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A b s t r a c t  

We introduce a new model for inductive inference, by combining a Bayesian 
approach for representing the current state of knowledge with a simple model 
for the computational cost of making predictions from theories. We investigate 
the optimization problem: how should a scientist divide his time between doing 
experiments and deducing predictions for promising theories. We propose an 
answer to this question, as a function of the relative costs of making predictions 
versus performing experiments. We believe our model captures many of the 
qualitative characteristics of "real" science. 

We believe that this model makes two important contributions. First, it 
allows us to study how a scientist might go about acquiring knowledge in a 
world where (as in real life) there are costs associated with both performing 
experiments and with computing the predictions of various theories. 

This model also lays the groundwork for a rigorous treatment of a machine- 
implementable notion of "subjective probability". Subjective probability is at 
the heart of probability theory [5]. Previous treatments have not been able 
to handle the difficulty that subjective probabilities can change as the result of 
"pure thinking"; our model captures this (and other effects) in a realistic manner. 
In addition, we begin to provide an answer to the question of how to trade-off 
"thinking" versus "doing"--a question that is fundamental for computers that 
must exist in the world and learn from their experience. 
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1 In troduc t ion  

We examine the process of "inductive inference"--the process of drawing inferences from 
data. Angluin and Smith [1] provide an excellent introduction and overview of previous 
work in the field. Our work is distinguished by the following features: 

• Our inference procedure begins with an a priori  probability associated with each pos- 
sible theory, and updates these probabilities in a Bayesian manner as evidence is 
gathered. 

• Our inference procedure has two primitive actions available to it for gathering evidence, 
each of which has a cost (in terms of time taken): 

1. Using a theory to predict the result of a particular experiment. 

2. Running an experiment. 

• Our inference procedure attempts to maximize the expected "rate of return", for 
example, in terms of the total probability of theories eliminated per unit time. 

Our approach addresses the following three issues, which we feel are not always well 
handled by previous models. 

(1) I n d u c t i o n  is f u n d a m e n t a l l y  different  f rom deduc t ion .  Much previous work has 
tried to cast induction into the same mold as deduction: given some data (premises) to infer 
the correct theory (conclusion). This approach is philosophically wrong, since experimental 
data can only eliminate theories, not prove them. (See Feyerabend [3] and Kugel [7].) For 
similar reasons, we feel it is better to study inference procedures which represent the set  of 
remaining theories (and perhaps their probabilities), rather than inference procedures which 
are constrained to return a single answer. 

(2) The  diff icul ty of  mak ing  pred ic t ions  is overemphas ized .  Much of the previous 
theoretical work in this area has been recursion-theoretic in nature, and the richness of the 
results obtained has been in large part due to the richness of the theories allowed; allowing 
partial recursive functions as theories makes inference very difficult. The resulting theory 
probably overemphasizes this recursion-theoretic aspect, compared to the ordinary practice 
of science. In this paper, all theories will be total (they predict a result for every experiment), 
and we assume that the cost of making such a prediction from a theory is a fixed constant c 
(time units), independent of the theory or the proposed experiment. (This is obviously an 
oversimplification, but serves our purposes well.) 

(3) E x p e r i m e n t s  take  t ime,  and  should  be careful ly  chosen.  Much of the previous 
work on inductive inference has assumed that the data (i.e. the list of all possible exper- 
imental results) is presented to the learner in some order (cf. [4,2]). However, the rate of 
progress in science clearly depends on which experiments are run next. (Consider experi- 
mental particle physics today.) Part of doing science well is choosing the right experiments 
to do. 

A good scientist must decide how to allocate his time most effectively--should he next 
run some experiment (if so, which one?), or should he work with one of the more promising 
theories, computing what it would predict for some experiment (if so, which theory and 
which experiment?). These "natural" questions are not particularly well hm~dled by previous 
models of the inductive inference problem, but our model will allow us to answer such 
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questions. Our results also shed some interesting light on related questions, such as when 
to run "crucial" experiments that  distinguish between competing hypotheses. 

Our model can perhaps be viewed as well as a contribution to the theory of subjective 
probability [5], which has traditionally had a problem with the fact that  subjective prob- 
abilities can change as a result of "pure thinking". Various proposals, such as "evolving 
probabilities" [6] have been proposed, but these do not deal with the "thinking" aspect in 
a clean way. 

