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Abstract— In this paper a new feature representation for
Simultaneous Localization and Mapping (SLAM) is discussed.
The representation addresses feature symmetries and constraints
explicitly to make the basic model numerically robust. In previous
SLAM work, complete initialization of features is typically
performed prior to introduction of a new feature into the map.
This results in delayed use of new data. To allow early use of
sensory data the new feature representation addresses the use
of features that initially have been partially observed. This is
achieved by explicitly modelling the sub-space of a feature that
has been observed.

In addition to accounting for the special properties of each
feature type, the commonalities can be exploited in the new
representation to create a feature framework that allows for
interchanging of SLAM algorithms, sensor and features. Exper-
imental results are presented using a low-cost web-cam, a laser
range scanner and combinations thereof.

I. INTRODUCTION

THE problem of simultaneous localization and mapping
has been widely studied. Central to the problem is how

the estimation algorithm represents the map. Dense represen-
tations1 that store partially processed sensor data give a very
detailed map [1], [2], [3], [4], [5], [6], [7]. As more data
is retained, this can be an advantage when, for instance, a
robot needs to match sensor readings from a totally unknown
location with the map. A drawback of this approach is that
the amount of data stored in the map becomes very large.

An alternative is to use the sensor data to form a hypothesis
about the existence and location of features in the environment.
Only the features and the accumulated evidence about them
is stored. This leads to an abstraction of the environment that
ideally will capture the essential information gathered from
the sensors. Thus a feature map can be considered a form of
data compression. The abstraction of the environment could
also lead to an understanding of the data on a deeper level.
It is preferred, even if not necessary, for the features to be
landmarks recognizable by humans.

One advantage of the data reduction is that the resources
that would have been used to store and manage the large data
can now be used to better interpret the data. Thus algorithms
of greater complexity can be applied to try to estimate the
map.

The selection of features is based on the task, the sensors,
and the environment. One task that is fundamental to a SLAM
map is the task of localization. Without the ability to localize
the robot, using the map, it would be impossible to combine
new sensor data with older information.

This research has been sponsored by the Swedish Foundation for Strategic
Research through the Centre for Autonomous Systems.

1SLAM methods that employ dense representation include scan matching,
image matching and occupancy grid methods.

As a result, one requirement of a map feature is that it be
able to constrain some of the pose dimensions of the robot. For
the case of a wheeled robot operating in a planar environment,
the distance to the floor is useless as a feature measurement
since the robot is already constrained to a level surface. On
the other hand, a doorway is a useful feature.

A single feature will partially constrain the robot pose in the
full space of robot poses. In general a combination of several
features are required to fully constrain the pose. For example,
in 2D, three differing bearing angles to points are sufficient.

The feature selection is also driven by the need to extract
information about the geometry of the features from the sensor
data. This then is a requirement that the sensor measurements
can constrain some of the geometry of features.

Thus, the available sensors limit the feature selection.
Moreover, just as a single feature may not fully constrain
the robot pose, a single sensor reading may not be enough
to fully constrain the geometry of the feature. This leads to
the situation of partially observed features. In some cases, the
partial observability depends on the frame of reference of the
sensor data. As the robot moves around it can more fully
observe the features. For example, the angle of a wall might
be measured first. Then, as the robot travels along the wall the
length of the wall is observed. Any single measurement might
only observe a sub-space of the complete feature description.

This partial observability is a fundamental property of
map features. Coming back to representations of features, the
representation of the evidence gathered about features should
be able to represent the lack of evidence for the unobserved
parts of the features as well as the evidence for the observed
parts.

The observable subspace needs to be explicitly represented
for a practical reason. SLAM estimation might process differ-
ent parts of the data using different estimated states. Without
explicit representation, the observable subspace might shift in
the full feature space throughout the calculation. This can lead
to inconsistent estimates.

Another factor in feature selection is the environment itself.
It can be a drawback of feature based mapping that features
are normally selected for a specific environment based on prior
knowledge of that environment. For a park, trees might be
used [8], for an office building walls are more appropriate.
Using vision some rather general image features can be
employed [9], [10]. Some of the really early work on SLAM
used features, e.g. [11], [12], [13].

One other issue regarding features is the initialization of the
features in the map. If the features are initialzed too quickly
poor features may be used resulting in worse navigation. The
use of delayed initialization was investigated in [14].
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A. Outline

As pointed out in [15] most feature representations use
completely different parameterizations for each type of fea-
ture. The result is a representation that lacks generality. The
motivation for our work is to look for a representation that can
i) use the information from the measurements of the features to
improve the estimated feature coordinates while not changing
the unobserved parts of the feature (preserving invariants),
ii) represent both size and position information, iii) represent
connections between features such as a corner between two
walls, and iv) represent uncertainties in a frame attached to
the feature.

In Section II we introduce the basic mathematical analysis
of using features to do SLAM. In Section III we survey some
of the different feature representations that have been used. In
Section IV we describe the basis for our new representation
and provide some feature examples in Section IV-D. Section V
outlines a SLAM EKF implementation using the new represen-
tation. Section VI deals with the cases of connected features
such as when two walls form a corner. To highlight some of the
benefits of the representation we present experimental results
in Section VII. Finally, we summarize and draw conclusions
in Section VIII.

II. FEATURE MATH

In the introduction we discussed how the feature mea-
surements constrain the robot pose and parts of the feature
coordinates. Here we formalize the problem.

