Chord: A Scalable Peer-to-peer Lookup Service
for Internet Applications

Ion Stoica* Robert Morris' David Liben-Nowellf
David Karger' M. Frans Kaashoek! Frank Dabek!

Hari Balakrishnan®

January 10, 2002

Abstract

A fundamental problem that confronts peer-to-peer applications is to
efficiently locate the node that stores a particular data item. This paper
presents Chord, a distributed lookup protocol that addresses this problem.
Chord provides support for just one operation: given a key, it maps the
key onto a node. Data location can be easily implemented on top of
Chord by associating a key with each data item, and storing the key/data
item pair at the node to which the key maps. Chord adapts efficiently
as nodes join and leave the system, and can answer queries even if the
system is continuously changing. Results from theoretical analysis and
simulations show that Chord is scalable, with communication cost and the
state maintained by each node scaling logarithmically with the number of
Chord nodes.

1 Introduction

Peer-to-peer systems and applications are distributed systems without any cen-
tralized control or hierarchical organization, where the software running at each
node is equivalent in functionality. A review of the features of recent peer-to-
peer applications yields a long list: redundant storage, permanence, selection

*University of California, Berkeley. istoica@cs.berkeley.edu
TMIT Laboratory for Computer Science, {rtm, dln, karger, kaashoek, fdabek,
hari}@lcs.mit.edu.

Authors in reverse alphabetical order.
<chord@lcs.mit.edu>; <http://pdos.lcs.mit.edu/chord/>.

This research was sponsored by the Defense Advanced Research Projects Agency (DARPA)
and the Space and Naval Warfare Systems Center, San Diego, under contract N66001-00-1-
8933.

of nearby servers, anonymity, search, authentication, and hierarchical naming.
Despite this rich set of features, the core operation in most peer-to-peer systems
is efficient location of data items. The contribution of this paper is a scalable
protocol for lookup in a dynamic peer-to-peer system with frequent node arrivals
and departures.

The Chord protocol supports just one operation: given a key, it maps the key
onto a node. Depending on the application using Chord, that node might be
responsible for storing a value associated with the key. Chord uses a variant of
consistent hashing [11] to assign keys to Chord nodes. Consistent hashing tends
to balance load, since each node receives roughly the same number of keys, and
involves relatively little movement of keys when nodes join and leave the system.

Previous work on consistent hashing assumed that nodes were aware of most
other nodes in the system, making it impractical to scale to large number of
nodes. In contrast, each Chord node needs “routing” information about only a
few other nodes. Because the routing table is distributed, a node resolves the
hash function by communicating with a few other nodes. In the steady state, in
an N-node system, each node maintains information only about O(log N') other
nodes, and resolves all lookups via O(log N) messages to other nodes. Chord
maintains its routing information as nodes join and leave the system; with high
probability each such event results in no more than O(log® N) messages.

Three features that distinguish Chord from many other peer-to-peer lookup
protocols are its simplicity, provable correctness, and provable performance.
Chord is simple, routing a key through a sequence of O(log N) other nodes
toward the destination. A Chord node requires information about O(log V)
other nodes for efficient routing, but performance degrades gracefully when
that information is out of date. This is important in practice because nodes
will join and leave arbitrarily, and consistency of even O(log N) state may be
hard to maintain. Only one piece information per node need be correct in order
for Chord to guarantee correct (though slow) routing of queries; Chord has a
simple algorithm for maintaining this information in a dynamic environment.

The rest of this paper is structured as follows. Section 2 compares Chord
to related work. Section 3 presents the system model that motivates the Chord
protocol. Section 4 presents the base Chord protocol and proves several of its
properties. Section 6 presents simulations supporting our claims about Chord’s
performance. Finally, we outline items for future work in Section 7 and sum-
marize our contributions in Section 8.

2 Related Work

While Chord maps keys onto nodes, traditional name and location services pro-
vide a direct mapping between keys and values. A value can be an address, a
document, or an arbitrary data item. Chord can easily implement this function-
ality by storing each key/value pair at the node to which that key maps. For
this reason and to make the comparison clearer, the rest of this section assumes
a Chord-based service that maps keys onto values.

DNS provides a host name to IP address mapping [15]. Chord can provide
the same service with the name representing the key and the associated IP ad-
dress representing the value. Chord requires no special servers, while DNS relies
on a set of special root servers. DNS names are structured to reflect adminis-
trative boundaries; Chord imposes no naming structure. DNS is specialized to
the task of finding named hosts or services, while Chord can also be used to
find data objects that are not tied to particular machines.

The Freenet peer-to-peer storage system [4, 5], like Chord, is decentralized
and symmetric and automatically adapts when hosts leave and join. Freenet
does not assign responsibility for documents to specific servers; instead, its
lookups take the form of searches for cached copies. This allows Freenet to
provide a degree of anonymity, but prevents it from guaranteeing retrieval of
existing documents or from providing low bounds on retrieval costs. Chord does
not provide anonymity, but its lookup operation runs in predictable time and
always results in success or definitive failure.

The Ohaha system uses a consistent hashing-like algorithm for mapping doc-
uments to nodes, and Freenet-style query routing [18]. As a result, it shares some
of the weaknesses of Freenet. Archival Intermemory uses an off-line computed
tree to map logical addresses to machines that store the data [3].

The Globe system [2] has a wide-area location service to map object iden-
tifiers to the locations of moving objects. Globe arranges the Internet as a
hierarchy of geographical, topological, or administrative domains, effectively
constructing a static world-wide search tree, much like DNS. Information about
an object is stored in a particular leaf domain, and pointer caches provide search
short cuts [21]. The Globe system handles high load on the logical root by parti-
tioning objects among multiple physical root servers using hash-like techniques.
Chord performs this hash function well enough that it can achieve scalability
without also involving any hierarchy, though Chord does not exploit network
locality as well as Globe.

The distributed data location protocol developed by Plaxton et al. [19], a
variant of which is used in OceanStore [12], is perhaps the closest algorithm to
the Chord protocol. It provides stronger guarantees than Chord: like Chord
it guarantees that queries make a logarithmic number hops and that keys are
well balanced, but the Plaxton protocol also ensures, subject to assumptions
about network topology, that queries never travel further in network distance
than the node where the key is stored. The advantage of Chord is that it is
substantially less complicated and handles concurrent node joins and failures
well. The Chord protocol is also similar to Pastry, the location algorithm used
in PAST [8]. However, Pastry is a prefix-based routing protocol, and differs in
other details from Chord.

CAN uses a d-dimensional Cartesian coordinate space (for some fixed d) to
implement a distributed hash table that maps keys onto values [20]. Each node
maintains O(d) state, and the lookup cost is O(dN'/?). Thus, in contrast to
Chord, the state maintained by a CAN node does not depend on the network
size N, but the lookup cost increases faster than log N. If d = log N, CAN
lookup times and storage needs match Chord’s. However, CAN is not designed

to vary d as N (and thus log N) varies, so this match will only occur for the
“right” N corresponding to the fixed d. CAN requires an additional maintenance
protocol to periodically remap the identifier space onto nodes. Chord also has
the advantage that its correctness is robust in the face of partially incorrect
routing information.

Chord’s routing procedure may be thought of as a one-dimensional analogue
of the Grid location system [14]. Grid relies on real-world geographic location
information to route its queries; Chord maps its nodes to an artificial one-
dimensional space within which routing is carried out by an algorithm similar
to Grid’s.

