
Abstract

Lossless data compression techniques can potentially
free up more than 50% of the memory resources. However,
previously proposed schemes suffer from high access costs.

 The proposed main-memory compression scheme prac-
tically eliminates performance losses of previous schemes
by exploiting a simple and yet effective compression
scheme, a highly-efficient structure for locating a com-
pressed block in memory, and a hierarchical memory lay-
out that allows compressibility of blocks to vary with a low
fragmentation overhead. We have evaluated an embodi-
ment of the proposed scheme in detail using 14 integer and
floating point applications from the SPEC2000 suite along
with two server applications and we show that the scheme
robustly frees up 30% of the memory resources, on aver-
age, with a negligible impact on the performance of only
0.2% on average.

1. Introduction

As the processor clock speed has increased, the gap
between processor and memory and disk speed has wid-
ened. Apart from advances in cache hierarchies, computer
architects have addressed this speed gap mainly in a brute
force manner by simply wasting memory resources. As a
result, the size of caches and the amount of main memory,
especially in server systems, has increased steadily over
the last decades. Clearly, techniques that can use memory
resources effectively are of increasing importance to bring
down the cost, power dissipation, and space.

Lossless data compression techniques have the potential
to utilize main-memory resources more effectively. It is
known from many independent studies (e.g., [1][11]) that
dictionary-based methods, such as LZ-variants [15], can
free up more than 50% of main-memory resources. Unfor-
tunately, to manage compressed data with no performance
losses is quite challenging and presumably the reason it has
not yet seen widespread use: Firstly, since decompression
latency is on the critical memory access path, it must be
kept low. Secondly, since size of compressed data can vary,
the mapping between the logical and the compressed

address space is non-linear and the translation between the
two spaces also ends up on the critical memory-access path
and must be efficient. Finally, since compressed blocks
have different sizes, fragmentation may reduce the amount
of memory freed up. How to efficiently keep fragmentation
overhead at a low level is therefore another key issue.

Due to the significant decompression latencies of early
schemes for memory compression [6][12][10][21][4],
compression was only applied to pages that were victim-
ized. The memory freed up was used to bring down paging
overhead. More recently, Abali et al.[1] disclosed the IBM
MXT technology [19][20]. Unlike previous proposals, the
entire memory is compressed using an LZ-based compres-
sion algorithm [20]. On each memory access, the com-
pressed block has to be located through a translation that
involves an indirection through a memory-resident table.
This effectively doubles the memory access latency. The
located block is then decompressed which, despite of a par-
allel implementation using a special-purpose ASIC, takes
64 cycles [20]. To shield the processors from these devas-
tating latencies, a large (32 Mbyte) tertiary cache in front
of the compressed memory is used. If the working-set size
exceeds this cache capacity, however, the increased laten-
cies may cause significant performance losses.

In this paper, we propose a novel main-memory com-
pression scheme that frees up a significant portion of the
memory resources at virtually no performance cost by
addressing the three critical performance issues above.
First, to get a negligible decompression latency, we use a
computationally lightweight compression algorithm. We
have leveraged on the observation made by Yang and
Gupta [22] that especially the value zero is frequently used
in a program. Alameldeen and Wood [2][3] recently
exploited it for cache compression in their frequent-pattern
compression (FPC) technique that codes blocks, words,
and bytes containing zero very efficiently. FPC is simple
and can decompress a block in a handful of cycles. 

Our first contribution, which extends the observations
in [22], is the establishment that ‘zero-aware’ compression
techniques are indeed effective when applied to in-memory
data. Compressibility data for 14 applications from the
SPEC2000 suite and from two server applications show
that such compression techniques can potentially free up
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50% of memory — zero-aware techniques are therefore
competitive with computationally more demanding dictio-
nary-based methods as used in, e.g., IBM/MXT [19][20].

The main contribution of this paper is a novel main-
memory level compression scheme that can free up 30%,
on average, of the memory resources with a performance
overhead of only 0.2%. The route to this finding, however,
made us solve several technical challenges. First, in order
to locate a compressed memory block with a low overhead,
our proposed memory mapping scheme allows for com-
pactly keeping address translations in a TLB-like structure.
This yields two advantages: (1) Address translation can be
carried out in parallel with the L2 cache and (2) Blocks
containing only zeros are quickly detected. Second, our
scheme brings down fragmentation caused performance
overhead by initiating relocation of parts of the compressed
region only occasionally. We show that relocation happens
sufficiently rarely to not cause any performance losses. 

We first present compressibility statistics of zero-aware
as well as other well-known compression techniques in the
next section. We then present our memory-level compres-
sion scheme in Section 3. In Sections 4 and 5, we evaluate
the performance of our compression technique focusing on
fragmentation overhead and its potential performance
losses. Section 6 relates our findings to work done by oth-
ers before we conclude in Section 7. 