The sensors provide data from which a vector of measure-
ments is extracted, denoted by v. At the same time there are
features that have given rise to these measurements. These
features will have some parameterization of their geometry2

which we will denote by λ. Finally, the robot pose coordinates
are denoted by xr3.

To make inferences about the feature and robot coordinates
based on the measurements we need to define a vector function
that relates all three. We refer to this function as an innovation,
η(v,xr, λ). The Jacobian matrix of this innovation is,(

Jηv Jηr Jηλ
)

=
(

∂η
∂v

∂η
∂xr

∂η
∂λ

)
(1)

We can now be more formal about what we mean by mea-
surements constraining the robot pose. The measurements will
constrain the robot pose coordinates on the subspace of xr
spanned by Jηr. In other words, if there are directions that
the robot pose can change without causing any change to the
innovation, then these directions are not constrained by the
measurement. Such directions are characterized by being in
the null space of JTηrJηr. Similarly the observable subspace
of the feature coordinates λ is spanned by Jηλ. We will now
show how these two matrices are related to one another by
the transformation properties of the feature coordinates.

The sensor measurements are taken in a reference frame
attached to the robot. Thus the innovation function in this

2By feature geometry we mean location, orientation and spacial extent.
3The robot pose here could contain offsets to the various sensors and the

number of coordinate dimensions could thus be greater than 6.

frame will depend on the transformed feature coordinates only

η(v,xr, λ) = η(v,xo), (2)

where xo = T (λ|xr) are the feature coordinates transformed
to the sensor frame of reference. It is the Jacobians of this
transformation that give us the relationship between Jηr and
Jηλ,

Jηr = JηoJor, Jηf = JηoJoλ, Jηr = JηfJ
−1
oλ Jor (3)

The approximations used by SLAM estimation algorithms
often involve linearization of these Jacobians with respect to
the feature and robot pose coordinates. Consistency problems
occur when the Jacobians used at an earlier iteration of a
SLAM algorithm no longer lie in the observable subspace of
the features. This situation can arise when these features are
rotated with respect to their earlier orientations, see figure 1.
We have shown how the constrained subspace of robot poses
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Fig. 1. Here we illustrate how inconsistency can arise. The left pair of
figures shows a line feature. The information gathered on the line is only
perpendicular to the line. At a later stage of SLAM the line has rotated but
the information has not. This then incorrectly indicates some information
tangent to the line. By explicitly representing the observable subspace we are
able to have the information rotate with the feature (right pair of figures).

and the observable subspace of features are related to one
another by the transformation of the feature coordinates.
Both this central importance of transformation rules and the
existence of an observable subspace will guide us in defining
our feature representation.

III. FEATURE REPRESENTATIONS

A number of different types of features have been used for
mapping. Depending on the type of application the model of
the environment is 2D or 3D. For most indoor applications
a 2D representation is used. Navigation in cluttered environ-
ments often requires a 3D representation. When taking the
step outdoors the world is less structured and it becomes
increasingly likely that the ground is not flat which also calls
for a 3D model. Some commonly used features are:

• Point The point is probably the most commonly used
feature. It is simple to work with, yet powerful. When
working in 2D, vertical edges become points. In outdoor
applications, point features have successfully been used
to represent e.g. tree trunks [8].

• Line In indoor man-made environments there are typi-
cally many walls. These appear as lines when measured
with 2D range sensors. These line segments are therefore
natural to use as features. Vertical edges are also common
in man-made environments. This type of line feature is
typically extracted using visual information as in [16].

• Plane When taking the step from 2D to 3D what was
a line in 2D often becomes a plane in 3D. Planes have
been used in for example [17], [18].
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A. Wall Feature Representations
In this Section we will look closer at the wall feature as it

can be used to illustrate some of the good and bad aspects
of the numerous different representations that have been
suggested in the literature. To limit the scope we concentrate
on representations for the 2D case in which a wall appears as
a line segment in the xy-plane.

Before listing different representations some characteristics
of the wall are given. Four parameters are needed to fully
specify the line segment. One key issue of a wall is that the
sensors may not be able to detect its end points. Even if the end
points are within the range of the sensors they are often hard
to detect due to occlusions. This implies that a measurement
typically only constrains the position of the sensor to a certain
distance and relative angle w.r.t. the wall. In other words, all
dimensions of a wall are typically not constrained by one
single measurement.

1) Slope and Intersection: The slope and intersection rep-
resentation, y = kyx + my , is the first that comes to mind.
However, it suffers from a major disadvantage in that the
parameter my has a hyperbolic dependence on the rotation
angle of the line. This non-linear and singular behavior must
be dealt with in an ad-hoc manner and adds complications and
approximations to the SLAM estimate. The extent of the wall
is not represented either.

2) End points: The most straight forward representation
is to use the two end points to parameterize the wall. One
disadvantage with this is that one typically does not measure
the end points of a wall but rather the distance to and
orientation of the wall. This means that all four dimensions of
the wall cannot be properly initialized. An ad-hoc solution to
this using very large uncertainty for the end-points along the
wall will not behave well during estimation.