Chord can be used as a lookup service to implement a variety of systems, as
discussed in Section 3. In particular, it can help avoid single points of failure or
control that systems like Napster possess [17], and the lack of scalability that
systems like Gnutella display because of their widespread use of broadcasts [10].

3 System Model

Chord simplifies the design of peer-to-peer systems and applications based on
it by addressing these difficult problems:

e Load balance: Chord acts as a distributed hash function, spreading keys
evenly over the nodes; this provides a degree of natural load balance.

e Decentralization: Chord is fully distributed: no node is more important
than any other. This improves robustness and makes Chord appropriate
for loosely-organized peer-to-peer applications.

e Scalability: The cost of a Chord lookup grows as the log of the number
of nodes, so even very large systems are feasible. No parameter tuning is
required to achieve this scaling.

e Availability: Chord automatically adjusts its internal tables to reflect
newly joined nodes as well as node failures, ensuring that, barring major
failures in the underlying network, the node responsible for a key can
always be found. This is true even if the system is in a continuous state
of change.

e Flexible naming: Chord places no constraints on the structure of the
keys it looks up: the Chord key-space is flat. This gives applications a
large amount of flexibility in how they map their own names to Chord
keys.

The Chord software takes the form of a library to be linked with the client
and server applications that use it. The application interacts with Chord in
two main ways. First, Chord provides a 1ookup (key) algorithm that yields the
IP address of the node responsible for the key. Second, the Chord software on
each node notifies the application of changes in the set of keys that the node

is responsible for. This allows the application software to, for example, move
corresponding values to their new homes when a new node joins.

The application using Chord is responsible for providing any desired authen-
tication, caching, replication, and user-friendly naming of data. Chord’s flat key
space eases the implementation of these features. For example, an application
could authenticate data by storing it under a Chord key derived from a cryp-
tographic hash of the data. Similarly, an application could replicate data by
storing it under two distinct Chord keys derived from the data’s application-
level identifier.

The following are examples of applications for which Chord would provide
a good foundation:

Cooperative Mirroring, as outlined in a recent proposal [6]. Imagine a
set of software developers, each of whom wishes to publish a distribution.
Demand for each distribution might vary dramatically, from very popular
just after a new release to relatively unpopular between releases. An
efficient approach for this would be for the developers to cooperatively
mirror each others’ distributions. Ideally, the mirroring system would
balance the load across all servers, replicate and cache the data, and ensure
authenticity. Such a system should be fully decentralized in the interests
of reliability, and because there is no natural central administration.

Time-Shared Storage for nodes with intermittent connectivity. If a
person wishes some data to be always available, but their machine is only
occasionally available, they can offer to store others’ data while they are
up, in return for having their data stored elsewhere when they are down.
The data’s name can serve as a key to identify the (live) Chord node
responsible for storing the data item at any given time. Many of the same
issues arise as in the Cooperative Mirroring application, though the focus
here is on availability rather than load balance.

Distributed Indexes to support Gnutella- or Napster-like keyword
search. A key in this application could be derived from the desired key-
words, while values could be lists of machines offering documents with
those keywords.

Large-Scale Combinatorial Search, such as code breaking. In this
case keys are candidate solutions to the problem (such as cryptographic
keys); Chord maps these keys to the machines responsible for testing them
as solutions.

Figure 1 shows a possible three-layered software structure for a cooperative
mirror system. The highest layer would provide a file-like interface to users,
including user-friendly naming and authentication. This “file system” layer
might implement named directories and files, mapping operations on them to
lower-level block operations. The next layer, a “block storage” layer, would
implement the block operations. It would take care of storage, caching, and

File System

{

Block Store Block Store Block Store

b ey

Chord —> Chord <——= Chord

Client Server Server

Figure 1: Structure of an example Chord-based distributed storage system.

replication of blocks. The block storage layer would use Chord to identify the
node responsible for storing a block, and then talk to the block storage server
on that node to read or write the block.

4 The Chord Protocol

This section describes the Chord protocol. The Chord protocol specifies how to
find the locations of keys, how new nodes join the system, and how to recover
from the failure (or planned departure) of existing nodes.

4.1 Overview

At its heart, Chord provides fast distributed computation of a hash function
mapping keys to nodes responsible for them. It uses consistent hashing [11,
13], which has several desirable properties. With high probability the hash
function balances load (all nodes receive roughly the same number of keys).
Also with high probability, when an N*"* node joins (or leaves) the network,
only an O(1/N) fraction of the keys are moved to a different location—this is
clearly the minimum necessary to maintain a balanced load.

Chord improves the scalability of consistent hashing by avoiding the require-
ment that every node know about every other node. A Chord node needs only
a small amount of “routing” information about other nodes. Because this infor-
mation is distributed, a node resolves the hash function by communicating with
a few other nodes. In an N-node network, each node maintains information
only about O(log N) other nodes, and a lookup requires O(log N) messages.

4.2 Consistent Hashing

The consistent hash function assigns each node and key an m-bit identifier using
a base hash function such as SHA-1 [9]. A node’s identifier is chosen by hashing
the node’s IP address, while a key identifier is produced by hashing the key. We
will use the term “key” to refer to both the original key and its image under the

Figure 2: An identifier circle consisting of 10 nodes storing five keys.

hash function, as the meaning will be clear from context. Similarly, the term
“node” will refer to both the node and its identifier under the hash function.
The identifier length m must be large enough to make the probability of two
nodes or keys hashing to the same identifier negligible.

Consistent hashing assigns keys to nodes as follows. Identifiers are ordered
in an identifier circle modulo 2. Key k is assigned to the first node whose
identifier is equal to or follows (the identifier of) k in the identifier space. This
node is called the successor node of key k, denoted by successor(k). If identifiers
are represented as a circle of numbers from 0 to 2™ — 1, then successor(k) is
the first node clockwise from k.

Figure 2 shows an identifier circle with m = 6. The identifier circle has 10
nodes and stores five keys. The successor of identifier 10 is node 14, so key 10
would be located at node 1. Similarly, keys 24 and 30 would be located at node
32, key 38 at node 38, and key 54 at node 56.

Consistent hashing is designed to let nodes enter and leave the network with
minimal disruption. To maintain the consistent hashing mapping when a node n
joins the network, certain keys previously assigned to n’s successor now become
assigned to n. When node n leaves the network, all of its assigned keys are
reassigned to n’s successor. No other changes in assignment of keys to nodes
need occur. In the example above, if a node were to join with identifier 26, it
would capture the key with identifier 24 from the node with identifier 32.

The following results are proven in the papers that introduced consistent
hashing [11, 13]:

Theorem 4.1. For any set of N nodes and K keys, with high probability:
1. Each node is responsible for at most (1 + €)K/N keys

2. When an (N + 1)% node joins or leaves the network, responsibility for
O(K/N) keys changes hands (and only to or from the joining or leaving
node).

When consistent hashing is implemented as described above, the theorem
proves a bound of e = O(log N). The consistent hashing paper shows that € can
be reduced to an arbitrarily small constant by having each node run O(log N)
“virtual nodes” each with its own identifier.