2 T h e  M o d e l  

2 . 1  B a s i c  N o t a t i o n  a n d  A s s u m p t i o n s  

We assume the existence of some scientific domain of interest, defined by an (infinite) set 
of possible experiments. Performing the j - th  experiment yields a datum Xj; in this paper 
we assume for convenience that  Xj E {0, 1}. We make the simplistic assumption that  doing 
an experiment always takes precisely d units of time (independent of which experiment is 
performed). 

We assume that  there are an infinite (but enumerable) set of theories available about 
the given domain; we denote them as ~0, ~1 , . . . .  Each theory is understood to be a total 
function from N into {0, 1}; the value ~ i ( j )  = ~ 0  is the "prediction" theory ~Pi makes 
about the result of experiment j .  We assume there exists a correct theory, ~Pr, such that  
(Vj)~p~j = Xj. We make the simplistic assumption that  computing ~Pij from i and j always 
takes precisely c units of time (independent of i and j) .  

We assume that  other operations, such as planning, take no time. 

Our scientist begins with two kinds of a priori  probabilities: 

• The a priori  probability that  taij = 1, for any i and j .  We assume that  Pr(taij = O) = 
P r ( ~ j  = 1) = ½ a priori,  for all i and j ;  the scientist has no reason to expect his 
theory to predict one way or the other, until he actually does the computation. 

• The a priori  probability Pi that  theory ~i = ~r,  (i.e. that  ~Pi is correct). We assume 
that  the pi 's  are computable, that  (Vi)pi > 0 (all theories are possible at first), and 
that  that  p0 >_ pl >_ . . . .  

We assume that  these a priori  probabilities are correct; the reader may imagine that  
"god" first determined all of the ~ij 's  by independent unbiased coin-flips, and then se- 
lected one of the theories at random to be correct (according to the probability distribution 
P0, Pl, • • .). 

2 .2  T h e  S c i e n t i s t  M a k e s  P r o g r e s s  

Our scientist begins in a state of total ignorance, and proceeds to enlighten himself by taking 
steps consisting of either doing an experiment (determining some X j)  or making a prediction 
(computing some ~ij). The scientist may choose which experiments and predictions he 
wishes to do or not to do, and can do these in any order (predictions may precede or follow 
corresponding experiments, for example). 

We need notation to denote the scientist's state of knowledge at time t (after ~ ,-~,'l,s 
have been taken). 



16 Session 1 

* Let ".L" denote "unknown". 

• Let ~ j  E {0, 1, _l_) denote the scientist's knowledge of ~'ij at time t. 

• Let X} E {0, 1, _1_) denote the scientist's knowledge of Xj at time t. 

t (i.e. both are known at time t), then there are If at time t both ~ j  = ~ij and Xj = Xj 
two possibilities. Either ~ij # Xj, in which case theory ~i is refuted, or ~ij = Xj,  in which 
case theory ~i is (to some extent) confirmed. 

2 , 3  H o w  L o n g  W i l l  S c i e n c e  T a k e ?  

Obviously, after a finite number of steps, our scientist will be able to refute only a finite 
number of theories, so at no point will he be able claim that  he has discovered the complete 
" truth".  

More realistically, he may ask "How long will it be before I have eliminated all theories 
with higher a priori  probability than the correct theory?" The answer here depends on the 
set of a priori  probabilities. A realistic "non-informative prior" at tempts to have Pi decrease 
to zero as slowly as possible; for example we might have Pi = C .  ( i ln( i ) In In(i)...) -1, where 
C is a normalizing constant and only the positive terms in the series of logarithms are 
included [8]. 

Note that  at least one step is required to eliminate a theory, so that  the expected number 
of steps required to eliminate all theories with higher a priori  probability than the true one 
is at least equal to the expected number of such theories, i.e. 

oo 

E r  "Pr , 
r = 0  

which is infinite. This result holds for many similar probability distributions which do not 
go to zero too quickly. 

In fact, for a typical set of prior probabilities, our scientist expects to have an infinite 
amount of work to do before the true theory is even considered! 