3) Distance and Direction (ρα): Starting from the measure-
ments, one of the most natural representations is to use the
perpendicular distance to the wall and the orientation of the
wall. This results in a description of an infinite line. This has
been used in for example [16]. There are two main problems
with this representation. The first one is that walls are not
infinite in reality. This becomes a problem in large areas where
there will be lines everywhere. The second problem is the so
called “lever-arm” effect [19] that results from the dependence
of the representation on the choice of origin. Small changes
in the orientation angle will be able to move parts of the line
by significant distances.

4) Complementing ρα: To limit the extent of the wall, two
more parameters can be added, the length and the tangential
position of the wall. The tangential position is defined as the
distance from the center of the wall to the normal passing
through the origin. This representation still suffers from the
lever-arm effect.

5) Center Point, Length and Orientation: Another way to
represent a wall is to specify the center position, the orientation
and the length of the wall. The main disadvantage of this
representation according to [19] is the strong coupling that
it creates between the parameters. This representation also
suffers from the problem of not being fully observable in all
cases.

6) SP-model: The SP-model [15] offers a solution to the
lever-arm effect. A local coordinate system is attached to the
center of the wall and the wall is described by the transforma-
tion to this local frame. This allows for a representation of the
uncertainty of the wall location in this local frame. A drawback
of the SP-model is that it does not handle information along the
direction of the wall as easily. We will come back to describe
the SP-model in more detail in Section III-B.

Summary: To summarize, there are many different rep-
resentations. The above is just a collection of some of the
most common ones for walls. It is clear that all of the above
representations have their pros and cons, and this is the reason
for the large selection of them. Looking back at Section I-A
and our initial requirements we see that we can discard the
representations that use the distance and orientation of the line
in global coordinates since these represent the uncertainties in
a global frame leading to the lever-arm effect. The arguments
against the end point model are mainly that it requires more
computations for matching and update and that it requires four
parameters to be updated even though not all dimensions might
be constrained, e.g. if only the distance and orientation are
known.

B. The SP-model

The feature representation we propose in this paper is
similar to the SP-model [15] and we will therefore provide
a summary of some of its key points. For a full description
we refer to [20]. The SP-model, stands the for Symmetries
and Perturbation model. One of the take home messages given
by the SP-model literature is that SLAM is to a large extent
about making different types of frame transformations. The
map features are in the map frame, the robot has its own
moving frame, and the sensors as well. When performing
predictions, matchings and updates one constantly moves
between these different frames. A good framework should
make these operations simpler and be as general and reusable
as possible.

The symmetry in the name comes from the symmetries
that are often encountered in features. For example, given
an infinite line there is a translational symmetry along the
direction of the line, a rotational symmetry around the line
and a reverse symmetry. This means that one cannot detect
translations along the line axis, not rotations around it and not
if the line is turned around 180 degrees.

A distinction is made between the symmetries in the feature
itself and the observations. Feature symmetries correspond to
the degrees of freedom (DOF) that are not determined by
the feature, such as the three rotation DOFs for a point. The
observation symmetries depend on the type of feature and the
type of observation.

A characteristic property of SP-model is that each feature
element has its own local reference frame. The frame of refer-
ence is chosen with the axes along the directions of symmetry.
A line for example has the x-axis along the direction of the
line. A plane will have a normal that coincides with the z-
axis. The main advantage of using a local frame is that the
description of the uncertainty can be made independent of the
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global position of the features (compare the lever-arm effect
from Section III-A). The local frames also help to make frame
transformations and differentiations thereof more standardized.

Another key concept in the SP-model is the so called
binding matrix, B. The binding matrix is a row-selection
matrix. The self-binding matrix selects the DOFs that are not
part of the motion symmetry, i.e. the DOFs of a feature that
are constrained and have probabilistic information attached to
them.

Now to the perturbation part of the SP-model name. The
location of a feature is given by a location vector, xSP . The
estimation of this location vector is composed of two parts,
an estimated location vector, x̂SP , and a differential location
vector, dSP , defined as:

xSP = x̂SP ⊕ dSP . (4)

The location vector gives the transformation to the local frame
in the base frame. The differential location vector gives the
location of the feature relative to the local frame. With this
setup the differential location will be small and lever-arm
effects will be kept to the minimum. Some of the dimensions
of dSP will correspond to the motion symmetries of the
feature and are zero. The rest of the dimensions form the
perturbation vector, pSP which is related to the differential
location vector via the binding matrix according to

dSP = BTSPpSP , (5)
pSP = BSPdSP . (6)

The estimate of the perturbation vector is denoted by p̂SP
and has an associated uncertainty expressed by the covari-
ance matrix CSP . Each feature is described by a triplet
{x̂SP , p̂SP , CSP }. Note that although the location vectors all
have dimension 6, the perturbation vector and thus the covari-
ance matrix can be of lower order. A point, for example, will
have dimension 3 for p and C. The selection of dimensions
is taken care of by the binding matrix.

