the (often implicit) null hypothesis must refer 

to a specific symmetric population. Because the most common reference point is the normal 

distribution (especially in an introductory statistics class) we will limit our discussion 

accordingly. 

 

Mathematicians discuss skewness in terms of the second and third moments around the mean, 

i.e., 2
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software packages (e.g., Stata, Visual Statistics, early versions of Minitab) report the traditional 

Fisher-Pearson coefficient of skewness:  
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Following Pearson’s notation, this statistic is sometimes referred to as 
1  which is awkward 

because g1 can be negative. Pearson and Hartley (1970) provide tables for g1as a test for 

departure from normality (i.e., testing the sample against one particular symmetric distribution). 

Although well documented and widely referenced in the literature, this formula does not 

correspond to what students will see in most software packages nowadays. Major software 

packages available to educators (e.g., Minitab, Excel, SPSS, SAS) include an adjustment for 

sample size, and provide the adjusted Fisher-Pearson standardized moment coefficient
1
: 
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In large samples, g1 and G1 will be similar. Few students will be aware of this formula because it 

is buried within the help files for the software. The formula for G1 is probably not even in the 

textbook unless the student is studying mathematical statistics. However, this statistic is included 

in Excel’s Data Analysis > Descriptive Statistics and is calculated by the Excel function 

=SKEW(Array), so it will be seen by millions of students. If students look up “skewness” in 

Wikipedia, they will find a different-looking but equivalent formula: 
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This alternate formulation (1c) has the attraction of showing that the adjustment for sample size 

approaches unity as n increases. Joanes and Gill (1998) compare bias and mean squared error 

(MSE) of different measures of skewness in samples of various sizes from normal and skewed 

populations. G1 is shown to perform well, for example, having small MSE in samples from 

skewed populations.  

 

Unfortunately, none of these formulas is likely to convey very much to a student. An ambitious 

instructor can dissect such formulas to impart grains of understanding to the best students, while 

the rest of the class groans as the discussion turns to second and third moments around the mean. 

The resulting insights are, at best, likely to be short-lived. Yet once students realize that there is a 

formula for skewness and see it in Excel, they will want to know how to interpret it. The 

instructor must decide what to say about a statistic such as G1 without spending more time than 

the topic is worth. A minimalist might say that 

 

 Its sign reflects the direction of skewness. 

 It compares the sample with a normal (symmetric) distribution. 

                                                 
1
 Not many years ago, computer packages reported g1without an adjustment for sample size. Although the 

adjustment is now incorporated in software packages, textbooks (with a few exceptions) do not report an adapted 

version of the Pearson-Hartley tables. For that matter, many textbooks show no table of critical values at all. 

Without a table, why even mention the sample skewness statistic? 
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 Values far from zero suggest a non-normal (skewed) population. 

 The statistic has an adjustment for sample size. 

 The adjustment is of little consequence in large samples. 

 

Because it is used in Excel (millions of customers) let us look more closely at G1. An ambitious 

instructor could introduce Table 1, showing critical values, here called a “90 percent range” to 

avoid introducing formal hypothesis testing terminology. Students can learn to use such a table 

to decide whether or not the sample statistic is far enough from zero to conclude that the sample 

probably did not come from a normal population. Because the table starts at n = 25, the instructor 

can point out that skewness is hard to judge in smaller samples (a wide expected range for G1). 

The instructor can also use the table to explain that, in samples from a normal population, the 

expected range of G1 decreases as sample size increases (and conversely). The instructor should 

also mention that G1 is not a general test of symmetry, because the table refers only to a normal 

population.  

 

 

Table 1.  90% range for sample skewness coefficient G1. 

n Lower Limit Upper Limit  n Lower Limit Upper Limit 

25 -0.726 0.726  90 -0.411 0.411 

30 -0.673 0.673  100 -0.391 0.391 

40 -0.594 0.594  150 -0.322 0.322 

50 -0.539 0.539  200 -0.281 0.281 

60 -0.496 0.496  300 -0.230 0.230 

70 -0.462 0.462  400 -0.200 0.200 

80 -0.435 0.435  500 -0.179 0.179 

Source: David P. Doane and Lori E. Seward (2011), Applied Statistics in Business and Economics, 
3e, (McGraw-Hill), p. 155. The table is adapted from E. S. Pearson and H. O. Hartley, Biometrika 
Tables for Statisticians, 3rd Edition, Cambridge University Press, 1970, page 207 using an 
adjustment for sample size. Values outside this range would suggest a non-normal population. Table 
used with permission. 

