
1

Velocity M2T Tool Tutorial

Model to Text Transformation

Robert Berg (robert.berg@utexas.edu), Eric Huneke (QualityCan@gmail.com),
Amin Shali (amshali@cs.utexas.edu), Joyce Ho (joyceho@utexas.edu)

Date: May 11, 2012

Updated August, 2014

Problem Introduction
Model Driven Engineering (MDE) is a methodology used in software design to simplify the goals,

ideas, and design of domain-specific applications. Models are developed to give all parties (including

engineers and scientists) working in a domain easier conceptual access to applications. For instance,

the Unified Modeling Language (UML) represents the set of classes and relationships in an object

oriented-system. While the source code underlying a UML model can be complex, the visual

representation of the model provides a simpler view to anyone working in the domain who isn’t familiar

with coding practices. Thus, the benefit of MDE is clear. MDE becomes an even more powerful tool if

the model in question can be translated into different representations. While this idea is simple to

understand conceptually, it is not trivial to implement. In transforming models, three problems arise:

1. The source model must be transformed into the target model. Such an example might be the

transformation between a truth table (the source model) and a binary decision tree (the target

model).

2. The transformation must be validated to ensure the target model is correct within the new

application domain while still encompassing the rules and restrictions that applied in the source

domain.

3. For a complete transformation, we want to translate the target model into source code

automatically, such as a Java classes containing all the information encoded in the target model.

The focus of this paper is on the third task of Model to Text (M2T) generation. In the sections that

follow, a description of M2T transformations is given, including its uses and importance. Finally, a M2T

tool, called Velocity Model-to-Text (VM2T), based on Apache Velocity is presented and used in two

M2T transformation examples. These examples transformation are presented in a tutorial manner,

detailing how to use the tool while also illuminating the concepts and process of model-to-text

transformations.

The body of this manual is from the original text by Berg, et al. New additions to VM2T are discussed in

the text (having red titles). Make sure that you read and understand these additions before proceeding

to use VM2G.

2

Model-to-Text Transformations

Overview

M2T transformations are concerned with converting a given model structure (UML, XML, XMI, etc.) into

some text-based representation. The output text can be anything from Java source code files (.java), to

MySQL scripts (.sql), to XML structures (.xml); the options are limitless. A tractable example of M2T

transformation is that of a UML class diagram transformed to Java source code (note that performing

this transformation is detailed in the Tutorial section below). To illustrate, assume we want to transform

the UML class diagram of Figure M1 to its associated java classes.

Figure M1. Example UML class diagram of which we would like to transform

to java source code

An M2T transformation on the UML class diagram in Figure M1 should produce two Java class:

Event.java and Alarm.java. In each case, the output source code for each class should include all

information provided in the UML class diagram. For instance, Alarm.java should contain the data fields

perceivedSeverity and acknowledged in addition to specifying that Alarm.java extends

Event.java. As UML diagrams don’t contain implementation details of class or instance methods, those

details are left to the engineer utilizing the source code. The desired output for Event.java is shown

below in Figure M2.

public class Event {
 // Define the class data fields
 public String ID;

 // Class constructor
 public Event (String ID) {
 this.ID = ID;
 }
}

public class Alarm extends Event {
 // Define the class data fields
 public boolean acknowledged;
 public String perceivedSeverity;

 // Class constructor
 public Alarm (String ID, boolean acknowledged, String
perceivedSeverity) {
 super(ID);
 this.acknowledged = acknowledged;
 this.perceivedSeverity = perceivedSeverity;

 }
}

Figure M2. The output java code of Alarm .java and Event.java after performing the M2T transformation
of the UML class diagram of Figure M1.

Motivation and Value of M2T Transformations

3

Automation is generally superior to manual construction; M2T is no exception. In M2T, we want to

produce source code from a model input with minimal effort (i.e. maximum automation). The key idea is

that a relatively small piece of transformation code will generate much larger pieces of output code that

is syntactically correct. This process provides several benefits. First, it allows for the rapid creation of

redundant or boiler-plate code (e.g. hundreds of class templates from a large UML model). Second,

given that the transformation code is correct, the automation process in M2T minimizes bug propagation

because output source code is generated automatically rather than by hand. Finally, the M2T process is

versatile in its output; if something needs to be changed in the generated output, such as a data

structure or design pattern, the engineer need only manipulate the transformation code. In summation,

it is believed that M2T decreases development costs while also providing the engineer with the means to

easily maintain his project’s source code base.

M2T Challenges

For robust transformations, the M2T tool must be flexible and able to handle several types of model

inputs. Similarly, the tool must be able to output in an arbitrary target language. Finally, the text

generation should be simpler than writing the code by hand, especially when scaled to large projects.

The following sections investigate our M2T tool that we believe addresses these limitations. We describe

the structure, input and output domains, and usage of the tool with emphasis on usability. For simplicity,

all input models to the M2T tool developed are encoded as Prolog tables.

VM2T Tool

The M2T tool we developed contains many components, each playing an important role in the

transformation process. These components are described in the subsections below followed by a brief

overview of the tool’s architecture.

Velocity (Apache)

At the heart of our tool is the Apache Velocity engine, a Java-based template engine designed to access

and print data stored in Java classes. While Velocity was developed primarily for web applications, its

Java foundation allows for versatility lending itself to M2T and source code generation. The engine has

the flexibility to handle any input or output format and is moderately straightforward to use. In addition,

Velocity documentation is plentiful, with developer guides, wikis, articles, and books.

Velocity is built around three structures: a context, a template, and an engine. The context contains

objects of various types and is the framework for holding well-formatted input data which Velocity can

later access via the Velocity template. In addition to accessing data from the context, the template,

written in Velocity Template Language (VTL), also describes the rules for output code generation. The

Velocity engine takes the information provided by a context (for us, a prolog database) and template and

generates the output text. Figure V1 illustrates a category that summarizes the basics of M2T generation

using Velocity.

4

Figure V1: Category of M2T generation using Velocity. C is the set of velocity contexts,

V is the set of velocity templates and T is the set of output text from the M2T transformations.

As stated in the caption of Figure V1, 𝐶 is the set of Velocity contexts, 𝑉 is the set of Velocity templates,

and 𝑇 is the set of output texts generated from the Velocity engine. More specifically, an element of

𝐶 and an element of 𝑉 are fed to the Velocity engine where they are composed and transformed to the

desired output text. This process can be represented as the function:

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝐸𝑛𝑔𝑖𝑛𝑒: 𝐶 × 𝑉 → 𝑇 (1)

Strictly speaking, this functional representation is not how Velocity’s software is structured. For more

information on the inner workings of Velocity, we refer the reader to the Velocity Developer Guide.1

With a high level understanding of Velocity fresh in our minds, we turn our attention to VTL. VTL is a

simple and powerful scripting language. A VTL statement begins with a # character and contains a

directive. Commonly used directives are set, foreach, if, and else. References to the current context

are denoted by the $ character. Variables, properties, and methods are the different types of VTL

references. Any text that does not have the # or $ character is automatically added/printed to the output

(file or console). The text shown below is a simple Velocity template (hello.html.vm) that generates a

customized HTML page for the value of person in the context.