2. Compressibility of main memory

This section first establishes the relative occurrence and
distribution of zero-valued locations in memory-level data.
While Yang and Gupta [22] established that words contain-
ing zero are very common, we extend their results by look-
ing at distributions across entities spanning from a single
byte to a whole page. In contrast, Alameldeen and Wood
[2][3] considered the relative occurrence of zero-valued
locations at the cache-level and we will see whether their
results extend to in-memory data. This is the topic of
Section 2.1. Then in Section 2.2, we compare the com-
pressibility of a class of zero-aware compression algo-
rithms to more demanding dictionary-based methods. The
results in this section are based on measurements on
images that were created at the end of the run of the bench-

marks. Measurements in Section 5 will confirm that this is
representative data by measuring several points throughout
the execution of the benchmarks.

2.1. Frequency and distribution of zero-values

Figure 1 shows the percentage of consecutive zeros and
ones in the memory footprints for 16 benchmarks (see
Section 4) on a SPARC based machine. For each applica-
tion, the first bar shows the fraction of 8-Kbyte pages that
are zero. The second, third, and fourth bars show the frac-
tion of 64-byte blocks, 4-byte words and single bytes that
are zero, respectively. The fifth and sixth bars show the
fraction of blocks and single bytes that only contain ones.

As seen by the rightmost set of bars, which average the
statistics across all applications, as many as 30% of the 64-
byte blocks only contain zeros. Further, 55% of all bytes in
the memory are all zero! The fraction of bytes and blocks
only containing ones is low for most of the benchmarks but
significant for two of them (mesa and SpecJBB) which sug-
gests that they could be a target for compression. This data
clearly shows that zero-aware (and possibly one-aware)
compression techniques with byte-granularity have a great
potential also at the memory level. We next compare their
compressibility with more effective, but more computa-
tionally demanding, techniques.

2.2. Compressibility with zero-aware algorithms

The zero-aware techniques we consider are variations of
Frequent Pattern Compression (FPC) [3]. In the baseline
technique (from [3]), each word is coded by a three-bit pre-
fix followed by a variable number of additional bits. The
three-bit prefix can represent eight different patterns of
which one represents uncompressed data and is followed
by four bytes in uncompressed form. The seven other pat-
terns are, zero-run (up to eight consecutive words are zero),
4-bit sign extended (SE), single byte SE, halfword SE,
halfword padded with zero halfword, two halfwords each
consisting of a sign-extended byte, and finally a word con-
sisting of repeated bytes. The bits used to sign-extend 4-bit,
byte, and halfword operands are thus compressed into a 3-
bit prefix plus the operand.

FIGURE 1. The graph shows the fraction of memory that contains zeros when partitioned into pages,
blocks, words, and bytes corresponding to the first four bars. from left to right The fifth and the sixth
bars show the fraction of blocks and single bytes that only contain ones.
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Figure 1 suggests that negative numbers are not
expected to be frequent since there are few occurrences of
runs of consecutive ones. Further, it is intuitive to believe
that some of the patterns supported by FPC are not very
frequent either. We thus evaluate three simpler variations
of FPC. The first one — FPC only zeros — uses eight pat-
terns but does not code sign-extended negative numbers.
The second one — FPC simple — only uses two prefix bits
and thus only has four patterns (zero run, 1 byte SE, half-
word SE, and uncompressed). Finally, the third variation
— FPC simple only zeros — uses four patterns but does
not allow sign-extended negative numbers.

We compare the compressibility of these FPC variations
with some more computationally demanding compression
techniques: X-MatchPro[14], which is designed to be
implemented in hardware; and LZSS [17] which is similar
to what is used in [1] and recently was proposed to be used
for caches [8]. These algorithms are applied to 64-byte
blocks. Further, to get a practical bound on the compress-
ibility of the memory footprints we used the deflation algo-
rithm (a combination of LZ77 [24] and static Huffman
coding [9]) in zip and gzip on the entire footprints.

Figure 2 shows the compressibility of the various algo-
rithms. The rightmost group of bars shows the average
compressibility across all benchmarks. The first four bars
in this group shows that the original version of FPC pro-
vides rather small advantages over the simplified versions,
but for some of the benchmarks (gap, mesa, SAP and
SpecJBB) there are significant differences. Further, LZSS

and X-MatchPro do better than FPC but the difference is
not very large. While the deflate algorithm outperforms
FPC with more than a factor of two, it is important to
remember that deflate was applied to the entire image to
establish a practical bound on compression; the other algo-
rithms were applied to individual 64-byte blocks.

The graph shows that it is possible to achieve about
50% compression with zero-aware compression techniques
such as FPC and in the compression scheme described in
the next section, we assume the FPC although the particu-
lar choice of algorithm is orthogonal to our scheme.

3. Proposed memory compression scheme

An overview of the proposed architecture is shown to
the left in Figure 3. Data is compressed when it is brought
in from disk so that the entire main memory is compressed.
Each block is compressed individually using the baseline
FPC algorithm detailed in Section 2 and is assigned one
out of n fixed sizes after compression. These sizes are
called block thresholds and are denoted t0, t1,..., tn. The
first and the last block thresholds are special in that they
correspond to a block containing only zeros (t0) and an

uncompressed block (tn). Decompression of a memory
block is triggered by a miss in the lowest level of the cache
hierarchy. This may cause a block eviction and if the
evicted cache block is dirty it needs to be compressed
before it is written back to memory.

FIGURE 2. Algorithm comparison. The bars represent resulting size (in %) for the seven algorithms.