The phrase “with high probability” bears some discussion. A simple inter-
pretation is that the nodes and keys are randomly chosen, which is plausible
in a non-adversarial model of the world. The probability distribution is then
over random choices of keys and nodes, and says that such a random choice
is unlikely to produce an unbalanced distribution. One might worry, however,
about an adversary who intentionally chooses keys to all hash to the same iden-
tifier, destroying the load balancing property. The consistent hashing paper
uses “k-universal hash functions” to provide certain guarantees even in the case
of non-random keys.

Rather than using a k-universal hash function, we chose to use the standard
SHA-1 function as our base hash function. This makes our protocol determin-
istic, so that the claims of “high probability” no longer make sense. However,
producing a set of keys that collide under SHA-1 can be seen, in some sense, as
inverting, or “decrypting” the SHA-1 function. This is believed to be hard to
do. Thus, instead of stating that our theorems hold with high probability, we
can claim that they hold “based on standard hardness assumptions.”

For simplicity (primarily of presentation), we dispense with the use of virtual
nodes. In this case, the load on a node may exceed the average by (at most)
an O(log N) factor with high probability (or in our case, based on standard
hardness assumptions). One reason to avoid virtual nodes is that the number
needed is determined by the number of nodes in the system, which may be
difficult to determine. Of course, one may choose to use an a priori upper
bound on the number of nodes in the system; for example, we could postulate
at most one Chord server per IPv4 address. In this case running 32 virtual
nodes per physical node would provide good load balance.

4.3 Simple Key Location

This section describes a simple but slow Chord lookup algorithm. Succeeding
sections will describe how to extend the basic algorithm to increase efficiency,
and how to maintain the correctness of Chord’s routing information.

Lookups could be implemented on a Chord ring with little per-node state.
Each node need only know how to contact its current successor node on the
identifier circle. Queries for a given identifier could be passed around the circle
via these successor pointers until they encounter a pair of nodes that straddle
the desired identifier; the second in the pair is the node the query maps to.

The pseudo-code that implements the query process in this case is shown in
Figure 3(a). Remote calls and variable references are preceded by the remote
node identifier, while local variable references and procedure calls omit the local
node. Thus n.foo() denotes a remote procedure call to node n, while n.bar,
without parentheses, is an RPC to lookup a variable bar on node n.

N1

// ask node n to find the successor of id lookup(K54)

n.find_successor(id) K54 N5
if (id € (n,n.successor])
return n.successor; N51 s
else

// forward the query around the circle N

return successor. find_successor(id);

(a) N32

Figure 3: (a) Pseudo-code to find the successor node of an identifier id. Remote
procedure calls and variable lookups are preceded by the remote node. (b)
The path taken by a query from node 8 for key 54, using the pseudo-code in
Figure 3(a).

Figure 3(b) shows an example in which node 8 performs a lookup for key 54.
Node 8 invokes find_successor for key 54 which eventually returns the successor
of that key, node 56. The query visits every node on the circle between nodes 8
and 56. The result returns along the reverse of the path followed by the query.

4.4 Scalable Key Location

The lookup scheme presented in the previous section uses a number of mes-
sages linear in the number of nodes. To accelerate lookups, Chord maintains
additional routing information. This additional information is not essential for
correctness, which is achieved as long as each node knows its correct successor.

As before, let m be the number of bits in the key/node identifiers. Each node,
n, maintains a routing table with (at most) m entries, called the finger table.
The i" entry in the table at node n contains the identity of the first node, s, that
succeeds n by at least 2°~! on the identifier circle, i.e., s = successor(n+2i~1),
where 1 < i < m (and all arithmetic is modulo 2™). We call node s the ith
finger of node n, and denote it by n.finger{i] (see Table 1). A finger table entry
includes both the Chord identifier and the IP address (and port number) of the
relevant node. Note that the first finger of n is the immediate successor of n on
the circle; for convenience we often refer to the first finger as the successor.

The example in Figure 4(a) shows the finger table of node 8. The first
finger of node 8 points to node 14, as node 14 is the first node that succeeds
(8 +2% mod 26 = 9. Similarly, the last finger of node 8 points to node 42, as
node 42 is the first node that succeeds (8 + 2°) mod 2 = 40.

This scheme has two important characteristics. First, each node stores in-
formation about only a small number of other nodes, and knows more about

Notation | Definition

finger|k] first node on circle that succeeds (n+
2k mod 2™, 1 <k <m
successor the next node on the identifier circle;

finger{1].node
predecessor | the previous node on the identifier
circle

Table 1: Definition of variables for node n, using m-bit identifiers.

N1

Finger table lookup(54)

N8 +1 [N14
N8 + 2 |N1.
N8 + 4 |N1.
N8 + 8 |N2.
N8 +16 |N3:
N8 +32|N42

IS
Py
[
a
z
a
=3

I

N

N51

z
9

N48

(a) (b)

Figure 4: (a) The finger table entries for node 8. (b) The path a query for key 54
starting at node 8, using the algorithm in Figure 5.

nodes closely following it on the identifier circle than about nodes farther away.
Second, a node’s finger table generally does not contain enough information to
directly determine the successor of an arbitrary key k. For example, node 8 in
Figure 4(a) cannot determine the successor of key 34 by itself, as this successor
(node 38) does not appear in node 8’s finger table.

Figure 5 shows the pseudo-code of the find_successor operation, extended to
use finger tables. If id falls between n and n’s successor, find_successor is done
and node n returns its successor. Otherwise, n searches its finger table for the
node n’ whose ID most immediately precedes id, and then invokes find_successor
at n’. The reason behind this choice of n’ is that the closer n’ is to i¢d, the more
it will know about the identifier circle in the region of id.

As an example, consider the Chord circle in Figure 4(b), and suppose node
8 wants to find the successor of key 54. Since the largest finger of node 8 that
precedes 54 is node 42, node 8 will ask node 42 to resolve the query. In turn,
node 42 will determine the largest finger in its finger table that precedes 54, i.e.,
node 51. Finally, node 51 will find out that its own successor, node 56, succeeds
key 54, and thus will return node 56 to node 8.

Since each node has finger entries at power-of-two intervals around the iden-

10

// ask node n to find the successor of id
n.find_successor(id)
if (key € (n,n.successor])
return n.successor;
else
n' = closest_preceding node(id);
return n’. find_successor(id);

// search the local table for the highest predecessor of id
n.closest_preceding_node(id)
for i = m downto 1
if (finger[i] € (n,id))
return finger{i];
return n;

Figure 5: Scalable key lookup using the finger table.

tifier circle, each node can forward a query at least half way along the remaining
distance between the node and the target identifier. From this intuition follows
a theorem:

Theorem 4.2. With high probability (or under standard hardness assumptions),
the number of nodes that must be contacted to find a successor in an N-node
network is O(log N).

Proof. Suppose that node n wishes to resolve a query for the successor of k. Let
p be the node that immediately precedes k. We analyze the number of query
steps to reach p.

Recall that if n # p, then n forwards its query to the closest predecessor of
k in its finger table. Suppose that node p is in the i*" finger interval of node
n. Then since this interval is not empty, node n will finger some node f in this
interval. The distance (number of identifiers) between n and f is at least 2¢71.
But f and p are both in n’s i*" finger interval, which means the distance between
them is at most 2°~!. This means f is closer to p than to n, or equivalently,
that the distance from f to p is at most half the distance from n to p.