<html>
<body>
 Hello $person
</body>
</html>

To access data in a template, a context must be created. Velocity includes a basic implementation class

called VelocityContext for general purpose needs. Objects are added to the context through the Java

Hashtable class. Figure V2 shows how to add the variable person---associated with the value Jack---to

the context. Pairing the template created above with the code below will result in an HTML page that

reads “Hello Jack”. The output of running the code with the context in Figure V2 is shown in Figure V3.

1 Velocity produces a single text file as output. VM2T extends velocity to output multiple files.

http://www.google.com/url?q=http%3A%2F%2Fvelocity.apache.org%2Fengine%2Fdevel%2Fdeveloper-guide.html%23How_Velocity_Works&sa=D&sntz=1&usg=AFQjCNEeViPOhj9eSnbHE_yi8ZEkYe5qxw
http://www.google.com/url?q=http%3A%2F%2Fvelocity.apache.org%2Fengine%2Fdevel%2Fdeveloper-guide.html%23How_Velocity_Works&sa=D&sntz=1&usg=AFQjCNEeViPOhj9eSnbHE_yi8ZEkYe5qxw
http://www.google.com/url?q=http%3A%2F%2Fvelocity.apache.org%2Fengine%2Fdevel%2Fdeveloper-guide.html%23How_Velocity_Works&sa=D&sntz=1&usg=AFQjCNEeViPOhj9eSnbHE_yi8ZEkYe5qxw
http://www.google.com/url?q=http%3A%2F%2Fvelocity.apache.org%2Fengine%2Fdevel%2Fdeveloper-guide.html%23How_Velocity_Works&sa=D&sntz=1&usg=AFQjCNEeViPOhj9eSnbHE_yi8ZEkYe5qxw
http://www.google.com/url?q=http%3A%2F%2Fvelocity.apache.org%2Fengine%2Fdevel%2Fdeveloper-guide.html%23How_Velocity_Works&sa=D&sntz=1&usg=AFQjCNEeViPOhj9eSnbHE_yi8ZEkYe5qxw

5

VelocityContext context = new VelocityContext();
context.put("person", new String("Jack"));
template = Velocity.getTemplate("hello.html.vm");
StringWriter sw = new StringWriter();
template.merge(context, sw);

Figure V2: Supplying data through the basic class to the Velocity template

<html>
<body>
 Hello Jack
</body>
</html>

Figure V3: The customized HTML Output for Jack based on hello.html.vm

To use Velocity within Eclipse, three Apache .jar files (commons-collections, commons-lang, and

velocity) need to be included in the Java class path. There are several Eclipse plugins that can be used

to format Velocity template code. After evaluating Velocity UI (http://veloedit.sourceforge.net/) and

VeloEclipse (http://code.google.com/p/veloeclipse/), we did not use them.

Our Velocity Customization

Our group has created an Eclipse Java project that contains a Prolog parser, the tool packed in a .jar

file, and example input and template files. The benefits of using our tool are that it does not require

any Java coding, automatically accepts Prolog input, allows you to split the output text into

multiple files, and negates the need to download the Velocity engine.

Prolog Parser

As the model inputs to our tool are encoded as Prolog facts, we wrote a Prolog parser to access the

model data and subsequently store it within a VelocityContext. This eliminates the need to write custom

Java classes to encapsulate the context for each new Prolog input file. The parser takes a Prolog file

containing Prolog facts as input and gives the template engine direct access to the table data. The

parser only requires that the Prolog table schemas be defined, as seen in the Prolog comments of

Figure V4.

%table(node, [id, name, type]).
node(1, Start, start).
node(2, Ready, state).
node(3, Drink, state).
node(4, Eat, state).
node(5, Family, state).
node(6, Stop, stop).

%table(edge, [id, startsAt, endsAt]).

edge(1, Start, Ready).
edge(2, Ready, Drink).

http://veloedit.sourceforge.net/
http://veloedit.sourceforge.net/
http://veloedit.sourceforge.net/
http://veloedit.sourceforge.net/
http://veloedit.sourceforge.net/
http://veloedit.sourceforge.net/
http://veloedit.sourceforge.net/
http://veloedit.sourceforge.net/
http://veloedit.sourceforge.net/
http://code.google.com/p/veloeclipse/).
http://code.google.com/p/veloeclipse/).
http://code.google.com/p/veloeclipse/).
http://code.google.com/p/veloeclipse/).
http://code.google.com/p/veloeclipse/).
http://code.google.com/p/veloeclipse/).
http://code.google.com/p/veloeclipse/).
http://code.google.com/p/veloeclipse/).
http://code.google.com/p/veloeclipse/).
http://code.google.com/p/veloeclipse/).
http://code.google.com/p/veloeclipse/).
http://code.google.com/p/veloeclipse/).

6

edge(3, Drink, Drink).
edge(4, Eat, Drink).
edge(5, Drink, Eat).
edge(6, Ready, Eat).
edge(7, Eat, Eat).
edge(8, Drink, Family).
edge(9, Eat, Family).
edge(10, Family, Stop).

Figure V4: Family finite-state machine model in Prolog

The first word after the colon is the name of the table, and the remaining words are the names of the

columns. With the schema definitions, the tuples in each table are accessible as an iterable list of

objects appended with the character “S”. For example, the following template spits back the node tuples

defined in Figure V4:

#foreach($node in $nodeS)

node(${node.id}, ${node.name}, ${node.type}).
#end

Our modified VTL parser has the capability to generate multiple output files. A marker is used to specify

where the user can split a single template into multiple output files and needs to be set in the first line in

the template:

 #set($MARKER="//----")

The quoted string can be anything that will not be found at the beginning of any line in the template (i.e.

//---- must not appear at the beginning of any line in the template). Markers themselves are of the

following form:

${MARKER}filename.extension

Each time a marker appears, all text that follows is placed in a new file with the specified name. For

example, the following template file would produce two Java files as output: A.java and B.java. each

containing an empty class.

 #set($MARKER="//----")
 ${MARKER}A.java

class A {}
${MARKER}B.java

 class B {}

If no marker is specified, the tool will output the result to the standard output.

7

2014 Additions (NEW)
We have discovered that Velocity has a number of drawbacks. We’ve made several changes to

improve VM2T.

Command Line Invocation

VM2T now has the command line:

> vm2t.Main prolog-file template-file [output-file]

 [-cg ContextGeneratorClass]

At minimum, you must provide a prolog database file and a VM2T template file. Output is directed to the

specified output-file, else to standard out. Optionally you can provide a ContextGenerator Class. (I have

yet to use this option).