FIGURE 3. Left: Overview of the compressed memory architecture. Right: Compression hierarchy
partitioned into pages, sub-pages, and blocks.
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If the size of the dirty block now matches another block
threshold, the block will be assigned this new block thresh-
old. Then, consecutive blocks in the address space need to
be moved to make room for the block in the case the block
size increases, denoted a block overflow, or to fill up the
empty space in the case the block size decreases, denoted
block underflow.

To reduce the number of occasions when blocks need to
be relocated, a small hysteresis, hk, is introduced for each
threshold so that a block needs to be hk bytes smaller than

threshold tk to change size. Thus, a block can always grow

slightly without overflowing and once it has overflowed,
its size needs to be reduced hk bytes before a new reloca-
tion is needed. Further, to reduce the amount of data that
needs to be relocated, each page is divided into m sub-
pages in a hierarchical manner as shown to the right in
Figure 3. Assuming such a hierarchy, only the blocks
located after that block within the sub-page need to be relo-
cated on a block overflow/underflow. The sub-pages can
also be one out of n sizes called sub-page thresholds and
the same holds for the pages. Hystereses are used at each
level to reduce the number of sub-page and page over-
flows/underflows.

3.1. An example system

Figure 4 shows one instantiation of the proposed com-
pressed memory system to serve as an example. The num-
ber of block thresholds (n) in this example is four and they
are set to 0, 22, 44, and 64, assuming a block size of 64

bytes. As we will show experimentally, setting t0 to zero
takes advantage of the observation that many cache blocks
only contain zeros. The threshold of each block is encoded
with log2n bits that are kept as a bit vector called size vec-

tor in the page table together with the address translation.
Assuming four thresholds, the block sizes can be encoded
with two bits as the values 00, 01, 10 and 11, where 00
denotes a block with only zeros, and 11 denotes an uncom-
pressed block. The size of each sub-page, as well as the
size of the page itself could be calculated from these bits,
but to simplify the address translation process, the size vec-
tor also contains the encoded sizes for the sub-pages and
the page.

The lower left part of Figure 4 shows the beginning of a
page in memory and three blocks. Above that, the corre-
sponding size vector (11 01 00 10....), is shown. The com-
pressed size of block 0 is between 44 and 64 and hence is
assigned size 64 (11). Block 1 is less than 22 and is
assigned the size 22 (01). Block 2 only contains zeros and
since size (00) is reserved for zeros, this block does not
have to be stored in memory at all, given that the corre-
sponding size vector is stored elsewhere. Thus, after block
1, block 3 is located, with the size code (10).

The size vector is needed on a cache miss to locate the
requested block. To avoid requesting the size vector from
memory, our scheme uses a structure on the processor chip
called Block Size Table (BST) that caches block size vec-
tors. This table has one entry per TLB entry and thus have
the same miss rate and is filled on TLB-misses by the
TLB-miss handler.

FIGURE 4. Proposed architecture. Left: processor chip with the new structures added. Right: page table
where each entry contains extra address bits since the page can be of a smaller size than the baseline
system as well as bits for each block in the page encoding the current compressed size.
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Each entry in the BST consists of log2n bits for each
memory block, sub-page, and the page itself in the corre-
sponding page so the total number of bits for each entry is
(PAGE_SIZE/BLOCK_SIZE+m+1)*log2 n, where m is the

number of sub-pages in a page. In our example, assuming a
page size of 8 KB, eight sub-pages, and a cache block size
of 64 bytes, each entry consists of 34.25 bytes. A TLB-
entry that contains one physical and one virtual address, is
typically 16 bytes in a 64-bit system, and hence the BST is
about twice the size of a TLB. In the example the BST is
located and accessed in parallel with the L2-cache but an
alternative location would be on the memory controller.
Having it on the processor chip comes with an immediate
advantage though. If a block with only zeros is requested,
the memory request can be immediately satisfied on the
processor chip since the size vector indicates zero. Thus, in
case of a load, a zero is immediately returned and the load
instruction is completed quickly. The corresponding cache
block is then cleared in the background, in parallel.

As mentioned above, the BST entry also contains the
encoded sizes of the sub-pages in the page. To locate the
address of a compressed block, the offset within the page
must first be determined. This is done in the address calcu-
lator by adding the sizes of the sub-pages prior to the block
and the sizes of the blocks located prior to the requested
block in the same sub-page. To be able to do this, the
address calculator keeps a table of the block thresholds and
sub-page thresholds which are set globally for the system.

The address calculator must in the worst case add m-1
sub-page sizes and PAGE_SIZE/(m*BLOCK_SIZE)-1
block sizes. With the previously assumed parameters and
eight sub-pages for each page, this yields an addition of at
most 22 small integers of between 6-10 bits. Another solu-
tion would be to first count the number of blocks for each
of the n sizes and then multiply this with the size, and then
do the same for the sub-pages and then add these two
results together. We did preliminary timing and area esti-
mates of this logic and found out that such a calculator that
could complete the task in six cycles would at most occupy
the space of between two and three 64 bit adders, which is
negligible for modern processors. Given a BST access time
of about twice the TLB access time and an address calcula-
tion of only six cycles it should be possible to hide this
latency with the L2-cache access. Thus, in the case of an
L2-cache miss, we already know where to find the block
and no extra latency is added to the miss handling time.
Power dissipation of the BST is not an issue if its size is
comparable with a TLB and only accessed on L1-misses.