To summarize, the SP-model offers a nice solutions to many
of the representational problems. It provides a general way to
deal with features which can be exploited in frameworks such
as presented in [21]. Another advantage is that the binding
matrices offer a machinery for making partial observations
of a feature. This is useful, for example, when observing a
single point on a line. A limitation with the SP-model is that
one has to attach a frame to all features. For some types, such
as lines, it is difficult to model the extent, e.g. the length, in
a probabilistic way within the SP-model framework. In [20]
the length of lines is estimated and modeled but it relies on
always detecting both end points at the same time and making
a direct measurement of the length. An indirect measurement
is not possible as the origin of the reference frame cannot
be observed as it is not attached to anything observable, just
defined to be in the middle of the line. To go further and also
store the actual location of the end points also requires some
work. End points of lines are handled by so called semi-planes.
They have their own reference frame, aligned with the one for
the line, have no symmetries but are highly correlated with
the corresponding line feature. One of the goals with the SP-
model was to avoid redundancy in the representation. A line

is fully specified by 4 parameters. The SP-model estimates 2
parameters when the line has unknown extent but 8 parameters
(3+3+2) when both end points are estimated. The problem
occurs when a symmetry “breaks”, e.g. when observing the
end of a line and the translational symmetry is removed. When
the reference frame is attached to the middle of a line there is
no way to observe the origin of the frame and thus nowhere
to relate the end points.

IV. M-SPACE REPRESENTATION

In this section we introduce a new feature representation
that like the SP-model attaches a local frame to each feature
element and allows for a generic treatment of many types of
features.

The new representation is called the M-space representa-
tion, where M-space denotes the measurement subspace as
explained below. Here we propose to use a set of point
coordinates as the basis for the representation. We deal with
three types of coordinates:

• 3D coordinates, x3D, are the general 3D coordinates
(x, y, z).

• 2D coordinates, x2D, are used when dealing with fea-
tures in a 2D representation, i.e. when the features are
assumed to be infinite in the vertical direction.

• Scalar coordinates, xS , can be used to model non-
position information such as, for example, the radius of
a tree trunk.

Combinations of any number of the three types of coordinates
can be used to parameterize a certain feature. By using this
parameterization we have a generic treatment of coordinate
transformations. These transformations are central to geomet-
ric estimation and by making them generic we can have code
common to all features to do the most complicated parts of
the estimation algorithms.

The other important part of SLAM is the estimate of
the uncertainty in the coordinates. For this we will first
introduce some notation. Let s denote the sensor frame in
which measurements are typically given. Let r denote the robot
frame and m the map (or global) frame. A feature coordinate
xf expressed in the sensor frame is denoted xs,f and in the
map frame frame xm,f . With this notation we can write the
transformation rules for the different coordinates as:

x3D
s,f = R3D

m,s(x
3D
m,f − x3D

m,s), (7)

x2D
s,f = R2D

m,s(x
2D
m,f − x2D

m,s), (8)

xSs,f = xSm,f , (9)

where Rm,s is the rotation matrix from the map frame to the
sensor frame. Note that the 2D rotation matrix, R2D

m,s, is not a
normal rotation matrix. It accounts for 3D motion of the robot
assuming that the features are the 2D projection of vertical
structures as an edge. See Appendix I for more details.

With this said we can introduce the M-space concept.
The measurement subspace, or M-space, is an abstraction
of the measured subspace of the feature space that reflects
symmetries and constraints. The idea is that the features are
parameterized to fully specify their location and extent (the
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feature space) but that they can be initialized in a subspace
corresponding to the information provided by the sensors.

For example, when representing a line segment the extent
is accommodated for in the representation even though only
the distance to and the orientation of the line is known
initially. We cannot represent the uncertainty with regard to
changes in the coordinates along the length of the line by
a Gaussian distribution. However, the uncertainty regarding
changes perpendicular to the line and regarding the orientation
can be approximated by a Gaussian. Let δxp denote the M-
space corresponding to a small change in feature coordinates
δxf . Here the subscript, p, stands for small perturbations in the
M-space. The actual values of the M-space coordinates, xp,
are never needed or considered. It is only the changes to them
that enter into the estimates. These changes are used to make
adjustments to the feature coordinates xf . The uncertainty
estimate is an estimate of the distribution of δxp values around
a mean of 0. The adjustments to the feature coordinates are
made to maintain this 0 mean. No re-centering step like in
the SP-model is required with this view of the uncertainty.
The uncertainty is defined in a frame attached to the feature
and can be projected into the global frame using the current
global coordinates of the feature. The statistics are represented
in an analytic way rather than in the strict geometric sense of
the SP-model. In most cases, the differences are in the second
order corrections to the covariances.

A. Projection Matrix

The relation between the feature space coordinates and the
M-space coordinates is defined by a projection matrix, B(xf ),
similar to the binding matrix in the SP-model. The projection
matrix relates small changes δxp to small changes δxf . An
important difference to the binding matrix is that the projection
matrix is a function of the individual feature and changes
with time. The rather involved re-centering step in the SP-
model is replaced by re-evaluating the projection matrices. The
fundamental relations between δxp and δxf are:

δxp = B(xf )δxf , (10)

δxf = B̃(xf )δxp, (11)

Ipp = B(xf )B̃(xf ). (12)

where we refer to B̃(xf ) as the dual of B(xf ).

B. Feature Initialization and Growing Dimensions

A common issue in feature based SLAM is that one
cannot initialize a feature after the first observation. A single
observation typically does not contain enough information to
do so reliably. Among the reasons behind this we find for
example

• The entire feature is not detected at once.
– In the case of a line, the end points might not have

been detected if the line is partially occluded or long.
– Using monocular vision only the bearing to the

feature can be initialized from a single image.

• Measurements are noisy. Even though a feature is fully
observed it is good practice to get a second opinion from
new measurement data to reject false measurements.