Indenting

#foreach and #if statements in Velocity must be paired with #end. The problem here is that it is hard –

read “impossible”—to clearly match #ends with their starting statements. We have modified our version

of Velocity (i.e. VM2T) to have any number of blanks stripped from the beginning and ending of lines

whose first non-blank character is #. Thus instead of the lump:

#foreach (...)
#if(...)
#end
#end

We now permit:

#foreach (...)
 #if(...)
 #end
#end

This should make programming with Velocity easier.

New Template Commands and Variables

VM2T now has one additional command and two additional variable that can be referenced. If a single

file is generated, then re-running VM2T simply overrides this file. But when a set of files is produced by

VM2T and possibly different files might be output, the standard action would be to delete the directory in

which generated files are to be placed, so that “old” files do not corrupt generated output. This is the

purpose of the DELDIR command (or variable). The following sequence deletes directory a/b/foo,

before generating a pair of files:

8

#set($DELDIR="//----")
#set($MARKER="//----")
${DELDIR}a/b/foo

 ${MARKER}a/b/foo/A.java
class A {}
${MARKER} a/b/foo/B.java

 class B {}

A limitation of the above approach is that directory names are hardwired. Two new variables are now

available. If output-file is specified, you can access its value via the variable OutputFileName. So:

#set($MARKER="//----")

 ${MARKER}${OutputFileName}
 . . .

Directs VM2T output to file ${OutputFileName}.

Another new Velocity variable, Vm2tInFileName, is the name (including path prefix) to the input prolog

file. That is, if “a/b/c/d.pl” is the prolog database, Vm2tInFileName = “a/b/c/d”. Using this variable may

provide more flexibility in generating output. The following sequence deletes a directory (whose name is

$Vm2tInFileName) before a pair of generated files are placed in it:

#set($DELDIR="//----")
#set($MARKER="//----")
${DELDIR}a/b/$Vm2tInFileName

 ${MARKER}a/b//$Vm2tInFileName/A.java
class A {}
${MARKER} a/b//$Vm2tInFileName/B.java

 class B {}

Errors

VM2T will report errors in one of two ways:

1. If a fundamental error in VM2T logic is discovered, errors will be reported to Standard.err.

2. If errors due to VM2T processing (i.e., due to the use of an erroneous template), errors will be

reported in file error.txt.

This change was required to integrate VM2T with CatLite tools.

9

Tool Architectural Overview

Figure V5 provides a high-level architectural overview of our M2T tool that illustrates how each
component described above is connected.

Figure V5. High-level architectural overview of our M2T tool. The dashed box

represents the M2T portion of the MDE process.

In Figure V5, we see that the tool receives a model input encoded as Prolog tables from some external

source upstream. These tuples are passed through the back-end into a Prolog parser that stores these

Prolog table entries into a list of Java objects. This list is placed in the Velocity context where they are

accessible by any calling Velocity template. The context and template are then fed into the Velocity

engine to produce the output text specified by the user-written Velocity template code. Incidentally, the

schematic of Figure V5 can be represented with a category; this is examined below in the subsection A

Note on M2T in Categories.

The dashed box represents the boundary of our M2T tool while the orange nodes represent pieces of

the tool that are automated. We see that the only thing our tool requires for M2T transformations is a

user-written Velocity template. Many such examples are given in the Tutorials section of this report.

Running the Tool

Our tool can generate the output text either by command line invocation or in Eclipse. Our tool takes the

following parameters:

Command line arguments (has to be in this order):

 prolog-file template-file

To use our tool via the command line, you simply need to pass the input model and the template to the

release/vm2t.jar found in our Github project.

java -jar m2t-1.0.jar prologModel.pl velocityTemplate.vm

In order to import the project into Eclipse, download the latest version of the project in a zip file; you do

not need to unzip the file. In Eclipse, go to File menu and select Import. From there, choose the Existing

Projects into Workspace option. Then select the Select archive file and finish by selecting the

downloaded zip file and clicking on Finish button. The tool requires that the workspace Java Compiler

Compliance is set to at least 1.6. A tutorial video on this process can be found here.

https://github.com/amshali/FOSD/zipball/master
https://github.com/amshali/FOSD/zipball/master
https://github.com/amshali/FOSD/zipball/master
http://youtu.be/iFGAz3PO1RY

10

In Eclipse, code generation occurs by creating a Java application run configuration. The Main class

should point to the core.Main file (Figure V5.5), which requires the following program arguments:

 prolog-file template-file

Figure V5.5: The run configuration for our tool

Figure V6 shows the program arguments to generate the Java code for the Family Finite State Machine

example in Appendix A in Eclipse’s Run Configuration menu.

Figure V6: The program arguments for the Family Finite State machine

example.

A Note on Generating Output for All Examples

A Python script (src/generateExamples.py) will automatically generate the output for all the examples

included in the Eclipse Project. The following shows how to run the script via the command line:

 python src/generateExamples.py

11

Note that the script requires the user to be in the Eclipse project directory and a Python installation.

A Note on M2T in Categories

On a more abstract level, our tool can be thought of as the arrow mapping between objects in a
category. This is demonstrated in Figure V7 which shows a portion of MDE as a grouping of categories.

Figure V7. A portion of MDE as categories.

Shown in Figure V7 are four domains (large circles) containing instances of that domain (small circles):

models encoded with Prolog (green), HTML (blue), Java (yellow) and SQL (purple). Additionally, we can

see an example of a category given by:

𝑃 → 𝑃′ → 𝐽

In the above category, one Prolog model P is taken to another Prolog model 𝑃’ by performing a model-

to-model (M2M) transformation. Then, P’ is transformed to an instance of Java source code, J, by

performing an M2T transformation. Our tool is the arrow mapping between the Prolog model domain to

one of the remaining domains. More generally, our tool performs an M2T transformation, taking a

specific Prolog model and mapping it to an instance of another, different domain (inter-domain

transformation). These right-most instances can be thought of as the output code generated from our

tool. Incidentally, the Prolog M2M transformation only maps between instances within the Prolog model

domain (i.e. an endogenous transformation). To round out our understanding of M2T and its relation to

categories, we can begin to consider some interesting properties of the figure above. For instance, we

may want to know if the M2T mapping is injective (i.e. there is a single instance in the target domain to

which the prolog model can map). This is important as it informs the shape of our categories. While this

idea has not been considered in full detail, it may be of interest to the reader.

Tutorials

We present two examples. The paired input and template files are located in the examples folder in the

Eclipse project. The first is relatively simple while the second is more complex. To handle the complexity

of the second, the first example is heavily detailed.

12

Example 1: Class to Relational

Class to Relational describes a transformation from a class schema model to a relational database

structure. For instance, a class with several attributes might be converted to a relational table where the

class name is the name of the table and the attributes become the table’s data fields. The metamodels

of both the class schema model and the relational database model can be found here. Though simple,

this is a practical example of how to learn our tool. As we are concerned with M2T transformations only,

we begin with the Prolog tables that represent only the relational database model after an M2M

transformation from the class model. Thus, for this example we take as input the Prolog model for a

relational database (Class2Relational_2.pl) given below in Figure M3. It should be noted that the M2M

transformation from the class schema model to the relational database model shown below is assumed

to have been accurately performed.