If the distance between the node handling the query and the predecessor p
halves in each step, and is at most 2™ initially, then within m steps the distance
will be one, meaning we have arrived at p.

In fact, as discussed above, we assume that node and key identifiers are
random. In this case, the number of forwardings necessary will be O(log N)
with high probability. After log N forwardings, the distance between the current
query node and the key &k will be reduced to at most 2™/N. The expected
number of node identifiers landing in a range of this size is 1, and it is O(log N)
with high probability. Thus, even if the remaining steps advance by only one
node at a time, they will cross the entire remaining interval and reach key k
within another O(log N) steps. O

In the section reporting our experimental results (Section 6), we will observe
(and justify) that the average lookup time is 1 log N.

11

4.5 Dynamic Operations and Failures

In practice, Chord needs to deal with nodes joining the system and with nodes
that fail or leave voluntarily. This section describes how Chord handles these
situations.

4.5.1 Node Joins and Stabilization

In order to ensure that lookups execute correctly as the set of participating nodes
changes, Chord must ensure that each node’s successor pointer is up to date.
It does this using a basic “stabilization” protocol. Chord verifies and updates
finger table entries using a combination of existing (and possibly out-of-date)
fingers and corrected successor pointers.

If joining nodes have affected some region of the Chord ring, a lookup that
occurs before stabilization has finished can exhibit one of three behaviors. The
common case is that all the finger table entries involved in the lookup are rea-
sonably current, and the lookup finds the correct successor in O(log N) steps.
The second case is where successor pointers are correct, but fingers are inaccu-
rate. This yields correct lookups, but they may be slower. In the final case, the
nodes in the affected region have incorrect successor pointers, or keys may not
yet have migrated to newly joined nodes, and the lookup may fail. The higher-
layer software using Chord will notice that the desired data was not found, and
has the option of retrying the lookup after a pause. This pause can be short,
since stabilization fixes successor pointers quickly.

Our stabilization scheme guarantees to add nodes to a Chord ring in a way
that preserves reachability of existing nodes, even in the face of concurrent joins
and lost and reordered messages. This stabilization protocol by itself won’t
correct a Chord system that has split into multiple disjoint cycles, or a single
cycle that loops multiple times around the identifier space. We discuss the
latter case in Section 5.3. These pathological cases cannot be produced by any
sequence of ordinary node joins. It is unclear whether they can be produced by
network partitions and recoveries or intermittent failures.

Figure 6 shows the pseudo-code for joins and stabilization. When node n
first starts, it calls n.join(n’), where n’ is any known Chord node. The join()
function asks n’ to find the immediate successor of n. By itself, join() does not
make the rest of the network aware of n.

Every node runs stab() periodically. This is how nodes in the system learn
about newly joined nodes. When node n runs stab(), it asks its successor for the
successor’s predecessor p, and decides whether p should be n’s successor instead.
This would be the case if node p recently joined the system. Also stab() notifies
node n’s successor of n’s existence, giving the successor the chance to change its
predecessor to n. The successor does this only if it knows of no closer predecessor
than n.

As a simple example, suppose node n joins the system, and its ID lies between
nodes n, and ns. In its call to join(), n acquires ns as its successor. In addition,
n copies all keys with IDs larger or equal to its ID from ns. Node ng, when

12

// ask n' to build n’s finger table.
n.build_fingers(n’)
i0 := |log(successor —n)| +1; // first non-trivial finger.
for each i > i¢ index into finger{];
fingeri] = n'.find_successor(n 4+ 2°~1);

n.join(n')
predecessor = nil,;
s = n'.find_successor(n);
build_fingers(s);

Successor = S;

Figure 6: Pseudocode for stabilization.

successor(N21)

N32 N32 N32
K24 K24 K24
K30 K30 K30

@ (b) ©

, J N26
o K24

N32
K30

// periodically verify n’s immediate successor,
// and tell the successor about n.
n.stabilize()
x = successor.predecessor;
if (z € (n, successor))
successor = x;
successor.notify(n);

// ' thinks it might be our predecessor.
n.notify(n’)
if (predecessor is nil or n’ € (predecessor,n))
predecessor = n';

® N21

(d)

Figure 7: Example illustrating the join operation. Node 26 joins the system
between nodes 21 and 32. The arcs represent the successor relationship. (a)
Initial state: node 21 points to node 32; (b) node 26 finds its successor (i.e.,
node 32) and points to it; (c) node 26 copies all keys between 26 and 31 from
node 32; (d) stabilize procedure updates the successor of node 21 to node 26.

notified by n, would acquire n as its predecessor. When n,, next runs stab(), it
will ask ns for its predecessor (which is now n); n, would then acquire n as its
successor. Finally, n, will notify n, and n will acquire n, as its predecessor. At
this point, all predecessor and successor pointers are correct. Figure 7 illustrates
the join procedure, when n’s ID is 26, and the IDs of ny and n, are 21 and 32,

respectively.

As soon as the successor pointers are correct, calls to find_predecessor()
will work. Newly joined nodes that have not yet been fingered may cause
find_predecessor() to initially undershoot, but the loop in the lookup algorithm
will nevertheless follow successor (finger{l]) pointers through the newly joined
nodes until the correct predecessor is reached. Eventually ffs() will adjust

finger table entries, eliminating the need for these linear scans.

The following result, proved below, shows that the inconsistent state caused

13

by concurrent joins is transient.

Theorem 4.3. If any sequence of join operations is executed interleaved with
stabilizations, then at some time after the last join the successor pointers will
form a cycle on all the nodes in the network.

In other words, after some time each node is able to reach any other node
in the network by following successor pointers.

4.5.2 Impact of Node Joins on Lookup Performance

In this section, we consider the impact of node joins on lookup performance.
Once stabilization has completed, the new nodes will have no effect beyond
increasing the N in the O(log N) lookup time. If stabilization has not yet
completed, existing nodes’ finger table entries may not reflect the new nodes.
The ability of finger entries to carry queries long distances around the identifier
ring does not depend on exactly which nodes the entries point to; the distance
halving argument depends only on ID-space distance. Thus the fact that finger
table entries may not reflect new nodes does not significantly affect lookup speed.
The main way in which newly joined nodes can influence a lookup’s speed is
if the new nodes’ IDs are between the target’s predecessor and the target. In
that case the lookup will have to be forwarded through the intervening nodes,
one at a time. But unless a tremendous number of nodes joins the system, the
number of nodes between two old nodes is likely to be very small, so the impact
on lookup is negligible. Formally, we can state the following result:

Theorem 4.4. If we take a stable network with N nodes, and another set of
up to N nodes joins the network, and all successor pointers (but perhaps not all
finger pointers) are correct, then lookups will still take O(log N) time with high
probability.

Proof. The original set of fingers will, in O(log N) time, bring the query to the
old predecessor of the correct node. With high probability, at most O(log N)
new nodes will land between any two old nodes. So only O(log N) new nodes
will need to be traversed along successor pointers to get from the old predecessor
to the new predecessor. o

More generally, as long as the time it takes to adjust fingers is less than
the time it takes the network to double in size, lookups will continue to take
O(log N) hops. We can achieve such adjustment by repeatedly carrying out
lookups to update our fingers. It follows that lookups perform well so long as
log2 N rounds of stabilization happen between any N node joins.

