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Abstract

On-line social networks, such as Facebook, are increasingly utilized by
many people. These networks allow users to publish details about them-
selves and connect to their friends. Some of the information revealed inside
these networks is meant to be private. Yet it is possible that corporations
could use learning algorithms on released data to predict undisclosed pri-
vate information. In this paper, we explore how to launch inference at-
tacks using released social networking data to predict undisclosed private
information about individuals. We then devise three possible sanitization
techniques that could be used in various situations. Then, we explore
the effectiveness of these techniques by implementing them on a dataset
obtained from the Dallas/Fort Worth, Texas network of the Facebook so-
cial networking application and attempting to use methods of collective
inference to discover sensitive attributes of the data set. We show that
we can decrease the effectiveness of both local and relational classification
algorithms by using the sanitization methods we described. Further, we
discover a problem domain where collective inference degrades the perfor-
mance of classification algorithms for determining private attributes.

1 Introduction

Social networks are online applications that allow their users to connect by
means of various link types. As part of their offerings, these networks allow
people to list details about themselves that are relevant to the nature of the
network. For instance, Facebook is a general-use social network, so individual



users list their favorite activities, books, and movies. Conversely, LinkedIn is a
professional network; because of this, users specify details are related to their
professional life (i.e. reference letters, previous employment, etc.)

This personal information allows social network application providers a unique
opportunity; direct use of this information could be useful to advertisers for di-
rect marketing. However, in practice, privacy concerns can prevent these efforts
[2]. This conflict between desired use of data and individual privacy presents
an opportunity for social network data mining – that is, the discovery of in-
formation and relationships from social network data. The privacy concerns
of individuals in a social network can be classified into one of two categories:
privacy after data release, and private information leakage.

Privacy after data release has to do with the identification of specific indi-
viduals in a data set subsequent to its release to the general public or to paying
customers for specific usage. Perhaps the most illustrative example of this type
of privacy breach (and the repercussions thereof) is the AOL search data scan-
dal. In 2006, AOL released the search results from 650,000 users for research
purposes. However, these results had a significant number of “vanity” searches
– searches on an individual’s name, social security number, or address – that
could then be tied back to a specific individual.

Private information leakage, conversely, is related to details about an indi-
vidual that is not explicitly stated, but, rather, is inferred through other details
released and/or relationships to individuals who may express that trait. A triv-
ial example of this type of information leakage is a scenario where a user, say
John, does not enter his political affiliation because of privacy concerns. How-
ever, it is publicly available that he is a member of the College Democrats. Using
this publicly available information regarding a general group membership, it is
easily guessable what John’s political affiliation is. We note that this is an issue
both in live data (i.e. currently on the server) and in any released data.

This paper focuses on the problem of private information leakage for individ-
uals as a direct result of their actions as being part of an online social network.
We model an attack scenario as follows: Suppose Facebook wishes to release
data to Electronic Arts for their use in advertising games to interested people.
However, once Electronic Arts has this data, they want to identify the political
affiliation of users in their data for lobbying efforts. This would obviously be a
privacy violation of hidden details. We explore how the online social network
data could be used to predict some individual private trait that a user is not
willing to disclose (e.g. political or religious affiliation) and explore the effect
of possible data sanitization approaches on preventing such private information
leakage, while allowing the recipient of the sanitized data to do inference on
non-private traits.

1.1 Our contributions

To the best of our knowledge, this is the first paper that discusses the problem of
sanitizing a social network to prevent inference of social network data and then
examine the effectiveness of those approaches on a real-world dataset. In order
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to protect privacy, we sanitize both details and link details. That is, deleting
some information from a user’s profile and removing links between friends. We
then study the effect this has on combating possible inference attacks.

Additionally, we present a modification of the Näıve Bayes classification
algorithm that will use details about a node, as well as the node’s link structure,
to predict private details. We then compare the accuracy of this new learning
method against the accuracy of the traditional Näıve Bayes classifier.

2 Related Work

In this paper, we touch on many areas of research that have been heavily stud-
ied. The area of privacy inside a social network encompasses a large breadth,
based on how privacy is defined. In [1], authors consider an attack against an
anonymized network. In their model, the network consists of only nodes and
edges. Trait details are not included. The goal of the attacker is to simply
identify people. Further, their problem is very different than the one considered
in this paper because they ignore trait details and do not consider the effect of
the existence of trait details on privacy.

