
International Journal of Computer Applications (0975 – 8887)

Volume 72– No.13, May 2013

38

Requirement Elicitation: A “Live” Prototyping Approach

Narayan Ranjan

Chakraborty
Lecturer

Department of Computer
Science and Engineering

Daffodil International University

Subhenur Latif
Lecturer

Department of Computer
Science and Engineering

Daffodil International University

Yousuf Mahbubul Islam
Professor

Department of Computer
Science and Engineering

Daffodil International University

ABSTRACT
Requirement gathering has traditionally been acknowledged

as the most crucial as well as the most difficult step in the

Software Development Life Cycle (SDLC). Over the years,

feedback from customized software packages, availability of

standardized software packages as well as documented

business processes has helped the budding developer in

understanding business needs. In Bangladesh, a developing

nation, there are many small business enterprises that are

looking to computerize some of their business information

processes. As the volume of their transactions does not justify

the purchase of expensive ERP solutions, they look for small-

data-volume customized solutions. The article shares how

using a “working” or “live” prototype has been useful in

gradually specifying customer needs, eliciting feedback and

freezing requirements from clients who are not fully

conversant with the benefits of computerization.

Keywords
Prototyping, Requirement Engineering, Working Prototype,

SDLC, Freezing Requirements.

1. INTRODUCTION

Finding the information needs, identifying business processes

and specifying a client’s requirements are classified under

Requirement Engineering. Gathering the requirements

properly is most crucial as succinctly pointed out by Westfall

[1] in her abstract, “If software requirements are not right,

companies will not end up with the software they need.” The

Westfall Team has therefore done some useful work in the

area of Requirement Engineering. With the advancement and

addition of a variety of automation tools that need to work

with computers, Requirement Specification has become even

more complex than ever before. For this purpose, Westfall [1]

has proposed a useful taxonomy suggesting “Levels and

Types of Requirements” as shown in Figure 1[1] below.

Westfall[1] herself adapted the levels from “Sub-disciplines

of Requirements Engineering” as proposed by Wiegers. As

seen in Figure 1, at the basic or Business Level the Business

Requirements define the business information problems that

need to be solved or the business opportunities that need to be

addressed. In practice, collecting the basic Business

Figure 1: Levels and types of requirements

Requirements, or the User Requirements and Business Rules

at the User Level prove to be most difficult. In Bangladesh,

this is more so as users may be unfamiliar with the use of

computers and some Business Rules may follow thumb-rules

or rules that have never been documented. This is especially

true for small companies that may be sole-owner or a

partnership or even be classified as a Small Medium

Enterprise (SME). In such cases, gathering requirements is

difficult. A common response of those with little or no

knowledge of computer processing is, “You-being-the-

computer-specialist-know-best-what-to-do.” Without active

participation of the user-client at the Business Level and

subsequent User Level stages, it would be impossible to

complete the final Requirement Specification for the Product

Level as shown in Figure 1.

2. WORKING OR ‘LIVE’ PROTOTYPE

It is to elicit the participation of such a client in the process of

Requirement Gathering, particularly at the Business Level and

User Level that this paper has made use of a Working or Live

Prototype. As part of a client’s documentation, there is usually

some sort of ledger books where inventory or accounts are

kept [7, 10]. To elicit participation, a spreadsheet is used to

get the client-user to specify requirements in a step-by-step

manner. The spreadsheet, in the first instance, is used to

mimic the format of the ledgers that the user is so familiar

with.

Data
Requirements

Requirements
Specification

External
Interfaces

Requirements

Constraints Functional
Requirement

s

Nonfunctional
Requirements

User
Requiremen

ts

Business
Rules

Quality
Attributes

Business
Requirements

U
se

r
Le

ve
l

P
ro

d
u

ct
 L

e
ve

l
B

u
si

n
e

ss
 L

e
ve

l

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.13, May 2013

39

The prototype is called ‘Working’ or ‘Live’ as gradually

menu options or buttons are added (using a third party Visual

Basic for Applications, VBA) to the spreadsheet which allow

the client-user to visually observe the processing that goes on

to produce the required reports as well as add Data Entry

Forms for inputting required data. The client-user can enter

real data and press buttons as required to get and check the

reports produced. As the real data is ‘visible’, the client can

see and understand how the computer handles processing and

give feedback as required. Working with data in this manner,

the client is also able to ‘quantify’ any popular thumb rules

used in the business processes as he/she is able to understand

the need for formulae.

The next section describes the steps taken to finalize the

Business Level and as well as the User Requirements and

Business Rules at the User Level as described in Figure 1.

