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Summary 

Mining patterns of gene expression provides a crucial approach in discovering knowledge 

such as finding genetic networks that underpin the embryonic development. Analysis of 

mining results and evaluation of their relevance in the domain remains a major concern. 

In this paper we describe our explorative studies in support of solutions to facilitate the 

analysis and interpretation of mining results. In our particular case we describe a  solution 

that is found  in the extension of the Gene Expression Management System (GEMS), i.e. 

an integrative framework for spatio-temporal organization of gene expression patterns of 

zebrafish to a framework supporting data mining, data analysis and patterns interpretation 

As a proof of principle, the GEMS has been equipped with data mining functionality 

suitable for spatio-temporal tracking, thereby generating added value to the submission of 

data for data mining and analysis. The analysis of the genetic networks is based on the 

availability of domain ontologies which dynamically provides meaning to the discovered 

patterns of gene expression data. Combination of data mining with the already presently 

available capabilities of GEMS will significantly augment current data processing and 

functional analysis strategies. 

1 Introduction 

Data mining techniques are used to identify intrinsic patterns in data, and thereby amongst 

other things, support generation of new hypothesis. It is recognized that the application of 

data mining techniques involves many tasks supported by a heterogeneous suite of tools. 

Typically, data analysts deal with a large number of pattern results, from which they have to 

retrieve the potentially interesting results and interpret what they reveal about the domain. 

Interpretation of data mining results requires many decisions taken by experts that must be 

familiar with data mining techniques and at the same time have sufficient background 

knowledge of the area under study. These requirements are however, not common to all end-

users. Therefore, we propose a framework that offers data mining application and results 

analysis and interpretation. In this paper we present our approach that focuses on embedding 

mining functionality in the GEMS framework [1]. The GEMS is a system for gathering and 

retrieval of 3D patterns of gene expression data using domain ontologies [2]. This system has 

been extended to serve as an effective environment of knowledge discovery and 

interpretation. So, in the same framework, data mining can be applied whereas a primary 

analysis of the discovered rules can also be performed using domain ontologies which 

provides patterns with meaning and links to external resources We believe that such 

framework will significantly contribute to and facilitate data analysis and interpretation . 

Gene expression profiles on the level of the transcripts, as well as on the level of the proteins 

can be a valuable tool to understand gene function. A lot of available methods for gene-
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expression data-analysis are based on clustering algorithms. These algorithms tend to focus on 

data with the same expression mode while the transcriptional relation between genes is not 

addressed. Our attempt to find new patterns in the data was accomplished with association 

rules. Unlike clustering techniques, this method reveals mutual interaction among genes. In 

this manner, biologically relevant associations between different genes can be revealed. 

Importantly, in our study we focused on gene expression patterns generated through in situ 

hybridization [3] and thus include both spatial and temporal information. We have explored 

methodologies for data mining on our spatio-temporal data and in this paper we discuss our 

proof of concept methodology. In this methodology we are using an association rule mining 

technique to discover elements with a correlated occurrence within our gene expression 

dataset. Subsequently we applied pattern annotation to analyze the mining results. 

Market Basket Analysis [4] is a typical and widely-used example of association rule mining. 

In bio-molecular research, association rules are typically applied on results of gene expression 

levels obtained from microarray experiments. The first step in mining microarrays is to find 

association rules between patterns of gene expression. The second step is to find a plausible 

biological interpretation of the associated patterns that are discovered. This step is the most 

delicate and time consuming phase in the analysis of the discovered rules since the results 

have to be accurately placed into context with existing biological knowledge, such as 

scientific literature and other biomolecular data. In our case, we work on accurate 3D patterns 

of gene expression that were obtained from fluorescent in situ hybridization experiments and 

annotated with standardized and structured metadata as part of the data submission to the 

GEMS database [1]. The way in which this information is generated and organized assures 

easy interpretation of mining results. 