4.5.3 Failure and Replication

The correctness of the Chord protocol relies on the fact that each node knows
its successor. However, this invariant can be compromised if nodes fail. For
example, in Figure 4, if nodes 14, 21, and 32 fail simultaneously, node 8 will not

14

know that node 38 is now its successor, since it has no finger pointing to 38. An
incorrect successor will lead to incorrect lookups. Consider a query for key 30
addressed to node 8. Node 8 will return node 42, the first node it knows about
from its finger table, instead of the correct successor, node 38.

To increase robustness, each Chord node maintains a successor list of size
r, containing the node’s first r successors. If a node’s immediate successor does
not respond, the node can substitute the second entry in its successor list. All
r successors would have to simultaneously fail in order to disrupt the Chord
ring, an event that can be made very improbable with modest values of r. An
implementation should use a fixed r, chosen to be 2log, N for the foreseeable
maximum number of nodes N.

Handling the successor list requires minor changes in the pseudo-code in
Figures 5 and 6. A modified version of the stabilize procedure in Figure 6
maintains the successor list. Successor lists are stabilized as follows: node u
reconciles its list with its successor s by copying s’s list ¢, adding s the front of
£, and deleting the last element. If node n notices that its successor has failed, it
replaces it with the first live entry in its successor list and reconciles its successor
list with its new successor. At that point, n can direct ordinary lookups for keys
for which the failed node was the successor to the new successor. As time passes,
stabilize will correct finger table entries and successor list entries pointing to the
failed node.

A modified version of the closest_preceding_node procedure in Figure 5
searches not only the finger table but also the successor list for the most im-
mediate predecessor of ¢d. In addition, the pseudo-code needs to be enhanced
to handle node failures. If a node fails during the find_successor procedure, the
lookup proceeds, after a timeout, by trying the next best predecessor among
the nodes in the finger table and the successor list.

The following results quantify the robustness of the Chord protocol, by show-
ing that neither the success nor the performance of Chord lookups is likely to be
affected even by massive simultaneous failures. Both theorems assume that the
successor list has length » = O(log N). A Chord ring is stable if every node’s
successor list is correct.

Theorem 4.5. If we use a successor list of length r = O(log N) in a network
that is initially stable, and then every node fails with probability 1/2, then with
high probability find_successor returns the closest living successor to the query
key.

Proof. Before the failures, each node was aware of its r immediate successors.
The probability that all of these successors fail is (1/2)", so with high probability
every node is aware of its immediate living successor. As was argued in the
previous section, if the invariant that every node is aware of its immediate
successor holds, then all queries are routed properly, since every node except
the immediate predecessor of the query has at least one better node to which it
will forward the query. O

Theorem 4.6. In a network that is initially stable, if every node then fails with

15

probability 1/2, then the expected time to execute find_successor is O(log N).

Proof. We consider the expected time for a query to move from a node that has
the key in its i*" finger interval to a node that has the key in its (i — 1) finger
interval. We show that this expectation is O(1). Summing these expectations
over all 4, we find that the time to drop from the m'" finger interval to the
(m — log N)t" finger interval is O(log N). At this point, as was argued before,
only O(log N) nodes stand between the query node and the true successor, so
O(log N) additional forwarding steps arrive at the successor node.

To see that the expectation is O(log N) consider the current node n that has
the key in its #*" finger interval. If n’s i*? finger s is up, then in one forwarding
step we accomplish our goal: the key is in the (i — 1)*! finger interval of node s.
If s is down then, as argued in the previous theorem, n is still able to forward
(at least) to some node. More precisely, n was aware of z immediate successors;
assume z > 2log N. If we consider the (log N)*" through (2log N)'" successors,
the probability that they all fail is 1/N. So with high probability, node n can
forward the query past at least log N successors. As was implied by Lemma 77,
it is unlikely that all log N of these skipped nodes had the same " finger. In
other words, the node to which n forwards the query has a different i*" finger
than n did. Thus, independent of the fact that n’s i*" finger failed, there is a
probablity 1/2 that the next node’s i*" finger is up.

Thus, the query passes through a series of nodes, where each node has a
distinct 7*" finger (before the failures) each of which is up independently with
probability 1/2 after the failures. Thus, the expected number of times we need
to forward the query before finding an i** finger that is up is therefore 2. This
proves the claim. O

Under some circumstances the preceding theorems may apply to malicious
node failures as well as accidental failures. An adversary may be able to make
some set of nodes fail, but have no control over the choice of of the set. For
example, the adversary may be able to affect only the nodes in a particular
geographical region, or all the nodes that use a particular access link, or all the
nodes that have a certain IP address prefix. Because Chord node IDs are gen-
erated by hashing IP addresses, the IDs of these failed nodes will be effectively
random, just as in the failure case analyzed above.

The successor-list mechanism also helps higher layer software replicate data.
A typical application using Chord might store replicas of the data associated
with a key at the k£ nodes succeeding the key. The fact that a Chord node keeps
track of its r successors means that it can inform the higher layer software
when successors come and go, and thus when the software should propagate
new replicas.

4.5.4 Voluntary Node Departures

Since Chord is robust in the face of failures, a node voluntarily leaving the
system could be treated as a node failure. However, two enhancements can
improve Chord performance when nodes leave voluntarily. First, a node n that

16

is about to leave may transfer its keys to its successor before it departs. Second,
n may notify its predecessor p and successor s before leaving. In turn, node p
will remove n from its successor list, and add the last node in n’s successor list to
its own list. Similarly, node s will replace its predecessor with n’s predecessor.
Here we assume that n sends its predecessor to s, and the last node in its
successor list to p.

5 Chord Protocol Analysis

The previous section described the (major part of the) chord protocol, but
analyzed it only in certain simple models. In particular, we gave theorems
regarding the eventual stabilization of the chord ring after nodes stopped joining,
and we gave theorems regarding the robustness of a stable chord ring in the
presence of failures. In this section, we delve deeper and prove that the chord
protocol is robust in more realistic models of system usage. We consider a model
in which nodes are continuously joining and departing, and show that (i) the
system remains stable and (ii) lookups continue to work, and work quickly.

5.1 Lookups eventually succeed

The following theorems show that all lookup problems caused by concurrent
joins are transient. The theorems assume that any two nodes trying to commu-
nicate will eventually succeed.

Theorem 5.1. Once a node can successfully resolve a given query, it will always
be able to do so in the future.

Theorem 5.2. At some time after the last join all successor pointers will be
correct.

The proofs of these theorems rely on an invariant and a termination argu-
ment. The invariant states that once node n can reach node r via successor
pointers, it always can. To argue termination, we consider the case where two
nodes both think they have the same successor s. In this case, each will at-
tempt to notify s, and s will eventually choose the closer of the two (or some
other, closer node) as its predecessor. At this point the farther of the two will,
by contacting s, learn of a better successor than s. It follows that every node
progresses towards a better and better successor over time. This progress must
eventually halt in a state where every node is considered the successor of exactly
one other node; this defines a cycle (or set of them, but the invariant ensures
that there will be at most one). We now formalize this argument.

Definition 5.3. Node s is reachable from node p if, by starting at p and follow-
ing successor pointers, one eventually reaches s. We also say node p can reach
node s.

Definition 5.4. An arc path from p to s is a path of successor pointers, starting
at p and ending at s, that only goes through nodes between p and s.