Subsequent sections share a number of case studies in which

this approach was applied. In each of these case studies MS-

Excel was used as the spreadsheet with a Visual Basic for

Applications (VBA) to introduce buttons and VBA code for

automatic report production.

Fig 2: A cartoon to show why Requirement Gathering is

difficult in practice

3. LIVE PROTOTYPING

METHODOLOGY
The Live Prototyping methodology has been divided into a

series of specified steps or phases. Each step involves

interaction that must be followed for successfully gathering

requirements. The methodology is shown in Figure 3 in the

form of a flowchart. The third author Islam, who is a

practitioner, has adapted and improved this methodology as

part of his Systems Analysis and Design course since 2004.

3.1 Pre-prototype

This is the self-preparation phase before the first data

gathering visit to the client.

 The analyst or practitioner must first do his/her

homework by first guessing what the proposed needs of the

business may be. The following question should be answered:

“What do I know about the information needs of such

businesses?”

 The practitioner may then do Internet searches to

answer this question.

 The practitioner would then use a spreadsheet such

as MS-Excel to guess and document the kind of data and

processes that may be used by such a business.

 Questions and gaps in knowledge must be noted

down.

 This would be the pre-prototype which would be

made only for the purpose of self-preparation.

This would have the effect of preparing the practitioner for the

first visit.

3.2 First prototype

During the first visit and initial interviews, the practitioner

would improve his understanding of the data involved and the

processes.

 The practitioner would take a look at current

practices of recording data, e.g. in ledger books, etc.

 Ask about business information needs and how the

data is used.

 The first prototype would essentially mimic the data

recording formats used by the business.

 The first prototype would be given to the user-

client. The user-client would be asked to enter real data in the

same manner as done in the ledger books.

The user-client should be invited to enter data in the

spreadsheet in the presence of the practitioner. Once the user-

client feels comfortable, he/she would be requested to

continue entering data as he/she does in the ledgers. This way

the user-client would become comfortable with the data entry

process and also be in a position to give feedback on the use

of each data item. As the user-client uses the first prototype,

the following benefits may be derived.

 The user-client would start to understand how

his/her data is stored in the computer.

 This would encourage user-client participation.

 The user-client would be in a position to give

feedback on individual data items.

3.3 Second Prototype

With the feedback from the user-client, the data items would

be improved. During the second visit he/she would be asked

about the reporting requirements from this data.

 The second prototype would have buttons that

produce the required reports in new sheets as required.

 The user-client would then continue entering real

data and test the outputs by pressing the buttons or report

producing options.

The following benefits may be derived by using the Second

Prototype with buttons and reports.

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.13, May 2013

40

1. Guess

2. Own ideas

3. Questions

4. Guess reporting information

1. Interview

2. Goals

3. Study Manual system-books, etc where data is kept.

4. Make first P1

1. Test P2

2. feedback

3. Add Input forms

4. create P3

1. JAD session

2. Cards

3. Feedback

4. Update Pn

5. Prepare agreement

1. Test Pf

2. Agreement

1. Test P1

2. feedback

3. Reporting requirements

4. Calculations

5. Include menu (buttons)

6. Create P2

Requirements

fulfilled?

Level 0: Pre-Prototype

Level 1: First Prototype

Level 2: Second Prototype

Level 3: Third Prototype

Level 4: Fourth Prototype

Level 5: Agreement

No

Yes

Figure 3: Business Requirement Gathering Life Cycle

 The user-client would be able to see what

processing takes place when the buttons are pressed.

 He/she would be immediately able to check the

output and confirm the correctness of the calculations done.

 He/she would be able to give feedback to improve

the output reports from the prototype.

 The user-client would continue to use the second

prototype over a periodic reporting cycle, e.g. in case of

simple accounts, continue till daily, weekly and/or monthly

closing.

 The feedback given by the user-client would be

incorporated in the third prototype.

3.4 Third Prototype

In addition to the improvements incorporated from the

feedback given on the second prototype, the third prototype

will contain data-entry forms which the user-client will use.

 The third prototype will have data-entry forms.

 The user-client will use the third prototype with the

new data-entry forms and comment on their ease of use and

usability.

 With the feedback, the data-entry forms and

messages can be improved.

The benefits of the using the third prototype:

 The user-client can give feedback on the usability

and user-friendliness of the data-entry forms and screens.

 Using all the changes required and requested by the

user-client or users, the fourth prototype can be prepared.

 At this point the Business Requirements, User

Requirements and Business Rules can be finalized. Whatever

accompanying documentation is required should now be

prepared.