2 Methods 

Association rule discovery is a data mining method that has been extensively used in many 

applications in order to discover associations among subsets of items from large transaction 

databases [4]. In order to introduce the general idea, we first formulate the conceptual 

framework of this method and then illustrate how we explore our data with this method. 

Association rules discovery methodology can be defined as follows:  

2.1 Definition 

1. Given a set of items I = {i1, i2, i3, …, in} and a set of transactions D = {T1, T2, …, Tm}, 

each transaction T in D is a subset of items in I. 

2. Given a set of items (for short itemset) X  I, the support of X is defined by: 

  Support(X) = freq (X)/|D|, which means that the support is equal to the proportion  

            of transactions that contain X to all transactions |D|. 

3. An association rule has the following implicit form:  

X  Y where X, Y  I and X  Y =  . The itemsets X and Y are called 

antecedent (Left-Hand-Side or LHS) and consequent (Right-Hand-Side or RHS) of 

the rule respectively. 

4. Each rule is associated with its confidence and support: 

a. Confidence (X  Y) = freq (X Y)/freq (X) 

b. Support (X  Y)       = support (X  Y), 

 where support (X Y) = freq (X  Y)/|D|.   
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In general, an association mining algorithm operates in two steps. First all itemsets that satisfy 

the minimum support are generated. And, second, association rules that satisfy the minimum 

confidence using the large itemsets are generated. An itemset is a set of items and a large 

itemset is an itemset that has transaction support higher than the minimum. Given a set of 

transactions, mining for association rules is therefore to discover all association rules that 

have support and confidence greater than the user specified minimum support and minimum 

confidence. 

The prototypical example to illustrate association rules is found in the domain of the 

supermarket [4]. Here a transaction is someone buying several items at the same time. An 

itemset would then be something like {cheese, beer} and an association rule is as follow:  

cheese  beer [support = 10%, confidence = 80%]. This rule says that 10% of customers buy 

cheese and beer together and those that buy cheese also buy beer 80% of the time.   

There are many efficient algorithms to find association rules, major issue remains to find the 

right algorithm for our particular requirements. We started our gene expression mining studies 

with the APRIORI algorithm. We used this algorithm since it is the basic algorithm for 

association-rule mining. APRIORI was extensively studied and successfully applied in many 

problem domains [4][5].  It depends on a very basic property, i.e. for an itemset to be 

frequent; each of its subset must also be a frequent itemset. The algorithm starts with a single 

item in the set and then runs iteratively with each frequent itemset detected in the previous 

level increases by one. This algorithm has many advantages like the capability to find 

frequent patterns, accuracy and controlled candidate generation. However, it has some 

limitations. Normally different genes have different temporal expression. Some genes are 

expressed frequently and earlier in time then others. Thus considering only the occurrence 

count of each item (gene) may not lead to fair measurements. Therefore, we considered the 

Progressive Partition Miner algorithm (PPM) [6] that we applied on our set of data. The ideas 

of PPM algorithm is to first partition a dataset and then progressively accumulate the 

occurrence count of each itemset based on the intrinsic partitioning characteristics. The PPM 

algorithm employs a filtering threshold in each partition to early prune those cumulatively 

infrequent itemsets.  

The PPM algorithm was first validated before integration within the GEMS framework. For 

this validation, we used first original dataset [6] so as to get exactly the same mining results. 

Subsequently, we used gene expression data subset from Zebrafish Information Network, i.e. 

ZFIN (http://zfin.org) to further evaluate this association rules technique. We downloaded and 

imported ZFIN gene expression data in a local database, and then we applied the PPM 

algorithm on this dataset to generate associated rules. ZFIN data served as a case study to 

evaluate and explore the PPM algorithm against gene expression data.  