17

Lemma 5.5. If at some time t there is an arc path from p to s, then at all
future t' > t there is an arc path from p to s.

Proof. By induction on time, which in this case can be considered as the number
of changes to the system (successor or predecessor pointers).

When a node joins it sets up a successor pointer, which lets it reach nodes
it couldn’t reach before, but clearly doesn’t destroy any existing arc path.

Now consider stabilization. Consider a time when node p changes its succes-
sor from s to a. It does so only because p contacted s and heard about a, and
because p < a < s. This means that at some earlier time node s learned about
node a. This can only have happened because a told s about itself, which could
only happen if a’s successor was s at some earlier time. At this time, there was
arc path from a to s (namely, the successor link). It follows by induction that
just before p changes its pointer to a, there is still an arc path from a to s. Since
p < a < s, the arc path from a to s cannot include p. Thus, when p changes its
pointer the arc path from a to s is undisturbed. But the concatenation of the
edge (p,a) with the arc path from a to s forms an arc path from p to s (since
all nodes on the path are either a, which is between p and s, or on the arc path
from a to s, and thus between a and s, and thus between p and s).

Now consider any arc path from x to y that used the successor edge from
p to s (so might be disrupted by the change in p’s sucessor). Since it is an arc
path, both p and s must be between x and y. We have just argued that all the
nodes on the new path from p to s are between p and s; it follows that they are
between x and y as well. Thus, the path from z to y remains an arc path. [

Corollary 5.6. If at time t there is a path of successor arcs from a to b, then
at all t' >t there is still a path of successor arcs from a to b.

Proof. By the previous lemma, each successor arc on the path from a to b can
only be replaced by a path; it cannot be disconnected. The concatenation of all
these replacement paths forms a path from a to b. o

Corollary 5.7. Suppose that a is the first node in the Chord network. Then at
any time, every node can reach a via successor pointers.

Proof. By induction on joins. When a node joins, its successor pointer points
to a node that can reach a; thus the new node can reach a as well. The previous
claim shows that since the new node can initially reach a, it can always reach
a. O

Theorem 5.8. If any sequence of join operations is executed interleaved with
stabilizations, then at some time after the last join the successor arcs will form
a cycle on all the node in the network.

Proof. Notice that if two nodes share a successor, one of them will eventually
change successor pointers. Its new successor will be closer on the circle than the
old one, so there can be at most n changes in its successor pointer. Thus after
n? steps, we must be in a stable state in which every node is the successor of at

18

most (and thus exactly) one node. Of course we also know that every node has
exactly one successor. The only graphical structure satisfying this constraint
(indegree one and outdegree one) is a set of cycles. But by our invariant, every
node can reach the very first node ever in the network, so the set must consist
of exactly one cycle. O

5.2 Effect on Lookup Performance

We have not discussed the adjustment of fingers when nodes join because it
turns out that joins don’t substantially damage the performance of fingers. If
a node has a finger into each interval, then these fingers can still be used even
after joins. The distance halving argument is essentially unchanged, showing
that O(log N) hops suffice to reach a node “close” to a query’s target. New
joins influence the lookup only by getting in between the old predecessor and
successor of a target query. These new nodes may need to be scanned linearly (if
their fingers are not yet accurate). But unless a tremendous number of nodes
joins the system, the number of nodes between two old nodes is likely to be
very small, so the impact on lookup is negligible. Formally, we can state the
following:

Theorem 5.9. If we take a stable network with N nodes, and another set of up
to N nodes joins the network with no finger pointers (but with correct successor
pointers), then lookups will still take O(log N) time with high probability.

Proof. The original set of fingers will, in O(log N) time, bring the query to the
old predecessor of the correct node. With high probability, at most O(log N)
new nodes will land between any two old nodes. So only O(log N) new nodes
will need to be traversed along successor pointers to get from the old predecessor
to the new predecessor. O

More generally, so long as the time it takes to adjust fingers is less than
the time it takes the network to double in size, lookups will continue to take
O(log N) hops. We can achieve such adjustment by repeatedly carrying out
searches to update our fingers. It follows that lookups perform well so long as
log2 N rounds of stabilization happen between any N node joins.

5.3 Strong Stabilization

The stabilize() protocol described in Figure 6 aims to guarantee that, for any
node u, the predecessor of the successor of node u is the node wu itself. This
is a local consistency condition that is necessary, but not sufficient, for proper
behavior in a Chord network. For example, the Chord network shown in Figure
8 is stable under this protocol. However, this network is globally inconsistent
— in fact, there is no node u so that successor(u) is the first node to follow u
on the identifier circle.

Definition 5.10. We say that a Chord network is (1) weakly stable if, for
all nodes u, we have predecessor(successor(u)) = u; (2) strongly stable if, in

19

N56

N14
N48:

N32

Figure 8: A weakly stable loopy network. The arrows represent successor point-
ers. The predecessor of a node n’s successor is n itself.

addition, for each node u, there is no node v in w’s component so that u < v <
successor(u); and (3) loopy if it is weakly but not strongly stable.

The protocols in Figure 6 maintain strong stability in a strongly stable net-
work. Thus, so long as all nodes operate according the this protocol, it would
seem that our network will be strongly stable, so that our lookups will be cor-
rect. But we now wish to take a more cautious look. It is conceivable that a bug
in an implementation of the protocol might lead to a loopy state. Alternatively,
the model might break down—for example, a node might be out of contact for
so long that some nodes believe it to have failed, while it remains convinced that
it is alive. Such inconsistent opinions could lead the system to a strange state.
We therefore aim in this section to develop a protocol that will stabilize the
network from an arbitrary state, even one not reachable by correct operation of
the protocol.

A Chord network is weakly stable iff it is stable under the stabilize protocol
of Figure 6. Since this protocol guarantees that all nodes have indegree and
outdegree one, a weakly stable network consists of a collection of cycles. For
a node u, we will say that u’s loop consists of all nodes found by following
successor pointers starting from v and continuing until we reach a node w so
that successor(w) > u. In a loopy network, there is a node u so that u’s loop is
a strict subset of w’s component.

In this section, we present a stabilization protocol (replacing that in Figure 6)
to produce a strongly stable network. Note that this protocol does not attempt
to reconnect a disconnected network; we rely on some external means to do
so. The fundamental stabilization operation by which we unfurl a loopy cycle
is based upon self-search, wherein a node u searches for itself in the network.
For simplicity, we will assume for the moment that this self-search uses only
successor pointers and does not make use of larger fingers. If the network is

20

n.join(n') n.update_and_notify () n.stabilize()

on_cycle = false; s = successor|i] u = successor|0].find_successor(n);

predecessor = nil, T = s.predecessor; on_cycle = (u = n);

s = n'.find_successor(n); if (z € (n,s)) if (successor|0] = successor|1]

while (not s.on_cycle) do successor(i] = x; and u € (n, successor(1]))
s := s.find_successor(n’); s.notify(n); successor[l] = u;

successor]0] = s; for (:=0,1)

successor[l] = s; update_and_notify(i);

Figure 9: Pseudocode for strong stabilization.

loopy, then a self-search from u traverses the circle once and then finds the
first node on the loop succeeding u — i.e., the first node w found by following
successor pointers so that predecessor(w) < u < w.