3.5 Fourth prototype

At this point, the feedback of all the stakeholders involved in

the use of the software as well as those who would benefit

from the use of the software should be consulted. This should

be done in a participatory meeting with all the stakeholders.

At the meeting, the prototype should be demonstrated and the

stakeholders should also be allowed to use the software.

 Organize a JAD [3] workshop session with all

stakeholders to get feedback on the Business Requirements,

User Requirements and Business Rules.

 Elicit opinion using anonymous cards.

 Display all the cards on a pin-board get the

stakeholders to group and explain their grouped ideas. Get the

users to finalize their ideas.

 If necessary, prepare the fifth and final prototype.

Benefits of involving all the stakeholders including top

management in a JAD session to give feedback using cards:

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.13, May 2013

41

 Cards will allow all users and even culturally shy

persons to give their anonymous feedback in the presence of

their bosses.

 The agreement can be prepared based on the finally

approved working prototype.

 The practitioner can add all the other parts of

Requirements Engineering as shown in Figure 1 and prepare

the software implementation agreement with platform,

security, timelines and costs.

4. CASE STUDY

Using this methodology the first and second authors were

assigned to go through the Requirement Gathering Life Cycle

as shown in Figure 3 for a real company that we shall call

ABC Company for anonymity. ABC Company assembles

desktop PCs and delivers them to retail agents. Between the

assembly location and delivery arrangements, monitoring of

delivery was poor and customers complained frequently.

When customers phoned in to find the status of their order, the

office had to send someone to the assembly plant to find the

status of progress. Three local software companies had

gathered requirements and produced software. However, the

customized software was not able to give the required

delivery status. As a result, ABC did not have the required

software for their PC delivery status.

To get an idea of what data may be involved in delivery

management, we first made a pre-prototype. This helped

prepare for the first interview. After visiting the company we

found that three development teams had already individually

tried to develop this software but they were not successful.

We analyzed the reasons of the failure and decided that the

main problem was in the requirement gathering phase.

Basically all three parties did the same thing. They met the

client and took notes of the requirements and designed and

built the software. None of the customized software packages

were able to solve the ‘delivery status’ problem.

So we first concentrated on the requirement gathering phase

and implemented the Business Requirement Gathering

methodology shown in Figure 3. One of the main things we

found was involving the ‘boss’ in using the prototype and

giving feedback was difficult. However, when the boss did sit

down, he finally discovered that his own ledgers did not have

the data required to work out the delivery status. The data

items needed to track delivery were not recorded properly in

the ledgers. While using the prototype, he was able to see the

problem and helped set the business rule that would allow

proper tracking. After getting approval of the final prototype,

we developed a successful web-based system based on the

prototype. Both the assembly location and delivery locations

were able to use the same software and track deliveries

successfully. We now explain the steps we took to finally

deliver a successful delivery monitoring software for ABC

Company.

Step 01:

We were assigned to develop a PC delivery management

system for ABC Company. Based on our own thoughts and

study we developed a pre-prototype and prepared some

questions for the client to clarify their needs and then fixed a

date to visit the client.

Step 02:

We visited the ‘boss’ of ABC Company and asked him to

explain what he wanted. He explained that he regularly wants

to know the latest assembly status of PCs that were ear-

marked to be delivered. So whenever a customer calls, one

could respond accurately with estimated delivery time. We

asked several questions to understand his requirements but

sometimes he failed to satisfy us with his answers. After

getting the basic business requirements from the boss, we set

out to study the organization. Basically there were two

different sections of that company. One section receives parts

for assembly and PC orders. The second section packages the

PCs and was responsible for delivery. Due to space

constraints the two sections were situated in different places.

So the first section would essentially indicate progress of PC

assembly while the second section would confirm delivery to

help the boss know the status of any order.

Our first prototype looked exactly the register book he

maintained. It had the same columns and rows for recording

assembly data for each PC. He immediately understood the

arrangement of the prototype and gave us feedback. He

admitted that his requirements had changed. He wanted to

search using the PC serial number or order number. So to the

first sheet we added a search form. The search form is shown

below:

Figure 4: Search form added to first Prototype

Step 03:

After a few days we visited the boss again. This was after real

data was entered on a daily basis in the spreadsheet. In the

prototype he manually entered the PC number to view the

status of the PC but it created some problems. Then based on

the boss’s advice, we added some input parameters find the

desired output. In second prototype could now choose the PC

Number or ID from a drop down list rather than manually

enter the number to view the status. We also added some

automatic user requirement features as shown in Table 1.

Based on the feedback from the boss we updated the first

prototype and called it the Second Prototype.