The M-space representation offers a solution to these problems
by allowing the M-space dimensionality to change over time.
Features are typically initialized with zero M-space dimen-
sions and with time, as more information is gathered, more
dimensions will be added. Returning once again to the wall
example, the life cycle of the wall might be

1) First detection: feature initialized with 0 M-space di-
mensions.

2) Re-observed N times: the wall existence and quality
is confirmed. The distance and orientation of the wall
added to the M-space.

3) Start point detected: M-space dimensionality goes up to
3

4) End point detected: the feature reaches full dimension-
ality of 4.

The importance of the ability to let the dimensions of a
feature grow over time is well illustrated by a horizontal
line feature observed by a camera. A single image does not
contain information to pinpoint the location of a feature. The
assumption that the line feature is horizontal implies that a
single observation will be enough to provide information about
the relative orientation of the robot. That is, even if the robot
moves parallel under the line and is unable to use triangulation
to fix the position of the line in space the observations of the
line can help reduce the angular uncertainty of the robot. This
is useful in, for example, a corridor where the motion often is
parallel to the linear structures found in the ceiling.

C. Enforcing Constraints

The coordinates that parameterize the feature will some-
times have constraints on them. A line detected on the ceiling
mentioned in Section IV-B is one example. The horizontal
constraint says that the z-coordinate of the two line end points
must be the same. Assuming that they are initialized at the
same height the projection matrix can be used to ensure this.
Another form of constraint is when two different features share
a common coordinate. This will be dealt with in more detail
in Section VI.

D. Examples of Feature Parameterizations

To make the discussion from the previous section more
concrete we will show how to parameterize four different
feature types that we use later for the experimental evaluation.
Table I summarizes these.

Point Feature

The point feature is the simplest of the features to describe.
It is parameterized by a single 3D-point,

xf = {x3D}.

The M-space coordinates are the same as the feature coordi-
nates which gives a B-matrix that is the identity matrix (see
Table II). In this paper we use point features to model lamps
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Feature Parameterization min(dim(M)) max(dim(M))

Point xf = {x3D} 3 3

Wall xf = {x2D
start,x

2D
end} 2 4

HLine xf = {x3D
start,x

3D
end} 1 3

Pole xf = {xS ,x2D} 3 3

TABLE I
PARAMETERIZATION OF SOME DIFFERENT FEATURES. ALSO SHOWN ARE

THE MINIMUM AND MAXIMUM DIMENSIONS OF THE M-SPACE WHEN THE

CORRESPONDING FEATURE IS INITIALIZED.

mounted in the ceiling. For initialization information we store
the position of the camera and the direction to the lamp in
that frame for each observation. It is not until the robot has
moved enough to allow for triangulation that the points can
be initialized. The point feature is initialized directly to 3
dimensions (its full dimension).

Wall Feature

Wall features are detected using a laser scanner and are
parameterized by two 2D points,

xf = {x2D
start,x

2D
end},

the end points of the wall.
This parameterization comes from the fact that the line

segment found in the scan is assumed to be from a vertical
plane, the wall. The wall is initialized as having 2 dimensions
in the M-space, corresponding to the perpendicular distance
to and direction of the line segment. This results in the first
two rows in the B-matrix shown in Table II. The third row in
the B-matrix in Table II corresponds to the start point and the
fourth to the end point. The dimensionality of a wall can thus
be 0 (not initialized), 2 (no end points), 3 (one end point) and
4 (two end points). Given the endpoints of a line in 2D it is
possible to find a normal vector to the line.

NormalLine2D =
(
cos γ, sin γ

)
(13)

There are two possible normal vectors. One can chose the
vector that points away from the wall surface. This defines γ
unambiguously. The length of a line, L, given its endpoints
is also known. The projection matrix for the case when the
M-space corresponds to the distance to and the orientation of
the line is given by

BLine2D =

(
cos γ

L
√

2

sin γ

L
√

2

− cos γ

L
√

2

− sin γ

L
√

2
cos γ√

2

sin γ√
2

cos γ√
2

sin γ√
2

)
, (14)

Notice how the first row in the projection matrix corresponds
to rotation around its center, that is to say changes to γ. The
scaling with L is chosen so that δxp will be directly related
to the measurement angle and not dependent on the length of
the line. The second row is the projection of the movements
of the center point of the wall in the normal direction. A dual
of this projection matrix that satisfies eq. (12) is given by

B̃Line2D =

(
L cos γ√

2

L sin γ√
2

−L cos γ√
2

−L sin γ√
2

cos γ√
2

sin γ√
2

cos γ√
2

sin γ√
2

)T
. (15)

Horizontal Line Feature

The horizontal line feature (HLine) is parameterized by
two 3D points,

xf = {x3D
start,x

3D
end},

the end points of the line. This feature illustrates how the M-
space representation can constrain the two points that have the
same height. Another advantage is that the HLine can be ini-
tialized almost immediately with 1 dimension corresponding to
the direction of the line, before its location is known. Table II
shows the B-matrix for the HLine when it has reached the
full dimension. The angle γ here is the same as for a wall
feature and represents the angle of the wall in the horizontal
plane. Initially only the first row is used, corresponding to
the direction of the line. When the position of the line can be
triangulated the dimension goes up to 3. Note that the position
tangential to the line is not measured in our work as it could
not be done reliably.