2.2 Implementation 

We translated the PPM algorithm into a java application that we, again, evaluated before 

integration into the GEMS. The GEMS has a tree tire architecture with: (1) an information 

side, (2) a server side and (3) a front-end (browser). Through the front-end users sent requests 

to the server side to be processed. Responses from the server are sent and displayed at the 

front-end. We defined and implemented the resources required for the interactive rule mining 

framework using a platform/language with java as technology support (cf. Figure 1).  Through 

GEMS, the mining application can be executed in two different ways: as an autonomous java 

agent and through the user interface. In the latter case, users are able to execute the PPM 

mining algorithm by sending a HTTP request to execute the mining algorithm (cf. 1, in Figure 

1). The application processes users’ request and queries the GEMS MySQL database to 
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generate a dataset. The query result is pre-processed to a multi-line text file where each line is 

considered as a transaction. In our case we consider each transaction as a developmental stage 

(time point) and the items are the genes expressed at this stage.  The application executes first 

to find the frequent 2-itemsets in the data (cf. 3, in Figure 1). From the frequent 2-itemsets the 

association rules between the items are mined and presented to the user. We provide a 

graphical user interface to start the mining procedure and to explore the generated rules for 

data interpretation and analysis.  

Browser

Process

Data Store

GEMS database

Get data

(2)

Request

(1)

Response

(3)

 

Figure 1: The process flow of the web-application to mine expression patterns. 

Data stored in the GEMS concerns spatio-temporal patterns of about 100 different 

developmental genes in zebrafish [1]. Patterns (3D images) are obtained from whole mount 

fluorescent in situ hybridization (FISH) experiments and visualized through Confocal Laser 

Scanner Microscopy (CLSM). Our methodology of pattern generation enables precise 

information on the spatial localization of gene expression. This spatial localization 

significantly enhances functional analysis of gene function [3][7]. The patterns are 

subsequently annotated using domains ontologies and stored in the GEMS database [1][8]. 

We use the annotations of the patterns supported with the 3D images to post-process the 

mining results that we have obtained. 

3 Results 

ZFIN is a substantial and rich resource of (2D) gene expression data. In our ZFIN dataset, we 

were able to attain a large amount of rules. For PPM evaluation we limited the analysis to a 

small number of rules. We selected only rules in the interval of [support >40, confidence >80] 

(cf. Table 1). Additionally, for data analysis we limited expression information to those 

realized under the same experimental conditions (mRNA in situ hybridization) and obtained 

between  two typical developmental stages in zebrafish ,i.e. “prim 15” en “long pec” (cf. 

Table 2). 

Rule number  ANTECEDENT CONSEQUENT 

1 Btg2 Tbx20 

2 Hoxa3a Tbx20 

3 Hoxa3a Ccnb1 

Table 1: An example extracted from the ZFIN result set using the PPM algorithm (support > 

40% and confidence > 80%). 
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For the selected rules we used their annotation to extract the spatial information (where each 

gene is expressed). From ZFIN framework we obtain the spatial anatomical annotation at 

structure level. However, ZFIN does not provide a description of the expression domains at 

different levels of granularity for an exhaustive coverage of the expression areas. Therefore, 

to complete the description of the expression domains we used the Developmental Anatomy 

Ontology of Zebrafish (DAOZ) [2]. This extended ontology provides functional description of 

anatomical structures and spatial information of the expression domain at different levels of 

granularity (cf. Table 2). For example from ZFIN we extracted the information that Btg2 is a 

gene that is expressed at Hindbrain and Tegmentum. For a more comprehensive description of 

the expression domain we used DAOZ. Therefore, we could articulate that the expression 

domain of Btg2 belongs to the central nervous system, is located in the brain and is exactly 

expressed at Hindbrain and Tegmentum.  