% table(table, [tableId, classId, tableName]).
table(0, c1, family).
table(1, d4, members).
table(2, c2, person).
table(3, d4, emailAddress).

% table(column, [columnId, belongsTo, field, fieldType].
column(0, 0, primary, integer).
column(1, 0, name, string).
column(2, 1, reference, integer).
column(3, 1, memberId, integer).
column(4, 2, primary, integer).
column(5, 2, firstName, string).
column(6, 2, closestFriendId, integer).
column(7, 3, reference, integer).
column(8, 3, emailAddress, string).

Figure M3. Prolog tables.

Here, we see that there are four tables to be inserted into a relational database: family, members,

person and emailAddress. Recall, we are not concerned with the class schema model which we can

assume had information regarding people, families and email addresses; we are only concerned with

the Prolog tables representing the relational database model. Note that each table has a table ID. Next,

we see that there is a table called column that contains a column ID, a data field and its type, and the

table ID to which said data field belongs. With these two tables, we have enough information to convert

the Prolog tables representing the relational database model into a .sql script that creates these four

tables with the necessary data fields and keys. With our target source code in mind, we must now create

a Velocity template to perform the M2T transformation. The Velocity template that produces our .sql

script, Class2Relational_SQL_2.vm, is given in whole in Figure M4; detailed explanation of individual

lines or portions of code follow. Note that the extracted and explained portions of the code will be

formatted such that loops and conditional statements will be indented for clarity. These indentations are

not however present in the overall template for reasons pertaining to the formatting of the output text.

Additionally, each line in the template in Figure M4 is preceded by a number and colon (e.g. 3:); this

dentoes that it is line 3 of the template. These line numbers are shown for clarity/reference and

should not be present in an actual template.

http://www.eclipse.org/m2m/atl/atlTransformations/#Class2Relational

13

1: #set($MARKER="//----")
2: ${MARKER}src/classToRelational_2.sql
3: #foreach($tab in $tableS)

4: CREATE TABLE ${tab.tableName}(

5: ## Determine the number of fields in the current table ####
6: #set($fieldCount=0)
7: #foreach($col in $columnS)

8: #if(${col.belongsTo} == ${tab.tableId})
9: #set($fieldCount=$fieldCount + 1)
10: #end
11: #end
 ##
12: #set($colCount = 0)
13: #foreach($col in $columnS)
14: #if(${col.belongsTo} == ${tab.tableId})
15: #set($colCount=$colCount + 1)
16: #if(${col.fieldType} == "integer")
17: #if(${col.field} == "primary")
18: ${col.field} INT NOT NULL, PRIMARY KEY(${col.field})#if(${colCount} == ${fieldCount})
19:);#else,
20: #end
21: #else
22: ${col.field} INT NOT NULL#if(${colCount} == ${fieldCount}));#else,
23: #end
24: #end
25: #end
26: #if(${col.fieldType} == "string")
27: ${col.field} VARCHAR(50)#if(${colCount} == ${fieldCount}));#else,
28: #end
29: #end
30: #end
31: #end
32: #end

Figure M4. Velocity template for the Class to Relational model to text transformation example.

Line 1: #set($MARKER="//----")

This line uses Velocity’s #set tag to set a variable called MARKER (denoted $MARKER) to the string “//---
-”. While the #set tag can be used to set variables of any string or integer variable type, the string given

(//----) has a special meaning for our tool; it says that whenever we see the variable $MARKER, we will
output a new file at the location/path specified directly after that variable. This is made more clear after
observing line 2 below.

Line 2: ${MARKER}src/classToRelational_2.sql

This line says that when the compiler reaches this line, it should create a file called

classToRelational_2.sql at the location/path ./src/ .

14

Line 3: #foreach($tab in $tableS)

This line says that we need to loop through each row in the Prolog table table. This allows us to access

each row and all its associated information. For instance, recall that the Prolog table table (found in

Figure M3) contains three fields: tableId, classId and tableName. Thus, if we want to access the

tableName of the row in which we are currently accessing (the current loop) within the table table, we

only need to use the variable $tab.tableName. In the final output, this will be replaced by the current

rows table name. For example, if we were currently in the second loop (i.e. looking at the second row of

table), the Velocity variable $tab.tableName would be replaced by string members in the text output

file specified in line 2. With that, we have a nice segway to line 4.

Line 4: CREATE TABLE ${tab.tableName}(

Here we see that the text that will be written to the output file is the first portion of a standard SQL

command to create a table. However, as stated earlier, the variable ${tab.tablename} will be replaced

with the current table’s actual table name. As a quick note, you’ll notice the use of brackets around the

variable. This is to remove ambiguity as to what text is actually part of the variable, much like in bash

scripts.

Lines 5-11:

Determine the number of fields in the current table ####
#set($fieldCount=0)

#foreach($col in $columnS)

 #if(${col.belongsTo} == ${tab.tableId})
 #set($fieldCount=$fieldCount + 1)
 #end
#end

As the comment suggests, this portion of the code determines how many fields are contained within the
the current table. We do this by first setting a fieldCount variable. Next, using the #foreach tag, we

loop through each row of the column table. Then we use the #if operator to determine if the belongsTo

ID of the current column entry matches that of the current table entry. If yes/true, we increment the

fieldCount variable with another call to #set. As always, each if and foreach statement are closed with

the #end tag. Note that these lines generate no code and only compute a property value that we will use

later.

Thus far, we have only produced one useful line of source code in our .sql script and that is CREATE
TABLE xxx(. However, anyone familiar with SQL knows that this is an incomplete declaration. We

must also include information about the fields that will be present within that table. The remaining lines
deal with this issue.

Lines 12-32:
#set($colCount = 0)
#foreach($col in $columnS)
#if(${col.belongsTo} == ${tab.tableId})
#set($colCount=$colCount + 1)

15

#if(${col.fieldType} == "integer")
#if(${col.field} == "primary")
 ${col.field} INT NOT NULL, PRIMARY KEY(${col.field})#if(${colCount} ==
${fieldCount}));#else,
#end
#else
 ${col.field} INT NOT NULL#if(${colCount} == ${fieldCount}));#else,
#end
#end
#end
#if(${col.fieldType} == "string")
 ${col.field} VARCHAR(50)#if(${colCount} == ${fieldCount}));#else,
#end
#end
#end
#end
#end

To begin, we first set a variable called colCount which will be used later to help correctly print the

output file. Next, we loop through each entry/row in the column table. If the entry belongs to the current

table (remember, we are still in the #foreach($tab in $tableS) loop as it was never closed), we

increment the colCount. Next we must determine if the current column entry is an integer. If yes/true,

we must use another if statement to determine if that integer is the primary key (as specified in the

Prolog tables). If yes/true again, we can print the SQL statement that instantiates that field in the table

such as2

fieldName INT NOT NULL, PRIMARY KEY(fieldName)

In the template, this is represented by the line:

${col.field} INT NOT NULL, PRIMARY KEY(${col.field})#if(${colCount} == ${fieldCount}));#else,#end

Here is where it gets a bit complicated. At the end of a line that looks like that directly above, we have

two options: one, we can end the statement with a comma which suggests more fields must be

instantiated in the table, or two, we can end the statement with a right parenthesis. The latter suggests

no more fields will be instantiated in that table. This is where that variable colCount comes into play. At

the end of the line is an if statement that checks whether or not our colCount is equal to that of the

fieldCount. If yes/true, we end the SQL statement with the right parenthesis and semi-colon. If no/false,

we add a comma as we know there are more fields to follow. Note that while the formatting of the if-

statement looks compact or sloppy, it is only for the preservation of proper formatting in the output file.