For this reason, among others, we will concentrate on the rate at which the scientist 
can refute false theories, rather than on the expected time taken before the scientist would 
assert that ,  on the basis of the evidence available to him, ~'r is the best available theory. 

2 . 4  H o w  t h e  S c i e n t i s t  U p d a t e s  H i s  K n o w l e d g e  

To model the evolution of the scientist's knowledge more carefully, we show how his subjec- 
tive probabilities associated with the various theories change as a result of the steps he has 
taken, using Bayes' Rule. 

What  happens to the probabilities maintained by the scientist after step t is performed? 
Let p~ denote the probabilities after step t (here p~ = p~). We consider the effect of step 
t on the probability that  theory 9i is correct. That  is, we look at how p~-i is updated to 
become p~. 

The process of updating these probabilities according to the result of the last step, can 
be performed by executing the following operations in order: 
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1. For all i, 

• Set p~ to 0 if Ti has just  been refuted. 

• Set p~ to 2 * p~-I if Ti has just  been confirmed. 

• Otherwise set p~ to p~-l.  

2. Normalize the p~'s so that  they add up to 1. 

The above procedure follows directly from Bayes' Rule, since it is equally likely for a 
prediction to be a 0 or a 1. 

We note that  if the scientist just  sits and "thinks" about  an experiment (i.e. he just  
computes the predictions of various theories for this experiment),  his subjective probabili ty 
that  Pr (x j  = 0) will evolve, since 

= - -  P i "  

cp~j = 0  

It would also not be unreasonable to treat  this probability as an interval, since one knows 
the upper and lower limits tha t  it could evolve to. 

2 . 5  A n  E x a m p l e  

Consider Table 1, which illustrates a portion of a particular scientist's knowledge at some 
point in time. (Here unknown values are shown as blanks, and only a portion of the actual 
infinite table is shown.) 

The second row of the table shows which experiments he has run. (Here he knows only 
X0 . . .X4.)  The second column gives his current probabilities p~. 

The second part  shows what predictions he has made. Each row of this table corresponds 
to one theory. Theories which have been refuted have current probabili ty zero and are not 
shown here; it is convenient from here on to assume that To is the most probable theory, T1 
is the next most probable theory, and so on. In this example, the scientist has found out 
what his most probable theory predicts for experiments 0-5, and so on. 

Running experiment 5 next has the potential of refuting To- (It will either refute To 
or T3.) Making the prediction TI,5 can not (immediately) refute T1, but  would affect the 
scientist's estimate of the likelihood that  X5 = 0. With the current state of knowledge, the 
scientist would estimate that  

Pr(x5 = 0) = 0.04 + 21-(1 - 0.60 - 0.04) = 0.22. 

Note, however, tha t  Pr(Ti ,s  = 0) remains ½, independent of anything else, until it is com- 
puted. 

3 O u r  I n f e r e n c e  P r o c e d u r e s  

The approach taken by a scientist will depend upon the relative costs of making predictions 
versus doing experiments, his initial probabilities for the theories, and exactly how he wishes 
to "optimize" his rate of progress. 
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J 
011 2 3 4 ]5  6 

i l l  p, II II ° l  1 1 0 o l 
0 0.60 
1 0.10 
2 0.05 
3 0.04 
4 0.03 
5 0.02 
6 II 0.01 

¢Pij 

0 1 1 0 
0 1 1 0 
0 1 1 
0 

1 1 
0 

0 1 

0 

Table 1: Partial View of Scientist's State of Knowledge 

3.1 General  Assumpt ions  

At each step, the scientist must decide what to do next. Although this choice is, and always 
remains, a choice among an infinite number of alternatives, it is reasonable to restrict this 
to a finite set by adopting the following rules: 

* When running or predicting the result of an experiment which has neither been pre- 
viously run nor had predictions made for it, without loss of generality choose the 
least-numbered such experiment available. 

• When making a prediction for a theory for which no previous predictions have been 
made, choose the most probable such theory (in the case of ties, choose the least- 
numbered such theory). 

3 . 2  O p t i m i z a t i o n  C r i t e r i a  

The scientist will choose what actions to take according to some optimization criteria. For 
example, he may wish to: 

1. Maximize the expected total probability currently associated with theories which are 
refuted by the action chosen. 

c ~  t 2. Minimize the entropy - ~ = 0  P~ log(p~) of his assignment of probabilities to theories. 