 

 

For example, G1 tells us that the death rate data for150 nations do not seem to be from a normal 

distribution, because G1 = 0.735 is well outside the 90 percent range –0.322 to +0.322 for a 

sample of n = 150. The value of G1 is shown in Excel’s descriptive statistics output shown in 

Table 2. The G1 statistic is helpful in this example, because the visual displays (Figures 3 and 4) 

do not appear strongly asymmetric. Further, the median (9.65) is arguably close to the mean 

(10.47). Without G1 we might not detect skewness in the sample
2
.  

  

                                                 
2
 Students who ask whether this is a sample or a population can be reminded that death rates for a nation are 

measured only at a given point in time, and so a given year’s data may be affected by transient factors. In this sense, 

it resembles a sample from some kind of true, long-run steady state.  
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Table 2.  Excel’s descriptive statistics. 

Death Rate Per 1,000 

Mean 10.468 

Standard Error 0.3787 

Median 9.65 

Mode 9.7 

Standard Deviation 4.6381 

Sample Variance 21.512 

Kurtosis -0.03876 

Skewness 0.73465 

Range 21.5 

Minimum 2.3 

Maximum 23.8 

Sum 1570.2 

Count 150 

 

 

A word about kurtosis is in order. Horswell and Looney (1993, p. 437) note that “The 

performance of skewness tests is shown to be very sensitive to the kurtosis of the underlying 

distribution.”  Few instructors say much about kurtosis, partly because it is difficult explain, but 

also because it is difficult to judge from histograms. Kurtosis is essentially a property of 

symmetric distributions (Balanda and MacGillivray 1988). Data sets containing extreme values 

will not only be skewed, but also generally will be leptokurtic. We cannot therefore speak of 

non-normal skewness as if it were separable from non-normal kurtosis. The best we can do is to 

focus on the skewness statistic simply as one test for departure from the symmetric normal 

distribution
3
.  

 

Because G1 is a common, well-documented statistic, why look further? There are three reasons:  

 

 The mathematical form of this statistic is likely to be non-intuitive to a student, and may 

be intimidating because of its mathematical complexity.  

 Its mathematical form fails to build on what was said previously about comparing the 

mean and median, which in effect makes it seem to be a new topic entirely.  

 The formula only works if we have raw data x1, x2, …, xn. What if we only have 

summarized data (mean, median, standard deviation) as in many textbook problems? 

 

Older mathematical statistics textbooks (e.g., Yule and Kendall 1950; Kenney and Keeping 

1954; Clark and Schkade 1974) refer to skewness measures that directly compare either the mean 

and mode, or the mean and median. For empirical calculations, Yule and Kendall (1950, p. 161) 

recommend using a statistic that compares the mean ( x ) and median (m): 

 

                                                 
3
 If we are mainly interested in testing for non-normality, there is a simple measure that can be computed from 

summarized data: the studentized range (xmax–xmin)/s. This test is attractive because it does not require raw data 

(Tracy and Doane, 2005) and has good power. 
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The attraction of this statistic (henceforward the Pearson 2 skewness coefficient) is that it is 

consistent with the intuitive approaches developed earlier. You can see its sign at a glance. It 

shows how many standard deviations apart the two measures of center are. Hotelling and 

Solomons (1932) first showed that the statistic ( ) /x m s  will lie between –1 and +1, so Sk2 will 

lie between –3 and +3 (although, in practice, it rarely approaches these limits.) 

 

This statistic is no longer seen in textbooks (based on our review of over 30 popular business 

statistics textbooks with recent copyrights) although it does show up in some Web searches (e.g., 

http://mathworld.wolfram.com). We can find no tables of critical values. Arnold and Groeneveld 

(1995) note that Sk2 has some desirable properties (it is zero for symmetric distributions, it is 

unaffected by scale shift, and it reveals either left- or right-skewness equally well). But two 

issues must be examined before suggesting a revival of this intuitively attractive statistic: (1) we 

need a table of critical values for Sk2, and (2) we should compare the power of Sk2 and G1.  

 

 

4.  Type I Error Simulation 
 

We obtained preliminary critical values for Sk2 using Monte Carlo simulation with Minitab 16. 