Pole Feature

The vertical pole feature (Pole) is parameterized by a
radius and a 2D point. The radius acts like a scalar under
transformations. The center point is idealized by treating the
pole as having infinite height. This then defines the transfor-
mation. As it is hard to imagine a measurement of the pole
that does not depend on both the radius and center it would
not be possible to initialize less than 3 M-Space dimensions
for pole features.

Feature B-matrix

Point B =

0BB@1 0 0

0 1 0

0 0 1

1CCA

Wall B =

0BBBBB@
cos γ

L
√

2

sin γ

L
√

2

− cos γ

L
√

2

− sin γ

L
√

2
cos γ√

2

sin γ√
2

cos γ√
2

sin γ√
2

− sin γ cosγ 0 0

0 0 − sin γ cos γ

1CCCCCA

HLine B =

0BBB@
cos γ

L
√

2

sin γ

L
√

2
0 − cos γ

L
√

2

− sin γ

L
√

2
0

cos γ√
2

sin γ√
2

0 cos γ√
2

sin γ√
2

0

0 0 1√
2

0 0 1√
2

1CCCA
Pole B =

0BB@1 0 0

0 1 0

0 0 1

1CCA
TABLE II

B-MATRICES FOR DIFFERENT TYPES OF FEATURES WHEN THEY HAVE

REACHED THEIR FULL DIMENSION. THE PARAMETER γ IS THE NORMAL

TO THE LINE IN THE XY-PLANE.

V. SLAM

To illustrate the use of the M-space representation for
SLAM we present an approach to implementing an EKF
SLAM algorithm where the map estimation is separated from
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the details of the maintaining the features. Although we have
chosen the EKF algorithm for illustration, the M-space feature
representation is orthogonal to the choice of SLAM algorithm.
Thus there is a homogeneous handling of all types of features
and an interchangeability of SLAM algorithms.

A. Measurements

Let v denote a measurement and x̂o = x̂s,f denote
the predicted feature coordinates in the sensor frame (o for
observation). Note that x̂o is not the measurement prediction.
Furthermore, let η(x̂o,v) be the innovation function with
expected value of 0. For small deviations δv and δxo from
the measurement and predicted feature coordinates we have

δη = Jηv(x̂o,v)δv + Jηo(x̂o,v)δx̂o. (16)

where Jηv and Jηo are Jacobians of η with respect to v and
x̂o respectively.

We can express x̂o in terms of entities that are estimated
during the SLAM process, the robot pose in the global frame
xm,r and the feature coordinates in the map frame xm,f .
Furthermore, the sensor pose w.r.t. the robot, xr,s is either
assumed known or also estimated during SLAM. We find

xm,s = xm,r ⊕ xr,s (17)
xo = 	xm,s ⊕ xm,f (18)

where ⊕ is the compound operator and 	 is the inverse com-
pound operator (see [11]). Using a first order approximation
we get:

δxo =
∂xo
∂xm,s

δxm,s +
∂xo
∂xm,f

δxm,f (19)

δxm,s =
∂xm,s
∂xm,r

δxm,r +
∂xm,s
∂xr,s

δxr,s. (20)

Introducing

Jos =
∂xo
∂xm,s

, Jsr =
∂xm,s
∂xm,r

,

Jss =
∂xm,s
∂xr,s

, Jof =
∂xo
∂xm,f

and substituting (20) and (11) into (19) we can write

δx̂o =

(
JosJsr︸ ︷︷ ︸
robot pose

JosJss︸ ︷︷ ︸
sensor pose

Jof B̃f︸ ︷︷ ︸
features

) δxm,r
δxr,s
δxp

 .

(21)
Note that the Jacobians Jsr and Jss do not depend on the kind
of feature that is used. They depend only on the transformation
to the sensor frame. Furthermore, the Jacobians Jos and Jof
depend only on the 3 sets of coordinates, (i.e. 3D, 2D and
scalars) and the sensor transform. It has the same form for
all features and measurements and thus also represent generic
calculations.

Going back to (16) we see that it is only the definitions of
η, Jηv , Jηo and Bf that depend on the type of feature. All the
other expressions look the same for all features. By exploiting
this, SLAM can be implemented separately from the details of
the type of feature. In an object oriented setting each feature

type has to provide an implementation for η, Jηv , Jηo and Bf
whereas the rest of the expressions are common.

In Section II we presented the Jacobians of a general
feature parameterization λ. Comparing terms between (1) from
Section II and (21) and (16) we can now see that,

Joλ = Jof B̃fBf . (22)

In (21) we have factored out the Bf term from the Jacobian,
which has the effect of projecting them to the M-space.
Similarly by including the Bf (xf ) with δxf we project the
perturbations into the M-space.

B. EKF Implementation

In EKF SLAM one alternates prediction and update steps in
an iterative algorithm.The predict step calculates the estimated
motion of the robot and adjusts the state covariance matrix
Cstate. Then the update step calculates the changes to the
state and Cstate based on the feature measurements.