Input parameter User Requirement

PC number Auto generated

complain ID User entered

Date Auto generated

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.13, May 2013

42

Step 04:

In next meeting we showed the second updated prototype to

the boss and asked him to check the prototype with real data

that had been entered. In this prototype we added data items to

get the desired output. In the previous three meetings the boss

had omitted to tell us how a client ordered a PC. After using

second prototype he realized some different things that he had

never told us before. We clearly understood that the boss

changed the requirements every time he used the updated

prototype. This indicated that the boss never really gave time

to understand his own data requirements. We then updated the

prototype based on the changes required by the manager. The

Second Prototype was then changed to the Third Prototype.

The Third Prototype now had buttons to produce the reports

required by the boss.

Figure 6: Third Prototype with buttons for producing

reports required by the boss

Step 05:

The period between third and fourth prototypes was long. We

visited the company several times during that period. Every

time the requirement was changed after using the prototype.

Finally, we updated the prototype to

the point that satisfied the Business Requirements of the boss.

We generated different reports called order, repair, assembly,

service receipt, service record, and some other reports. When

we added each report we visited the boss and asked him to test

using the real data input by his two sections. Every time he

used it by using the real data he gave feedback; we changed it

according to his need. After the fourth prototype changes were

made at least four times. The manager was finally satisfied to

see his desired output. The outputs were completely different

from his first required outputs.

Table 1: User Requirement features added

4.1 JAD Workshop Session

After confirmation with the boss we organized a JAD (Joint

Application Design) session with all the employees of the

company. We distributed 3”x5” cards. We described the total

system and demonstrated the prototype in front of them using

a multimedia projector. After that we asked the employees to

write their opinion on the cards. We then got two volunteers

to organize the cards based on category of comments and tried

to understand and solve the issues mentioned. We received

some suggestions from them and then finally updated the

prototype. After a successful JAD session the boss of the

company was highly impressed and gave us an approval letter

to do develop the actual software. After the suggestions

received from the JAD session, the user requirements of all

the employees were received and the final interface looked as

shown below in Figure 7.

Figure 7: Final Prototype incorporating all user

requirements.

As can be seen, the user interface was eventually divided

three different sections as a result of the JAD session. The

three groups helped allowed the users to exactly know which

groups applied to them.

5. FINDINGS

While doing the project we faced a number of problems:

 The main problem was that boss seemed to know

what he wanted, but did not organize his own manual registers

to deliver what he wanted. The prototype helped the boss

visualize and hence organize the data to deliver what he

wanted. In time we realized how important the live prototype

method was – it helped the boss work out and specify his own

business requirements. The live prototype helped the boss see

which data items were necessary to deliver the information he

needed for running his business.

 As for implementing the concept of requirement

gathering using a prototype was completely new for the boss,

we faced some problems. At first he did not understand the

concept of using a prototype. The prototype was in a

spreadsheet platform. So the design was not attractive. For

this reason the boss was initially unhappy with the design. It

took time to understand that this was only a demo! Final

design will be different from it. In the beginning the boss did

not properly cooperate with us. But after understanding the

concept he and his organization helped us a lot.

Order Report

Register

Assembly Section

Testing Section

Shift & Sold

Return

Overall Daily Report

Service
Receipt

Service
Record

Service

Section

Place an
Order

Assembly
Section

Testing
Section

Shift &
Sold

Order & Sold

Section
Report

Section

Order
Report

Overall
Daily

Report

Service
Report

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.13, May 2013

43

6. BENEFITS AND DISCUSSIONS

Requirement gathering prototype helped both the client and

the practitioner in several ways.

 The model successfully collected the requirements

from the client.

 It minimized the communication gap between the

user-client and the practitioner.

 The model broke down the requirement gathering

process into several parts so that client was able to specify his

own requirements as he developed understanding of what was

required.

 It was easy to change the Excel prototype. Often

changes were done immediately at user-client site.

 The boss had not bothered to design his manual

system to give the required results. Any software system

based on the previous manual system would be bound to fail.

 The model is clearly defined, easy to understand

and may also be changed around to suit the needs of the user-

client.

 The prototype acts like a ‘live’ Systems

Requirement Specification Document.

 If the team is changed during the development

process then new team will understand the requirements easily

from the prototype without disturbing the user-client.

 Compared to the review [4] of modern rapid

prototyping software packages, the use of spreadsheets allows

the user-client to visually see the data and processing directly

and thereby give appropriate feedback to finalize business and

user requirements.

7. LIVE PROTOTYPE AND AGILE

METHODOLOGY

The live prototyping approach supports the main principles of

agile methodology used to elicit user requirements, e.g. on-

site and co-located user-client, frequent short releases, flexible

to changing requirements, iterative development etc [5, 6].