Moving on, if the field is not an integer, it is a string (for now, only two data types were used to minimize

complexity of the example). Using this information, we instantiate the string field in such a way that

closely resembles that of instantiating an integer field. Thus, this ends the Velocity template. Note that if

the input Prolog tables contained field types consistent with standard query language, the use of if-

statements in the template could be drastically reduced! This is a good example of how the model

informs the template.

2 Note in Oracle schemas, “PRIMARY KEY” is sufficient.

16

After running the M2T tool, we obtain the following output .sql script:

CREATE TABLE family(
 primary INT NOT NULL, PRIMARY KEY(primary),
 name VARCHAR(50));
CREATE TABLE members(
 reference INT NOT NULL,
 memberId INT NOT NULL);
CREATE TABLE person(
 primary INT NOT NULL, PRIMARY KEY(primary),
 firstName VARCHAR(50),
 closestFriendId INT NOT NULL);
CREATE TABLE emailAddress(
 reference INT NOT NULL,
 emailAddress VARCHAR(50));

The above .sql script does exactly what we proposed it should do at the beginning of the example;

namely, it builds the four tables present in the Prolog relational database model and includes the

appropriate fields. If the Prolog model contained information about entries in the relational database

tables, the template---and as a result, the script---could be modified to use that data to populate the

database tables. This completes the model to text portion of the Class 2 Relational transformation.

Example 2: UML to Java

UML to Java describes a transformation from a UML class diagram to a Java source representation. For

instance, if a class exists in the UML model, the skeleton of this class must be created in Java such that

it contains the given attributes, constructors, methods, etc. In order to perform this transformation, a

UML metamodel is required such that Prolog tuples can capture the model structure. The ATL zoo gives

a nice UML metamodel from which we can base our transformations; this metamodel can be found here.

As expected, the metamodel provides all the components needed to fabricate a UML class diagram

such as class names, attributes, attribute types, inheritance, scope and more. Before transforming the

model to Java code, the UML model information must be encoded as Prolog tables such that they

capture the structure of the diagram in question (much like XML/XMI might also be used to represent the

UML diagram). The UML model and the corresponding Prolog input tables for the example implemented

are shown below in Figures M5 and M6 respectively.

Before continuing, it is important to observe the structure of the Prolog tables/facts in Figure M6

(UML2Java.pl); many tables are present including class, namespace, attribute, operation and

parameter. The class table/facts contain information about the desired class name, visibility,

inheritance and abstraction. Thus, this portion of the model will allow greater specificity in the generated

java source code (i.e. class templates); with this information, we aren’t limited to to public, concrete

classes. The namespace and package tables allow for greater control over the location and package

settings of the java source, respectively. The attributes table defines the visibility, type and ownership

of data fields within classes. And finally, the operation tables combined with the parameter tables give

all the information necessary to produce the structure of methods within classes (e.g. type, visibility,

inputs and output variables).

http://www.eclipse.org/m2m/atl/atlTransformations/UML2Java/ExampleUML2Java%5Bv00.01%5D.pdf
http://www.eclipse.org/m2m/atl/atlTransformations/UML2Java/ExampleUML2Java%5Bv00.01%5D.pdf

17

Figure M5. UML class diagram that we would like to transform into Java

source code (i.e. generate Java class templates).

% table(class, [id, name, visibility, parentId, isAbstract]).
class(1, Class1, public, 2, true).
class(2, Class2, public, 0, false).
class(3, Class3, private, 2, false).
class(4, Class4, public, 1, false).

% table(namespace, [id, name, ownerId]).
namespace(1, util, 1).
namespace(2, util, 2).
namespace(3, util, 3).
namespace(3, util, 4).

% table(package, [id, name, ownerId]).
package(1, java, 1).
package(1, java, 2).
package(1, java, 3).
package(1, java, 4).

% table(attr, [id, name, type, pid, ownerScope, visibility,
changeability, ownerId]).
attr(1, name, String, 1, , public, true, 1).
attr(2, count, int, 1, static, public, true, 1).
attr(3, someAttribute, double, 2, static, public, true, 2).
attr(4, someVector, Vector, 3, , public, true, 3).
attr(5, dataField, double, 4, , public, true, 4).
attr(5, dataField2, double, 4, ,private, true, 4).

% table(operation, [id, name, type, pid, ownerScope, visibility,
ownerId]).
operation(1, add, int, 1, static, private, 1).
operation(2, speak, void, 1, , public, 1).

18

operation(3, doSomething, void, 2, , public, 2).
operation(4, multiplyFields, double, 4, , private, 4).

% table(parameter, [id, name, type, operationId]).
parameter(1, foo, int, 1).
parameter(2, bar, int, 1).
parameter(3, words, String, 2).
parameter(4, inputArray, ArrayList, 3).
parameter(5, dataField, double, 4).
parameter(6, dataField2, double, 4).

Figure M6. Input Prolog tables representing the UML model. Each table is an element from the UML

metamodel

Now, in order to transform the prolog representation of the UML diagram into the representative Java

classes, we must develop a Velocity template that reads and utilizes all of the aforementioned

information from the given input tables. A correct template for such a transformation is given in Figure

M7 (UML2Java.vm). However, as the complete template is quite long, we split it into chunks and analyze

each portion. Note that each portion will be headed/delimited by a gray comment that is also present

within the complete template code. This should make cross referencing the template chunks with the

whole template simple while avoiding the insertion of artificial line numbers into the template code for

reference where there should be none, such as in the preceding example, Class to Relational. Soon

after, the aggregate template (Figure M7) should be more easily understood. Note that each chunk is

indented for clarity though the overall template contains no such formatting.