3. Maximize the probability assigned to the theory he currently believes to be the most 
likely. 

4. Maximize the highest probability assigned to any theory. 

5. Minimize the expected total probability assigned to incorrect theories. 

More generally, he may wish to maximize his "rate of progress" by dividing his progress 
(measured by one of the above criteria) by the time taken by the action chosen. 

In this paper we will discuss all of the above optimization criteria; some very briefly, and 
some at length. In the remainder of this section we discuss the general form that all our 
inference procedures take, regardless of the particular optimization criterion they use. 
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3 . 3  M e n u s  o f  O p t i o n s  

We propose that  the scientist organize his strategy as a "greedy" strategy of the following 
form: 

• He organizes his decision at each step into a finite number of options. Each such 
option is a program specifying a sequence of predictions and /or  experiments to run, 
which terminates with probability 1. 

• At a given step, for each available option, the scientist computes the expected "rate of 
return" of tha t  option, defined as the expected total gain of that  option (where gain is 
measured by some optimization criterion) divided by the expected cost of that  option. 

• The scientist then chooses to execute an option having highest expected rate of return, 
breaking ties arbitrarily. 

The reason for introducing the notion of an "option", rather than just  concentrating 
on the elementary possibilities for a given step, is that  certain steps have no expected rate 
of return in and of themselves. For example, making a prediction when the corresponding 
experiment has not yet been run has zero expected rate of return, as does running an 
experiment when no prediction regarding that  experiment has yet been made. 

From now on, we let q~ denote 1 - p~. We also observe that  if our set of probabilities 
1 satisfies P0 _> Pl _> . . .  then it also satisfies Poqo _> P lq l  >_ . . . ,  since P0 is no further from 

t h a n p l  is and ½ > p l  >_P2_> . . . .  

4 Inference  procedure  1: Maximiz ing  the  weight  of 
refuted theor ies  

We begin by studying an inference procedure which tries to refute wrong theories as quickly 
as possible. Specifically, the scientist will choose an action which maximizes the quotient of 
the expected total  probability of theories eliminated by that  action, divided by the cost of 
that  action. The reason for this choice is its simplicity, and the ease with which the scientist 
can implement such a strategy. Furthermore, if our a pr ior i  probabili ty happens to be one 
of the ones for which infinite expected time is required simply to eliminate all wrong theories 
(See section 2.3.), then this measure probably makes the most sense. 

4.1 A Simple Menu of Options 

In this subsection and the following subsection, we will spell out a particular menu of options 
and analyze our scientist's strategy when he uses this menu and the "maximizing the weight 
of refuted theories" optimization criterion. In later sections we will analyze our scientist's 
strategy when he uses the same menu but  different optimization criteria. 

We first consider the following two options, each of which will always have non-zero 
expected rate of return: 

• P r e d i c t i o n / E x p e r i m e n t  Pair :  Make a prediction ~0j for the least j for which no pre- 
dictions yet exist, and then run the corresponding experiment. Here, as usual, ~0 
denotes the theory which is currently most probable. Our expected rate of return is 

t t 
Poqo 

2(~ + d)" 
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We aren't compelled to restrict the prediction/experiment pairs to using the most 
probable theory, but do so because it is convenient to limit our options, and also 
because the expected return from other theories will not be as good. 

• Predic t ion:  Compute a prediction toij, given that the corresponding experiment de- 
termining Xj has already been run. The expected rate of return for this prediction 

i s  t t 
Pi qi 

2c " 

Here again it is clear that we should choose the least i possible, so as to maximize the 
rate of return. 

If we stick to options in this simple menu, then the opportunity to make a prediction only 
arises after the simple prediction/experiment pair has already been run for that experiment. 

4 . 2  A n  E x p a n d e d  M e n u  o f  O p t i o n s  

An expanded menu can be obtained by adding the following two options to the simple menu: 

• S imple  Exper imen t :  Run experiment j,  given that at least one prediction has been 
made for this experiment. The expected rate of return is 

t t  
Poqo 

2d ' 

since the probability that "truth" differs from ~0 is q~/2,  and (as argued below), in 
this case we must have only the prediction ~0j. 