To implement the EKF in the M-space we need to include
the M-space perturbations in the update step. The covariance
matrix will now be an estimate of Gaussian distribution in
the perturbations around the current feature positions projected
into the M-space. Thus no explicit state vector is computed but
rather perturbations in the M-space which are then projected
onto the feature coordinates using the B̃ matrices. The Kalman
state perturbations include the feature M-Space perturbations,

δxstate =
(
δxr
δxp

)
. (23)

The updated robot pose state is then xr(t) + δxr(t). We use
the B matrix to project the change in the M-Space to changes
to the feature parameters,

δxf = B̃δxp. (24)

Here B̃(xf ) is calculated every time that xf changes. The
predict step uses the pose prediction at time t,

xr(t) = f(xr(t− 1),xd(t, t− 1) (25)

where xd(t, t − 1) are the incremental dead-reckoning co-
ordinates and f is a function describing the dead-reckoning
motion. The robot pose block, Crr, of the state covariance
matrix, Cstate, will also change,

Crr(t) = JrrCrr(t− 1)JTrr + JrdCd(t, t− 1)JTrd (26)

Here we assume the xd(t, t− 1)) are statistically independent
of the xr(t− 1). The Jacobians of the function f are denoted
by Jrr and Jrd. The Cd is the covariance of xd(t, t− 1)).

The off diagonal block for the covariance of the robot pose
with the M-space perturbations, Crp will change by,

Crp(t) = JrrCrp(t− 1); (27)

The update step is given by the standard EKF update equa-
tions. The only difference is the definition of the linearized



9

state4. The update step incorporates the feature observations
using the matrix K,

K = Cstate(t)JTη,stateS
−1 (28)

where S is,

S = (Jη,stateCstateJTη,state) + Cη(t) (29)

Jη,state = Jηo

(
Jor Jof B̃

)
. (30)

δxstate(t) = −Kη(xstate(t)). (31)

The updated covariance of the robot Cr(t) + δCr(t)

δCstate(t)′ = −KJη,stateCstate(t) (32)

We see that it is only in eq. (30) that the feature representation
plays a role. The B̃ here is calculated around the current
feature state. The filter maintains the robot pose estimate. It
also maintains covariance estimates of the errors in the pose
and the M-Space perturbations. There is no state vector for
the features in the filter. Instead the features maintain the full
xf while the filter provides adjustments to those coordinates
as shown above.

So to summarize an EKF cycle we:
1) Predict a new robot pose using eq. (25).
2) Adjust the covariance using eq. (26) and (27).
3) Update the state using eq. (31) and (24).
4) Update the Covariance using eq. (32).

VI. HANDLING SHARED COORDINATES

As mentioned before in Section IV, part of xf can be
shared between two different features, i.e. one or more of
the coordinates can be common. Thus, a wall described by
two 2D endpoints could share a corner point with another
wall. This will force the corner to always be consistent with
measurements of both walls.

When a coordinate is shared between two features it is
natural to seek a representation for the uncertainty that is not
tied to one of the features. Therefore the corresponding sub-
matrix in the B matrix is set to the identity matrix which
corresponds to representing the uncertainty in for example x
and y rather than the distance orthogonal to the wall and its
orientation. Figure 2 shows an example where two walls share

X

Y

A

B
S

E

S,E

Fig. 2. Two walls with a shared corner point. The non-shared points have
not yet been observed and thus only have information orthogonal to the walls.
This corresponds to the uncertainty from before the point was shared.

a corner point. The arrows mark the direction of the M-space
coordinates. When two walls are joined with a shared point the

4Our notation may bother some readers. Often these equations are written
using P ’s for our C’s, H for our Jη,state and W for our K.

M-space coordinates are redefined. Assuming that none of the
other endpoints are known, the two walls would have had M-
space coordinates corresponding to distance and orientation.
The two non-shared endpoints get uncertainty orthogonal to
wall and the M-space coordinates for the shared point coincide
with the feature coordinate point (i.e. x, y). For example in an
EKF SLAM algorithm, the end point of A and the start point
of B will map to the same rows of the covariance matrix. The
B̃ corresponding to wall A from the figure is given by

B̃ =


L
Ls

cos γ 0 0
L
Ls

sin γ 0 0
0 1 0
0 0 1

 (33)

where L is the current length of the wall and Ls is the length
of the wall at the time when the two lines where joined
with a shared point. The scaling by L

Ls
serves to compensate

for the decrease in angular uncertainty that results when the
wall is extended. Without this compensation the wall would
appear to become more certain in angle just by sliding the
end point along the wall. This is a conservative approximation
to the extent that the perpendicular uncertainty is due to
measurements of the perpendicular distance to the wall.

We can thus represent physical connections between the
simple features to form more complicated composite features.
This is done without the need for any explicit enforcement of
constraints.

VII. EXPERIMENTAL VERIFICATION

In this section we show experimental results to illustrate
that M-space representation is practical for building maps
with real data. We will use both laser scanners, cameras and
combinations thereof. To show the platform independence of

Fig. 3. This shows maps of our lab made with four different robots using
the same configuration parameters for the EKF SLAM program. From left
to right a Performance PeopleBot, a Pioneer2DX, a PowerBot and a custom
built robot. The lighter lines are the hand made map shown for reference. The
darker lines are the SLAM map. The building is 13 by 39 meters.

our representation and implementations, we tried our EKF on
four different indoor robots in our lab. The results are shown in
figure 3. Each of these robots was equipped with a SICK laser
scanner LMS-200. The SLAM program configuration was the
same for each run except for slight differences in the odometry
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Fig. 4. This is an EKF map made of the vision features on the ceiling of
our lab, lines and lamps. The true map of the walls in the lab is also shown
as a reference. One can see that the estimated robot path passes through
the center of the doorways and that the rectangular nature of the ceiling
lines is maintained indicating good accuracy. The lighter lines have M-space
dimension of 1 (direction only) while the darker lines have 3. The squares
show the position of the ceiling lamps which were additional features.

model parameters. Although we collected 32 m laser scans on
some of the robots we limited them to 8 m to be comparable
to the other robots.