3.2. Block overflow/underflow handling

On a write-back, the block is first compressed and the
size is checked against the bits in the size vector. In case of

a block overflow or underflow, data in that sub-page need
to be moved. The actual move is taken care of by an off-
chip DMA-engine in the background so that the processor
can continue executing and avoid to consume precious chip
bandwidth. We assume that the DMA-engine uses cycle-
stealing and does not exclude the processor from accessing
memory that is not on the same sub-page or page that is
being moved. When the transfer is done, the BST entry
needs to be updated (by hardware) to reflect the new block
and sub-page sizes. Later, this entry needs to be written
back to the page table if it is not updated at the same time
as the BST entry. We note that these updates raise issues
similar to TLB consistency [18] in a large scale system but
do not elaborate on it more in this paper.

When data is being moved, no further misses to that
sub-page (or page in the case of a sub-page overflow/
underflow) can be handled and the processor has to stall on
such misses. However, since overflows can only happen on
a write-back which is expected to happen when the block
has not been used for a while, it is reasonable to believe
that blocks located close to the block will not be needed in
the near future due to spatial locality. Thus block/subpage
moves should not affect performance by much. In the rare
event of a page overflow, a trap is generated and the virtual
memory manager will have to find a new location for the
page and notify the DMA-engine to perform the move. We
will experimentally verify that overflows/underflows do
not introduce any severe performance losses.

3.3. Operating-system modifications

As mentioned before, the page table must be modified
to include the size vectors so that they can be loaded just
like the address translation on a TLB-miss. Also, since the
pages are of variable size, pointers to pages must use more
bits. Assuming that the page thresholds must be of a size
that is a multiple of p bytes, the number of extra bits will be
log2(PAGE_SIZE/p). Together with the size vector the stor-

age overhead will be (PAGE_SIZE/BLOCK_SIZE)*log2n +

log2(PAGE_SIZE/p) per page in the pathological case when
no gain is made from compression. If we assume that all of
the page thresholds are multiples of 512 bytes, this storage
overhead is a tiny 0.4%.

The virtual memory manager also needs to be slightly
modified so that instead of just keeping one pool of free
pages, it needs to maintain one pool for each of the n com-
pressed page sizes. On a page fault, the page is read from
disk, compressed and assigned a page size. The size vector
is also created at this point and inserted into the page table.
Also, if the page table entry is not updated on each over-
flow/underflow, the TLB-miss handler needs to write back
the evicted BST entry on a TLB miss so the page table con-
tains the correct size vector.
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4. Experimental methodology

To evaluate the proposed memory compression scheme
we have used simulation at two levels of detail: one cycle
accurate and one simpler but much faster that models the
processor as an in-order single issue and has the advantage
that it is fast enough to enable us to run the benchmarks to
completion. Both simulators are based on Simics [13]
which comes in various flavors with various levels of
detail. The fast simulator uses the timing-model interface
for the in-order version of Simics while the cycle-accurate
simulator uses the Micro-Architectural Interface (MAI)
version of Simics and models a dynamically scheduled
multiple-issue out-of-order processor with non-blocking
caches. For our multithreaded workloads we simulate a
chip multiprocessor with several copies of the same pro-
cessor core but with a shared L2-cache where the size is
scaled by the number of threads.

The fast simulator is used to collect statistics about
compression rate and overflows/underflows to establish the
wins with compression as well as building intuition into
performance-related issues while the cycle-accurate simu-
lator is used to get detailed results about impact on the
number of executed instructions per second (IPC). Since
the cycle accurate simulator is too slow to run the entire
benchmarks we have simulated a single simulation point
for each benchmark that is representative of the overall
behavior of the benchmark according to [16]. Table 1
shows the baseline parameters for the simulated system.
The instruction set architecture (ISA) is Sparc-V9.

The memory latency of 150 cycles is probably unrealis-

tic1 for a future system but this is intentionally chosen not
to favor our compression scheme since we add a few cycles
to the access path due to decompression which perfor-
mance wise becomes worse with a short memory latency.

The last three columns in the table shows the number of
cycles that sub-pages and pages are locked in the case of a

block, sub-page or page overflow/underflow. We have cho-
sen the times conservatively by assuming DDR2 SDRAM
that is clocked at 200 MHz which provides a bandwidth of
3.2 GBytes/s. Streaming out an entire 8K page will thus
take 2.56 microseconds. Writing it back to a different loca-
tion takes the same amount of time, yielding a total of 5.12

microseconds. Assuming a processor frequency of 4 GHz2

this would be 20 480 cycles. Moving all the blocks within a
sub-page would take 2 560 cycles. We add about 1 500
cycles as an initial latency to both these figures. We note
that the lockout time could be shorter at the occasions
when only parts of a sub-page or page need to be moved
(in the common case when the overflow does not occur for
the first block in the sub-page or page) but conservatively
we assume the same lockout time for all cases.