In [4] and [9], authors consider several ways of anonymizing social networks.
However, our work focuses on inferring details from nodes in the network, not
individually identifying individuals.

Other papers have tried to infer private information inside social networks.
In [5], authors consider ways to infer private information via friendship links
by creating a Bayesian Network from the links inside a social network. While
they crawl a real social network, Livejournal, they use hypothetical attributes
to analyze their learning algorithm. Also, compared to [5], we provide tech-
niques that can help with choosing the most effective traits or links that need
to be removed for protecting privacy. Finally, we explore the effect of collective
inference techniques in possible inference attacks.

In [17], the authors propose a method of link reidentification. That is, they
assume that the social network has various link types embedded, and that some
of these link types are sensitive. Based on these assumptions, authors propose
several methods by which these sensitive link types can be hidden. The general
method by which they hide links is by either random elimination or by link ag-
gregation. Instead of attempting to identify sensitive links between individuals,
we attempt to identify sensitive traits of individuals by using a graph that ini-
tially has a full listing of friendship links. Also, instead of random elimination of
links between nodes, we develop an heuristic for removing those links between
individuals that will reduce the accuracy of our classifiers the most.

In [3], Gross and Acquisti examine specific usage instances at Carnegie Mel-
lon. They also note potential attacks, such as node re-identification or stalking,
that easily accessible data on Facebook could assist with. They further note
that while privacy controls may exist on the user’s end of the social networking
site, many individuals do not take advantage of this tool. This finding coincides
very well with the amount of data that we were able to crawl using a very simple
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Name of value Variable

Node numbered i in the graph ni

A single detail j Dj

All details of person ni D∗,i

Detail j of person ni dj,i

Friendship link between person ni and nk Fi,k

The number of nodes with detail Dj |Dj |
The weight of detail Di Wi

The weight of a friend link from ni to nj Wi,j

Table 1: Common Notations Used in the Paper

crawler on a Facebook network. We extend on their work by experimentally ex-
amining the accuracy of some types of the Demographic Re-identification that
they propose before and after santitization.

The Facebook platform’s data has been considered in some other research
as well. In [7], authors crawl Facebook’s data and analyze usage trends among
Facebook users, employing both profile postings and survey information. How-
ever, their paper focuses mostly on faults inside the Facebook platform. They
do not discuss attempting to learn unrevealed traits of Facebook users, and do
no analysis of the details of Facebook users. Their crawl consisted of around
70,000 Facebook accounts.

The area of link based classification is well studied. In [11], authors compare
various methods of link based classification including loopy belief propagation,
mean field relaxation labeling, and iterative classification. However, their com-
parisons do not consider ways to prevent link based classification. Belief propa-
gation as a means of classification is presented in [16]. In [13], authors present an
alternative classification method where they build on Markov Networks. How-
ever, none of these papers consider ways to combat their classification methods.

In [18], Zheleva and Getoor attempt to predict the private attributes of
users in four real-world datasets: Facebook, Flickr, Dogster, and BibSonomy.
In addition to using general relational classification, they introduce a group-
based classification by taking advantage of specific types of attributes in each of
the social networks. However, their work does not attempt to sanitize the data;
it only reveals the problems we also describe herein.

Finally, in [8], we do preliminary work on the effectiveness of our Details,
Links and Average classifiers and examine their effectiveness after removing
some details from the graph. Here, we expand further by evaluating their effec-
tiveness after removing details and links.