Notice that some walls shared endpoints with adjacent
walls forming a corner. These corners had one 2D point that,
when updated, changed both walls. In other words the corner
constraints were explicit in the representation.

To illustrate the M-space features with another type of
sensor, we mounted a Philips web camera pointing straight
up at the ceiling on a custom robot. We then used the camera
and odometry for doing SLAM while using the SICK to first
check our accuracy using only the camera and then to show
that we could combine data from different sensors for building
the map. The ability to integrate in SLAM different sensor and
feature types has been previously demonstrated in [22].

The images were 320x240 at 10Hz. The features were found
by using the OpenCV library. Lines and points were extracted.
Lines were extracted using the Hough Transform. For point
features we used the center of lamps of circular shape that
were detected based on their intensity. The height of the linear
structures above the camera varied between 1.5 and 2.5 meters.

The ability to use the lines for orientation almost imme-
diately was of great benefit in the corridor where the robot
moved parallel to the line for a long distance before turning
into a room and finally being able to triangulate the line’s

Fig. 5. The EKF map obtained using both the camera images and the laser to
detect the wall features. Here we see that the M-space representation allows
the combining of different sensor data into one map. Wall endpoints are shown
(light squares) when they were used as part of the SLAM estimate. The shade
here shows the M-Space dimension of the features. Light grey lines are ceiling
lines, angle only (1D). Walls without endpoints are shown in black (2D). Dark
grey lines with endpoints are walls and without endpoints are 3D ceiling lines
(3D). The lamps are also 3D.

Fig. 6. The same EKF map as in Figure 4 from another viewing angle. One
can see that the features are also at the correct height. The ceiling height is
higher in the rooms than in the hallway.
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Fig. 7. This shows a map made using vision features with the pioneer robot
over a larger area. Again the walls are shown for reference only and were not
part of the estimation process. The path starts and ends in the same room,
proceeding up to the end of the corridor, then down and finally back up to
the starting room.

position. This helped the robot to stay localized. Figures 4, 5
and 6 show the result with a custom built robot. Figure 4 uses
only the camera images and shows the lines and lamps found
on the ceilings. Figure 4 also uses the SICK laser to detect
the walls. Notice that some of the lines found by the SICK
are from furniture which is not parallel to the walls. There
was no significant change in accuracy when adding the SICK.
Robustness was presumably better.

For the Pioneer robot we mounted a QuickCam web camera
with wide-angle lens. This camera had a focal length of 283
pixels as compared to 503 for the Phillips camera used on the
first data set. The wider field of view helped by holding the
features in view for a longer period of time. Figure 7 shows the
results for a larger map using vision features only for SLAM.
The laser scanner, not part of the SLAM estimation, lining up
with the walls of the hand made map confirm that the robot
remained localized correctly.

VIII. CONCLUSION

The M-space feature representation allows us to represent
all the geometric aspects of features in a generic way. The
representation is split into two subspaces, the observable part,

M-space, for which the measurements provide a Gaussian
estimate of the uncertainty and the remaining dimensions
which have uncertainties that cannot be estimated well by
Gaussians.

Furthermore, by having the statistical uncertainties in the
feature coordinates expressed in a frame attached to the fea-
tures themselves we avoid the problems such as the lever-arm
effect and linearizations that become invalid due to rotations
of coordinates in the global frame.

By representing all the geometric information with a generic
parameterization that has well defined transformation rules, the
SLAM programs can be written without knowing the specific
feature details. Different feature types can then be developed
separately.

We have demonstrated the usefulness of this idea with
an EKF SLAM implementation using two different types of
sensors for the feature measurements, four different robots and
three types of features. The details of the feature detection,
initialization and preliminary matching were the same across
the different robots.

Some other practical benefits specific to the experiments
shown:

• The finite size of the features is part of the representation
and does not need to be dealt with separately.

• The walls of the laser built map contained some corner
points which were represented by common parameters for
the two walls. Thus no explicit adjustment was needed to
hold the corner at the wall intersection, as in some other
representations.

• We were able to represent the partially observable and
constrained horizontal line features in the M-space. The
M-space allows us to estimate the statistical variations
in the initialized and measured directions without any
changes to the uninitialized directions. This allows for
partial initialization which can be very practical.

APPENDIX I
3D OBSERVATIONS IN A 2D MODEL

When the ground plane is not flat a 2D sensor such as a
laser scanner will make observations that are not limited to a
horizontal 2D slice of the world. The same happens when the
same sensor is mounted on a pan-tilt unit.

We model 2D points as having an x and y but extend to
plus/minus infinity in the z direction. The assumptions behind
this are that objects extend from the ground and up and that the
sensor does not tilt too far down so that it detects the ground.
Give a certain rotation of the 2D sensor, specified by the three
Euler angles θ, φ and ψ, the position of the point in the sensor
frame can be calculated using the following “rotation” matrix.

R2D
s =

(
cos θ+sin θ sinφ tanψ

cosφ
sin θ−cos θ sinφ tanψ

cosφ
− sin θ
cosψ

cos θ
cosψ

)
(34)

Note that this is not a rotation in strict sense. One important
observation here is that the distance between two points after
the transformation will be different.
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