For implementing interaction, the agile methodology suggests

user-stories or use-cases for the high-level requirement

elicitation or extraction that are prioritized according to their

business value [5]. The basic components of a user story

include Cards (physical medium), Conversation (discussion

surrounding stories) and Confirmation (tests and validation

that verify story completion) [5]. The user stories, written on

3”x5” index cards are expected to be short, to the point and

validation-centric. A well-written user story demand to follow

the INVEST (Independent, Negotiable, Valuable, Estimable,

Small, Testable) model and a certain template (Who, What,

Why) [5]. Now to meet up these conditions, only manual

process that is the existing agile way to fix requirements may

become tough and confusing for both parties (user-client and

developer). Live prototyping tool might be useful here to

make user-client more comfortable whenever he/she is unsure

and find the whole process complex. A live demonstration of

business processes is more worthy than using thousand words

in conversation.

In the Agile methodology, criteria for user stories make user-

clients write acceptance tests that are to be transformed into

unit tests by the developers [6]. Acceptance criteria include

functionality that the system will perform, interface look and

feel, necessary documentation etc [5]. Again, the live

prototyping tool may play a useful role in terms of

requirement confirmation.

SCRUM, one of the agile methodologies treats the

requirements like a prioritized task [5, 11, 12]. It freezes the

requirements for the current iteration to provide a level of

stability for the developers. In Scrum, work is expressed in the

backlog as user stories and to accomplish this, it includes

several types of meetings (Sprint Planning Meeting, Daily

Scrum meeting, Sprint Review Meeting etc.) with user-client

[11, 12]. The live prototyping tool may be used here also.

Agile methodology gives more value to customer

collaboration over contract negotiation where it surely

emphasizes customer involvement in requirement gathering

process by taking his feedback [9] that our proposed tool also

demands. In this development methodology, the client is

mostly present in the entire development process to fix goals,

freeze requirements and create product backlogs. The live

prototype provides a structured practical tool to make the

requirement elicitation process easier. The tool is intended to

be used for a more efficient RE.

8. CONCLUSION

For small businesses which have not taken the time to

efficiently design their own business requirements,

Requirement Gathering using a Live Prototyping method may

prove to be useful. The prototype can be changed rapidly and

allows the user-client to freeze his/her business requirements

easily.

9. REFERENCES

[1] Westfall, L. (2005). Software Requirements Engineering:

What, Why, Who, When, and How, Software Quality

Professional, Proquest, Vol. 7, Issue4, 2005, Pages: 17-

26. Retrieved April, 2013 from

http://www.westfallteam.com/Papers/The_Why_What_

Who_When_and_How_Of_Software_Requirements.pdf

[2] Wiegers, K. E. (2000). “When Telepathy Won't Do:

Requirements Engineering Key Practices,” Cutter IT

Journal, vol. 13, no. 5 (May 2000). Retrieved April,

2013 from

http://www.processimpact.com./articles/telepathy.pdf

[3] Kuchmistaya, S. B. (2001). Incorporation of Joint

Application Design (JAD) in Systems Requirement

Determination. Retrieved April 2013, from

http://www.umsl.edu/~sauterv/analysis/488_f01_papers/

kuchmistaya.htm

[4] Nayak, A. & Dash, J. (2011). Requirement Analysis and

Rapid Prototyping. Retrieved April, 2013 from

http://www.slideshare.net/conviction/requirement-

gathering-rapid-prototyping

[5] Kavita & Sunitha (2011). “Requirement Gathering for

Small Projects Using Agile Methods”, IJCA Special

Issue on “Computational Science - New Dimensions &

Perspectives, Special Issue.

[6] Bose, Kurhekar & Ghoshal (2008). Agile Methodology

in Requirements Engineering.

[7] Pressman, R. S. (2005), Software Engineering: A

Practitioner’s Approach, Sixth Edition, McGraw-Hill

International Edition.

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.13, May 2013

44

[8] K. Kautz, H.W. Hansen & K. Thaysen. “Applying and

Adjusting a Software Process Improvement Model in

Practice: The Use of the IDEAL Model in a Small

Software Enterpris”e, 22nd Int’l. Conf. on Software

Engineering, pp. 626-633.

[9] Cohn, M (2009), Succeeding with Agile: Software

Development using Scrum.

[10] Sommerville. Software Engineering, AddisonWesley.

[11] Elizabeth Woodward, 2010. A Practical Guide to

Distributed Scrum, IBM Press

[12] The Enterprise and SCRUM, 2007, Microsoft Press,

IJCATM : www.ijcaonline.org