• Crucia l  Two-  Way  Exper imen t :  Determine the least j such that the two most probable 
theories make differing prediction for Xj .  Then run experiment j.  The expected rate 
of return is 

P~ + PI - (P~ - P l )  2 Poqot t + p l q l  t t + 2pop i t  t 
2(4c + d) = 2(4c + d) (1) 

We note that in the expanded menu, the only way an opportunity can arise to run a 
simple experiment is by having the search for a crucial experiment generate predictions for 
the first two theories, without running the corresponding experiment since the predictions 
were identical. This is the only way we can obtain a situation where predictions have been 
made for experiments that haven't been run. Furthermore, additional predictions won't 
be made for this experiment until after this experiment has been run. Since the crucial 
experiment will eliminate one of the top two theories, we will be left in a situation where 
(after renumbering of theories as usual) there is a j for which we know ~0j but have not yet 
run experiment j.  

Note that the expected cost o f  f inding a crucial experiment is exactly 4c, since if we pick 
a j and compute ~0j and ~lj ,  we have a ½ chance of finding j to be crucial. 1 

We claim that, using either the simple or expanded menu, the relative order of two 
theories will not change, except when a theory is refuted, if an optimal greedy strategy is 

1 Note  also,  t h a t  t he r e  is no  spec ia l  r e a s o n  to  r e s t r i c t  ourselves to crucia l  two-way  e x p e r i m e n t s .  We cou ld  
also r u n  cruc ia l  n -way  e x p e r i m e n t s ,  where  we f ind t he  leas t  j s u c h  t h a t  t h e  n m o s t  p r o b a b l e  theor i e s  spl i t  
as  even ly  as  poss ib le  ( in t e r m s  of  p robab i l i t y  weight ) .  Now t h e  e x p e c t e d  cost  of  f i nd ing  s u c h  a j i nc rea se s  
f r o m  4c to (2 n + 2 n - 1  - 2)c. 
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used. This follows since it is always preferable to work with the more probable theories, 
given a particular option, and this work will tend to enhance the probability of that  theory 
if it is not refuted. 

Having given our menu of options, we can now make one simple definition. When we 
speak of checking or testing ~i, we are talking about either doing a prediction/experiment 
pair involving ~i or doing simple experiment j for some j for which ~i has already made a 
prediction. In short, testing ~i means to take some action that  could potentially refute ~i. 

4 . 3  B e h a v i o r  o f  t h i s  I n f e r e n c e  P r o c e d u r e  

4.3.1 For  t h e  S imple  M e n u  

For the simple menu, clearly we begin with a prediction/experiment pair. After that ,  the 
scientist will oscillate between further testing of his best theory (using prediction/experiment 
pairs), and testing of his other theories (using predictions). 

The ratio c/(c + d) will affect the relative amount of time spent on prediction/experiment 
pairs. We will typically see all theories down to some probability threshold (depending on 
c, d, and P0) fully checked out against existing experimental data, before proceeding with 
the next prediction/experiment pair. 

4.3.2 For  t h e  E x p a n d e d  M e n u  

Given our assumption that  it is more expensive to perform an experiment than to compute 
a theory's prediction, our scientist will at least want to consider whether he should get his 
experimental data  from crucial experiments rather than from prediction/experiment pairs. 

Let's consider whether at the beginning of time, the scientist is better off running a pre- 
diction/experiment pair, or running a crucial two-way experiment. The crucial experiment 
will have a higher expected rate of return if 

Po + Pl - (Po - Pl) 2 Poqo 
> (2) 

• 2(4c + d) 2(c + d) 

or  
d > 3p0q0 1. 
c - pl(2po + ql) 

It is sufficient for equation 2 to hold if 

c + d Poqo 
3c Plql" 

We see that  for any ratio d/c, it is possible to have a crucial experiment be advantageous 
over a prediction/experiment pair; consider what happens when P0 = Pl = ½. 

No matter how cheap experiments get, relative to the cost of making predictions, it is 
possible to find a probability distribution where it is advantageous to find an experiment 
which will be crucial, before running any experiments. 