To strongly stabilize a loopy Chord network, we extend the weak stabilization
protocol by allowing each node u to maintain a second successor pointer. This
second successor is generated by self-search, and improved in exactly the same
way as in the previous protocol. The pseudocode is given in Figure 9.

Theorem 5.11. Any connected Chord network becomes strongly stable within
O(N?) rounds of strong stabilization.

Although O(N?) is a slow running time, the situation of a loopy cycle is an
extremely low probability event. Over the infinite life of the system, the amount
of time that we spend recovering from a loopy state is neglible.

There are two key intuitions behind the correctness of this algorithm. Com-
bined, they show that the only stable configuration of the network is the desired
one.

First, we show that if the network is weakly stable but not strongly stable,
then at least one node will find a improved second successor when it performs
a search for itself in the stabilization algorithm.

Having ruled out the “wrong” weak stabilization, we consider non-loops—
i.e, situations in which some nodes have more than one successor pointer. Every
node has at least one successor pointer, meaning there are at least N succes-
sor pointers in the system. If even one node has two distinct pointers (with
successor{0] # successor{l]) then in total there are more than N distinct suc-
cessor pointers. If this happens, then some node s has two distinct other nodes
pointing at it as a successor. As we saw in the previous stabilization algorithm,
this is not a stable situation: the closer predecessor p will eventually notify s,
and then the farther predecessor will hear about and switch to p.

It follows that the only stable situation is when every node has exactly one
successor pointer, which points to that nodes true successor in the network.

Lemma 5.12. If the network contains a loopy cycle, then there is some node u
whose self-search reveals a node v so that u < v < successor(u).

Proof. If there is a loopy cycle C, then, by definition, there are © € C and
s € C so that u < s < successor(u). Since C is a cycle, repeatedly following

21

successor pointers from u eventually leads to s; because u < s < successor(u),
we cannot find s on the first traversal of the identifier circle. More generally,
then, there must exist u,w € C so that w is not on u’s loop. Let v be the first
node reached following successor pointers from u so that v is not on u’s loop.
Then predecessor(v) < u < v, and predecessor(v) is on u’s loop.

Denote the nodes of u’s loop as s°(u), s'(u), ..., s'(u) where (1) s°(u) = u,
(2) successor(s'(u)) = s (u), and (3) s*(u) = predecessor(v). For some 0 <
i < £, we must have s'(u) < v < s**!(u). Note that v cannot fall in the range
(s(u), u), since otherwise v is actually on u’s loop.

If ¢ = 0, the node u’s self-search yields an improved successor v — we have
u=5"u) < v < s'(u) = successor(u). Fori > 1, we have s*(u) < v < s (u) =
successor(s'(u)). The self-search by s*(u) also yields v — an improvement over
st (u) = successor(s'(u)) — since s*(u)’s self-search path is a subpath of u’s
self-search path. O

Lemma 5.13. If at some time t there is an arc path from p to s, then at all
Juture times t' > t, there is an arc path from p to s.

Proof. We proceed by induction on changes to the system, exactly as in the
proof for weak stabilization. Joins and self-searches only add an edge and can-
not destroy an arc path, nor can replacing a duplicated edge. Updates via
predecessors maintain arc paths just as in Lemma 5.5. O

Corollary 5.14. If at time t there is a path of successor arcs from a to b, then
at all times t' > t there is still a path of successor arcs from a tob. O

Claim 5.15. If the Chord network is connected but not strongly stable, then,
after O(1) rounds of stabilization, some successor pointer improves.

Proof. If there is a node u so that two distinct nodes, say p; < p2, both have u
as a successor, then after py stabilizes, node u will have a predecessor p so that
p1 < p2 < p < u. When p; subsequently stabilizes, p; will replace its pointer to
u by one to p.

If there is a node with two distinct successor pointers, i.e., u.successor|0] #
u.successor{1], then there are n + 1 distinct successor pointers, and thus, by the
pigeonhole principle, for some node u, there must be two distinct nodes that
have successor pointers to u and the previous case applies.

Otherwise, every node points to a single node and is pointed to by a single
node, so the network is a collection of cycles. Since we are connected by assump-
tion, we have a single cycle; since we are not strongly stable by assumption, this
cycle is loopy. Then by Lemma 5.12, one round of self-search finds an improved
successor for some node. O

Proof of Theorem 5.11. By Corollary 5.14, connectivity is maintained through-
out strong stabilization. By Claim 5.15, until we are strongly stable, we can
always improve a successor pointer in O(1) rounds of stabilization.

Note that any stabilization operation that alters one of node u’s successor
pointers improves it, in the sense that the new successor is closer to u on the

22

identifier circle than the old successor is. There are 2N pointers (two per node),
and each pointer can only improve N times (since there are only n choices of
nodes at which it can point). Thus after O(N?) improvements, each node must
have both successor pointers directed at its true successor on the circle. o

Observe that a loopy Chord network will never permit any new nodes to join
until its loops merge — in a loopy network, for all u, we have u.on_cycle = false,
since u’s self-search never returns v in a loopy network. Thus, if the network
somehow finds its way into a loopy state, it will heal itself within O(N?) rounds,
unaffected by nodes attempting to join.

We have stated this algorithm so that each stabilization round may takes
O(N) time for the self-search. We can reduce this time to O(log N) time, whp,
using fingers. The fingers can be built up using pointer doubling or having
each node u invoke u.find_successor(u + 2°~1) for increasing i. Inductively, it
is straightforward that wu.fingerfi] will be in w’s loop, and therefore that the
finger-based search will give the same result as the successor-only search.

Strong stabilization in the presence of failures. Maintaining a succes-
sor list of length O(log N) will, as before, ensure that our graph, whp, stays
connected as long as Q(log N) rounds pass before N/2 nodes fail. (This suc-
cessor list can be formed by following either successor pointer from each node.)
Recall, though, only N failures can occur before we are strongly stable, since,
as discussed above, no nodes can join a loopy network. (Of course, failures at
roughly this rate will cause the ring to disappear rapidly.)

However, if one of u’s successors fails, then there may be a large number of
nodes between the failed successor and the first live entry in u.successor_list. So
we may slip backwards using the sense of “progress” from above. But there are
at most N failures before the network empties. If O(N?) improvements occur
after any of the IV failures, then we are strongly stable, so we have the following:

Theorem 5.16. Start from an arbitrary connected state with successor lists of
length O(log N). Allow failures at a rate of at most N/2 nodes in Q(log N)
steps. Then, whp, in O(N3) rounds, the network is strongly stable.

5.4 Fast Strong Stabilization for Two Well-Interleaved
Loops

While the previous section shows that we can stabilize even a loopy graph,
the time bounds for such stabilization are high. The most likely imaginable
scenario that could lead to the creation of a loopy graph is a network partition
that completely disconnects some of the nodes in the network from others. To
model the problem, we start with a weakly stable network consisting of two
loops — i.e., starting from a node u, following successor pointers, one returns
to u after traversing the identifier circle exactly twice.

We modify u.stabilize() to allow the u to move large distances when it is far
from accurate, by allowing u to move to any node which fingers u.successor,

23

rather than just the predecessor. This allows u to find its true successor on the
cycle in time O(log? N) (rather than Q(N)), regardless of where it enters the
cycle.

e Each node u maintains a list of backwards fingers — for every i, node u
stores the closest node with identifier at most u — 2°~! that fingers w.

e In wu.stabilize(), node u contacts its current successor s, and, if s is on
the cycle, changes its successor to the node v > w in s’s list of backwards
fingers minimizing v — u.