4.1. Benchmarks

The benchmarks used are summarized in Table 2. We
used ten integer applications and four floating point appli-

cations from the Spec2000 benchmark suite3 using the ref-
erence data set to evaluate the compression scheme. Since
Simics is a full-system simulator we were also able to sim-
ulate the two multi-threaded server workloads SAP Sales
and Distribution and SpecJBB. SAP runs together with a
full-fledged database and SpecJBB is a Java-based bench-
mark. Both these multi-threaded benchmarks run eight
threads and were tuned for an 8-way UltraSparc-III system
running Solaris 9. With the fast simulator the Spec2000
benchmarks were run to completion and SAP and SpecJBB
were run for 4 billion instructions on each processor during
their steady-state phase (verified with hardware counters).
With the cycle-accurate simulator they were all run for 100
million instructions after warming.

1. Measured latency on a 2.2 GHz AMD Opteron 248 is 142 cycles and 
on a 3.4 GHz Intel Xeon64-Nocona 432 cycles. Latencies measured 
with Calibrator (http://homepages.cwi.nl/~manegold/Calibrator/).

2. This is not consistent with the assumption of 150 cycles latency to 
memory but assures that we are conservative with respect to lock 
times and thereby do not give our proposed scheme and advantage.

3. Two integer benchmarks were left out due to compilation and running 
problems, and only four floating point benchmarks were used to 
reduce the total number of applications.

TABLE 1. Parameters for the simulated system.

Para-
meter

Instr. 
Issue

Instr. 
Fetch

Exec.
units Branch pred.

L1 i-
cache

L1 d-
cache L2 d-cache

Mem-
latency

Block 
lock 

Subpa
ge lock 

Page 
lock 

Value 4-way 
out of 
order

4 4 int, 2 int 
mul/div, 2FP, 
1FP mul/div

16k-entry gshare, 
2k-entry BTB, 8 
entry RAS

32k,
2-way, 
2-cycle

32k,
4-way, 
2 cycle

512k/thread,
8-way, 16 
cycle

150 
cycles

4000 
cycles

23000 
cycles

23000 
cycles

TABLE 2. Benchmarks

Integer bzip gap gcc gzip mcf parser perlbmk twolf vpr

FP and server ammp art equake mesa SAP S&D SpecJBB
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5. Experimental results

This section presents the experimental results. We start
by investigating how much of the potential compressibility
that is lost due to fragmentation depending on how the
block, sub-page and page thresholds are chosen in
Section 5.1. We then investigate the performance critical
parameters in Section 5.2 and present detailed performance
results in Section 5.3.

5.1. Fragmentation and thresholds

The compression results presented in Section 2.2
assumed that a block can be of an arbitrary size but often
this is not practically implementable. In the architecture
presented in Section 3, it is assumed that a block can be
any of n sizes where n is chosen to be four in our evalua-
tion. Further, a number of blocks are clustered into a sub-
page that also can be one of four different sizes (called sub-
page thresholds). Finally, the sub-pages make up a page
that also can be one of four sizes (called page thresholds).
Each of these levels in the hierarchy will cause fragmenta-
tion which reduces the gains from compression. The most
straight-forward way to select the threshold values is to
place one of them at the maximum size and place the rest
of them equi-distantly between the maximum value and
zero as shown in Table 3. Note that the way that the block
thresholds are chosen is slightly different, in the sense that
the first block threshold is chosen to be zero. The effects of
this will be studied later.

The resulting fragmentation is shown in Figure 5 which
shows the resulting size in percent compared to the original
size. This ratio was measured every 1-billion instructions
and the bar represents the mean value. In each point, this
ratio was calculated for all pages that had been touched at
that time. For the Spec2000 applications, only user
accesses were considered to avoid measuring operating
system pages that are typically shared across applications
since this would bias our results. Tests with system
accesses did not change the results significantly. The left-
most bar for each benchmark represents the compressed
size without fragmentation. The next three bars represent
the achieved compression when fragmentation is taken into
account at each level. The rightmost bar is the most inter-
esting one since that includes fragmentation from all levels
and thus represents the resulting size after losses due to
fragmentation. Despite the losses due to fragmentation
there are still great wins to be made by using compression
— 30% of the memory is freed up!

Apart from that the compression gains are large, the
compressibilities of most benchmarks are rather stable over
time. This is shown in Table 4 which contains the standard
deviation of the compression ratio where the compression
ratio is measured in percent. Of all the 16 benchmarks only
gap, gcc and mcf have a standard deviation that is higher
than 10.

As described in the previous section the thresholds for
the blocks, sub-pages and pages were chosen equi-dis-
tantly. This is the best choice if the block sizes are uni-
formly distributed. If the distribution is not uniform,
however, so that many blocks are of one or a few sizes
close to each other, it will be advantageous to choose the
threshold values to be just slightly above the sizes for these
blocks, since that will reduce the losses due to fragmenta-
tion.

TABLE 3. Threshold values.

1 2 3 4

block 0 22 44 64

sub-page 256 512 768 1024

page 2048 4096 6144 8192

FIGURE 5. Mean size with equi-distant thresholds. The left most bar contains no fragmentation. For the
other bars, fragmentation on the three levels (block, sub-page and page) is added.
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Actually, a first step of exploiting this was already done
in the above experiment when reserving one of the block
sizes for blocks with only zeros. We will next consider the
effects of not assigning one size to zero as well as choosing
the thresholds more specifically to reduce the fragmenta-
tion.