We drew 20,000 samples of N(0,1) for n = 10 to 100 in increments of 10 and computed the 

sample mean ( x ), sample median (m), and sample standard deviation (s). For each sample size, 

we calculated Sk2 and its percentiles. Upper and lower percentiles should be the same except for 

sign, so we averaged their absolute values (effectively 40,000 samples). Table 3 shows the 5% 

and 10% critical values from our simulation.  

 

 

Table 3.  Monte Carlo estimates of percentiles for Pearson 2 skewness coefficient Sk2. 

     
Sample Size 

    Percentile* 10 20 30 40 50 60 70 80 90 100 

5% Upper* 0.9629 0.7617 0.6433 0.5542 0.5062 0.4632 0.4371 0.4069 0.3851 0.3669 

10% Upper* 0.7682 0.5967 0.5058 0.4374 0.3915 0.3605 0.3399 0.3167 0.3005 0.2865 

*Average of upper and lower absolute percentiles using 20,000 samples from N(0,1) using Minitab 16. 

 

 

Figure 5 shows the upper percentiles for sample sizes 10 to 100. Sampling variation exists, 

although the overall pattern is quite stable.  

 

 

http://mathworld.wolfram.com/
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Figure 5.  Monte Carlo estimates of percentiles for Pearson 2 skewness coefficient. 

 

 

To complete the analogy with G1, Table 4 shows a 90 percent range that makes it easier for 

students to interpret (cf. Table 1). A footnote is placed in the table to make sure that it is 

interpreted correctly. 

 

 

Table 4.  90% expected range for Pearson 2 skewness coefficient Sk2. 

n Lower Limit Upper Limit  n Lower Limit Upper Limit 

10 –0.963 0.963  60 –0.463 0.463 

20 –0.762 0.762  70 –0.437 0.437 

30 –0.643 0.643  80 –0.407 0.407 

40 –0.554 0.554  90 –0.385 0.385 

50 –0.506 0.506  100 –0.367 0.367 

Note: If your sample is from a normal population, the skewness coefficient Sk2 would fall within the 
stated range 90 percent of the time. Values of Sk2 outside this range suggest non-normal skewness. 

 

The table for Sk2 can be turned into a decision diagram that students might find easier to 

understand, as in Figure 6. We only display sample sizes up to 100 because the diagram narrows 

sharply and labeling becomes difficult (also because small samples are more common in the 

classroom). A student can see that inferences for small samples are risky. 
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Figure 6.  90% expected range for Pearson 2 skewness coefficient Sk2. 

 

 

How do the simulated values of Sk2 compare with the simulated values of G1 for the same 

samples? We used the R language with the CRAN library C1071 to simulate both Sk2 and G1 for 

50,000 samples of sizes up to n = 200, with the results shown in Figure 7. Their similarity shows 

that Sk2 is measuring the same thing as G1. In larger samples, the measures are almost identical. 

The same stable pattern exists for other percentiles (not shown for simplicity).  

 

 

 
Figure 7.  Hartley-Pearson 5% critical values of G1 and Monte Carlo 5% estimates for Sk2. 

 

 

Over many samples (as in our simulation) the tests will agree on average. But if G1 and Sk2 are 

so similar, isn’t it a tossup which we use? No, because Sk2 has more variability than G1. By 

definition, Sk2 depends not only on the estimates x and s, but also on the sample median m. With 

more sources of variation, we would therefore expect Sk2 to have lower power than G1. We will 

now show that this is, indeed, the case.  
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5.  Type II Error Simulation 
 

Type II error in this context occurs when a sample from a non-normal skewed distribution does 

not lead to rejection of the hypothesis of a symmetric normal distribution. There are an infinite 

number of distributions that could be explored, including “real world” mixtures that do not 

resemble any single theoretical model. Just to get some idea of the comparative power of Sk2 and 

G1, we will illustrate using samples from two non-normal, unimodal distributions 

 

 a mildly skewed distribution: χ
2
(5), and 

 a highly skewed distribution:  χ
2
(2). 

 

These two populations are illustrated in Figure 8, along with the normal distribution. The scales 

do not matter, because our two skewness statistics Sk2 and G1 are unit-free measures. 

 

 

  

    
Figure 8.  Three populations used in simulations. 

 

 

For samples from χ2
(5) (the middle figure) we would anticipate low power for any test of 

skewness, because the population is only mildly skewed. As illustrated in Figure 9, even a fairly 

large sample of 50 from χ2
(5) can produce a histogram that might pass a visual test for normality. 