Gene symbol 
Expression information 

Organ Structure Functional System 

Btg2 
Brain Hindbrain, Tegmentum Central nervous system 

Neuroblast Neuron Nervous System 

Tbx20 

Eye 
Retina, Retinal ganglion Cell 

layer,  
Visual system  

Heart Heart Cardiovascular system 

Brain Hindbrain, Tegmentum Central Nervous System 

Neuroblast Neuron Nervous system 

Ccnb1 

Eye Eye, Optic tectum, Retina Visual system 

Anatomical cluster Proliferative region - 

Pectoral fin Pectoral fin musculature Skeletal system 

Gill Pharyngeal arch 3-7 skeleton Respiratory System 

Hoxa3a 

Brain Hindbrain, Rhombomere Central nervous system 

Gill Pharyngeal arch 3-7 skeleton Respiratory System 

Spinal cord Spinal cord Nervous system 

Table 2: This table illustrates expression information of genes of the selected rules. 

In Table 2 we detected that the expression information resulted in a simplified analysis of 

rules. Therefore, we observed that an overlap exists between the expression domains of the 

chosen rules. This result is interesting and it will be worthy of further investigations. In this 

explorative study to the proof of principle, however, we paused at this point. In our 

experiments we used the ZFIN dataset to validate and explore the PPM algorithm. The result 

has allowed us to further apply the PPM algorithm on GEMS data. We integrated the PPM 

algorithm within the GEMS framework so that users can execute this mining algorithm on the 

fly while submitting new data. 

The patterns of gene expression are annotated with spatial variables with a multi-level 

hierarchy. These variables could be exploited to select a dataset with common features and 

apply on this dataset the mining algorithm. For the rules presented in this paper (cf. Table 3) 

we first generated a dataset by querying the GEMS database for patterns with a common 

spatial location at a gross level of granularity, i.e. body and tail. Second we apply the PPM 
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algorithm. The generated rules were post-processed using their temporal, functional and 

spatial classifications at organ and structure levels.  

Rule number  ANTECEDENT CONSEQUENT 

1 myoD hoxb13a 

2 myoD LysC 

3 Fgf8 Shh 

4 hoxa9a Shh 

5 sox9b Shh 

Table 3: An example extracted from the result set using the PPM algorithm (support >= 30% 

and confidence >= 75%) on the GEMS dataset. 

 
Developmental stages 24-120 hpf 36-120 hpf 18-96 hpf 10-24 hpf 

Genes fgf8 

hoxa9a 

shh 

myoD 

sox9a 

LysC hoxb13a 

Table 4: This table shows the temporal relationship between genes of the selected patterns. 

Our experiments on the GEMS data are typically inductive. They are not applied to prove or 

disprove any pre-existing hypothesis. Form the rules that were generated, we tried to identify 

spatio-temporal patterns embedded within one enclosed framework and thereby support 

hypothesis generation. To investigate the selected rules, we first explore the temporal 

characteristic of both antecedents and consequents (cf. Table 4). In rules 1 and 2, the 

antecedent myoD is expressed in early and late zebrafish development. Both consequents, i.e. 

LysC and hoxb13a are also expressed at early stages of development. For rules 3, 4 and 5 both 

antecedents and consequents have a similar temporal exhibition, i.e. at early and late zebrafish 

development.  Second, we looked at the spatial information of the expression domain of each 

rule. Here we explored the spatial information at different levels of granularity. We started 

our exploration at organ level and we finalize our exploration by looking at the anatomical 

structure at a finer level of granularity (cf. Table 5). Since patterns of gene expression in 

GEMS are also annotated with functional system information of the expression domain we 

used this information in our investigation. In the example below, we recognized that 

antecedents and consequents of rules 3, 4 and 5 have strong relationships. These relationships 

are seen at different levels of abstraction from body region to organ to structure to functional 

system. These data indicate that these genes might be strongly correlated in the 

morphogenesis of the posterior body in zebrafish. This initial analysis has been realized using 

existing anatomical information extracted from the GEMS database. Once, a user selects a 

pattern of interest, a detailed analysis can start. 