We have investigated fragmentation for five different
approaches to establish the thresholds. They can be found
in Table 5 and the resulting sizes are shown in Figure 6.

The first one has equi-distantly selected thresholds. The
second one is the one already evaluated with one size
assigned to zero. The third set of thresholds are calculated
to optimize for the mean value of all benchmarks (given
the distribution of compressed sizes for the various bench-
marks). Note that the block thresholds happened to be the
same as the once in the previous case but the sub-page and
page thresholds differ. The fourth set contains individual
block and sub-page thresholds for each benchmark, but
global page thresholds. Such thresholds could be used in a
system where the thresholds can be included in the binary
after profiling an application. The final set of thresholds
consists of individual block and sub-page thresholds for
each page in each benchmark. This is the fragmentation

that could be achieved by an adaptive mechanism that
adjusts the thresholds for each page at run time.

For some of the benchmarks (e.g., gcc) the chosen
thresholds cause significant variations in the resulting size
while for others (e.g., equake) the variations are fairly
small. The reason that gcc benefits significantly from other
individual thresholds is that the size distribution of com-
pressed blocks is not uniform but very skewed.

Also note that for three applications (parser, equake and
SAP) the thresholds that are optimized for all benchmarks
imply more fragmentation than equi-distant thresholds. It
comes naturally from that we optimize for the average of
all applications that some of them will suffer. This average
is represented by the rightmost group of bars. According to
this average, it is slightly better (with respect to fragmenta-
tion) to treat zeros in a special way (second bar) compared
with not doing it (leftmost bar). Further, it is possible to
reduce the amount of memory resources another few per-
centage units by choosing thresholds that are optimized for
the distribution of the entire system. If individual thresh-
olds (only individual block and sub-page thresholds since
the page-thresholds need to be common for all bench-
marks) are allowed for the different benchmarks, memory
resources can be slightly reduced. However, the big wins
are when individual thresholds are allowed for each indi-
vidual page. This reduces the size from 67% to 60%. For
the rest of this paper we use globally optimized thresholds
for the system (third bar) but note that an extension to this
work could be to find an adaptive mechanism that adjusts
the thresholds for each page to approach the size repre-
sented by the right most bars.

As described in Section 3, it is possible to use a small
hystereses to reduce the number of overflows/underflows.
Further, to reduce the bandwidth consumption in the mem-
ory system we also propose to create a hierarchy by intro-
ducing the unit sub-pages. Using these mechanisms comes
with a price in terms of increased fragmentation however.
Experiments with and without sub-pages and hystereses
resulted in that with no sub-pages the size would be 63%
instead of 67%, and if both sub-pages and hystereses are
used the size becomes 69%.

TABLE 5. Summary of investigated sets of 
thresholds. 

Block 
thresh.

Sub-page 
thresh.

Page 
thresh.

Equi 16, 32, 48, 64 256, 512, 
768, 1024

2048, 4096, 
6144, 8192

Equi zero 0, 22, 44, 64 256, 512, 
768, 1024

2048, 4096, 
6144, 8192

System
global

0, 22, 44, 64 22, 400, 710, 
1024

1024, 4096, 
6144, 8192

Benchmark
global

optimized per 
benchmark

optimized per 
benchmark

1024, 4096, 
6144, 8192

Benchmark
local

optimized per 
page in each 
benchmark

optimized per 
page in each 
benchmark

512, 4096, 
5632, 8192

FIGURE 6. Mean compression size (including fragmentation) for various compression thresholds. No
hystereses is used.
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5.2. Performance critical parameters

Now that the compressibility and losses due to fragmen-
tation have been established we will move over to the per-
formance critical issues. With our proposed architecture,
one of the three performance critical parameters have been
virtually eliminated with the introduction of the BST. The
two others, related to decompression latency and relocation
of data will be studied next. We start with the decompres-
sion latency. The results in this section are based on the fast
simulator using complete runs of the Spec2000 bench-
marks, and long runs of the server benchmarks as
described in Section 4. Cycle accurate performance results
based on shorter runs of representative simulation points
[16] will be presented in Section 5.3.

5.2.1. Decompression latency and zeroed blocks. First of
all, let us consider the decompression latency. With a
decompression latency of 5 cycles [3], and a memory
latency of 150 cycles decompression will increase the
memory latency by 3%. A coarse-grained estimate will
thus be that for memory-bound applications that spend
most of the time in the memory system, the decompression
latency could degrade performance by at most 3%. In real-
ity, the degradation will be lower because of the latency-
tolerance of the processor and will be investigated in detail
with cycle-accurate simulation in Section 5.3. The effect of
reading zeroed blocks could be more significant however,
since each access to a zeroed block will remove one mem-
ory access. Moreover, given that the processor is not able
to hide the entire memory latency, it could boost the perfor-

mance in some cases. Table 6 shows the percentage of the
L2-cache misses that access blocks that only contain zeros
for two cache sizes (512 KB and 4MB per thread).