This optimization may result in a brief period in which node u previously pointed
to a node on the cycle, and then doesn’t because its current successor is fingered
by a node not on the cycle, and u “backs up” to point to that node instead.
When that node joins the cycle, though, node v will continue its march towards
its true successor.

Lemma 5.17. Whp, in O(log2 N) rounds of following backwards fingers, a node
arrives at its cycle successor.

Proof. Suppose node u’s current successor is v, and that 2771 < v —u <
27%. We consider the number of backward finger links that need to be taken
before u sets its successor to a node w so that w — u < 27%. Suppose that
u.successor —u > 2% for O(log N) rounds. Note that, although the probability
of each node in (u+ 2% u+ 27¢~1] being fingered by a node within 27! of u
is not independent, it is more likely that the next node we see will be fingered
by such a node if the current one is not.

Each node in this range is, in expectation, the ith finger for one other node.
So after O(log N) steps through nodes between distance 27¢ and 27~ of node
u, whp, we step to a node v that is fingered by a node within less than distance
2~% from u, by the Chernoff bound.

Then, in O(log2 N) time, whp, u is forwarded to its true cycle successor
— after O(log N) distance halvings, there are, whp, at most O(log N) nodes
between wu.successor and wu. O

In the 2-loop case, self-search is powerful: any node u whose true successor
v is not in u’s loop will find v via its self-search. If all nodes simultaneously
complete their self-search, then, we can stabilize quickly:

Lemma 5.18. If, synchronously, all nodes in a weakly-stable 2-loop network
complete a self-search, and then run the strong stabilization protocol, then, with
high probability, we are strongly stable in O(log N) rounds.

Proof. A chain is a consecutive sequence of nodes on the identifier circle, all
of which fall on the same loop. The tail of a chain is its last node, and is the
one node in the chain whose true successor lies in the other loop. With high
probability, there are no more than O(log N) nodes in a chain.

Once all the self-search successor pointers are added, every node has a pointer
to its true successor; we must only correct the pointer from each chain’s tail u

24

to the next node in w’s loop. This pointer will be moved backwards one node
at a time across the intervening chain (from the other loop) to point at u’s true
successor. This chain has O(log N) nodes with high probability, so in O(log V)
rounds of stabilization we are done. O

In the asychronous model, however, the first nodes that complete their self-
searches may break the search algorithm, possibly causing other nodes attempt-
ing to self-search to fail. (By Theorem 5.11, we will eventually stabilize, but
there is no guarantee of efficiency.) We can handle this problem by simple
patience:

e when a a node u’s self-search reveals that the network is loopy, u waits
O(log N) rounds (for all other nodes to complete their self-searches) and
only then adds the new successor pointer.

We do not know exactly how long each self-search will take — some nodes’ self-
search path may take a number of long geographic network hops, and therefore
be substantially slower than others. One can easily verify that waiting until only
O(1) self-searches are unfinished yields strong stabilization in O(log® N) time
with high probability. Under the assumption that search time is independent
of position on the identifier circle, waiting until at most N/2 self-searches are
unfinished allows us to strongly stabilize in O(log® N) time with high probability.
(With high probability, there are no more than O(log N) consecutive chains
whose head has not completed its self-search; each chain requires only O(log2 N)
rounds to traverse, whp.)

Another possible result of the healing of a network partition is two completely
disconnected Chord rings that can reach each other after the partition heals,
but every node has dropped all pointers to the other loop. To combat this event
for short-duration network partitions, we can do the following, for each node u:

e Remember the closest node v that uw has ever pointed to, regardless of
whether it currently is up or down, in the last, say, O(log? N) rounds.

e Every O(1) rounds, ping v to see if it has been resurrected. If so, add a
second successor pointer to it.

Typically, a node will come back to life when a network partition heals (though
if it does not heal rapidly, a large number of failures will mean that for most
nodes u, their closest ever neighbor will actually have failed while the network
was partitioned).

For the purposes of stabilization, the situation after the network partition
heals is exactly that of the above 2-loop case after the completion of the self-
searches. In time O(log? N), then, we will re-stabilize these two loops into one,
as long as at least a constant fraction of the nodes alive at the time of the
partition survive until the healing of it.

25

Figure 10: A pseudostar.

5.5 A Dynamic Model

Until now we have assumed that the initial state of the system is a ring. In
practice, we cannot assume that we ever actually start with a ring, because
there will always be some recently joined nodes that have not yet fit into the
ring. Thus, in this section we try to prove a more powerful result: that our
stabilization algorithm continuously keeps the system in a ring-like state.

In this section, for simplicity of presentation, we limit ourselves to a syn-
chronous model of stabilization. With mild complications on the definitions that
follow, we can handle (without an increase in running time) a network with a
reasonable degree of asynchrony, where most machines are operating at roughly
the same rate, and messages take roughly consistent times to reach their desti-
nations. We refer to a round of stabilization as the O(1) time required for each
node to run stabilize(), disregarding any time required for the transfer of keys.

Each node has exactly one successor, so the graph defined by successor point-
ers is a pseudoforest, a graph in which all components are directed trees pointing
towards a root cycle (instead of a root node). We will limit our consideration to
connected networks, where the graph is a pseudotree. The network is (weakly)
stable when all nodes are in the cycle. For each cycle node u, then, there is a
tree rooted at u which we call u’s appendage, and denote A, .

We insist that a node u joining the system invoke u.join(n) for an existing
node n that is already on the cycle. We can use an external infrastructure to
enforce this, or we can use the more complicated join() protocol in Section 5.3.

Definition 5.19. A pseudostar is a Chord network in which:
(i) The cycle is non-loopy;
(i1) A, C [p,u], where p is the predecessor of u on the cycle;
(iii) for every node v € A, we have u = v.successor.

See Figure 10.

Lemma 5.20. Starting from a psuedostar, execute an arbitrary sequence of
joins while running stabilize(). Then the resulting network is still a psuedostar.

26

Proof. We proceed by induction over changes to the system.

By (ii), the n.join(v) protocol finds a node s on the cycle so that
s.predecessor < n < s. Thus every search ends with n.successor on the cycle and
(n.successor).predecessor < n < m.successor. The correctness of find_successor
on the cycle is guaranteed inductively by property (i). This immediately yields
loopy cycle to become loopy, by Lemma 5.5.

The w.stabilize() protocol cannot create a loop by Lemma 5.5, and incorpo-
rates a node into the cycle by having u’s cycle predecessor point at one of u’s
other predecessors, say p. All of u’s predecessors that are in the range [p., p| shift
to point to p instead of u, where p. is u’s cycle predecessor, yielding (i,ii1). O

Note that this holds even for completely arbitrary joins to the system —e.g.,
if the identifiers of joining nodes were chosen maliciously and not randomly.

Definition 5.21 (Ring-Like State). A Chord network is in the c-ring-like
state iff for some constant c,

(i) The network is a pseudostar;

(ii) Nodes that joined the network at least 8¢2log® N rounds ago:

(a) are all on the cycle;
(b) comprise at least half of the nodes in the network;
(c¢) are independently and uniformly distributed around the identifier
cir