SET VARIABLES ########################
#set($MARKER="//----")

#foreach($class in $classS)
${MARKER}src/UML2Java/${class.name}.java
DETERMINE IF CLASS INHERITS ##########
#set($extends=0)
#if(${class.parentId} != "0")
#set($extends=1)
#set($superId=${class.parentId})
#end

DECLARE THE PACKAGE ################
#foreach($namespace in $namespaceS)
#foreach($package in $packageS)
#if(${namespace.ownerId} == ${class.id})
#if(${package.ownerId} == ${class.id})
package ${namespace.name}.${package.name};
#end
#end
#end ##foreach
#end ##foreach

FOR CURRENT CLASS, GET NUMBER OF ATTRIBUTES ####################
#set($attrSize=0)
#foreach($attr in $attrS)
#if(${attr.ownerId} == ${class.id})

19

#set($attrSize=$attrSize + 1)
#end
#end
#set($count1=1)
DECLARE THE CLASS AND ATTRIBUTES ##############################
#if($extends == 0)
${class.visibility}#if(${class.isAbstract} == true) abstract#end class
${class.name} {
#else
${class.visibility}#if(${class.isAbstract} == true) abstract#end class
${class.name} extends #foreach($class in $classS)#if(${class.id} ==
$superId)${class.name}#end#end {
#end

#foreach($attr in $attrS)
#if(${attr.ownerId} == ${class.id})
${attr.visibility} ${attr.ownerScope} ${attr.type} ${attr.name};
#end
#end

BUILD THE CONSTRUCTORS ##################
/**
* Empty constructor for class ${class.name}
*/
${class.visibility} ${class.name} () {
}

/**
* Constructor for class ${class.name}
*/
${class.visibility} ${class.name} (#foreach($attr in $attrS)#if(${attr.ownerId} ==
${class.id})#if($count1 < $attrSize)${attr.type} ${attr.name}, #else${attr.type}
${attr.name}#end #set($count1=$count1 + 1)#end#end) {
#foreach($attr in $attrS)
#if(${attr.ownerId} == ${class.id})
this.${attr.name} = ${attr.name};
#end
#end
}

BUILD THE GET/SET METHODS ##########################
// Get/Set methods
#foreach($attr in $attrS)
#if(${attr.ownerId} == ${class.id})
public ${attr.type}
get${attr.name.substring(0,1).toUpperCase()}${attr.name.substring(1)}() {
return this.${attr.name};
}

public void
set${attr.name.substring(0,1).toUpperCase()}${attr.name.substring(1)}(${attr.type}
${attr.name}) {
this.${attr.name} = ${attr.name};
return;

20

}
#end
#end

BUILD THE CLASS METHODS #########################
// Class methods
#foreach($operation in $operationS)
#if(${operation.ownerId} == ${class.id})
#set($params=0)
#set($count1=1)
#foreach($parameter in $parameterS)
#if(${parameter.operationId} == ${operation.id})
#set($params=$params + 1)
#end
#end
${operation.visibility} ${operation.ownerScope} ${operation.type}
${operation.name}(#foreach($parameter in $parameterS)#if(${parameter.operationId}
== ${operation.id})#if($count1 < $params)${parameter.type} ${parameter.name},
#else${parameter.type} ${parameter.name}#end #set($count1=$count1 + 1)#end#end) {
// Fill in method implementation details
}

#end
#end
}

#end

Figure M7. Velocity template to transform input Prolog tables to Java source code (class skeletons).

The first portion of the Velocity template deals with setting variables:

SET VARIABLES ########################
#set($MARKER="//----")

#foreach($class in $classS)
${MARKER}src/UML2Java/${class.name}.java
 ## DETERMINE IF CLASS INHERITS #######
 #set($extends=0)
 #if(${class.parentId} != "0")
 #set($extends=1)
 #set($superId=${class.parentId})
 #end

First we set the variable $MARKER as the string “//----”. Every time this variable is seen, an output file

is created at the location/path that directly follows. Now that we’ve set the marker variable, we must loop

through each class in the class table; this corresponds to each row in the class table. This is done by

using the Velocity tag #foreach. NOTE: the #foreach tag must be followed with a #end tag. By doing

so, we can extract all the information pertaining to that class and build the java class skeleton. Before

continuing, we must first determine if the current class in the loop (given by the variable $class) is a

subclass. If it is, we set the $extends variable to 1. Now that some of the class specific variables are

set, we must move on to setting the namespace and package of the current class in the loop:

21

DECLARE THE PACKAGE #################
#foreach($namespace in $namespaceS)
 #foreach($package in $packageS)
 #if(${namespace.ownerId} == ${class.id})
 #if(${package.ownerId} == ${class.id})
 package ${namespace.name}.${package.name};
 #end
 #end
 #end
#end

Though it looks complicated, this portion of the template has a very simple function. First, it loops

through each namespace and package entry in the namespace and package tables. If the package and

namespace’s ownerId equals the classId of the current class in the class loop (recall that we hadn’t

closed the first #foreach that loops through the class), we use the namespace and package names to

declare the package within the java class.

Next, we need to determine how many attributes the current class contains. This will help in printing the

constructor of the current java class:

FOR CURRENT CLASS, GET NUMBER OF ATTRIBUTES ####################
#set($attrSize=0)
#foreach($attr in $attrS)
 #if(${attr.ownerId} == ${class.id})
 #set($attrSize=$attrSize + 1)
 #end
#end

The above template chunk loops through each entry in the attr table and increments a counter

$attrSize when an attribute’s ownerId equals the current classes ID--basically, we are counting how

many fields should exist within the current class; just as in the class to relational example above, this

attribute counter will be used in building/printing the class constructor. More specifically, it will be used to

determine if the constructor argument list should be closed with a right parenthesis (i.e. there are no

more attributes in the class) or with a comma (i.e. more attributes to be declared in the constructor

argument list). So far, we have only generated the package information of the java class. The next step

is declaring the class itself and its given data fields:

DECLARE THE CLASS AND ATTRIBUTES ##############################
#if($extends == 0)
 ${class.visibility}#if(${class.isAbstract} == true) abstract#end class
${class.name} {
#else
 ${class.visibility}#if(${class.isAbstract} == true) abstract#end class
${class.name} extends #foreach($class in $classS)#if(${class.id} ==
$superId)${class.name}#end#end {
#end
ATTRIBUTES ###########
#foreach($attr in $attrS)
 #if(${attr.ownerId} == ${class.id})

22

 ${attr.visibility} ${attr.ownerScope} ${attr.type} ${attr.name};
 #end
#end

Walking through the above template chunk makes its function clear. First we determine if the current

class extends another class. If not, we print the standard class declaration (i.e. public class

className {) using the information given in the class table (e.g. name which can be extracted with

$class.name). You’ll notice that there are embedded #if statements within these class declarations.

This is to insert the word abstract into the declaration if the current class is defined as abstract within

the Prolog table inputs.