For many applications, only a small amount of the L2-
misses access zeroed blocks but for some applications,
such as gap, gcc, gzip and mesa more than 20% of the
misses access zeroed blocks. Thus, the effect of reading
zeroed blocks could improve performance for a few of the
applications depending on how much time they spend in
the memory system.

5.2.2. Performance effects of overflows and underflows.
The third performance critical issue, which is how reloca-
tion of data on overflows/underflows is handled depends
on the behavior of the benchmarks. Intuition says that in
the common case, locking data that will be relocated
should not affect performance by much since they are con-
tiguously located to a block that recently have been evicted
from the cache and thus should not be accessed in the near
future. We will now test this hypothesis. We focus on the
system with a 512-KB cache per thread since this increases
the miss-rate considerably for some applications and thus
makes the number of evictions, and thereby possibly over-
flows/underflows more frequent. Larger caches should
only reduce this potential performance problem.

The bars of Figure 7 show the number of overflows/
underflows per committed instruction for all applications.
The leftmost bar for each benchmark represents overflows/
underflows for blocks, followed by sub-pages for the mid-
dle bar and pages for the rightmost bar. Note that the y-axis
is logarithmic.

FIGURE 7. Number of overflows/underflows per committed instruction. Bars from left to right: block, sub-
pages, pages. The y-axis is logarithmic.

TABLE 6. Percent of L2-cache misses that access a zero block for two different cache sizes.
First row: 512K L2-cache per thread. Second row: 4MB L2-cache per thread.

bzip gap gcc gzip mcf par perl two vort vpr am art equ mes sap jbb

512K 3.0 27.3 24.8 33.3 0.07 5.9 18.8 0.24 12.1 6.0 0.55 0.05 0.07 45.3 12.6 2.4

4MB 15.9 29.3 67.1 42.1 0.55 0.03 27.3 0.25 23.1 40.0 10.3 20.0 0.07 53.3 14.5 1.1

Applications
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The graph shows that for each level in the hierarchy, the
number of overflows/underflows are reduced by about an
order of magnitude. The main result from this graph is that
it justifies the use of sub-pages, since this will greatly
reduce the memory bandwidth consumed by data reloca-
tion. If sub-pages were not used, then each block overflow/
underflow would trigger the relocation of half a page of
data on average (assuming that the block overflows/under-
flows are uniformly distributed across the page). With the
use of sub-pages, only half a sub-page of data needs to be
relocated in about 90% of these occasions.

The bandwidth effects of the above events turn out to be
that the peak bandwidth is virtually unchanged if sub-pages
are used since the number of overflows for mcf, which is
the most bandwidth demanding application, is negligible
compared to the number of cache misses. If sub-pages
would not have been used, the peak bandwidth had
increased by 77% making art the most bandwidth-consum-
ing application. The average bandwidth on the other hand
increases by 58% with sub-pages and 212% without sub-
pages. The average bandwidth is of more interest for multi-
threaded systems (SMT, CMP or multiple processor chips).
However, note that the discussed bandwidth is the memory
bandwidth and not the processor chip bandwidth since an
off-chip DMA-engine performs the data relocation.

While the number of overflows/underflows affects the
bandwidth pressure to memory, it does not have a first
order effect on performance since the processor can con-
tinue to execute while the DMA-engine is relocating data.
If the processor tries to access data in memory that is
locked, however, it does have to stall (referred to as lock
stall). Intuition says that the number of lock stalls depends
on for how long the data is locked. We have experimented
with three relocation latencies each for blocks, sub-pages
and pages. They are 100, 1000, and 10 000 cycles for
blocks, 1000, 10 000, and 100 000 for sub-pages and 10
000, 100 000, and 1 000 000 for pages. The ranges include
the chosen relocation latencies of 4000, 23000, and 23000.

The main results were that the number of block lock-
stalls are magnitudes lower than the number of block over-
flows/underflows. For example, according to Figure 7, gzip

has slightly more than 10-4 block overflows/underflows per

committed instruction. However, even if the sub-page
would be locked for 10 000 cycles there would only be

about 10-6 stalls per committed instruction, while a block

lock-time of 1000 cycles would yield about 10-7 stalls per
committed instruction. A coarse-grained estimate of the
performance penalty is to simply multiply the number of
lock stalls with the lock stall-time. Thus, for the worst-
behaving benchmark (equake) choosing 1000 cycles as the
lock time would imply that for each instruction, the proces-

sor would stall 7*10-6*1000 = 0.007 cycles. The difference
between the number of sub-page lock-stalls and page lock-
stalls is not as large as the difference between sub-page
overflows and page overflows however. For example, the
difference between sub-page lock-stalls and page lock-
stalls is about a factor of two for SAP meaning that using
sub-pages can reduce the performance impact but not as
much as it reduces the consumed relocation bandwidth.

We also studied the number of lock stalls for systems
using hystereses. The results varied greatly across the vari-
ous benchmarks and stall times. For most of the bench-
marks the number of block lock-stalls was reduced by
slightly less than a factor of two, but for vpr and twolf it
was reduced between 5 and 10 times. The same holds for
mcf if the stall time was 10 000 cycles. The effects of hys-
tereses on sub-page and page lock stalls also varied across
the different benchmarks. For some benchmarks it was
extremely efficient, e.g., SpecJBB where the number of
page lock-stalls was virtually eliminated if hystereses was
used. While hystereses does not help for all benchmarks,
the great reduction in lock stalls for some of the bench-
marks justifies its use given the small losses in compress-
ibility as discussed in Section 5.1.