Thus in general, it may pay to use the expanded menu, for any values of d and c. 
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5 Inference procedure  2: A m i n i m u m  entropy approach 

The entropy of a probability distribution P, 

o o  

H~(P) = ~ -Pi logs Pi t, (3) 
i = 1  

is considered to be a good measure of the information contained in that  probability dis- 
tribution. Maximizing entropy corresponds to maximizing uncertainty; minimizing entropy 
corresponds to minimizing uncertainty. Thus a reasonable optimization criterion for our 
scientist would be minimizing the entropy of the a posteriori probability distribution. 

Unfortunately, for some probability distributions, the entropy will be infinite. Consider, 
for instance, the previously mentioned distribution due to Rissanen [8], 

Pi = C .  (i In(i) In ln(i)...)-x , (4) 

where C is a normalizing constant and only the positive terms in the series of logarithms 
are included. Wyner [9] shows that  the entropy series, equation 3, converges only if the 
series ~ 1  Pi log i is convergent, but this series is clearly diverges for the distribution given 
in equation 4. 

However, any particular experiment or prediction made by our scientist only causes him 
to alter a finite number of his a posteriori probabilities for theories. Thus, while the total 
entropy for the probability distribution may well be infinite, the change in entropy caused 
by any action will be a fixed finite amount. 

The above discussion leads us to a precise description of the optimization criterion for our 
second inference procedure. The scientist chooses an action which maximizes the quotient 
of the expected decrease in the entropy of the probability distribution resulting from that  
action, divided by the cost of that  action. 

5.1 B e h a v i o r  of  this  Inference  P r o c e d u r e  

Let's begin by calculating the expected change in entropy for each of our action in our 
(expanded) menu. 

• For computing the prediction ~ij (assuming that  Xj is already known), we get, 

E [z~(H(P))] = - p ,  + .5(1 - Pl) log(1 - Pi) 4" .5(1 + Pl) log(1 + Pi). (5) 

• For running a two way experiment between ~0 and ~Pl we get 

E [A(H(P))]  = -P0 - P l  + .5(1 +P0 - P l )  log(1 +p0 - P l )  + .5(1 -P0  +Pl )  log(1 -P0  +Pl) .  
(6) 

• In fact, in general, for running X./ where the total probability weight of theories which 
predict that  Xj will be zero is r0 and the total probability weight of theories which 
predict that  Xj will be one is rl we get 

E [zX (H(P))]  = - r 0  - rl --1-.5(1 + r0 - r l )  log(1 + r0 - r l)  + .5(1 - r0 + r l )  log(1 - r0 + rl) .  
(7) 

?Throughout this section we will discuss entropy in bits, and will henceforth assume all logarithms 
without an explicit base to be base 2. 



A New Model  for Inductive Inference 23 

Consider the probability distribution, R, that  has only two outcomes, one with proba- 
bility r0 + .5(1 - r0 - rt) ,  the other with probability rx + .5(1 - r0 - r l) .  We can rewrite 
equation 7 in terms of the entropy of R, 

E [A(H(P))] = -to - rl + H ( R ) .  (8) 

Equations 5 and 6 can be rewritten in a similar manner (since really they're just  special 
cases of equation 7). 

In fact, the calculations for this entropy driven inference procedure and the previous, 
"Kill wrong theories" driven procedure yield very similar results. Equation 8 and equation 1 
could both be written as 

PROGRESS = k(ro + rl - penalty(It0 - rx I). (9) 

(The difference in signs between equation 8 and equation 9 arises because in equation 8 
we're trying to minimize  entropy, so our progress is negative, and our penalty is positive.)" 

Let ~ = ] r 0 -  rtl.  For the entropy approach, k = 1 in equation 9, and penalty(6) = 
H( .5+6 /2 ,  . 5 -6 /2 ) .  (In terms of r0 and rl  that  probability distribution is r 0 + u / 2 ,  r l + u / 2 ,  
where u = 1 - r0 - r t  is the undecided probability weight-- the total probability weight of 
those theories i such that  ~ i ( j )  = .1..) For the kill wrong theories approach of the previous 
section, k = 1/2 in equation 9, and penalty(6) = 6 2. 

As one might expect given this strong similarity between the two optimization criteria, 
the inference procedures behave in a roughly similar manner. 