The attributes section is straightforward. Each attribute entry in the attr table is looped through. If the

attribute’s owner ID is equal to the current class’s ID, we print the attribute and all its associated values

(e.g. visibility, type, etc) to the java class file. The resulting output will look very familiar and of the form:

 public static String attributeExample;

Next we move to printing the constructors:

BUILD THE CONSTRUCTORS ##################
/**
 * Empty constructor for class ${class.name}
 */
${class.visibility} ${class.name} () {
}

/**
 * Constructor for class ${class.name}
 */
${class.visibility} ${class.name} (#foreach($attr in $attrS)#if(${attr.ownerId} ==
${class.id})#if($count1 < $attrSize)${attr.type} ${attr.name}, #else${attr.type}
${attr.name}#end #set($count1=$count1 + 1)#end#end) {
#foreach($attr in $attrS)
 #if(${attr.ownerId} == ${class.id})
 this.${attr.name} = ${attr.name};
 #end
#end

}

The top portion of the template is simple and creates the empty constructor for the current class. The

bottom portion is not as simple. Here we first access the class’s visibility and name to provide the usual

format of a class constructor. However, the difficulty comes when we’re trying to print the parameters of

the non-empty constructor. First, we must loop through each of the attributes and determine which one

belongs to the current class by checking if the attribute ownership ID matches that of the current class

ID. If it does, we add it to the argument list as usual by first accessing the attribute type then its name.

After each iteration of the loop, we iterate the variable called $count1. When $count1 is equal to

$attrSize (as found using the #if statement) the argument portion of the constructor is closed with a

right bracket, “)”. If this condition is not satisfied, the attribute loop continues but appends a comma (“,”)

in anticipation of another argument to follow. Once this is finished, we must again loop through each of

23

the attributes, check if they belong to the current class, and set them in the constructor with the standard

this.fieldName = fieldName syntax. With that, our constructors have been built.

Next, we must include get and set methods within the class so we can access the data fields. This is

done with the following portion of the template of Figure M7:3

BUILD THE GET/SET METHODS ##########################
// Get/Set methods
#foreach($attr in $attrS)
 #if(${attr.ownerId} == ${class.id})

public ${attr.type} get${attr.name.substring(0,1).toUpperCase()}${attr.name.substring(1)}() {

 return this.${attr.name};
 }

public void set${attr.name.substring(0,1).toUpperCase()}${attr.name.substring(1)}(${attr.type}

${attr.name}) {
 this.${attr.name} = ${attr.name};
 return;
 }
 #end
#end

Since we want a get and set method for each attribute, we start this portion with a #foreach loop that

loops through each attribute in the attr table. If the attribute ID matches the class ID, we begin to print

the standard structure of a set and get method using the attribute’s data (e.g. name and type) in the

standard java form. You’ll notice that when accessing the attribute’s name, some standard java

operations are called and used on the name string, such as toUpperCase(). This is to ensure that the

method name adheres to the standard java practice of using camel notation. After the methods are

described, the method bodies are developed by accessing the information in the attr table (such as

$attr.name which prints the name of the attribute) in such a way that resembles standard get and set

methods within a java class.

Finally, we end with printing the class methods themselves given by the operation table:

BUILD THE CLASS METHODS #########################

// Class methods
#foreach($operation in $operationS)
#if(${operation.ownerId} == ${class.id})
#set($params=0)
#set($count1=1)
#foreach($parameter in $parameterS)
#if(${parameter.operationId} == ${operation.id})
#set($params=$params + 1)
#end
#end
${operation.visibility} ${operation.ownerScope} ${operation.type}
${operation.name}(#foreach($parameter in $parameterS)#if(${parameter.operationId} ==

3 Sadly, there is no line-continuation character in Velocity, so everything that is to appear on one line must be on a
single VTL line.

24

${operation.id})#if($count1 < $params)${parameter.type} ${parameter.name},
#else${parameter.type} ${parameter.name}#end #set($count1=$count1 + 1)#end#end) {
// Fill in method implementation details
}

#end
#end
}
#end ##end to the class foreach loop and end of template

Again, building the portion of the template that consists of printing the class methods seems daunting.

However, we’ve seen a very similar portion of template code for printing the class constructor. The big

portion of Velocity code with all the embedded #if’s and #foreach’s is really just a way to print the

method arguments in a nice way (i.e. when there are no more parameters that belong to the current

method, cap the printed line with a right bracket “)”; otherwise, print a comma “,” in anticipation of more

arguments). However this time, instead of comparing the number of parameters counted so far in the

argument list to a variable called $attrSize (such as in the constructor), we use the variable $params,

which is determined before we start building the method. The final #end statement is closes the very first

#foreach loop that was looping through each class in the class tables. As such, the template is

finished and we are ready to run the tool to perform the M2T transformation.

Once the tool is run (which is as simple as running Main.java with the necessary arguments), four java

classes will be produced, each corresponding to a class in the UML class diagram given in Figure M5. In

order to minimize space, only one of the java class---Class1.java---is shown:

package util.java;

public abstract class Class1
extends Class2 {

public String name;
public static int count;

/**
* Empty constructor for
class Class1
*/
public Class1 () {
}

/**
* Constructor for class
Class1
*/
public Class1 (String name,
int count) {
this.name = name;
this.count = count;
}

25

// Get/Set methods
public String getName() {
return this.name;
}

public void setName(String
name) {

this.name = name;
return;
}
public int getCount() {
return this.count;
}

public void setCount(int
count) {
this.count = count;
return;
}

// Class methods
private static int add(int
foo, int bar) {
// Fill in method
implementation details
}

public void speak(String
words) {
// Fill in method
implementation details
}
}

We see that all information in the input model’s tables are considered; the class is abstract and extends

Class2, it contains the proper data fields, it has the appropriate constructors and, finally, it contains all

necessary methods. Note that the fact that this class is abstract is purely illustrative. It is not meant to

show the actual structure of an abstract class but rather that abstraction can be placed in the class

definition.

With this example we see the power of M2T transformations. If the UML class diagram is large and

complex, the M2T transformation given drastically reduces development time as the java classes are

created quickly, automatically and error-free.

Additional Examples

Additional examples---including the input file, Velocity template and output code---are given in the

Appendix at the end of this report. Some of these examples include transforming a finite state machine

from a prolog model to both java source code and the Graphviz language. If necessary these examples

in the appendix provide the user more experience using templates. If additional examples are required,

26

the user can find 20 input files and their corresponding templates for M2T transformation within the tool

package itself (again found at https://github.com/amshali/FOSD). Each of these transformations can be

run from Eclipse (or the command line) using the procedure outlined in the subsection above called

Running the Tool.

Conclusion

We presented an overview of Model to Text (M2T) transformations along with our tool that automates

much of the M2T process. Our tool, a customization of the Velocity template engine, has several

benefits: it requires no Java coding, automatically handles Prolog input, allows you to split a single

template into multiple output files, and negates the need to download the Velocity engine. All that is

required is a single user-created template file that specifies the transformation, written in the Velocity

Template Language (VTL).

There are some limitations to our tool. For instance, VTL does not handle complex conditional

statements or logic containing AND or OR conjunctions. The workaround is to set a variable that

evaluates the complex logic expression and then test that variable’s value in the conditional statement.