5.3. Detailed performance results

Now after having built intuition into how performance
is affected by various parameters we present the final
cycle-accurate performance results in Figure 8. The results
are shown as normalized IPC, but the baseline IPC num-
bers are shown above the bars. Note that the range of the y-
axis does not include zero since the variations compared
with the baseline are extremely small.

 

FIGURE 8. Normalized IPC results. The y-axis range does not include zero.
Applications
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The first bar represents the baseline system. The second
bar shows the effect of the increased memory-access
latency due to decompression. On average, this reduces
performance by 0.5% but for art the reduction is about 3%.
The third bar shows a baseline system but with the addition
that zeroed blocks do not have to be loaded from memory.
On average, this increases performance by slightly less
than 0.5%. The fourth and fifth bars represent systems
where all performance effects of the proposed compression
scheme are factored in. The lockout times for the fourth bar
are 4 000, 23 000, and 23 000, and for the fifth system they
are 10 000, 50 000, and 100 000. The average performance
degradation for the realistic latencies is less than 0.5% and
for the worst-behaving benchmark (art) it is 5%. Using
even longer latencies reduces average performance by less
than 1% but now also SAP starts having problems with a
degradation of about 4.5%. We can conclude that the per-
formance impact of the proposed memory compression
scheme is negligible.

6. Related work

Most of the earlier work on applying lossless compres-
sion to main-memory level data has considered dictionary-
based methods that are more effective on bigger chunks of
data. It was therefore natural to apply it to only memory
pages that were selected as victims to be paged out to
reduce performance losses of locating and decompressing
pages. Douglis’s [6] work aimed at reducing the paging
overhead by freeing up memory in this fashion. Kjelso et
al.[12] and Wilson et al. [21] demonstrated that a substan-
tial reduction of paging overhead could be achieved by
more accurately deciding which pages to compress. Wilson
et al. [21] extended the virtual memory manager with a
cost/benefit analysis to predict the reduction in page fault
rate given an assumed compression ratio and use it to adap-
tively size the compressed portion of the memory. More
recently, De Castro et al. [4] improved upon that by reduc-
ing the paging overhead further.

Despite the fairly significant decompression latencies,
these systems could in many cases demonstrate perfor-
mance gains because the lower paging overheads dwarfed
the performance losses due to less effective access to com-
pressed portions. In the IBM MXT technology [1][19][20],
all memory contents are compressed. As noted earlier,
reported decompression latencies are in the ball park of a
memory access [20]. Moreover, to locate compressed data
involves an indirection through a memory-resident table
[19]. To shield the processors from these devastating laten-
cies, a large (32 MB), tertiary cache sits in front of the
compressed memory. Our approach is to practically elimi-
nate the latency overhead altogether by using a compres-
sion technique with a negligible decompression latency

and an effective translation mechanism between the linear
and compressed address spaces. Thus, our method does not
rely on huge tertiary caches.

As already mentioned, our work is inspired by the fre-
quent-value locality property first discovered by Zhang et
al., [23] and refined by Yang and Gupta [22]. Alameldeen
and Wood [2][3] exploited this finding in their frequent-
pattern compression algorithm applied to caches and we
have investigated in-depth how effective zero-aware com-
pression algorithms are at in-memory data. A property
related to frequent-value locality is that different data can
be partially the same. For instance, consecutive addresses
only differ in one position. This property has been
exploited to compress addresses and data on memory-inter-
connects in [5][7].

7. Conclusion

In this paper a novel main-memory compression
scheme has been proposed and evaluated. A key goal has
been to practically remove decompression and translation
overhead from the critical memory access path so that a
balanced baseline system with little or no paging would not
suffer from any performance losses. The compression
scheme addresses this by using a fast and simple compres-
sion algorithm previously proposed for cache compression.
It exploits our observation that not only memory words,
but also bytes, and entire blocks and pages frequently con-
tain the value zero. In fact, we have shown that simple
zero-aware compression algorithms are efficient when
applied to in-memory data since as much as 30% of all
cache blocks and 55% of all bytes in memory are all zero.

Further, the compression scheme uses a memory layout
that permits a small and fast TLB-like fast structure to
locate the compressed blocks in main memory without a
memory indirection. Finally, it is shown that by arranging a
memory page logically into a hierarchical structure with a
small slack at each level, and by using a DMA-engine to
move data when the compressibility of a block is changed,
it is possible to keep the performance overhead to a mini-
mum while at the same time keeping fragmentation at a
low level. We have shown that the amount of main mem-
ory in a machine can be reduced by 30% with a perfor-
mance degradation of 0.2% on average.

As a final remark, we have deliberately focused on
eliminating performance losses of existing compression
schemes. However, compression can also potentially
increase performance by reducing bandwidth require-
ments, and reduce power dissipation. Thus, we believe that
this technology is now getting mature for adoption.
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