The patterns are linked to 3D images (cf. Figure 2). Requests to view 3D patterns of gene 

expression (3D images) are in fact 3D queries submitted to the GEMS database to visualize 

the expression domains in 3D. 3D patterns provide detailed spatio-temporal information of the 

expression domains and allow overlap discovery between genes under study [8]. This 3D 

detailed information represents an efficient analytical approach for functional analysis at 

image domain. Additionally, each visualized 3D pattern is linked to external resources which 

provide additional dimensions for rules analysis.  
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Gene 
Expression Domain 

Functional System 
Body region Organ Structure 

hoxa9a Body Fins Mesenchyme pectoral fin bud Locomotion 

Shh Body Fins Fin Locomotion 

sox9b Body 

Skeleton, 

Muscular and 

Fins 

Mesenchyme pectoral fin bud 

and pectoral fin cartilage 
Locomotion 

fgf8 Body Fins 
Apical ectodermal ridge 

pectoral fin 
Locomotion 

LysC Tail 

Blood, 

haematopoietic 

tissues 

Macrophages Immune system 

hoxb13a Tail Body axis Tail bud Developmental 

myoD Tail 
Skeleton and 

Muscular 
Mesenchyme fin Locomotion 

Table 5: Spatial relationships between genes of the selected patterns. 

The GEMS is a tool for managing and linking spatio-temporal patterns of gene expression. 

Here, we demonstrated that the functionality of GEMS can be extended with tools for mining 

patterns of gene expression. By this, we hope to create an added value to enhance knowledge 

interpretation of mining results. 

 

 

Figure 2: An example extracted from the result set of the PPM algorithm (support >=30% and 

confidence >= 75%) on the GEMS dataset. The first tree genes have a common expression in tail 

while the second tree contains rules with genes having a common expression in fin (in the body 

region). The depicted (thumbnail-) images of patterns of gene expression are realized from 2D 

projections of the dual-channels image stack that was obtained with CLSM-imaging. 

4 Conclusions and future work 

The results presented in this paper are part of a proposed framework to facilitate analysis task 

of mining rules by improving the ability to interpret the discovered rules, evaluate their 

relevance and obtain insight on the discovered knowledge. We have extended our previous 

Antecedent 

Consequent Antecedent 

Consequent 
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work [1] regarding the general framework where gene expression patterns are managed using 

their temporal and spatial features within an integrative context. The extension includes the 

inclusion of mining techniques to the general framework and how to use this framework as a 

primary platform to analyze mining results to judge at an early stage whether a rules is 

interesting or not. Our experimental results are the outcome of using an association rules 

algorithm (PPM). Resulting sets from this algorithm could be analyzed and compared with 

each other. 3D patterns of gene expression (3D images) provide an advanced functional 

analysis of genes and spatial overlap discovery [9] of expression domains between genes 

under study. To facilitate spatial overlap discovery, direct integration of expression domains 

within 3D atlas models [10][11][12][13][14][15] should be realized. This integration will 

allow a more advanced functional analysis in the future. De facto, the GEMS platform enables 

a mapping on other data resources. The patterns in the GEMS database are stored with formal 

and unified metadata. Therefore, the interpretation and integration of the rules within a large-

scale biological network is permitted. This situation reduces the time needed to analyze the 

results, and prune the irrelevant rules and use interesting ones to derive new hypothesis. The 

preliminary results presented here, also demonstrate how generated rules can be supported by 

a visual representation of the data. The researcher/user can immediately and intuitively put the 

discovered rule in a visual context given by available 3D images with patterns of gene 

expression.  

Spatio-temporal data mining is a promising research area dedicated to the development and 

application of computational techniques for the analysis of spatio-temporal databases [16]. 

Such techniques require further investigation. In this study, we started with a straightforward 

algorithm, i.e. PPM. Currently, we are considering other mining algorithms [17] able to 

compare patterns between species and therewith including an evolutionary component. 

Frequent Episode Mining in Developmental Analysis is such an algorithm [18][19]; it is based 

on analyzing sequences of developmental characters to find episodes. These episodes are used 

to determine differences between developmental sequences. An API for FEDA should be 

realized to enable its execution on the fly through the GEMS which has been customized to be 

used as an experience bed for data mining. 
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