3 Learning Methods on Social Networks

We model a social network as an undirected graph, G = (V, E), where each
node represents a person in the graph, and each link represents a friendship.
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Each node ni in the graph, has a set of details, {D1,i, . . . ,DN,i}. Each of these
details is itself a set consisting of zero or more detail values. That is, suppose
that we have two details: Hometown and Activities, which may be referred to
as D1 and D2. Obviously Hometown is a binary attribute – one may only be
born in one place, but a user also has a decision in whether to list it or not.
Conversely, Activities could be a multivalued attribute – ”Programming, Video
Games, and Reading”, for instance. In the facebook dataset that we use, these
multivalued attributes are comma-separated. For clarity, we refer to a Detail as
the actual category, say Activities. We represent the concept of detail values as
the 2-tuple (Detail, expressed value). We further define a set of private details
I, where any detail is private if Dj ∈ I. Consider the following illustrative
example:

I = {political affiliation, religion} (1)

N1 = (Jane Doe) (2)

N2 = (John Smith) (3)

D1 = (Activities) (4)

D1,2 = {John Smith’s Activities } (5)

d1,2 = {Activities, reading} (6)

F1,2 ∈ E (7)

F2,1 ∈ E (8)

That is, we define two details to be private, a person’s political affiliation
and their religion (1). Then, say we have two people, named Jane Doe and
John Smith respectively (2, 3). There is a single specified Activity detail (4)
and John Smith has specified that one of the activities he enjoys is reading (6).
Also, John and Jane are friends. Note that because our graph is undirected,
examples 7 and 8 are interchangeable, and only one is actually recorded.

In order to evaluate the effect changing a person’s traits has on their privacy,
we needed to first create a learning method that could predict a person’s private
traits (for the sake of example, we assume that political affiliation is a private
trait). For our purposes, we first attempted to use an SVM learning algorithm
on the data, but the sheer size of the details involved makes this method less
efficient for our purposes.1 Since our goal is to understand the feasibility of
possible inference attacks and the effectiveness of various sanitization techniques
combating against those attacks, we initially used a simple Näıve Bayes classifier.
Using Näıve Bayes as our learning algorithm allowed us to easily scale our
implementation to the large size and diverseness of the Facebook dataset. It
also has the added advantage of allowing simple selection techniques to remove
detail and link information when trying to hide the class of a network node.

1Please see [6] for discussion of the SVM learning tool that we tried to use.
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3.1 Näıve Bayes Classification

Näıve Bayes is a classifier that uses Bayes’ Theorem to classify objects. Given a
node, ni, with m details and p classes to choose from, C1, . . . , Cp, Näıve Bayes
determines which class Cx is more likely under the assumption that traits are
independent. That is,

argmaxx[P (Cx|D1,i . . . Dm,i)] =

argmaxx

[

P (Cx) × P (D1,i|Cx) × . . . × P (Dm,i|Cx)

P (D1,i, . . . ,Dm,i)

]

(9)

Because P (D1,i, . . . ,D(m, i)) is a positive constant over all possible classes
for any given user ni, this factor becomes irrelevant when probabilities are com-
pared. This reduces our more difficult original problem of P (Cx|D1,i . . . Dm,i)
to the question of P (Da,i|C), for all 0 ≤ a ≤ m.

3.2 Näıve Bayes on Friendship Links

Consider the problem of determining the class trait of person ni given their
friendship links using a Näıve Bayes model. That is, of calculating P (Cx|Fi,1, . . . , Fi,m).
Because there are relatively few people in the training set that have a friendship
link to ni, the calculations for P (Cx|Fi,j) become extremely inaccurate. Instead,
we decompose this relationship. Rather than having a link from person ni to
nj , we instead consider the probability of having a link from ni to someone with
nj ’s traits. Thus,

P (Cx|Fi,j) ≈ P (Cx|L1, L2, . . . , LM )

≈
P (Cx) × P (L1|Cx) × . . . × P (Lm|Cx)

P (L1, . . . , Lm)
(10)

where Ln represents a link to someone with detail Dn.

3.3 Weighing Friendships

There is one last step to calculating P (Ci|FaFbFc). Just like details can have
weights, so can friendship links. In the specific case of social networks, two
friends can be anything from acquaintances to close friends. While there are
many ways to weigh friendship links, the method we used is very easy to calcu-
late and is based on the assumption that the more traits two people are known
to share, the more unknown traits they are likely to share. This gives the fol-
lowing formula for WA,B , which represents the weight of a friendship link from
nA to node nB :

WA,B =
|(D1,a, ..., TN,a) ∩ (T1,b, ..., TN,b)|

(|D∗,a|)
(11)

Equation 11 calculates the total number of traits na and nb share divided
by the number of traits of na.
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Note that the weight of a friendship link is not the same for both people on
each side of a friendship link. In other words, WB,A 6= WA,B . The final formula
for person i becomes the following, where NOMR represents a normalization
constant and P (Ci|Fa) is calculated by equation 10.

ρ(Ci, FaFb...Fz) =
P (Ci|Fa) ∗ Wa,I + ... + P (Ci|Fz) ∗ Wz,I

NOMR
(12)

The value ρ(Ci, FaFb...Fz) is used as our approximation to P (Ci|FaFb...Fz)

3.4 Collective Inference

Collective Inference is a method of classifying social network data using a com-
bination of node details and connecting links in the social graph. Each of these
classifiers consists of three components: Local classifier, relational classifier, and
Collective Inference algorithm.

Local classifiers are a type of learning method that is applied in the initial
step of collective inference. Typically, it is a classification technique that ex-
amines details of a node and constructs a classification scheme based on the
details that it finds there. For instance, the Näıve Bayes classifier we discussed
previously is a standard example of Bayes classification. This classifier builds
a model based on the details of nodes in the training set. It then applies this
model to nodes in the testing set to classify them.

The relational classifier is a separate type of learning algorithm that looks
at the link structure of the graph, and uses the labels of nodes in the training
set to develop a model which it uses to classify the nodes in the test set. Specif-
ically, in [10], Macskassy and Provost examine four relational classifiers: Class-
Distribution Relational Neighbor (cdRN), Weighted-Vote Relational Neighbor
(wvRN), Network-only Bayes Classifier(nBC), and Network-only Link-based
Classification (nLB).

The cdRN classifier begins by determining a reference vector for each class.
That is, for each class, Cx, cdRN develops a vector RVx which is a description
of what a node that is of type Cx tends to connect to. Specifically, RVx(a) is an
average value for how often a node of class Cx has a link to a node of class Ca.
To classify node ni, the algorithm builds a class vector, CVi, where CVi(a) is a
count of how often ni has a link to a node of class Ca. The class probabilities
are calculated by comparing CVi to RVx for all classes Cx.

The nBC classifier uses Bayes Theorem to classify based only on the link
structure of a node. That is, it defines

P (ni = Cx|N〉) =
P (Ni|ni = Cx) × P (ni = Cx)

P (Ni)

=
∏

nj∈Ni

P (nj = Ca|ni = Cx) × P (ni = Cx)

P (nj)

and then uses these probabilities to classify ni.
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The nLB classifier collects the labels of the neighboring nodes and by means
of logistic regression, uses these vectors to build a model.

In the wvRN relational classifier, to classify a node ni, each of its neighbors,
nj , is given a weight. The probability of ni being in class Cx is the weighted
mean of the class probabilities of ni’s neighbors. That is,

P (ni = Cx|Ni) =
1

Z

∑

nj∈Ni

[wi,j × P (nj = Cx)]

where Ni is the set of neighbors of ni.
As may be obvious, there are problems with each of the methods described

above. Local classifiers consider only the details of the node it is classifying.
Conversely, relational classifiers consider only the link structure of a node.
Specifically, a major problem with relational classifiers is that while we may
cleverly divide fully labeled test sets so that we ensure every node is connected
to at least one node in the training set, real-world data may not satisfy this
strict requirement. If this requirement is not met, then relational classification
will be unable to classify nodes which have no neighbors in the training set.
Collective Inference attempts to make up for these deficiencies by using both
local and relational classifiers in a precise manner to attempt to increase the
classification accuracy of nodes in the network. By using a local classifier in the
first iteration, collective inference ensures that every node will have an initial
probabilistic classification, referred to as a prior. The algorithm then uses a re-
lational classifier to re-classify nodes. At each of these steps i > 2, the relational
classifier uses the fully-labeled graph from step i−1 to classify each node in the
graph.

The Collective Inference method also controls the length of time the algo-
rithm runs. Some algorithms specify a number of iterations to run, while others
converge after a general length of time. We choose to use Relaxation Labeling as
described in [10]: a method which retains the uncertainty of our classified labels.
That is, at each step i, the algorithm uses the probability estimates, not a single
classified label, from step i−1 to calculate new probability estimates. Further, to
account for the possibility that there may not be a convergence, there is a decay
rate, called α set to 0.99 that discounts the weight of each subsequent iteration
compared to the previous iterations. We chose to use Relaxation labeling be-
cause in the experiments conducted by Macskassy and Provost[10], Relaxation
Labeling tended to be the best of the three collective inference methods.

Each of these classifiers, including a Relaxation Labeling implementation,
is included in NetKit-SRL2. As such, after we perform our sanitization tech-
niques, we allow NetKit to classify the nodes to examine the effectiveness of our
approaches.

2Available at: http://netkit-srl.sourceforge.net/
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4 Data Gathering

We wrote a program to crawl the Facebook network to gather data for our
research. Written in Java 1.6, the crawler loads a profile, parses the details
out of the HTML, and stores the details inside a MySQL database. Then, the
crawler loads all friends of the current profile and stores the friends inside the
database both as friendship links and as possible profiles to later crawl.

Because of the sheer size of Facebook’s social network, the crawler was lim-
ited to only crawling profiles inside the Dallas/Forth Worth (DFW) network.
This means that if two people share a common friend that is outside the DFW
network, this is not reflected inside the database. Also, some people have en-
abled privacy restrictions on their profile which prevented the crawler from
seeing their profile details. 3 The total time for the crawl was seven days.

Because the data inside a Facebook profile is free form text, it is critical
that the input is normalized. For example, favorite books of “Bible” and “The
Bible” should be considered the same detail. Often there are spelling mistakes
or variations on the same noun.

The normalization method we use is based upon a Porter Stemmer presented
in [14]. To normalize a detail, it was broken into words and each word was
stemmed with a Porter Stemmer then recombined. Two details that normalized
to the same value were considered the same for the purposes of the learning
algorithm.

4.1 Data Overview

Table 2 gives an overview of the crawl’s data. Our total crawl resulted in over
167,000 profiles, almost 4.5 million profile details, and over 3 million friendship
links. In the graph representation, we had one large central group of connected
nodes that had a maximum path length of 16. Only 22 of the collected users
were not inside this group. As shown in table 3, a crawl of the Dallas regional
network resulted in more conservatives than liberals, but not by a very large
margin.

Common knowledge leads us to expect a small diameter in social networks
[15]. To reconcile this fact with the empirical results of a 16 degree diameter
in the graph, note that, although popular, not every person in society has a
Facebook account and even those that do still do not have friendship links to
every person they know.

5 Hiding Private Information

In this section, we first discuss the effectiveness of our modified Näıve Bayes
classifier when compared to a traditional Näıve Bayes classifier. Next, we discuss
how to reduce the effectiveness of our classifiers by manipulating the detail and

3The default privacy setting for Facebook users is to have all profile information revealed
to others inside their network.
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Diameter of the largest component 16
Number of nodes in the graph 167,390
Number of friendship links in the graph 3,342,009
Total number of listed details in the graph 4,493,436
Total number of unique details in the graph 110,407
Number of components in the graph 18

Table 2: General information about the data

Probability of being Liberal .45
Probability of being Conservative .55

Table 3: Odds of being Liberal or Conservative

link information, and then give an analysis of the experimental results of tests
done on our real-world dataset.

5.1 Predicting Private details

In our experiments, we implemented four algorithms to predict the political
affiliation of each user. The first algorithm is called “Details Only.” This algo-
rithm uses Equation 9 to predict political affiliation and ignores friendship links.
The second algorithm is called “Links Only.” This algorithm uses Equation 12
to predict political affiliation using friendship links and does not consider the
details of a person. The third algorithm is called “Average.” The Average
algorithm predicts a node’s class value based on the following equation:

PA(Ni = Ca) = 0.5 ∗ PD(ni = Ca) + 0.5 ∗ PL(ni = Ca)

where PD and PL are the numerical probabilities assigned by the Details Only
and Links Only algorithms, respectively. The final algorithm is a traditional
Näıve Bayes classifier, which we used as a basis of comparison for our proposed
algorithms.

5.2 Manipulating details

Clearly, details can be manipulated in three ways: adding details to nodes,
modifying existing details and removing details from nodes.

The goal in the first case is to add details that may prevent learning algo-
rithms from being able to infer a person’s private details. In the second case,
the goal is to prevent leakage of “accurate” information by modifying profile
details (e.g., anonymization techniques). In the third case, the goal is to remove
those details that most help a learning algorithm to predict a person’s private
details.

In the context of a social network, removing details does not introduce any
misleading information. This follows from the implied nature of listed details
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inside a social network. If a detail is missing, it simply implies that the person
failed to mention that detail. A missing detail does not imply that the detail
does not describe the person. However, if a detail is mentioned, then it is
implied that the detail does indeed describe the person. Unlike anonymization
techniques such as k-anonymity, removing details could be easily done by each
individual profile owner.

For instance, suppose there is a profile for a person named John Smith. On
his profile, he specifies that he enjoys reading. He does not specify that he
enjoys hiking. Because we specify that he likes reading, we know that this is
factual information. However, when he does not specify a like for hiking, if we
add the detail that John likes hiking, then this may be incorrect; he may, in
fact, not like hiking. Conversely, we cannot add that he dislikes hiking for a
similar reason. Clearly, John can delete the information about hiking from his
profile easily.

Because of the reasons stated above, as a starting point, we focused on
trying to sanitize a social network by removing details rather than by adding
false details or modifying existing details. We leave the exploration of other
sanitization techniques as a future work. 4

The first question we need to deal with is how to choose which details to
remove. Using Näıve Bayes as a benchmark makes the process of choosing which
details to remove very simple.

Assume a person has the class value C2 out of the set of classes C, and this
person has public details D∗,x.

argmaxy[P (Cy) ∗ P (D1,x|Cy) ∗ ... ∗ P (Dm,x|Cy)] (13)

Equation 13 identifies the learned class. Because we globally remove the most
representative traits, we are able to find this based off of the equation

argmaxy[∀Cx ∈ C : P (Dy|Cx)] (14)

This allows us to find the single detail that be the most highly indicative of a
class and remove it.

5.3 Manipulating Link Information

Links can be manipulated in the same way details can. For the same reasons
given in section 5.2, we choose to evaluate the effects of privacy on removing
friendship links instead of adding fake links.

Consider equation 12 for determining detail type using friendship links. Also
assume that there are two classes for a node, and the true class is C1. We want
to remove links that will increase the likelihood of the node being in class C2.
Please note that we define a node to be in class C2 if formula 15 is positive.

d = ρ(C2, FaFb...Fz) − ρ(C1, FaFb...Fz) (15)

4Please also note that many anonymization methods such as k-anonymity [12] do not
introduce any false information to data set.
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Therefore, we would like to maximize the value of d as much as possible by
removing links.

Define di as the new value for formula 15 if we remove friendship link i. We
can compute di as

di =

(

ρ(C2, FaFb...Fz) −
P (C2|Fj,i) ∗ Wj,i

NOMR

)

−

(

ρ(C1, FaFb...Fz) −
P (C1|Fj,i) ∗ Wj,i

NOMR

)

= d +
(P (C1|Fj,i) − P (C2|Fj,i)) ∗ Wj,i

NOMR
(16)

Because d and NORM are constants for all di, the best choice for i that
maximizes di becomes one that maximizes Mi = P (C1|Fj,i)−P (C2|Fj,i))∗Wj,i.

In our experiments, we order the links for each node based on the Mi values.
When we remove links, we remove those with the greatest Mi values.

6 Experiments

We begin by pruning the total graph of 160,000 nodes down to only those nodes
for which we have a recorded political affiliation. This reduces our overall set
size to 35,000 nodes. Then, we use the ideas from Section 5.3 to remove the
10 most telling links from every node in the graph. This is done by use of
Equation 16 to determine which K links connect a node to those nodes that are
most similar, and delete those K links. Unlike removing details, which is done
globally, removal of links is done locally. We believe that this is a reasonable
method of sanitization because the data is sanitized and then released to an
external party. Furthermore, we do not attempt to modify the existing public
network. Similarly, we stress that while the data set we use was composed
of individuals who had their profile open to the public, these methods should
extend to work on the total, mostly-private social network.

We combine the Detail and Link removal methods and then generate test
sets with both 10 details and 10 links removed from the graph. We refer to
these sets as 0 details, 0 links; 10 details, 0 links; 0 details, 10 links; 10 details,
10 links removed, respectively. Following this, we want to gauge the accuracy
of the classifiers for various ratios of labeled vs. unlabeled graphs. To do this,
we collect a list of all of the available nodes, as discussed above. We then
obtain a random permutation of this list using the Java function built-in to the
Collections class. Next, we divide the list into a test set and a training set, based
on the desired ratio. We focus on multiples of 10 for the accuracy percentages,
so we generate sets of 10/90, 20/80, . . . , 90/10. We refer to each set by the
percentage of data in the test set. We generate five test sets of each ratio, and
run each experiment independently. We then take the average of each of these
runs as the overall accuracy for that ratio.

Our results, as shown in Figure 1, indicate that the Average Only algorithm
substantially outperformed traditional Nave Bayes and the Links Only algo-
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rithm. Additionally, the Average Only algorithm generally performed better
than the Details Only algorithm with the exception of the (0 details, 10 links)
experiments.

Also, as a verification of expected results, the Details Only classification
accuracy only decreased significantly when we removed details from nodes, while
the (0 details, *) accuracies are approximately equivalent. Similarly, the Link
Only accuracies were mostly affected by the removal of links between nodes,
while the (*, 0 links) points of interest are approximately equal. The difference
in accuracy between (0 details, 0 links) and (10 details, 0 links) can be accounted
for by the weighting portion of the Links Only calculations, which depends on
the similarity between two nodes.
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Figure 1: Local classifier prediction accuracies by percentage of nodes in test
set

Figure 1 shows the results of our classification methods for various labeled
node ratios. These results are generally consistent with what the initial results
indicated: the Average classifier tends to outperform both the Links Only and
the Details Only classifier, with the exception being Figure 1(c) , and in this case
its error margin is only approximately 1% higher than that of Details only. Also,
the results, with the exception of Figure 1(d) are generally consistent across all
tests. The greatest variance occurs when we remove details alone. It may be
unexpected that the Links Only classifier has such varied accuracies as a result
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# details removed # links removed Before After
10 0 52.78 52.81
0 10 52.75 52.30
10 10 52.72 52.81

Table 4: Gender classification test
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Figure 2: Local Classification accuracy by number of links removed

of removing details, but since our calculation of probabilities for that classifier
uses a measure of similarity between people, the removal of details may affect
that measure.

Next, we examine the effects of removing the links. We remove K links from
each node, where K ∈ [0, 10], and again partition the nodes into a test set and
training set of equal size. We then test the accuracy of the local classifier on this
test set. We repeat this five times and then take the average of each accuracy
for the overall accuracy of each classifier after K links are removed. The results
of this are shown in Figure 2. For for K ∈ [1, 6], each link removal steadily
decreases the accuracy of the classifier. Removing the seventh classifier has no
noticeable effect, and subsequent removals only slightly increase the accuracy
of the Links Only classifier. Also, due to space limitations, for the remainder of
experiments we show only the results of the Average classifier.

Additionally, because our motivation is to hide private details while still
allowing an interested party to be able to infer information about public details,
we take each of our data sets and build a simple Näıve Bayes classifier to attempt
to determine the gender of a user. The results of these tests are shown in
Table 4. As we show, our sanitization approach does reduce the accuracy of
inference methods on private data while preserving an interested party’s ability
to determine details that are not private. In fact, as can be seen from the (10,
*) experiments, the gender classification became slightly more accurate after
political affiliation-specific traits were removed.
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6.1 Relaxation Labeling

We note that in the Facebook data, there are a limited number of ‘groups’
that are highly indicative of an individual’s political affiliation. When removing
details, these are the first that are removed. We assume that conducting the
collective inference classifiers after removing only one detail may generate results
that are specific for the particular detail we classify for. For that reason, we
continue to consider only the removal of 0 details and 10 details, the other lowest
point on the classification accuracy. We also continue to consider the removal
of 0 links and 10 links due to the marginal difference between the [6, 7] region
and removing 10 links.

For the experiments using relaxation labeling, we took the same varied ratio
sets generated for the local classifiers in Section 6. For each, we store the
predictions made by the Details Only, Links Only, and Average classifiers and
use those as the priors for the NetKit toolkit. For each of those priors, we test
the final accuracy of the cdRN, wvRN, nLB, and nBC classifiers. We do this
for each of the five sets generated for each of the four points of interest. We
then take the average of their accuracies for the final accuracy.
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Figure 3: Prediction accuracy of Relaxation Labeling using the Average local
classifier

Figure 3 shows the results of our experiments using Relaxation Labeling. In
[10], Macskassy and Provost study the effects of collective inference on four real-
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world datasets: IMDB, CORA, WebKB, and SEC filings. While they do not
discuss the difference in the local classifier and iterative classification steps of
their experiments, their experiments indicate that Relaxation Labeling almost
always performs better than merely predicting the most frequent class. Gener-
ally, it performs at near 80% accuracy, which is an increase of approximately
30% in their datasets. However, in our experiments, Relaxation Labeling typ-
ically performed no more than approximately 5% better than predicting the
majority class. This is also substantially less accurate than using only our local
classifier.

As shown previously, the Average and Details Only local classifiers were
most strongly affected by removing details, while the Links Only classifier and
all relational classifiers, to various degrees, were most strongly affected by the
removal of links. More interestingly, however, was that the fewer nodes that
were in the training sets, the better the result of Relaxation Labeling was on
most classifiers. The cdRN relational classifier was the single exception to this
trend. In any of the experiments where links were removed, cdRN’s accuracy
only decreased as the percentage of nodes in the test set increased. In the
experiments with all links present, cdRN increased in accuracy until 60% of
nodes were in the test set, after which its performance drastically declined.

Additionally, if we compare Figures 3(a) and 3(b) and Figures 3(c) and 3(d),
we see that while the local classifier’s accuracy is directly affected by the removal
of details and/or links, this relationship is not shown by using relaxation labeling
with the local classifiers as a prior. For each pair of the figures mentioned,
the relational classifier portion of the graph remains constant, only the local
classifier accuracy changes. From these, we see that the most ‘anonymous’
graph, meaning the graph structure that has the lowest predictive accuracy, is
achieved when we remove both details and links from the graph.

7 Conclusion and Future Work

We addressed various issues related to private information leakage in social
networks. For unmodified social network graphs, we show that using details
alone, one can predict class values more accurately than using friendship links
alone. We further show that using both friendship links and details together
gives better predictability than details alone. In addition, we explored the
effect of removing traits and links in preventing sensitive information leakage.
In the process, we discovered situations in which collective inferencing does
not improve on using a simple local classification method to identify nodes.
When we combine the results from the collective inference implications with the
individual results, we begin to see that removing trait details and friendship
links together is the best way to reduce classifier accuracy. This is probably
infeasible in maintaining the use of social networks. However, we also show
that by removing only traits, we greatly reduce the accuracy of local classifiers,
which give us the maximum accuracy that we were able to achieve through any
combination of classifiers.
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We also draw attention to the difference in our findings regarding collective
inference and the findings of other researchers. While their research has gener-
ally noticed an increase in classifier accuracy after using collective inference, we
notice a sharp decrease in accuracy. This could have extraordinary implications
for the use of collective inference in general. While some networks are extremely
popular for scientific research (such as Facebook because of its extreme popu-
larity), not all networks can be studied so intensely. If there are specific types
of social networks, or particular types of details that are naturally resistant to
collective inference attacks, then further work could be done in an attempt to
apply these attributes to other details.

We also assumed full use of the graph information when deciding which
details to hide. Useful research could be done on how individuals with limited
access to the network could pick which traits to hide. Similarly, future work
could be conducted in identifying key nodes of the graph structure to see if
removing or altering these nodes can decrease information leakage.

Another consideration is that social networks are vibrant, dynamic applica-
tions. We ignore temporal problems that may arise, such as those from repeated
distributions of sanitized data over time. This would be another area of research
that should be conducted.
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