6 Inference procedure 3: Making the best  theory  good 

Our scientist might decide that  he would like to at all times have a theory that 's  "pretty 
good." There are several approaches he might take. 

In the extreme, he might simply decide that  his goal would be to always increase the 
a posteriori  probability assigned to the current best theory. Such a cynical strategy turns 
out to be impossible. No actions lead to an expected increase in the probability assigned to 
the best theory. If we check the best theory with any kind of action, then with probability 
P0 + .5(1 - P0) it is confirmed, and its probability goes up to 2p0/(1 + p0). However, with 
probability l - p 0  it is refuted and its probability goes to zero. Thus its expected probability 
after any action is [(P0 + 1)/2] • 2p0/(1 + P0) = P0. If we check other theories, they may 
be either refuted, which would increase the probability assigned to ~0, or confirmed, which 
would decrease the probability assigned to ~0, and it again works out that  the expected 
value of the a posteriori  probability weight assigned to ~0 is P0. 

Since our scientist cannot steadily increase the probability assigned to the best theory, he 
might settle for a strategy which always keeps the current best theory best. To accomplish 
this goal, the scientist should never test ~0 against any theory. He should simply test the 
other theories, making sure to stop testing ~i as soon as pi >_ .5p0 (otherwise ~ai might 
replace ~0 as best). This procedure is obviously uninteresting. 

There is, however, at least one interesting way for the scientist to always have a "pretty 
good" best theory. The scientist chooses an action to maximize the quotient of the expected 
value of the probability weight assigned to the best theory not yet refuted after that  action, 
divided by the cost of that  action. 
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6 . 1  B e h a v i o r  o f  t h i s  I n f e r e n c e  P r o c e d u r e  

The first thing we do is calculate the expected value of the weight assigned to the best 
theory for each action. 

• If we test ~0 (with any kind of action), then with probability P0 + .5(1 - P 0 )  it will be 
confirmed, and the probability weight for the best theory will become 2p0/(1 + P0). 
With probability .5(1 -p0) ,  ~0 will be refuted, and the probability weight for the best 
theory will become pl / (1  - po). The expected value of the probability weight for the 
best theory is therefore Po + pl /2 .  

• If Pi _< .5p0 (so if even we test and confirm ~i it will still have a lower a posteriori 
probability weight than ~0), then testing ~i does not lead to an increase in the expected 
value of the probability weight of the best theory. 

• I fp l  > .5p0, and we test ~i, then the expected value of the probability weight of the 
best theory after the test is Pl + po/2. 

Note however, that  this situation is of no practical importance. If Xj is known and 
both ~0j and ~ij are unknown, then it will be more profitable to compute ~0j than 
to compute ~ij .  Consider now the case where there is some j such that  XJ = ~ j  but 
~ j  = 2.. Whichever theory is now numbered zero began with an initial probability 
weight greater than or equal to the initial probability weight of of the theory now 
numbered i. Moreover, since at time t ~0 has been confirmed more than ~i, it must 
be that  p~ > 2p~. 

• If we run a crucial experiment for the two best theories, then the expected value of 
the probability weight of the best theory is P0 + Pl.2 

Having listed the payoffs for each action, we can now give the payoff/cost ratios for the  
actions we might take: 

• A simple pair with the best theory: po+.Sp~ c+d 

• Prediction for ~0j if Xj known: po+.Spl d 

• Simple experiment Xj where ~0j is known: po+.Spl d 

• Crucial two way experiment: po+pl 
4 c + d  " 

• We might consider running a two way experiment when we have some leftover predic- 
tions (say from an earlier two way experiment) for one of the two theories. If we have 

k - 1  k such predictions, then the expected cost decreases from d+4c to d +  ( 3 - ~ i = 1  2-i)  c" 

All our scientist needs to do is pick the maximum reward/cost action from the above 
list, but we'll make a few qualitative observations here: If there is a j for which Xj is known 
but ~0j is not, then it 's always best to compute ~0j. It 's better to do a crucial experiment 
instead of a simple pair if d/c > 6p0 + 2pl; otherwise it is better to do the simple pair. 

~In this  case there  we gain no th ing  by r u n n i n g  a crucial exper iment  for the bes t  n theories  for n > 2. 
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7 A n  o p t i m a l i t y  r e s u l t  

There are a number  of ways one might measure the efficiency of our inference procedures. 
Here we consider the question, "How efficiently do these procedures el iminate wrong the- 
ories?" This  measure seems especially appropr ia te  since all of these inference procedures 
have the quali tat ive behavior tha t  early on they are busy refuting lots of  wrong theories. I t  
turns out tha t  all our procedures do this refuting of wrong theories well; we will show tha t  
all of our procedures perform within a constant factor of the op t imum.  

We begin by calculating the best possible refutat ion rate. 

7 . 1  T h e  o p t i m a l  r e f u t a t i o n  r a t e  

Assume tha t  the right theory has index at least r. Define f(c, d, r) to be the expected cost 
of refuting ~0, ~1, • •. ,  ~ r -1 .  

T h e o r e m :  For any inference procedure, f(c, d, r) > 2cr + dO (log r) .  

Proof: To refute ~i we must  keep on computing values of ~ij until we get one where 
~ij = 0 and Xj = 1 or vice versa. Given tha t  ~i is not the right theory, we expect we will 
on average have to t ry two ~ij until we get one tha t  is refuted by X. Hence our expected 
computa t ion  cost for el iminating r theories must  be at least 2cr. 

Now for the cost of doing experiments.  Since for wrong theories the ~ij are all indepen- 
dent, we might  as well reuse the same experimental  Xj 's in refuting each ~i. However, we 
have r such ~i ' s  to refute. W h a t  is the expected m a x i m u m  number  of agreements between 
any ~i and X over all r ~i ' s?  Equivalently, if we play a game where we toss a coin until 
we've seen a total  of r heads, what  is the expected length of the longest consecutive run of 
tails? We will show tha t  the answer is O (log r).  

More formally, let Xi be the number  of experiments required to refute (wrong) ~i; it is 
easy to check tha t  Pr [Xi = j] = 2 - j  for j = 1, 2 , . . . .  Let X = max,= 1 Xi. We want to show 
E [Z] = e (log r).  

co 

=  kVrtX = k] 
k = l  

co 

= Z k ( e r [ X > k  l - e r [ x > k + l ] )  
k = l  

co 

= ~ P r [ B i : X i > k ]  
k = l  

[ l o g  r J  co 

_< ~ Pr[Bi:Xi>_kl+ ~ r2 -k+l 
k=l k=[logrJ 

_< log r  + 1. 

E IX] 

In the other direction we have 

oo 

E IX] = Pr [3i: X, > k] 
k_--I 

(10) 
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CO 

= E 1 -- (1 -- 2-k+l) r 

k = l  
L.5 log rJ 

>- E 1 -  (1 - 2pv/~) r 
k=l  

_> (1 - (1 - log,. 

~ ( 1 -  e-2V~)~ logr. (11) 

1 . 2  H o w  o u r  p r o c e d u r e s  c o m p a r e  t o  t h e  o p t i m u m  

The three inference procedures we discussed in the preceding three sections all perform 
within a constant factor of the optimum in refuting wrong theories. 

None of them ever actually does an experiment when there are known experimental 
values against which the best theory has not yet been tested. Thus, until the right theory 
has become ~0, we never do any more experiments than the optimum theory refutation 
strategy. 

We do sometimes perform more computations than the optimum theory refutation strat- 
egy. In particular, we sometimes perform "wasted" computations as part of a crucial two 
way experiment. In such an experiment we might compute ~0j and toly for some j and find 
them to be equal. By the definition of a crucial experiment, we will refute one of those two 
theories before ever doing experiment Xj; hence one of those computations was "wasted." 
However, we only perform crucial experiments when we're going to do an experiment, and 
we only do O (log r) experiments, so we only miss the optimum of 2cr by cO (log r). 

8 C o n c l u s i o n s  

We have introduced a new model for the process of inductive inference, which 

1. is relatively simple, yet 

2. captures a number of the qualitative characteristics of "real" science, 

3. provides a crisp model for evolving or dynamic subjective probabilities, and 

4. demonstrates that crucial experiments are of interest for any relative cost of experi- 
ments and making predictions. 
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