Additionally, formatting the output layout (indents, spacing, etc) can also be difficult as each space in the

template is printed verbatim. This is made more complicated as spaces within VTL loops will begin to

compound, pushing all desired text to the side---a neurosis that becomes clearer when experimenting

with Velocity. The user is forced to sacrifice template readability for output text readability. Finally, our

current Prolog parser does not support the capability to join tables. This functionality would require

additional Java coding by the end user. (Another way is to start with a different set of Prolog tables

where these joins have been computed. Such computations would be written in Prolog and executed

prior to the use of our tool).

In the end, these limitations---which can be circumvented---are outweighed and outnumbered by the

advantages and functionality of the tool:

1. Accelerated creation of redundant or boiler-plate code

2. No back-end Java coding required

3. Minimization of bug propagation

4. Enhanced project maintenance through use of templates for code generation (i.e template

provides single point of change)

As a result, our tool and its use in M2T transformations decreases development time and cost while

providing the end user easy access to maintenance and versatility in the source code.

https://github.com/amshali/FOSD
https://github.com/amshali/FOSD
https://github.com/amshali/FOSD
https://github.com/amshali/FOSD
https://github.com/amshali/FOSD
https://github.com/amshali/FOSD
https://github.com/amshali/FOSD
https://github.com/amshali/FOSD
https://github.com/amshali/FOSD

27

Appendix A: Family Finite-State Machine model
This example uses a set of Prolog facts (fsm-family.pl) that we used early in the semester, shown

below. The node facts represent a state machine with 1 Start node, 1 Stop node, and 4 intermediate

nodes representing the states Ready, Drink, Eat, and Family. The edge nodes represent connections

between the 6 nodes.

% table(node,
[id,name,type]).
node(1, Start, start).
node(2, Ready, state).
node(3, Drink, state).
node(4, Eat, state).
node(5, Family, state).
node(6, Stop, stop).

% table(edge,
[id,startsAt,endsAt]).
edge(1, Start, Ready).
edge(2, Ready, Drink).
edge(3, Drink, Drink).
edge(4, Eat, Drink).
edge(5, Drink, Eat).
edge(6, Ready, Eat).
edge(7, Eat, Eat).
edge(8, Drink, Family).
edge(9, Eat, Family).
edge(10, Family, Stop).

We have constructed two examples using this set of Prolog facts. The first is to automatically generate

a graph representing the FSM that is similar to the hand-drawn one used in the slides. To do this, we

leverage Graphviz (http://www.graphviz.org/), a tool that take a graph encoded in a domain-speicifc

language and outputs a graph image. Below is our template (graphviz-fsm.vm) that generates the

Graphviz code describing the FSM.

digraph fsm {
 node [shape=circle];

#foreach($node in $nodeS)
 #if ($node.type == "start")
 ${node.name} [label =
"${node.name}", shape=doublecircle];
 #elseif ($node.type == "stop")
 ${node.name} [label =
"${node.name}", shape=doubleoctagon];
 #else
 ${node.name} [label =
"${node.name}"];
 #end
#end

http://www.graphviz.org/
http://www.graphviz.org/
http://www.graphviz.org/
http://www.graphviz.org/
http://www.graphviz.org/
http://www.graphviz.org/
http://www.graphviz.org/
http://www.graphviz.org/

28

#foreach($edge in $edgeS)
 ${edge.startsAt} -> ${edge.endsAt};
#end
}

Below is the output of the template. For this example, the Graphviz language should be fairly

straightforward. We declare a digraph with all the necessary nodes and labels. After the node

declarations, the nodes are connected exactly as they are in the input model.

digraph fsm {
node [shape=circle];
rankdir=LR;
Start [label = "Start",
shape=doublecircle];
Ready [label = "Ready"];
Drink [label = "Drink"];
Eat [label = "Eat"];
Family [label = "Family"];
Stop [label = "Stop",
shape=doubleoctagon];

Start -> Ready;
Drink -> Drink;
Eat -> Drink;
Drink -> Eat;
Ready -> Eat;
Eat -> Eat;
Drink -> Family;
Eat -> Family;
Family -> Stop;
}

Below is the generated code run by Graphviz. As can be seen, it is a clean representation of the data

model.

Our other example using the FSM Prolog model is to generate simple Java skeleton code that might be
used as a baseline for executing the FSM. Our template (java-fsm.vm) is shown below.

29

#set($MARKER="//----")
${MARKER}Current.java
package fsm;

class Current {

 public static Current current = new

Start();

#foreach($node in $nodeS)
 public void goto${node.name}() {}
#end
}

#foreach($node in $nodeS)
${MARKER}${node.name}.java
package fsm;

class $node.name extends Current {
#foreach($edge in $edgeS)
 #if ($edge.startsAt == $node.name)

 public void goto${edge.endsAt}() {
 current = new ${edge.endsAt}();
 }
 #end
#end

}

#end

For our set of inputs, we generate seven classes. The first is a “Current” class that holds the node that
is currently being executed. The other six subclass Current and define methods that allow correct state
transitions.

Appendix B: Static Method Call

For this example we return to this Graphviz language but present a new data model. The model in this

case is a Prolog file which describes a number of classes and the methods that they have in addition to

the information which shows what static methods calls there are between different methods. An example

of such a Prolog model of method call (method-call-1.vm) is shown below:

% Classes
% table(class, [id, name]).
class(c1, ClassA).
class(c2, ClassB).
class(c3, ClassC).

% Methods
% table(method, [id, classid, name]).
method(m1, c1, noCalls).

30

method(m2, c1, recursive).
method(m3, c2, back).
method(m4, c2, forth).
method(m5, c3, callsEveryone).
method(m6, c3, everyoneCalls).

% Invocations
% table(invocation, [caller, callee]).
invocation(m2, m2).
invocation(m2, m6).
invocation(m3, m4).
invocation(m3, m6).
invocation(m4, m3).
invocation(m4, m6).
invocation(m5, m2).
invocation(m5, m3).
invocation(m5, m4).
invocation(m5, m5).
invocation(m5, m6).

The template (graphviz-method-call.vm) for this transformation is shown below:

digraph G {
 concentrate=true;
 overlap=false;
 splines=true;
 ranksep=0.7;

#foreach($class in $classS)
 subgraph cluster_${class.id} {
 color=grey;
 labeljust="l";
 node [style=dotted, shape=box];
 label="${class.name}";
 #foreach($method in $methodS)
 #if(${method.classid} ==
${class.id})

 ${method.id}
[label="${method.name}"];
 #end
 #end

 }
#end
#foreach($invok in $invocationS)
 $invok.caller -> $invok.callee ;
#end
}

31

Our model-to-text tool will convert this model into a text which is the encoding of the method call graph.

The output of our tool is shown in Appendix A. We then use the graphviz tool to convert that text into an

image which is shown below:

