
Address Trace Compression Through Loop Detection and Reduction

E.N. Elnozahy
IBM Austin Research Lab

11400 Burnet Rd.
Austin, TX 78758

512-823-6738

mootaz@us.ibm.com

An Extended Abstract

ABSTRACT
This paper introduces a new technique for compressing memory
address traces. The technique relies on the simple observation
that most programs spend their time executing loops, and
therefore the trace will follow the structures of such loops. We
adapt classic control flow analysis to detect the loops within an
address trace, then analyze them to identify constant and loop-
varying memory references. These references are efficiently
encoded to reduce the size of the trace, often resulting in an order
of magnitude reduction in size compared to the most compact
trace format known to date.

Keywords
Compression, control flow analysis, address traces, traces.

1. INTRODUCTION
The use of memory address traces is an established technique for
simulation-based studies of computer systems [10]. The focus in
this paper is on lossless compression for reducing the size of an
existing trace after it has been gathered. Lossless compression
preserves the information in a trace and introduces no errors of its
own during simulation [4][5][9][11]. This is in contrast with
techniques that use sampling or exploit the nature of the cache
hierarchy to reduce the trace size [1].

There are several motivating factors for reducing the size of an
address trace:

• Processor speeds continue to increase as predicted, resulting
in a proportional increase in the address trace size within a
given period of real time.

• Long traces are needed to give good estimates for the system
performance.

• Disk speeds are not improving. A performance study often
becomes I/O-bound during the simulation phase.

Furthermore, memory address traces have low information
entropy with ample opportunity for compression [2]. It may be
argued that storage costs and capacities are decreasing at rates
comparable or exceeding those of the processor speeds. While
this may be true, managing terabytes of trace volumes is not likely
to be a simple undertaking.

This paper introduces a new technique, which relies on the simple
observation that most programs spend the bulk of their processing
time executing in loops. Thus, if these loops could be detected
within the trace, then one could eliminate the data address
references that are constant or change by a constant value between
consecutive loop iterations.

2. Loop Detection and Reduction (LD&R)
Consider the following code fragment:

for(j = 0; j < n; j++)

a[j] = b[j] * c[j];

The assembly code for this fragment typically loads the addresses
of the vectors a, b and c in some processor registers, then uses a
register to index through the loop. The corresponding trace
records show repeated execution of the same basic block with the
data addresses differing by a constant offset between consecutive
iterations. By detecting such a loop in the trace file, one can
replace all the occurrences with some encoding like:

loop: starting addresses of a, b, and c

offsets +4, +4, +4

n times

This is an extreme case and shows the gist of the technique used
in this paper. The trace reduction occurs in two steps. In the first,
we adapt classic control flow analysis techniques to detect loops
within a trace. The second step identifies three types of address
references within each loop detected in the first step:

• Constant address references. These do not change from one
loop iteration to the next. Constant address references occur
for example when a stack variable is repeatedly read into a
register.

• Loop varying address references. These references change
by a constant offset between consecutive loop iterations. The
addresses generated for a[j], b[j] and c[j] in the example
above are loop varying references.

• Chaotic address references. These references change
between consecutive loop iterations without following any
pattern.

Constant and loop varying address references are encoded once in
the loop body, while chaotic address references have to be
included in the sequence in which they appear within the trace.
Depending on the trace, and how uniform the loops are, loop
detection and reduction can yield moderate to substantial savings.

Some complex loops nevertheless may contain jumps to
functions, or may contain complex intra-loop branches that will
change the structure of the trace records from one loop iteration to
the next. In such situations, it becomes very difficult to detect
patterns, and the effectiveness of the technique is greatly
hampered. As an example, consider the following code fragment.

For(j = 0; j < n; j++)

a[j] = d[bsearch(a[j])]

The addresses generated for the vector d depend on the results of
executing a complex binary search function. In situations like
this, it is possible to identify the references to the vector a as loop
varying references, but otherwise the references to vector d will be
chaotic address references. Nonetheless, even with such
restrictions, the simple cases seem to manifest themselves often
enough to generate very good compression.

3. Implementation and Performance
We have implemented this technique in the context of the
MTRACE trace tool and its associated format [8]. MTRACE is a
sophisticated tool that captures traces of multi-programmed
workloads including the effects of context switching, operating
system, and shared library code. It uses a combination of
hardware assist [8] and software instrumentation similar to other
techniques [3][6][7].

Most importantly, the MTRACE format does not store the
instruction address references. Instead, it stores in the trace the
address of the leading instruction in each basic block followed by
the data address references within that basic block. This technique
results in considerable compression, since non load-store
instructions do not contribute to the size of the trace unless they
occur at the beginnings of basic blocks. Interestingly, the idea of
storing the trace in the form of basic blocks was later developed
independently by Fox and Gr , although the trace formats differ
considerably [4]. The actual instruction references can be
constructed using the leading instructions within each basic block
along with an auxiliary file describing the basic blocks within the
workload being traced. To accommodate context switches, the
tool records in the trace the instruction address at which a basic
block is interrupted or resumed, such that the interleaved trace
could be reconstructed during the simulation phase.

We conducted an experimental study using seven traces from
different benchmarks, ranging from commercial transaction
processing systems to scientific loads. The results are very

encouraging and show that LD&R yields compression ratios that
are about an order of magnitude better than the efficient
MTRACE format.

4. ACKNOWLEDGMENTS
Tom Keller and Anne Marie Maynard provided the traces used in
this experiment. A pending U.S. patent covers the technique
introduced in this paper.

5. REFERENCES
[1] Agrawal, A., and Huffman, M. Blocking: Exploiting space

locality for trace compaction. Proceedings of the 1990
SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, May 1990.

[2] Becker, J. and Park, A. An analysis of the information
content of address and data reference streams. In
Proceedings of the 1993 SIGMETRICS Conference on the
Measurement and Modeling of Computer Systems, May
1993.

[3] Eggers, S., Keppel, D., Koldinger, E., and Levy, H.
Techniques for efficient inline tracing on a shared-memory
multiprocessor. Proceedings of the 1990 SIGMETRICS
Conference on Measurement and Modeling of Computer
Systems, May 1990.

[4] Fox, A., and Gr , T. Compression of address traces for
cache simulations. Proceedings of the International Data
Compression Conference, February 1997.

[5] Johnson, E.E., and Ha, J. PDATS: Lossless address trace
compression for reducing file size and access time.
Proceedings of the International Phoenix Conference on
Computers and Communications, March 1994.

[6] Larus, J.R. Efficient program tracing. IEEE Computer, May
1993.

[7] Larus, J.R. Abstract execution: A technique for efficiently
tracing programs. Software: Practice and Experience,
December 1998.

[8] Levine, F., Twichell, B., and Welborn, E. Hardware
mechanism for instruction/data address tracing. U.S. Patent
No. US5446876, August 1995.

[9] Samples, A.D. Mache: No-loss trace compaction.
Proceedings of the 1989 SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, May
1989.

[10] Uhlig, R., and Mudge, T. Trace-driven memory simulation.
A survey. ACM Computing Surveys, Vol. 29, No. 2, June
1997.

[11] Ziv, L., and Lempel, A. A universal algorithm for sequential
data compression. IEEE Transactions on Information
Theory, August 1977.

