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Abstract. In this letter we discuss a least squares version for supportvector machine (SVM)
classifiers. Due to equality type constraints in the formulation, the solution follows from
solving a set of linear equations, instead of quadratic programming for classical SVM’s. The
approach is illustrated on a two-spiral benchmark classification problem.
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1. Introduction

Recently, support vector machines (Vapnik, 1995; Vapnik, 1998a; Vapnik,
1998b) have been introduced for solving pattern recognition problems. In
this method one maps the data into a higher dimensional inputspace and
one constructs an optimal separating hyperplane in this space. This basically
involves solving a quadratic programming problem, while gradient based
training methods for neural network architectures on the other hand suf-
fer from the existence of many local minima (Bishop, 1995; Cherkassky &
Mulier, 1998; Haykin, 1994; Zurada, 1992). Kernel functions and parameters
are chosen such that a bound on the VC dimension is minimized.Later, the
support vector method has been extended for solving function estimation
problems. For this purpose Vapnik’s epsilon insensitive loss function and
Huber’s loss function have been employed. Besides the linear case, SVM’s
based on polynomials, splines, radial basis function networks and multilayer
perceptrons have been successfully applied. Being based onthe structural
risk minimization principle and capacity concept with purecombinatorial
definitions, the quality and complexity of the SVM solution does not de-
pend directly on the dimensionality of the input space (Vapnik, 1995; Vapnik,
1998a; Vapnik, 1998b).

In this paper we formulate a least squares version of SVM’s for clas-
sification problems with two classes. For the function estimation problem a
support vector interpretation of ridge regression (Golub &Van Loan, 1989)
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has been given in (Saunders et al., 1998), which considers equality type con-
straints instead of inequalities from the classical SVM approach. Here, we
also consider equality constraints for the classification problem with a for-
mulation in least squares sense. As a result the solution follows directly from
solving a set of linear equations, instead of quadratic programming. While in
classical SVM’s many support values are zero (non-zero values correspond to
support vectors), in least squares SVM’s the support valuesare proportional
to the errors.

This paper is organized as follows. In Section 2 we review some basic
work about support vector machine classifiers. In Section 3 we discuss the
least squares support vector machine classifiers. In Section 4 examples are
given to illustrate the support values and on a two-spiral benchmark problem.

2. Support vector machines for classification

In this Section we shortly review some basic work on support vector machines
(SVM) for classification problems. For all further details we refer to (Vapnik,
1995; Vapnik, 1998a; Vapnik, 1998b).

Given a training set ofN data pointsfyk;xkgN
k=1, wherexk 2 Rn is the

k-th input pattern andyk 2 R is the k-th output pattern, the support vector
method approach aims at constructing a classifier of the form:

y(x) = sign[ N

∑
k=1

αk yk ψ(x;xk)+b] (1)

whereαk are positive real constants andb is a real constant. Forψ(�; �) one
typically has the following choices:ψ(x;xk) = xT

k x (linear SVM);ψ(x;xk) =(xT
k x+1)d (polynomial SVM of degreed); ψ(x;xk) = expf�kx� xkk2

2=σ2g
(RBF SVM); ψ(x;xk) = tanh[κxT

k x+θ] (two layer neural SVM), whereσ, κ
andθ are constants.

The classifier is constructed as follows. One assumes that�
wTϕ(xk)+b� 1 ; if yk =+1

wTϕ(xk)+b��1 ; if yk =�1
(2)

which is equivalent to

yk[wTϕ(xk)+b]� 1; k= 1; :::;N (3)

whereϕ(�) is a nonlinear function which maps the input space into a higher
dimensional space. However, this function is not explicitly constructed. In
order to have the possibility to violate (3), in case a separating hyperplane in
this higher dimensional space does not exist, variablesξk are introduced such
that �

yk[wTϕ(xk)+b]� 1�ξk; k= 1; :::;N
ξk � 0; k= 1; :::;N: (4)
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According to the structural risk minimization principle, the risk bound is
minimized by formulating the optimization problem:

min
w;ξk

J1(w;ξk) = 1
2

wTw+c
N

∑
k=1

ξk (5)

subject to (4). Therefore one constructs the Lagrangian

L1(w;b;ξk;αk;νk) = J1(w;ξk)� N

∑
k=1

αkfyk[wTϕ(xk)+b]�1+ξkg� N

∑
k=1

νkξk

(6)
by introducing Lagrange multipliersαk � 0, νk � 0 (k = 1; :::;N). The
solution is given by the saddle point of the Lagrangian by computing

max
αk;νk

min
w;b;ξk

L1(w;b;ξk;αk;νk): (7)

One obtains 8>>>>><>>>>>: ∂L1
∂w = 0 ! w= ∑N

k=1 αkykϕ(xk)
∂L1
∂b = 0 ! ∑N

k=1 αkyk = 0

∂L1
∂ξk

= 0 ! 0� αk � c; k= 1; :::;N (8)

which leads to the solution of the following quadratic programming problem

max
αk
Q1(αk;ϕ(xk)) =�1

2

N

∑
k;l=1

ykyl ϕ(xk)Tϕ(xl )αkαl + N

∑
k=1

αk (9)

such that 8<: ∑N
k=1 αkyk = 0

0� αk � c; k= 1; :::;N:
The functionϕ(xk) in (9) is related then toψ(x;xk) by imposing

ϕ(x)T ϕ(xk) = ψ(x;xk); (10)

which is motivated by Mercer’s Theorem. Note that for the twolayer neural
SVM, Mercer’s condition only holds for certain parameter values ofκ andθ.

The classifier (1) is designed by solving

max
αk
Q1(αk;ψ(xk;xl )) =�1

2

N

∑
k;l=1

ykyl ψ(xk;xl )αkαl + N

∑
k=1

αk (11)

subject to the constraints in (9). One doesn’t have to calculatew nor ϕ(xk) in
order to determine the decision surface. Because the matrixassociated with
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this quadratic programming problem is not indefinite, the solution to (11) will
be global (Fletcher, 1987).

Furthermore, one can show that hyperplanes (3) satisfying the constraintkwk2 � a have a VC-dimensionh which is bounded by

h�min([r2a2];n)+1 (12)

where [:] denotes the integer part andr is the radius of the smallest ball
containing the pointsϕ(x1); :::;ϕ(xN). Finding this ball is done by defining
the Lagrangian

L2(r;q;λk) = r2� N

∑
k=1

λk(r2�kϕ(xk)�qk2
2) (13)

whereq is the center of the ball andλk are positive Lagrange multipliers. In
a similar way as for (5) one finds that the center is equal toq= ∑k λkϕ(xk),
where the Lagrange multipliers follow from

max
λk

Q2(λk;ϕ(xk)) =� N

∑
k;l=1

ϕ(xk)Tϕ(xl )λkλl + N

∑
k=1

λkϕ(xk)Tϕ(xk) (14)

such that 8<: ∑N
k=1 λk = 1

λk � 0 ;k= 1; :::;N:
Based on (10),Q2 can also be expressed in terms ofψ(xk;xl ). Finally, one
selects a support vector machine with minimal VC dimension by solving (11)
and computing (12) from (14).

3. Least squares support vector machines

Here we introduce a least squares version to the SVM classifier by formulat-
ing the classification problem as:

min
w;b;eJ3(w;b;e) = 1

2
wTw+ γ

1
2

N

∑
k=1

e2
k (15)

subject to the equality constraints

yk [wTϕ(xk)+b] = 1�ek; k= 1; :::;N: (16)

One defines the Lagrangian

L3(w;b;e;α) = J3(w;b;e)� N

∑
k=1

αkfyk[wTϕ(xk)+b]�1+ekg (17)
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whereαk are Lagrange multipliers (which can be either positive or nega-
tive now due to the equality constraints as follows from the Kuhn-Tucker
conditions (Fletcher, 1987)).

The conditions for optimality8>>>>>>>>><>>>>>>>>>:
∂L3
∂w = 0 ! w= ∑N

k=1 αkykϕ(xk)
∂L3
∂b = 0 ! ∑N

k=1αkyk = 0

∂L3
∂ek

= 0 ! αk = γek; k= 1; :::;N
∂L3
∂αk

= 0 ! yk[wTϕ(xk)+b]�1+ek = 0; k= 1; :::;N (18)

can be written immediately as the solution to the following set of linear
equations (Fletcher, 1987)2664 I 0 0 �ZT

0 0 0 �YT

0 0 γI �I
Z Y I 0

3775 2664 w
b
e
α

3775= 2664 0
0
0~1 3775 (19)

whereZ= [ϕ(x1)Ty1; :::;ϕ(xN)TyN],Y= [y1; :::;yN],~1= [1;:::;1], e= [e1; :::;eN],
α = [α1; :::;αN]. The solution is also given by�

0 �YT

Y ZZT + γ�1I

� �
b
α

�= � 0~1 � : (20)

Mercer’s condition can be applied again to the matrixΩ = ZZT where

Ωkl = ykyl ϕ(xk)Tϕ(xl )= ykyl ψ(xk;xl ): (21)

Hence the classifier (1) is found by solving the linear set of equations (20)-
(21) instead of quadratic programming. The parameters of the kernels such as
σ for the RBF kernel can be optimally chosen according to (12).The support
valuesαk are proportional to the errors at the data points (18), whilein the
case of (14) most values are equal to zero. Hence one could rather speak of a
support value spectrum in the least squares case.

4. Examples

In a first example (Fig.1) we illustrate the support values for a linearly separa-
ble problem of two classes in a two dimensional space. The size of the circles
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indicated at the training data is chosen proportionally to the absolute values
of the support values. A linear SVM has been taken withγ= 1. Clearly, points
located close and far from the decision line have the largestsupport values.
This is different from SVM’s based on inequality constraints, where only
points that are near the decision line have non-zero supportvalues. This can
be understood from the fact that the signed distance from a point xk to the
decision line is equal to(wTxk+b)=kwk= (1�ek)=(ykkwk) andαk = γek in
the least squares SVM case.

In a second example (Fig.2) we illustrate a least squares support vector
machine RBF classifier on a two-spiral benchmark problem. The training data
are shown on Fig.2 with two classes indicated by0o0 and0�0 (360 points with
180 for each class) in a two dimensional input space. Points in between the
training data located on the two spirals are often considered as test data for
this problem but are not shown on the figure. The excellent generalization
performance is clear from the decision boundaries shown on the figures. In
this caseσ = 1 andγ = 1 were chosen as parameters. Other methods which
have been applied to the two-spiral benchmark problem, suchas the use of
circular units (Ridella et al., 1997), have shown good performance as well.
The least squares SVM solution on the other hand can be found with low
computational cost and is free of many local minima, being the solution to
a convex optimization problem. For two-spiral classification problems the
method gives good results over a wide parameter range ofσ andγ values.

5. Conclusions

We discussed a least squares version of support vector machine classifiers.
Due to the equality constraints in the formulation, a set of linear equations has
to be solved instead of a quadratic programming problem. Mercer’s condition
is applied as in other SVM’s. For a complicated two-spiral classification prob-
lem it is illustrated that a least squares SVM with RBF kernelis readily found
with excellent generalization performance and low computational cost.
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Figure 1. Example of two linearly separable classes in a two-dimensional input space. The
size of the circles indicated at the training data is chosen proportionally to the absolute value
of the support values.
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Figure 2. A two-spiral classification problem with the two classes indicated by ’o’ and ’*’ and
180 training data for each class. The figure shows the excellent generalization performance for
a least squares SVM machine with RBF kernel.
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