However, in samples from χ2
(2) (an exponential distribution) we would almost always expect 

rejection of normal skewness (the third figure).  
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Figure 9. Sample histograms (n = 50) from three populations. 

 

 

Following the spirit of the Type I error simulations, we drew 10,000 samples of each sample size 

from each non-normal population. For each sample, we calculated both Sk2 and G1. Using the 

previously-calculated percentiles for Sk2 and the known Hartley-Pearson percentiles for G1, we 

counted the number of samples that would lead to rejection of the hypothesis of a symmetric 

normal population. We then computed the empirical power of each statistic. These results are 

shown in Table 5. Although our power simulations are not directly comparable to those by Tabor 

(2010), we did confirm Tabor’s 0.64 power for Sk2 under his experimental setup with n = 10 

from 

(1) at α = .05. 
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Table 5.  Monte Carlo power for Sk2 and G1 for two non-normal right-skewed populations. 

     
Sample Size 

    
Mildly skewed population: χ

2
(5) 10 20 30 40 50 60 70 80 90 100 

Sk2 rejections @  = .10 2,002 3,327 4,433 5,565 6,395 7,010 7,575 8,047 8,484 8,785 

G1 rejections @  = .10 (adj) NA NA 7,263 8,415 9,119 9,506 9,753 9,874 9,945 9,970 

G1 rejections @  = .10 (unadj) NA NA 7,357 8,457 9,137 9,520 9,759 9,874 9,945 9,970 

Strongly skewed population: χ
2
(2) 

          
Sk2 rejections @  = .10 3,917 6,331 7,847 8,808 9,398 9,674 9,797 9,902 9,948 9,976 

G1 rejections @  = .10 (adj) NA NA 9,460 9,849 9,969 9,994 9,988 10,000 10,000 10,000 

G1 rejections @  = .10 (unadj) NA NA 9,497 9,856 9,970 9,994 9,989 10,000 10,000 10,000 

Based on 10,000 samples using Minitab Version 16. Tests are two-tailed using  = .10, i.e., reject normal (symmetric) 
distribution if the test statistic exceeds the .05 critical value in either tail. 

 

 

The adjustment in the Hartley-Pearson critical values makes little difference for the sample sizes 

we are considering, so Figure 10 only compares power for Sk2 with power for G1. In samples 

from 
2
(5), neither test performs well in small samples. However, G1 is clearly superior, its 

power quickly approaching1.00, while Sk2 barely exceeds .80 for the largest sample size shown. 

In samples from 

(2), both tests perform well beyond n = 50. However, Type II error for G1 

approaches zero for n = 70 or greater while Sk2 approaches power of 1.00 more slowly. 

 

 

   
Figure 10.  Empirical power based on 10,000 samples from skewed populations. 

 

 

6.  Summary and Conclusions 
 

Visual displays (e.g., histograms) provide easily understood impressions of skewness, as do 

comparisons of the sample mean and median. However, students tend to take too literal a view of 

these comparisons, without considering the effects of binning or the role of sample size. The 

moment coefficient statistic G1 is widely available, but is not easily interpreted and its tables are 

not available in textbooks. In contrast, the Pearson 2 skewness statistic Sk2 has strong 

pedagogical appeal because it corresponds to the way we like to talk about skewness. It is easy to 
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calculate and interpret as long as we have just three statistics (the sample mean, median, and 

standard deviation). Further, Sk2 is the only way to measure skewness when we do not have the 

original sample data x1, x2, …, xn.  

 

We can create tables of critical values for Sk2 using Monte Carlo simulation to control Type I 

error at any desired level. With such tables, interpreting Sk2 is as easy as interpreting G1. The 

critical values of Sk2 and G1 lead to the same conclusion on average. The weakness of Sk2 is that 

it lacks power. Perhaps this is why Sk2 has fallen out of favor in textbooks, although this 

argument against Sk2 has not been forcefully articulated in the literature on teaching statistics. 

Since many introductory textbooks do not mention these formulas or tables at all, it is hard to 

argue that G1 is a well-established benchmark in introductory textbooks, despite its undisputed 

primacy in mathematical statistics. The tradeoff of lower power against increased comprehension 

and ease of calculation may be worthwhile for classroom teachers. Regardless which statistic (if 

any) we use to assess skewness, students should understand that a large skewness statistic casts 

doubt on the normality of the population, and is not merely a test for skewness.  
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